(完整版)从头到尾彻底理解傅里叶变换算法

合集下载

(完整版)从头到尾彻底理解傅里叶变换算法

(完整版)从头到尾彻底理解傅里叶变换算法
这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换(inverse Fourier transform)为:
即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对:
(完整版)从头到尾彻底理解傅里叶变换算法
从头到尾彻底理解傅里叶变换算法、上 从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象, 尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来 命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变 换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复 杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示 成复指数函数的积分或级数形式。

实数傅里叶变换公式

实数傅里叶变换公式

实数傅里叶变换公式实数傅里叶变换公式是数学领域中一个相当重要的概念,不过要讲清楚它,还真得费点心思。

咱先来说说啥是傅里叶变换。

简单来说,傅里叶变换就是把一个复杂的函数,分解成一堆简单的三角函数的组合。

就好比你有一堆乱七八糟的积木,通过傅里叶变换,能把它们整理成一块块规则的、容易理解的小积木。

那实数傅里叶变换公式到底长啥样呢?它一般是这样的:$F(\omega)=\int_{-\infty}^{\infty} f(t) \cos(\omega t) dt$ 。

这里面的$f(t)$就是咱要处理的那个原始函数,$\omega$是角频率,$F(\omega)$就是变换后的结果。

我记得有一次给学生们讲这个的时候,那可真是状况百出。

我在黑板上写了满满一黑板的公式和推导过程,底下的学生们一个个瞪大眼睛,满脸的迷茫。

有个调皮的小家伙甚至小声嘟囔:“老师,这简直比外星人的语言还难懂!”我一听,心里那叫一个着急。

我赶紧停下,想了想,决定换个方式。

我拿起一支笔,在纸上画了一个简单的波浪线,说:“同学们,你们看,这就好比是一个信号,它一会儿高一会儿低。

那我们怎么才能更好地理解它呢?傅里叶变换就像是一个神奇的魔法,能把这个波浪线变成好多小波浪线的组合,每个小波浪线都有自己特定的频率和幅度。

”然后我又举了个例子,比如说咱们听音乐。

一首好听的歌曲,其实就是各种不同频率的声音组合在一起的。

高音、低音,快节奏、慢节奏,通过傅里叶变换,我们就能把这些不同的部分清晰地分辨出来。

经过这么一番解释,学生们好像有点开窍了。

但要真正掌握,还得靠大量的练习和思考。

实数傅里叶变换公式在很多领域都有大用处。

比如说在通信领域,它能帮助我们更好地传输和处理信号;在图像处理中,能让我们更清晰地看到图像的特征。

总之,实数傅里叶变换公式虽然看起来有点复杂,但只要我们耐心琢磨,多联系实际,还是能把它拿下的!就像我们解决生活中的其他难题一样,只要不放弃,总能找到办法。

傅里叶变换公式的意义和理解

傅里叶变换公式的意义和理解

傅里叶变换公式的意义和理解一、傅里叶变换的基本概念和原理傅里叶变换是一种将时间域或空间域中的信号转换为频域中的信号的数学方法。

它的基本原理是通过将原始信号分解成一组不同频率的正弦波,从而实现对信号的分析和处理。

傅里叶变换的核心公式为:X(ω) = ∫x(t)e^(-jωt) dt其中,X(ω)表示频域信号,x(t)表示时域信号,ω表示角频率,j表示虚数单位。

二、傅里叶变换的重要性傅里叶变换在信号处理、图像处理、通信等领域具有重要的应用价值。

它有助于我们更好地理解信号的频谱特性,从而为后续的信号处理和分析提供有力的理论依据。

三、傅里叶变换的应用领域1.信号处理:傅里叶变换有助于分析信号的频率成分,如音频信号、图像信号等。

2.图像处理:傅里叶变换可用于图像的频谱分析,如边缘检测、滤波等。

3.通信系统:傅里叶变换在通信系统中广泛应用于信号调制、解调、多路复用等领域。

4.量子力学:傅里叶变换在量子力学中具有重要作用,如描述粒子在晶体中的能级结构等。

四、深入理解傅里叶变换公式1.离散傅里叶变换:离散傅里叶变换是将离散信号从时域转换到频域的一种方法,如快速傅里叶变换(FFT)算法。

2.小波变换:小波变换是傅里叶变换的一种推广,可以实现信号的高频局部化分析,适用于图像压缩、语音处理等领域。

3.分数傅里叶变换:分数傅里叶变换是在傅里叶变换基础上发展的一种数学方法,可以实现信号的相位和幅度分析。

五、总结与展望傅里叶变换作为一种重要的数学工具,在各个领域具有广泛的应用。

随着科技的发展,傅里叶变换及相关理论不断得到拓展和深化,为人类探索复杂信号和系统提供了强大的支持。

(完整word版)傅里叶变换本质及其公式解析

(完整word版)傅里叶变换本质及其公式解析

傅里叶变换的本质傅里叶变换的公式为dt et f F tj ⎰+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式:t j e t f F ωπω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。

)(2,21)(2121Ω-Ω==⎰Ω-ΩΩΩπδdt e e e t j t j t j下面从公式解释下傅里叶变换的意义 因为傅里叶变换的本质是内积,所以f(t)和tj eω求内积的时候,只有f(t)中频率为ω的分量才会有内积的结果,其余分量的内积为0。

可以理解为f(t)在tj eω上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在ω的分量叠加起来,可以理解为f(t)在tj e ω上的投影的叠加,叠加的结果就是频率为ω的分量,也就形成了频谱。

傅里叶逆变换的公式为ωωπωd e F t f tj ⎰+∞∞-=)(21)( 下面从公式分析下傅里叶逆变换的意义傅里叶逆变换就是傅里叶变换的逆过程,在)(ωF 和tj eω-求内积的时候,)(ωF 只有t 时刻的分量内积才会有结果,其余时间分量内积结果为0,同样积分值是频率从负无穷到正无穷的积分,就是把信号在每个频率在t 时刻上的分量叠加起来,叠加的结果就是f(t)在t 时刻的值,这就回到了我们观察信号最初的时域。

