超短脉冲激光技术ppt课件
超短脉冲技术要点
I I t E2 t
E2 q
cos2
➢ 高带宽:光脉冲的脉宽和其带宽乘积为相同数量级,脉宽 缩短,则带宽增加。100fs的脉冲宽度其带宽达到了10THz, 最短的可见光波段超短激光脉冲的带宽已经包含了大部分 可见光光谱区,看起来象白光一样。高带宽在光通信方面 非常重要。
➢ 高功率激光:激光器输出功率提升意味着体积的增加,也 意味着费用的增长,fs技术可以用中等输出能量的激光器产 生有极高峰值功率激光输出,目前已达到1015W量级的峰值 功率和1020W/cm2的光强。
属于非相干叠加,没有干涉项,为非同步辐射。
对于无规则变化的光场,讨论其瞬时光强I t 意义
不大,一般讨论其平均光强。
§3.1概论
▪ 光场的平均光强
I t E t 2 N Eq cos q t • N Eq cos q t
qN
qN
Eq2 cos2 q t 2 Eq Eq cos q t cos q t
2、纵模间隔非严格相等。
q
q c 2Lq
q c 2L0nq
q
q1 q
c 2L0
q 1
1
ቤተ መጻሕፍቲ ባይዱ
nq1
q
1
nq
m
3、各纵模初始相位随机分布,q1 q const.
以上三点互相关联,由于色散造成的 q
和
m
各纵模初始相位随机分布造成了 t 的随机分布,
最终造成输出的光场在时域随时间做无规则起伏,
激光原理与技术
超短脉冲技术
1
§3.1概论
由图中可知,光子封闭在L中,L为谐振腔的几何长度, 则光子的空间测不准量为x L。 光子在谐振腔中往返振荡,其动量测不准量为
《超短脉冲技术》课件
超短脉冲的波形控制
脉冲整形技术
通过改变脉冲的波形,实现脉冲能量的优化分配 ,提高脉冲的稳定性和可靠性。
脉冲压缩技术
通过光学元件的色散效应,将长脉冲压缩成短脉 冲,提高脉冲的峰值功率。
脉冲多路复用技术
将多个超短脉冲组合在一起,实现更高的输出功 率和更广泛的调谐范围。
超短脉冲的稳定性问题
1 2
模式跳变
激光雷达与测距
• 激光雷达与测距:超短脉冲激光雷达是一种高精度、高分辨率 的测距和定位技术。它利用超短脉冲的宽光谱和高重复频率特 性,能够实现高精度的距离和速度测量,被广泛应用于地形测 绘、无人驾驶、气象观测等领域。
原子分子光谱学研究
• 原子分子光谱学研究:超短脉冲 技术为原子分子光谱学研究提供 了新的手段。由于超短脉冲的宽 光谱特性和高峰值功率,它能够 产生瞬时的强光场,从而实现对 原子分子高分辨率和高灵敏度的 光谱测量。这种技术被广泛应用 于物理、化学和天文学等领域。
光纤损耗
光纤中的折射率不均匀、光纤弯曲和 杂质等都会引起光波散射,导致脉冲 能量损失。
空气损耗
超短脉冲在空气中传输时,会被空气 中的分子和气溶胶粒子吸收和散射, 造成能量损失。
04
超短脉冲的应用实例
超快光学成像
• 超快光学成像:超短脉冲技术被广泛应用于超快光学成像领 域。由于超短脉冲的极短持续时间和高峰值功率,它能够产 生瞬时的光场,从而在极短的时间内对物质进行高分辨率和 高灵敏度的成像。这种技术被广泛应用于生物医学、材料科 学和物理学等领域。
光纤放大
利用掺杂光纤作为增益介质,通过泵浦光激发电子-空穴对,实现 信号光的放大。
固态晶体放大
利用固态晶体中的非线性效应,实现信号光的放大。
第3章 超短脉冲技术1
激光器输出总光场是2N+1个纵模相干的结果:
按指数形式展开,再用三角函数表示
(3.1-7)’
14