对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。

将不要的频率分量给滤除掉,然后再做逆变换,就得到了想要的信号。

比如信号中掺杂着噪声信号,可以通过滤波器将噪声信号的频率给去除,再做傅里叶逆变换,就得到了没有噪声的信号。

优点:频率的定位很好,通过对信号的频率分辨率很好,可以清晰的得到信号所包含的频率成分,也就是频谱。

缺点:因为频谱是时间从负无穷到正无穷的叠加,所以,知道某一频率,不能判断,该频率的时间定位。

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信系统等领域都有着广泛的应用。

傅里叶变换的原理是将一个信号分解成不同频率的正弦和余弦函数的叠加,从而可以分析信号的频谱特性。

在本文中,我们将详细介绍傅里叶变换的原理及其在实际应用中的重要性。

首先,让我们来了解一下傅里叶变换的数学表达式。

对于一个连续信号 f(t),它的傅里叶变换F(ω) 定义为:F(ω) = ∫f(t)e^(-jωt)dt。

其中,e^(-jωt) 是复指数函数,ω 是频率。

这个公式表示了信号 f(t) 在频域上的表示,也就是说,它将信号 f(t) 转换成了频率域上的复数函数F(ω)。

通过傅里叶变换,我们可以得到信号的频谱信息,从而可以分析信号的频率成分和能量分布。

傅里叶变换的原理可以通过一个简单的例子来说明。

假设我们有一个周期为 T 的正弦信号f(t) = Asin(2πft),其中 A 是振幅,f 是频率。

对这个信号进行傅里叶变换,我们可以得到频谱F(ω)= A/2 (δ(ω-f) δ(ω+f)),其中δ(ω) 是狄拉克δ函数。

这个频谱表示了信号只包含了频率为 f 的正弦成分,而其他频率成分的能量为零。

这样,我们就可以通过傅里叶变换来分析信号的频率特性。

在实际应用中,傅里叶变换有着广泛的应用。

在信号处理中,我们可以通过傅里叶变换来对信号进行滤波、频谱分析等操作。

在图像处理中,傅里叶变换可以用来进行图像的频域滤波、频谱分析等操作。

在通信系统中,傅里叶变换可以用来对调制信号进行频谱分析、信道估计等操作。

可以说,傅里叶变换已经成为了现代科学技术中不可或缺的数学工具。

总之,傅里叶变换是一种非常重要的数学工具,它可以将一个信号从时域转换到频域,从而可以分析信号的频率特性。

通过傅里叶变换,我们可以对信号进行频谱分析、滤波等操作,从而可以更好地理解和处理信号。

傅里叶变换在信号处理、图像处理、通信系统等领域都有着广泛的应用,它已经成为了现代科学技术中不可或缺的数学工具。

详解傅里叶变换公式

详解傅里叶变换公式

详解傅里叶变换公式傅里叶变换(Fourier Transform)是一种将时域信号转换到频域信号的数学方法。

它可以将一个信号分解为不同频率的正弦波之和,从而揭示信号的频率结构。

傅里叶变换在信号处理、图像处理、通信、物理学等领域具有广泛的应用。

首先,我们要理解时域(Time Domain)和频域(Frequency Domain)的概念。

1. 时域:在时域中,信号表示为时间轴上的函数,例如:```f(t) = A * cos(2 * π* t) + B * sin(2 * π* t)```在这个例子中,f(t) 是一个正弦波函数,t 是时间。