由(3.1-8) ~(3.1-10)式可知, 2N+1个振荡模经过锁相以后,总 光场变为频率为ω0 的调幅波。振幅A(t)是随时间变化的周期函 数,光强I(t)正比A2(t) ,也是时间的函数,光强受到调制。按 傅里叶分析,总光场由2N十1个纵模频率组成,因此激光输出脉 冲是包括2N十1个纵模的光波。 图3.1-3给出了7(N=3)个振荡模 的输出光强曲线。
20
复习上一节
锁模所产生的现象
(1)锁模激光器的输出是间隔为τ=2L/c的规则脉冲序列。
0, t1
(2)每个脉冲的宽度
得到窄的锁模脉宽。( t=to=0时,A(t)有极大值,而11式分子(1/2) (2N+1) △ wt1=时,A(t)=0,令 △t=t1-t0 并近似为半峰值宽,则 有…)
17
通过分析可知以下性质:
(1)激光器的输出是间隔为τ=2L/c的规则脉冲序列。
(2)每个脉冲的宽度
1 1 2N 1
0, t1
得到窄的锁模脉宽。( t=to=0时,A(t)有极大值,而11式分子(1/2) (2N+1) △ wt1=时,A(t)=0,令 △t=t1-t0 并近似为半峰值宽,则 有…)
9
某一瞬时的输出光强为
第一项 平均值,其平均光强为:
第二项
(3.1-5)
接收到的光强是在一段比1/ νq = 2π/ωq 大的时间(t1)内的
因为第一项积分: 第二项积分: 所以:
10
该式说明:非锁模时,平均光强是各个纵模光强之和 的一 半。
超短脉冲第四章-PPT
注意 () k()z () k ()z () k ()z
即有关群延得量与群速得量不仅相差一个长度量, 还差一个符号。 如果我们说负得群速色散, 即就是说正得群延迟色散。
对于光在介质中得传播, 可以写成Φ(ω)=ωn(ω) l/c。 因为n一般就是ω得 函数, 求群延迟色散以及高阶色散都变成了对折射率求导数。对于光栅对与 棱镜对空间色散元件, 求群延迟色散以及高阶色散即就是对空间路径求导数
第四章 超短激光脉冲特性
1 、平面波啁啾脉冲波形变 假定化一个平面波脉冲通过一段色散介质,为了简单起见,忽略偏振
得变化,只考虑得二阶色散, 即群延迟色散。设z=0处入射脉冲:
E( z 0, t ) A(t )ei (t )ei0t
通过色散介质后得场强就是初始场强得傅里叶变换乘以相位因
子 ei ( )
第四章 超短激光脉冲特性
3 、含有啁啾得高斯光束在色散介质中得传播
对出射脉冲作傅里叶变换, 可得传播后得脉冲光谱:
out [(2 ln 2 / ) / p ][1 4( / p )2 ( p (2 ln 2))4 ]1 2
与入射光谱相同
线性啁啾脉冲在负与正得群延迟色散介质中传播后脉冲波形得变化
第四章 超短激光脉冲特性
4 、傅里叶变换受限脉冲与非傅里叶变换受限脉 一个冲脉冲得包络强度I(t)得半高宽 与它得傅里叶变换光谱得半
高宽得乘积(时间带宽积)必须大于等于一个常数, 即
p
依脉冲波形而异,对于高斯波形脉冲, 2ln 2 / 0.441 , 而对 于双曲正割 sech2 (t) 波形脉冲, 0.315
第四章 超短激光脉冲特性
超短脉冲激光技术(钱列加老师)
5.6 (3)一.概述 (3)1.飞秒激光脉冲的特性 (3)2.飞秒脉冲的传输 (5)3.光束空间传输 (6)4.脉冲传输的数值模拟 (6)5.时空效应 (9)5.1自相位调制 (10)5.2相位调制对有限光束的影响——自聚焦 (11)二.飞秒光学 (13)1.简介 (13)2.色散元件 (13)2.1 膜层色散 (13)2.2 材料体色散 (13)2.3 角色散元件 (14)3.群速度色散的补偿及控制 (14)4.聚焦元件 (16)4.1 透镜的色差 (16)4.2 脉冲畸变与PTD效应 (16)三.飞秒激光器 (18)1.锁模简介 (18)2.克尔透镜锁模 (18)3.飞秒激光振荡器 (20)4.光纤孤子激光器 (21)四.飞秒脉冲的放大与压缩 (23)1.简介 (23)2.飞秒脉冲放大的困难 (25)3.啁啾脉冲放大技术 (26)4.CP A放大器的设计 (27)4.1 CP A激光系统的工作脉宽 (27)4.2 高增益的前置放大器 (27)4.3 装置的色散控制 (28)4.4 设计多程CP A放大器的理论模型 (31)五.脉冲整形 (34)1.脉冲整形 (34)2.飞秒光脉冲整形的物理基础 (34)(1)线性滤波 (34)(2)脉冲整形装置 (35)(3)脉冲整形的控制 (38)3.几种典型的空间光调制器 (39)(1)可编程液晶空间光调制器(LC SLM) (39)A.电寻址方式 (39)B.光寻址方式 (40)(2)声光调制器 (41)(3)变形镜 (41)4.脉冲压缩 (42)2.1 波导介质中的SPM (42)2.2 级联非线性压缩脉冲 (43)六.脉冲时间诊断技术 (45)1.强度相关 (45)(1) 多次平均测量 (45)(2) 单次工作方式 (47)(3) 三次相关法 (48)2.干涉相关 (49)3.脉冲振幅与位相的重建 (50)七.大口径高功率激光装置 (53)1.高能量的PW钛宝石/钕玻璃混合系统 (55)2.关键技术问题 (56)2.1 高阶色散 (57)2.2 光谱窄化和漂移引起的光谱畸变 (57)2.3 非线性自位相调制SPM (58)2.4 自发辐射放大ASE (58)3.光参量啁啾脉冲放大(OPCPA) (58)3.1 大口径高能钕玻璃泵浦的OPCPA 系统 (62)3.2 小口径低能量高重复率OPCPA 系统 (63)4.展望 (64)4.1 峰值功率的理论极限 (64)4.2 光学元件的限制 (65)4.3 非线性B积分的限制 (65)5.6一. 概述1. 飞秒激光脉冲的特性飞秒(15110fs s −=)激光最早出现于70年代初。
超短激光脉冲——锁模技术概要PPT课件
超短激光脉冲的应用
• 飞秒激光微加工(适用于各种类型材料)
—喷墨打印机的硅喷嘴
—激光冷烧蚀(ablation)-固体直接气化而不提高温度
—金属表面深度发黑处理(飞秒激光脉冲使金属表面改形而形成 纳米结构)
• 高精度外科切除,周围组织的损伤随脉冲持续时
间的缩短而减小。
• 眼角膜外科:飞秒激光在角膜中造成泡状物
十一模同位相
第13页/共23页
第14页/共23页
锁模方法
• 1966年,梅曼演示世界上第一台激光器6年之后De Maria.等人做出第 一台锁模激光器(可饱和吸收体自锁)
• 主动式锁模:主动式锁模通过调制腔损耗或者调制往返相位改变
实现锁模(如图)
声光调制器为最常用方法:电信号驱动的 正弦调幅(AM)对每个纵模进行调制。
式将 呈现周期性地相长干涉—产生强的光脉冲爆(burst)—
锁模或锁相。
2L (L为腔长往返时间)
脉冲的时间间隔为
c 1
• 每个脉冲的持续时间由同位相振荡的模式数目决定,如果N个 模式被锁定,频率间隔为∆ע,则整个锁模带宽为 N∆— ע该带 宽越宽,脉冲持续时间越短。
第7页/共23页
激光腔模
(2)从两个含时间的函数开始:
个例如
已知,测量 F (t)
F和' (t)
,其中一
将直接给出另一个
F (t )
G( )
F ' (t)来自其中为延时,G( )
为一阶相关函数:
G( )
F '(t)F(t )dt
要测一个时间事件需要更短的时间事件。
—对于超短 持续时间的脉冲,脉冲用于测量它自己!