2. 频域:在频域中,信号表示为频率轴上的函数,例如:```F(ω) = A * cos(2 * π* ω) + B * sin(2 * π* ω)```在这个例子中,F(ω) 是一个正弦波函数,ω是频率。

傅里叶变换可以将时域信号转换为频域信号,公式如下:```F(ω) = ∫_{-∞}^{∞} f(t) e^(-jωt) dt```其中,F(ω) 是频域信号,ω是频率,t 是时间,j 是虚数单位,e 是自然对数的底数。

傅里叶变换的逆变换公式如下:```f(t) = ∫_{-∞}^{∞} F(ω) e^(jωt) dω```现在,我们来通过一个简单的例子来说明傅里叶变换。

假设我们有一个正弦波信号,如下所示:f(t) = A * sin(2 * π* t) + B * sin(2 * π* t + π/4)```我们可以使用傅里叶变换将其转换为频域信号,如下所示:```F(ω) = A * cos(2 * π* ω) + B * cos(2 * π* ω+ π/2)```通过傅里叶变换,我们可以看到信号中包含的主要频率成分。

例如,在这个例子中,我们可以看到信号主要包含两个频率成分:一个是A = 1,ω= π/2 的正弦波,另一个是B = 1,ω= π/4 的正弦波。

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种将信号从时域转换到频域的数学工具。

它的原理是将一个信号分解成不同频率的正弦和余弦波的叠加,从而得到信号在频域上的表示。

这种变换在信号处理、图像处理、通信系统等领域中得到广泛应用。

在傅里叶变换中,信号可以表示为一个连续的函数,通常用f(t)表示。

这个函数可以是任何类型的信号,例如音频信号、图像信号、电信号等。

傅里叶变换将这个函数分解成不同频率的正弦和余弦波的叠加,这些波的频率从0开始,一直到无穷大。

傅里叶变换的公式如下:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示信号在频域上的表示,ω表示频率,e^(-iωt)表示一个复数,它的实部是cos(ωt),虚部是sin(ωt)。

这个公式可以理解为将信号f(t)与一个复数e^(-iωt)相乘,然后对整个信号进行积分。

这个积分的结果就是信号在频域上的表示。

傅里叶变换的一个重要应用是信号滤波。

在信号处理中,我们经常需要去除一些噪声或者干扰信号。

这时候可以使用傅里叶变换将信号转换到频域上,然后通过滤波器去除不需要的频率成分,最后再将信号转换回时域。

这个过程被称为频域滤波。

傅里叶变换还可以用于信号压缩。

在图像处理中,我们经常需要将一张高分辨率的图像压缩成低分辨率的图像,以便在网络传输或者存储时节省带宽和存储空间。

这时候可以使用傅里叶变换将图像转换到频域上,然后去除高频成分,最后再将图像转换回时域。

这个过程被称为频域压缩。

傅里叶变换是一种非常重要的数学工具,它可以将信号从时域转换到频域,从而方便我们进行信号处理、图像处理、通信系统等领域的研究和应用。

五种傅里叶变换解析

五种傅里叶变换解析

五种傅里叶变换解析标题:从简到繁:五种傅里叶变换解析引言:傅里叶变换是数学中一种重要且广泛应用于信号处理、图像处理和物理等领域的工具。

它的基本思想是将一个信号或函数表示为若干个不同频率的正弦波的叠加,从而揭示信号或函数的频谱特性。

本文将展示五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开,帮助读者逐步理解傅里叶变换的原理与应用。