最新激光原理-激光技术教学讲义ppt
图21.1. -73 Q开关激光脉冲建立过程
在泵浦过程的大部分时间里谐振腔处于低Q值(Qo)状态,故阈值很 高不能起振,从而激光上能级的粒子数不断积累,直至 t0时刻, 粒子数反转达到最大值△ni,在这一时刻,Q值突然升高(损耗下 降),振荡阈值随之降低,于是激光振荡开始建立。由于此△ni >>△nt(阈值粒子反转数),因此受激辐射增强非常迅速,激光介质 存储的能量在极短的时间
设三个振动频率分别为ν1 、 ν2 、 ν3 的三个光波沿同一方向传播,
且有关系式: ν3=3ν1,
ν2= 2ν1 , E1 = E 2 =E3 = E0
若相位未锁定,则此三个不
E(t)
v3=3v1, v2=2v1, 初相位无 规 律
E0
-E0
I(t)
v2 v3
v1
同频率的光波的初位相 1 、 2 、 3 彼此无关,如左图, 由于破坏性的干涉叠加,所
可以推得总光强:
N 2
E
2 m
该式说明了平均光强是各个纵模光强之和,每
个脉冲的宽度 约为:
1
q
假如各个模的振幅及相位都固定,也可推得输出脉冲的峰值功率
正比于
N
2
E
2 0
,因此,由于锁模,峰值功率增大了N倍。
每个脉冲的宽度
窄的锁模脉冲。
1 1 , 可见增益线宽愈宽,愈可能得到
N q
二、锁模的基本原理 先看三个不同频率光波的叠加:Ei = E0cos(2π νi t+ i ) i=1,2,3
21世纪的激光技术与产业的发展将支撑并推进高速宽带海量的光通信以及网络通信并将引发一场照明技术革命小巧可靠寿命长节能半导体led发光将主导市场此外将推出品种繁多的光电子消费类产品如vcddvd数码相机新型彩电掌上电脑电子产品智能手机手持音响播放设备摄影投影和成像办公自动化光电设备如激光打印传真和复印等以及新型的信息显示技术产品如crtlcd及pdpfedoel平板显示器等并进入人们的日常生活中
超短脉冲激光技术
精选版课件ppt
11
锁模激光器的输出特性
锁模激光器是指腔内振荡的各纵模间隔相等,并具有确定 的相位关系,激光器的 输出是列时间间隔一定的超短脉冲。
示波器输出的锁模脉冲序列图
精选版课件ppt
非锁模和理想锁模激光器的
信号结构, (a) 非锁模,(b)理 想锁模
12
要获得窄脉宽、高峰值功率的光脉冲,只有采用锁模的方法,就是 使各纵模相邻频率间隔相等,并且相邻纵模位相差为常量。这一点 在单横模的激光器中是能够实现的。
普通运转激光器中的驰豫振荡
泵浦作用下,激光器达到其振荡阈值 产生激光振荡,腔内光子数上升长产生激光; 随着激光的发射,上能级粒子数被大量消耗, 使反转粒子数密度下降,然后腔内光子数密度 下降。此时泵浦的继续抽运反转粒子数密度重 新上升,重复上述过程,输出一系列尖峰脉冲
驰豫振荡产生的激光脉冲的特点: 脉冲的峰值功率低 增大抽运能量只会增加小尖峰的个数 脉宽度约为ms量级
精选版课件ppt
20
自锁模激光器
某些激光增益工作物质的折射率可表示为: 0 2I(t)
式中,第一项为与光强无关的折射率,第二项为非线性折射率。 在横截面内光强呈高斯分布的激光束通过工作物质时,由于上述效应造成的 折射率的横向分布,将产生自聚集效应。自聚焦的焦距和轴线上的光强呈反 比。如果来自外界的扰动引起偶然的光脉冲振荡,由于光脉冲中部的光强大 于前后沿,脉冲中部经工作物质时形成的自聚焦距小于前后沿,因此当光脉 冲每次经过在束腰位置处设置的光阑,前后沿被不断消弱,形成锁模脉冲。
超短脉冲激光技术
报告人:xxx
精选版课件ppt
1
主要内容
超短脉冲激光及其特点 调Q激光 锁模激光技术 飞秒激光技术
超短脉冲技术的原理与应用
超短脉冲技术的原理与应用引言超短脉冲技术是一种在相对时间尺度上产生非常短脉冲的技术。
它具有很高的时间分辨率和能量浓度,被广泛应用于多个领域。
本文将介绍超短脉冲技术的原理及其在不同领域中的应用。
超短脉冲技术的原理超短脉冲技术的原理基于光的时间调制性质。
通过优化光学元件和脉冲发生器的设计,可以产生非常短的脉冲。
以下是超短脉冲技术的主要原理:1.【原理1】光的色散补偿:在光经过不同材料或器件时,会因为折射率的不同而引起色散。
超短脉冲技术利用特殊的光学元件来补偿色散,使得在光经过时不会引起时间延迟。