第一部分:离散傅里叶变换(DFT)在此部分中,我们将介绍离散傅里叶变换的基本概念和算法。

我们将讨论DFT的离散性质、频域和时域之间的关系,以及如何利用DFT进行频域分析和滤波等应用。

此外,我们还将探讨DFT算法的时间复杂度,以及如何使用DFT来解决实际问题。

第二部分:快速傅里叶变换(FFT)在这一部分中,我们将深入研究快速傅里叶变换算法,并详细介绍其原理和应用。

我们将解释FFT如何通过减少计算量和优化计算过程来提高傅里叶变换的效率。

我们还将讨论FFT算法的时间复杂度和几种不同的FFT变体。

第三部分:连续傅里叶变换(CTFT)本部分将介绍连续傅里叶变换的概念和定义。

我们将讨论CTFT的性质、逆变换和时频分析的应用。

进一步,我们将引入傅里叶变换对信号周期性的描述,以及如何利用CTFT对信号进行频谱分析和滤波。

第四部分:离散时间傅里叶变换(DTFT)在这一章节中,我们将介绍离散时间傅里叶变换的基本原理和应用。

我们将详细讨论DTFT的定义、性质以及与DFT之间的关系。

我们还将探讨DTFT的离散频率响应、滤波和频谱分析的相关内容。

第五部分:傅里叶级数展开最后,我们将深入研究傅里叶级数展开的原理和应用。

我们将解释傅里叶级数展开如何将周期函数分解为多个不同频率的正弦波的叠加。

我们还将讨论傅里叶级数展开的收敛性和逼近性,并探讨如何利用傅里叶级数展开来处理周期信号和周期性问题。

结论:综上所述,本文介绍了五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开。

傅里叶变换本质及其公式解析

傅里叶变换本质及其公式解析

傅里叶变换本质及其公式解析在数学上,傅里叶变换可以用如下的公式表示:F(ω) = ∫[−∞,+∞]f(t)e^(−iωt)dt其中,F(ω)是频域表示函数f(t)的复数结果,ω是频率,t是时间,e是自然对数的底。

这个公式的解析可以分为两个部分进行解释。

首先,我们将函数f(t)看作一个在时间域内的波形,它的频域表示F(ω)是复平面上的一个点。

通过求解这个积分,我们得到了不同频率分量上的幅度和相位信息。

其次,我们将e^(−iωt)作为一个固定频率的正弦或余弦函数,它的角频率是ω。

通过将它与函数f(t)进行乘积并积分,我们对整个时间域内的波形进行了“扫描”。

如果f(t)中包含了与e^(−iωt)相同频率的分量,乘积后的值在积分过程中会叠加并增大;而如果f(t)不包含与e^(−iωt)相同频率的分量,乘积后的值在积分过程中会互相抵消并趋于零。

这样,通过求解这个积分,我们可以从时间域的角度看到不同频率分量在信号中的贡献。

傅里叶变换不仅可以用于分析信号的频谱特性,还可以用于信号的处理和合成。

在信号处理中,傅里叶变换可以将信号转换到频域进行滤波、降噪和特征提取等操作。

同时,通过将频域表示的信号进行反变换,我们可以将信号从频域再转换回时域。

傅里叶变换的应用非常广泛,几乎在所有领域都有涉及。

在通信领域,傅里叶变换被用于信号调制、解调和信道估计。

在图像处理领域,傅里叶变换被用于图像增强、去噪和特征提取。

在物理学和工程学中,傅里叶变换被用于分析和合成信号、振动和波动等。

总结起来,傅里叶变换通过将复杂的时域波形转换到频域,揭示出了信号中不同频率分量的存在。

它的公式解析是通过将函数与特定频率的正弦或余弦函数进行乘积,并求解积分,得到了不同频率分量上的幅度和相位信息。

傅里叶变换在信号处理、通信和图像处理等领域有广泛的应用。

傅里叶变换

傅里叶变换

傅里叶变换
一、定义:傅里叶变换的核心思想就是所有的波都可以用多个正弦波叠加表示。

傅里叶变换提供了一种从时域到频率域的变换规则。

时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。

其动态信号x(t)是描述信号在不同时刻取值的函数。

频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。

频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。

时域是真实世界唯一存在的域。

频率不是真实存在的,而是一个数学构造,频率是遵循特定规则的数学范畴。

二、公式:
(1)一维连续傅里叶变换:
(2)一维连续傅里叶逆变换:
(3)二维连续傅里叶变换:
(4)二维连续傅里叶逆变换:
三、图像引入傅里叶变换的意义:
傅立叶变换是数字信号处理领域一种很重要的算法。

图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。

傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。

从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。

从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。

换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立
叶逆变换是将图像的频率分布函数变换为灰度分布函数。

傅里叶变换理解

傅里叶变换理解

傅里叶变换理解傅里叶变换是一种数学工具,它可以将一个信号分解成不同频率的正弦波。

这个工具在信号处理、图像处理、音频处理等领域中得到了广泛的应用。

在这篇文章中,我们将以傅里叶变换为标题,来探讨它的原理和应用。

傅里叶变换的原理是基于正弦波的周期性和可叠加性。

任何一个周期性信号都可以表示为一系列正弦波的叠加。

这些正弦波的频率、振幅和相位不同,它们的叠加形成了原始信号。

傅里叶变换就是将这个过程反过来,将一个信号分解成不同频率的正弦波。

傅里叶变换的公式是:F(ω) = ∫f(t)e^(-iωt)dt其中,F(ω)表示频率为ω的正弦波的振幅和相位,f(t)表示原始信号,e^(-iωt)表示频率为ω的正弦波。

这个公式可以理解为将原始信号f(t)与不同频率的正弦波e^(-iωt)做内积,得到频率为ω的正弦波的振幅和相位。

傅里叶变换的应用非常广泛。

在信号处理中,傅里叶变换可以用来分析信号的频谱,找出信号中的频率成分。

在图像处理中,傅里叶变换可以用来分析图像的频谱,找出图像中的纹理和边缘。

在音频处理中,傅里叶变换可以用来分析音频的频谱,找出音频中的音调和音色。

除了傅里叶变换,还有一种变换叫做离散傅里叶变换(DFT)。

DFT 是将傅里叶变换应用到离散信号上的一种方法。

DFT的公式是:X(k) = ∑n=0^(N-1)x(n)e^(-i2πnk/N)其中,X(k)表示频率为k的正弦波的振幅和相位,x(n)表示离散信号,N表示信号的长度。

DFT可以用来分析数字信号的频谱,找出数字信号中的频率成分。

傅里叶变换是一种非常重要的数学工具,它可以将一个信号分解成不同频率的正弦波。

这个工具在信号处理、图像处理、音频处理等领域中得到了广泛的应用。

我们可以通过傅里叶变换来分析信号的频谱,找出信号中的频率成分,从而更好地理解和处理信号。

傅里叶算法原理

傅里叶算法原理

傅里叶算法原理傅里叶算法是一种基于信号处理的数学方法,用于将一个信号分解为多个频率成分。

它是以法国数学家傅里叶的名字命名的,傅里叶将该算法应用于热传导方程的解析解中,并发现了这个重要的数学工具。

傅里叶算法的核心思想是将一个连续信号分解成多个不同频率的正弦和余弦函数的叠加。

这些正弦和余弦函数称为频域的基函数,而信号在时间域中的表示称为时域。

在傅里叶算法中,首先需要将时域信号转换为频域信号。

这可以通过傅里叶变换来实现。

傅里叶变换将时域信号分解成不同频率成分的复数形式,其中包含频率和相位信息。

傅里叶变换的计算可以通过离散傅里叶变换(DFT)来进行。

DFT将连续信号离散化为一系列的采样点,并对这些采样点进行傅里叶变换。

这个过程可以用数学公式表示为:X(k) = Σ(x(n) * exp(-i * 2π * k * n / N))其中,X(k)表示频域信号的第k个系数,x(n)表示时域信号的第n 个采样点,N表示采样点的总数。

通过计算DFT,我们可以得到频域信号的各个频率成分的幅度和相位信息。

这些信息可以用于分析信号的频谱特征,例如确定信号的主要频率、频谱宽度和频谱密度等。

傅里叶算法不仅可以将信号从时域转换到频域,还可以进行相反的操作,即将频域信号转换回时域信号。

这可以通过傅里叶逆变换来实现,逆变换的计算公式为:x(n) = (1/N) * Σ(X(k) * exp(i * 2π * k * n / N))其中,x(n)表示时域信号的第n个采样点,X(k)表示频域信号的第k个系数,N表示采样点的总数。