2.【原理2】光纤拉伸:光纤拉伸技术可以将宽频带的光脉冲缩短。
通过拉伸光纤,光的不同频率被拉宽,从而实现宽频带的短脉冲。
3.【原理3】自发放射:自发放射是一个自然现象,它是由于原子或分子在受到外界激发后发射出光。
通过利用自发放射现象,可以产生非常短的脉冲。
超短脉冲技术在激光领域的应用超短脉冲技术在激光领域有广泛的应用。
以下是几个主要的应用领域:•材料加工:超短脉冲激光在材料加工中具有优越性能。
由于脉冲时间非常短,光的能量集中在一个非常小的空间范围内,可以实现精确的加工。
超短脉冲激光已经在微细加工、孔加工、锡焊接等领域得到广泛应用。
•光谱学研究:超短脉冲激光可以产生宽频谱的光,适用于光谱学研究。
通过测量光的频谱,可以获得物质的吸收、发射等信息。
超短脉冲激光在分子光谱学、固态物理等领域的研究中发挥着重要作用。
•生物医学影像:超短脉冲激光可用于生物医学影像的研究。
超短脉冲激光的短脉冲宽度和高峰值功率可以提供高分辨率的成像。
它被广泛应用于皮肤病学、眼科学和神经科学等领域。
超短脉冲技术在通信领域的应用超短脉冲技术在通信领域也具有重要的应用价值。
以下是几个主要的应用领域:•光纤通信:超短脉冲技术可以实现光纤通信中的高速数据传输。
由于脉冲时间短,可以将信号传输速率提高到数十Gbps甚至更高。
超短脉冲光纤通信已经成为现代通信系统的重要组成部分。
超短脉冲激光及其生命科学应用
超短脉冲激光及其生命科学应用超短脉冲激光是一种异于常规光学的强激光,其脉冲时间对于纳秒甚至皮秒数量级。
由于超短脉冲激光的输出功率非常高,可以在极短时间内将能量输送到最小的空间尺度,因此被广泛应用于各种科学领域,特别是生命科学。
本文将详细介绍超短脉冲激光的原理、技术及其在生命科学方面的应用。
一、超短脉冲激光的原理和技术超短脉冲激光的基本原理是:利用激光器产生强、短脉冲的光束,该光束的时间尺度只有皮秒至纳秒级别,将其聚焦到微观物体上,利用光子的 Photoelectric Effect 和 Comptown Scattering 强度效应产生极高的能量密度,对物体进行加工处理或研究。
通常这种激光采用躯体非线性光学效应来形成及放大,最终通过光学混频技术得到皮秒脉冲出射。
同时,为了增加脉冲能量,将脉冲进行非线性增强,并采用 Afocal 技术来控制脉冲聚焦的光学系统,使得其聚焦到最小的尺度上。
此外,配合一些超水平前处理器和后处理器等器件,为此类激光创新性地提供了后向再注入供激光针对性标记和加工等应用方向。
二、超短脉冲激光在生命科学方面的应用由于超短脉冲激光具有极高的激光功率和空间分辨率,常用于生命科学的诸如光学成像、分子成像、组织切片和细胞操作等领域,其特色在于分子的精细加工和对个体的准确处理等方向。
此外,超短脉冲激光在神经科学方面的应用也非常广泛,通过操纵神经元功能和神经成像的技术,为研究基础和疾病相关的神经生理机制提供了有力的支持和帮助。
1. 光学成像超短脉冲激光可以提供高分辨率的光学成像技术。
对于生物体内部的显微组织学成像,超短脉冲激光可以使成像分辨率进一步提高,同时电子倍增器与 CCD 探测器联用也大大提高了光敏度和数据采集速度,为细胞与组织学成像提供了前所未有的精度。
2. 分子成像超短脉冲激光能够通过分子的振动和转变等特性,形成对分子的成像。
基于受激 Raman 散射、非线性光学倍频和荧光信号探测的原理,超短脉冲激光可以成像蛋白质、核苷酸和其他分子。
超短脉冲激光器
SESAM被认为是目前最有效的方法之一。通过锁模获得的脉宽取决于谐振腔中的群时延色散。在固体激光器 中,增益介质晶体的物质色散比染料激光器的射流薄板(厚约0.2 mm)大一个数量级,因此必须利用色散补偿技术。 具体做法是采用损耗小的布儒斯特棱镜对或色散补偿镜对振荡器内的色散进行补偿。
( 2)有望作为工业设备应用的激光器。主要考虑用于测量和加工领域。利用短脉冲激光可获得理想的加工结 果,但要考虑设备的可靠性或维修性和成本等。近年来,随着锁模固体激光器可靠性的提高和高功率光纤激光器的 出现,人们对该领域的发展寄予厚望。
( 3)作为光信息通信系统器件的半导体激光器和光纤激光器。
3超短脉冲固体激光器
1超短脉冲激光技术的历史与现 状