傅里叶算法在信号处理领域有着广泛的应用。

例如,在音频压缩中,可以使用傅里叶变换将音频信号转换为频域信号,然后通过去除低幅度的频率成分来实现压缩。

在图像处理中,可以使用傅里叶变换将图像转换为频域信号,然后通过去除高频噪声或者进行图像增强来实现图像处理。

除了傅里叶变换和逆变换,傅里叶算法还有其他的变体和扩展。

例如,快速傅里叶变换(FFT)是一种高效计算傅里叶变换的算法,通过减少计算量和复杂度来加快计算速度。

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式原理及公式非周期性连续时间信号x(t)的傅里叶变换可以表示为式中计算出来的是信号x(t)的连续频谱。

但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。

因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

有限长离散信号x(n),n=0,1,…,N-1的DFT定义为:可以看出,DFT需要计算大约N2次乘法和N2次加法。

当N较大时,这个计算量是很大的。

利用WN的对称性和周期性,将N点DFT分解为两个N/2点的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。

对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。

图1为FFT与DFT-所需运算量与计算点数的关系曲线。

由图可以明显看出FFT算法的优越性。

将x(n)分解为偶数与奇数的两个序列之和,即x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。

由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为:上式的运算可以用图2表示,根据其形状称之为蝶形运算。

依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。

图3为8点FFT的分解流程。

FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。

FFT不是DFT的近似运算,它们完全是等效的。

关于FFT精度的说明:因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。

为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。

傅里叶变换详解

傅里叶变换详解

若函数
以 为周期,即为
的光滑或分段光滑函数,且定义域为 函数族
,则可取三角 (7.1.2)
作为基本函数族,将 级数)
展开为傅里叶级数(即下式右端 (7.1.3)
式(7.1.3)称为周期函数
的傅里叶级数展开式
(简称傅氏级数展开),其中的展开系数称为傅里叶系数(简
称傅氏系数).
函数族 (7.1.2)是正交的.即为:其中任意两个函数的乘 积在一个周期上的积分等于零,即
7.3.3 傅里叶变换的三种定义式
在实际应用中,傅里叶变换常常采用如下三种形式,由于 它们采用不同的定义式,往往给出不同的结果,为了便于相互 转换,特给出如下关系式:
1.第一种定义式
2.第二种定义式
3.第三种定义式 三者之间的关系为 三种定义可统一用下述变换对形式描述
特别说明:不同书籍可能采用了不同的傅氏变换对定义, 所以在傅氏变换的运算和推导中可能会相差一个常数倍数比如
这些数值时,相应有不同的频率
和不同的振幅,所以式(7.2.19)描述了各次谐波的振幅随频率变化 的分布情况.频谱图通常是指频率和振幅的关系图. 称为函数
的振幅频谱(简称频谱).
若用横坐标表示频率 ,纵坐标表示振幅 ,把点
用图形表示出来,这样的图
形就是频谱图. 由于
,所以频谱 的图形是
不连续的,称之为离散频谱.
利用三角函数族的正交性,可以求得(7.1.3)的展开系数为
(7.1.4)
其中
关于傅里叶级数的收敛性问题,有如下定理:
狄利克雷( Dirichlet)定理 7.1.1 若函数
满足条件:
(1)处处连续,或在每个周期内只有有限个第一类间断点; (2)在每个周期内只有有限个极值点,则级数(7.1.3)收敛,

傅里叶变换原理

傅里叶变换原理

傅里叶变换原理傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信等领域有着广泛的应用。

傅里叶变换的原理是将一个函数分解成一系列正弦和余弦函数的叠加,从而可以将一个时域信号转换到频域上,这样就可以更好地分析信号的频率成分和特性。

傅里叶变换的数学表达式为:F(ω) = ∫f(t)e^(-iωt)dt。

其中,f(t)表示原始函数,F(ω)表示傅里叶变换后的函数,e^(-iωt)表示复指数函数,ω表示频率。

傅里叶变换的原理可以通过一个简单的例子来解释。

假设有一个周期性的方波信号,我们可以通过傅里叶变换将其分解成一系列的正弦函数。

这些正弦函数的频率是原始信号的基频的整数倍,而且每个正弦函数的振幅和相位可以通过傅里叶变换的结果来确定。

这样,我们就可以清楚地了解信号的频率成分和特性。

傅里叶变换有两种形式,一种是连续傅里叶变换,适用于连续信号;另一种是离散傅里叶变换,适用于离散信号。

在实际应用中,我们通常会用到离散傅里叶变换,因为大部分信号都是以离散的形式存在的。

傅里叶变换的原理虽然看起来比较复杂,但是在实际应用中却非常有用。

通过傅里叶变换,我们可以分析信号的频率成分,从而可以实现信号的滤波、压缩、编码等操作。

在图像处理领域,傅里叶变换也被广泛应用,可以实现图像的去噪、增强、压缩等功能。

除了分析信号的频率成分外,傅里叶变换还可以用于求解微分方程和积分方程。

通过将微分方程或积分方程进行傅里叶变换,可以将其转化成代数方程,从而更容易求解。

总之,傅里叶变换是一种非常重要的数学工具,它在信号处理、图像处理、通信等领域有着广泛的应用。

通过傅里叶变换,我们可以更好地分析信号的频率成分和特性,实现信号的滤波、压缩、编码等操作,同时还可以用于求解微分方程和积分方程。

因此,掌握傅里叶变换的原理和应用是非常重要的。

傅里叶变换及其快速算法

傅里叶变换及其快速算法

傅里叶变换及其快速算法傅里叶变换是一种重要的信号分析工具,它在多个领域中被广泛应用,包括图像处理、音频处理、通信系统等等。

本文将介绍傅里叶变换的基本原理,并详细探讨其快速算法。

一、傅里叶变换的基本原理傅里叶变换是将一个信号表示为频域的复振幅和相位的分析工具。

它能够将一个连续时间域信号转换为连续频域信号,通过分析信号的频谱信息来揭示信号的特征和特性。

傅里叶变换的表达式如下:\[ F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt \]其中,\(F(\omega)\)表示信号的频谱,\(f(t)\)表示信号在时域的函数。

二、离散傅里叶变换在数字信号处理中,我们通常处理离散时间域的信号。

离散傅里叶变换(DFT)是傅里叶变换在离散时间域上的推广。

DFT的表达式如下:\[ F[k] = \sum_{n=0}^{N-1} f[n]e^{-j\frac{2\pi}{N}kn} \]其中,\(F[k]\)表示信号的频谱,\(f[n]\)表示信号在时域的离散序列,\(N\)表示序列的长度,\(k\)表示频率的序号。

三、快速傅里叶变换DFT的计算复杂度为\(O(N^2)\),当信号长度较大时,计算量将非常巨大。

为了解决这个问题,提出了快速傅里叶变换(FFT)算法,能够将计算复杂度降低到\(O(N\log N)\)。

FFT算法基于分治法,将信号分解为较小的子问题,然后进行逐层合并。

其基本思想是通过迭代和递归的方式将DFT计算变为多个较小规模的DFT计算。

常用的FFT算法有蝶形算法(Butterfly Algorithm)和Cooley-Tukey 算法。

蝶形算法是一种基于时域采样点的折叠和重叠计算的方法;Cooley-Tukey算法则是一种使用递归分治的迭代算法。

FFT算法的快速计算使其得到了广泛的应用,特别是在实时系统和大规模数据处理中。

四、应用领域傅里叶变换及其快速算法在各个领域都有着广泛的应用。

傅里叶变换详细解释

傅里叶变换详细解释

傅里叶变换详细解释
傅里叶变换是数学中的一种重要分析工具,用于将一个函数表示为一系列复指数的加权和。

它得名于法国数学家约瑟夫·傅
里叶。

简单来说,傅里叶变换可以将一个函数或信号从时域(即时间域)转换到频域(即频率域),从而揭示出了信号中不同频率分量的强弱情况。

傅里叶变换的数学表示如下:
F(ω) = ∫[−∞,+∞] f(t) e^(−jωt) dt
其中,F(ω)表示频率为ω的复指数分量的权重,f(t)表示输入
函数或信号,e^(−jωt)表示复指数函数。