在激光中,超短脉冲光的产生之所以重要是因为可以通过控制激光的相干光波产生脉冲光,其时间宽度超出电 子学所控制的范畴。从广义上讲,超短脉们对由闪光灯进 行脉冲振荡的红宝石激光器和掺Nd激光器产生的锁模超短脉冲光展开了实验性研究。从此,短脉冲光的产生技术 从锁模亚皮秒脉冲步入到飞秒脉冲。近年来,超短脉冲光技术得到了普及,自20世纪90年代以来,各种可调谐超短 脉冲锁模固体激光器达到了实用化。可调谐激光器是一种激光下能级处于振动激发状态,使振荡频带加宽的光子限 定激光器(Photon terminatedlaser)。典型的钛宝石激光器的工作稳定,实现了平均输出功率为1 W的超短(最短 约为5 fs)脉冲光。若采用掺Yb离子的激光晶体,则可获得更高平均输出功率的亚皮秒脉冲输出。半导体激光器具 有弛豫快,可对泵浦(电流)进行高速调制的特点,因此即使不用锁模,利用增益过渡现象也可产生皮秒区( 1010~10- 12 s)的超短脉冲光。
激光技术第五讲PPT课件
第一节 锁模基本原理
超短脉冲激光的脉宽在ps到fs量级,通过锁模技术产生,是对微观 世界进行研究和揭示新的超快过程的重要手段,并在激光加工领 域有重要应用。
6.1.1 多模激光器的输出特性
先讨论未经锁模的多纵模自由运转激光器的输出特性。对腔长为L
的激光器,其纵模的频率间隔为
q
q1
q
c 2L
自由运转激光器的输出一般包含若干
作业:用MATLAB画出A(t)和A2(t),取N=3,E0=1,L=100mm。 两个主脉冲的间隔恰好是一个光脉冲在腔内往返一周的时间,所 以锁模振荡也可以理解为只有一个光脉冲在腔内来回传播。
At
E0
sin
1 2
2
1
sin
1 2
t
t
次脉冲
主脉冲
多个纵模锁模的结果,出现了下列有意义的现象:
2cos N (t )
和
cos cos 2
cos
sin
1 2
c
os
1 2
sin 1
1
2
t
则
cos(t ) cos[2(t )]
sin[ 1 N ( t )] cos[ 1 ( N 1)( t )]
cos[N (t )] 2
2
sin[1 (t )]
利用声光或电光调制器均可实现振幅调制锁模,损耗调制的频率 为c/2L,调制周期正好是光脉冲在腔内来回一周的时间。将调制 器放在腔的一端。
6.1.3 锁模的方法
除了锁纵模以外,还可以锁横模,或纵横模同时锁定。但锁纵模 是主流,本章主要讨论以下几种锁模方式
1. 主动锁模 周期性调制谐振腔的参量,当选择的调制频率与纵模间隔相等 时,所有的模达到同步,形成锁模系列脉冲。
用于快点火的超短强脉冲激光技术
5.6用于快点火的超短强脉冲激光技术一.概述1. 飞秒激光脉冲的特性15110fs s −=飞秒()激光最早出现于70年代初。
同传统的激光技术相类似,飞秒激光的发展也是和光学材料紧密相关的。
宽带的掺钛宝石激光晶体的出现,促进了飞秒激光在90-年代的飞速发展。
至今飞秒激光在宽带上可以小于4fs ,非常接近单个光波振荡周期。
另一方面,激光脉冲的峰值功率已经超过拍瓦(),相应的光波聚焦光强超过,相当于将所有覆盖于地球表面的太阳能辐射集中到3015110PW W =m μ21210/W cm 的小孔内所获得的强度。
因此,脉冲极短和强度极高的飞秒激光将显示独特的光波特性,并且将创造研究重大科学问题的新途径。
由于飞秒激光的脉冲宽度和光波振荡周期相近,其振幅和位相在相当的时间尺度上发生变化。
飞秒激光将显示出不同于其它较长脉冲的传输特性,光波的谱域相位()φω会显著的影响时域振幅分布或激光脉冲。
例如,50fs 脉宽的飞秒激光经过1cm 的光学玻璃线性传输,将展宽至约100fs 。
这种特性被称为群速度色散效应。
对于大多数光学透明介质,群速度色散仅在飞秒时间尺度上是重要的。
为清晰地说明群速度的概念,可以讨论光波由二列频率稍有不同的平面波组成的情况: 11220012[()][()]00[(())]0()()()2cos ())i k z t i k z t i k z t E t E t E t E e E e E k z t e k ωωωωωωω−−−=+=+Δ=Δ−Δ (1)其中211[()()]2k k k ωωΔ=−211()2ωωωΔ=− 021()21ωωω=+ 上式表明具有多个频率成分的光波的传输和单色平面波相比较,有很大的不同。
它是以中心频率0ω为载频的载波,而其振幅则成为随时间变化的振幅(Fig 1)。
载波表征整个光波的相位信息,其传递速度被定义为相速度。
振幅包洛体现了光波能量的信息,表征了多个频率成分的整体(群)行为,其随 时间变化的速度被定义为群速度p V g V :g V k ω∂=∂ (2(a )) p V k ω=(2(b ))图1. 脉冲光波的振幅包洛与载波群速度仅对于脉冲光波才是有意义的。
激光脉冲技术PPT课件
P()
Ne 2 m
(
2 0
E ( ) 2 ) i
() 0 E()
又 P() ()0 E() () i()0 E
第14页/共111页
• 光与物质相互作用的经典理论分析
则
() Ne 2
1
() i ()
m 0
(
2 0
2)
i
() Ne 2
02 2
m 0
(
2 0
2 )2
2
2
() Ne 2
m 0 (02 2 ) 2 2 2
谐振相互作用时,由于 ω02 ω2 2ω(ω0 ω) 8π 2ν(ν0 ν)
γ Δω 2πΔν ,于是有
χ(ν) Ne2
ν0 ν
8π 2mε0ν0 (ν0 ν)2 Δν / 22
x() e
E()
m (02 2 ) i
•简谐振子模型下,电子受迫振动的频率与驱动光波频率相同,
•受迫振动与驱动光场之间存在相位差(式中含有 i 项)
由上述过程可知:
(可1)以当看出,若0 时不,考电虑子,先则吸x收(ω少)为量有光限能恒,值引,起电受子迫将振吸动收,的并能辐量射全次部波辐。射由出x(去ω),表中达间式
• 1960年秋,美国 Javan等 1.15m连续振荡He-Ne气体激光器。 • 1962年,美国 Nathan、Hall和Quist 77K GaAs半导体激光
器。 • 1966年,Sorokin 等 激光泵浦若丹明6G可调谐液体有机染料激
光器。 • 1966年,美国 Dimmock、Bulter、Melngailis等 低温工作窄
1
0
r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
Q Q
图调 示 意
意电 图光
调 示
.
锁模激光器原理
普通多模激光器的输出特性
腔长为L的激光器,其纵模的频率间隔为:
自由运转激光器一般都包括很多超过阈值的 纵模
这些模的振幅及相位都不确定,激光输出随 时间的变化是它们无规则叠加的结果,是一 种时间平均的统计值。 如果激光工作物质的增益曲线内包含2N+1 个纵模,激光输出的光波场是2N+1个纵模 的和,而平均光强则是各纵模光强之和。
.
2N+1个振荡的模经过锁相以后,总的光场变为频率为ω0的调
幅波。振幅A(t)是一随时间变化的周期函数
为讨论方便,假定α = 0,则
7个纵模锁定后的输出光强
具有如下性质:
(1)激光器的输出是间隔为τ=2L/c的规则脉冲序列
(2)每个脉冲的宽度
1 2N1
1
q
,可见增益线宽愈宽,愈可能
得到窄的锁模脉宽。
.
被动锁模原理
在没有发生锁模以前,假设腔内光子的分布 基本上是均匀的,但还有一些起伏。由于染 料具有可饱和吸收的特性,弱的信号透过率 小,受到的损耗大,而强的信号则透过率大, 损耗小,且其损耗可通过工作物质的放大得 到补偿。所以光脉冲每经过染料和工作物质 一次。其强弱信号的强度相对值就改变一次, 在腔内多次循环后,极大值与极小值之差会 越来越大。脉冲的前沿不断被削陡,而尖峰 部分能有效地通过,则使脉冲变窄。
驰豫振荡产生的激光脉冲的特点: 脉冲的峰值功率低 增大抽运能量只会增加小尖峰的个数 脉宽度约为ms量级
.
驰豫振荡示意图
调Q原理 驰豫振荡脉冲能量低的原因在于每个脉冲总在阈值附近产生
要产生高能量脉冲,必须控制腔内损耗,即调节腔内的品质因数Q
理调 原
Q
设法在光泵浦初期将激光器内的振荡阈值调高,从而抑制激光 振荡,使工作物质的上能级粒子数得到积累。随着光泵的继续 激励,上能级粒子数逐渐积累到最大值。此时,突然将器件的 阈值调低,那么,积累在上能级的大量粒子便雪崩式地跃到激 光下能级,从而获得贬值功率极高的激光脉冲输出。
超短脉冲激光技术
报告人:xxx
.
主要内容
超短脉冲激光及其特点 调Q激光 锁模激光技术 飞秒激光技术
.
超短脉冲激光及其特点
什么是超短脉冲激光?
一般是指时间宽度小于10^(-12)秒的激光脉冲 10^(-12)秒~皮秒;10^(-15)秒~飞秒;10^(-18)秒~阿秒
一般超短激光脉冲:5飞秒~几百飞秒
2、被动锁模
被动锁模是利用可饱和吸收体和腔内光强的变化来实现锁模
.
3、同步泵浦锁模 锁模既可以像主动锁模那样通过周期性地调制谐振腔的损耗或光程来实现,也可以 通过周期性地调制谐振腔的增益来实现。 具体做法:用一台主动锁模激光器的脉冲序列作为种子脉冲去泵浦另一台激光器使 其实现锁模。
4、自锁模 不需要在谐振腔内插入任何调制元件,而是利用工作物质自身的非线性效应来保 持各振荡纵模频率的等间隔分布和确定相位关系。如掺钛蓝宝石激光器。
.
锁模激光器的输出特性
锁模激光器是指腔内振荡的各纵模间隔相等,并具有确定 的相位关系,激光器的 输出是列时间间隔一定的超短脉冲。
示波器输出的锁模脉冲序列图
.
非锁模和理想锁模激光器的 信号结构, (a) 非锁模,(b)理 想锁模
要获得窄脉宽、高峰值功率的光脉冲,只有采用锁模的方法,就是 使各纵模相邻频率间隔相等,并且相邻纵模位相差为常量。这一点 在单横模的激光器中是能够实现的。 2N+1个纵模锁模后的输出:
非线性克尔效应
.
非线性克尔效应
折射率与光强有关: n (I)= n + n2 I
时间强度变化导致自相位调制
高斯横模导致自聚焦
.
飞秒激光谐振腔
.
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
continuoudsuwrataiovne (CW)
pulshesor(mtesotdpe-ullosceksed)
.
锁模的方法
1、主动锁模
主动锁模是采用周期性调制谐振腔参量的方法。 基本原理:在谐振腔中插入一个受外界信号控制的调制器,用一定的调制频 率周期性地改变腔内振荡模的振幅或相位。当选择调制频率等于纵模间隔时, 对各个模的调制会产生边频,边频又与两个相邻纵模的频率相一致,由此引 起模之间的相互作用。若调制的强度足够大,则使所有的振荡模达到同步, 形成周期性的锁模脉冲序列。
.
超短脉冲激光的特点
时间宽度非常短 光谱含量非常丰富 光脉冲峰值功率高
.
中科院物理所 TW级飞秒激光 装置
极光Ⅲ号装置
.
脉冲激光器的发展
.
超短脉冲激光的应用
.
巨脉冲的产生原理:调Q
普通运转激光器中的驰豫振荡
泵浦作用下,激光器达到其振荡阈值 产生激光振荡,腔内光子数上升长产生激光; 随着激光的发射,上能级粒子数被大量消耗, 使反转粒子数密度下降,然后腔内光子数密度 下降。此时泵浦的继续抽运反转粒子数密度重 新上升,重复上述过程,输出一系列尖峰脉冲
可饱和吸收体的吸收特性
.
被动锁模过程
Intensity
Short time (fs)
k= 1 k= 2 k= 3
k= 7
弱脉冲被抑制强脉冲被压缩和放大
经过多次往返,经过可饱和吸收体和增益介质的共同作用可以产生一个很短的脉冲
.
Z型腔SESAM锁模谐振腔及输出脉冲
.
自锁模激光器
某些激光增益工作物质的折射率可表示为: 0 2I(t)
式中,第一项为与光强无关的折射率,第二项为非线性折射率。 在横截面内光强呈高斯分布的激光束通过工作物质时,由于上述效应造成的 折射率的横向分布,将产生自聚集效应。自聚焦的焦距和轴线上的光强呈反 比。如果来自外界的扰动引起偶然的光脉冲振荡,由于光脉冲中部的光强大 于前后沿,脉冲中部经工作物质时形成的自聚焦距小于前后沿,因此当光脉 冲每次经过在束腰位置处设置的光阑,前后沿被不断消弱,形成锁模脉冲。
(3)输出脉冲的峰值功率正比于 E02(2N1)2 ,因此,由于锁 模,峰值功率增大了2N+1倍。
.
脉冲宽度与增益曲线宽度的关系
Bandwidth vs Pulsewidth bbrrooaaddeesrt ssppeeccttrruumm n = const. narrobwandswpniedcthtrum