傅里叶变换将输入函
数或信号f(t)与复指数函数相乘,并对结果进行积分,得到频
率域的表示。

傅里叶变换可以将任意复数函数f(t)分解为多个复指数函数的
加权和,每个复指数函数的频率和权重由变换结果F(ω)确定。

所以,傅里叶变换可以将时域的函数转换为频域的复数表示。

傅里叶变换的应用非常广泛,尤其在信号处理、图像处理和通信领域中发挥着重要作用。

它可以帮助我们理解和分析信号的频域特性,如频率分量的强度、相位关系和频谱形状。

此外,傅里叶变换还可以用于信号滤波、频率分析、谱估计、图像压缩等方面。

总之,傅里叶变换通过将函数或信号从时域转换到频域,使我
们能够更好地理解和处理信号的频率特性,并在许多应用中发挥着重要的作用。

五种傅里叶变换解析

五种傅里叶变换解析

五种傅里叶变换解析标题:深入解析五种傅里叶变换引言:傅里叶变换是一种重要的数学工具,它在信号处理、图像处理、频谱分析等领域发挥着重要的作用。

其中,傅里叶级数、离散傅里叶变换、傅里叶变换、快速傅里叶变换和短时傅里叶变换是五种常见的傅里叶变换方法。

在本文中,我们将深入解析这五种傅里叶变换的原理和应用,以帮助读者更全面、深刻地理解它们。

1. 傅里叶级数:1.1 傅里叶级数的基本概念和原理1.2 傅里叶级数在信号分析中的应用案例1.3 对傅里叶级数的理解和观点2. 离散傅里叶变换:2.1 离散傅里叶变换的基本原理和离散化方法2.2 离散傅里叶变换在数字信号处理中的应用案例2.3 对离散傅里叶变换的理解和观点3. 傅里叶变换:3.1 傅里叶变换的定义和性质3.2 傅里叶变换在频谱分析中的应用案例3.3 对傅里叶变换的理解和观点4. 快速傅里叶变换:4.1 快速傅里叶变换的算法和优势4.2 快速傅里叶变换在图像处理中的应用案例4.3 对快速傅里叶变换的理解和观点5. 短时傅里叶变换:5.1 短时傅里叶变换的原理和窗函数选择5.2 短时傅里叶变换在语音处理中的应用案例5.3 对短时傅里叶变换的理解和观点总结与回顾:通过对五种傅里叶变换的深入解析,我们可以看到它们在不同领域的广泛应用和重要性。

傅里叶级数用于对周期信号进行分析,离散傅里叶变换在数字信号处理中具有重要地位,傅里叶变换常用于频谱分析,快速傅里叶变换作为计算效率更高的算法被广泛采用,而短时傅里叶变换在时变信号分析中展现出其优势。

对于读者而言,通过深入理解这五种傅里叶变换的原理和应用,可以更好地应用它们解决实际问题。

观点和理解:从简到繁、由浅入深地探讨五种傅里叶变换是为了确保读者能够从基础开始逐步理解,从而更深入地理解其运算原理、应用场景和优缺点。

通过结构化的文章格式,读者可以清晰地了解到每种傅里叶变换的特点和优势,并能够进行比较和评估。

同时,本文在总结与回顾部分提供了对这五种傅里叶变换的综合理解,以帮助读者获得更全面、深刻和灵活的知识。

傅里叶变换教程

傅里叶变换教程

傅里叶变换是一种将信号从时域(时间域)转换到频域(频率域)的数学工具,它在信号处理、图像处理、通信等领域中有着广泛的应用。

下面是一个简单的傅里叶变换教程,帮助你理解傅里叶变换的基本概念和步骤:时域和频域:时域是指信号在时间上的变化,通常以时间为横轴进行表示。

频域是指信号在频率上的变化,通常以频率为横轴进行表示。

傅里叶级数:傅里叶级数是将周期信号表示为一系列正弦和余弦函数的和的方法。

傅里叶级数公式:f(t) = A0 + Σ(Akcos(kωt) + Bksin(kωt)),其中A0为直流分量,Ak和Bk为频率为kω的余弦和正弦分量。

傅里叶变换:傅里叶变换是将非周期信号表示为连续频谱的方法。

傅里叶变换公式:F(ω) = ∫[f(t)*e^(-jωt)]dt,其中F(ω)为频域表示的信号,f(t)为时域信号,e^(-jωt)为复指数函数。

步骤:将时域信号f(t)进行傅里叶变换,得到频域信号F(ω)。

频域信号F(ω)表示了信号在不同频率上的振幅和相位信息。

可以通过逆傅里叶变换将频域信号F(ω)转换回时域信号f(t)。

傅里叶变换的性质:线性性:傅里叶变换是线性的,即对于两个信号的线性组合,其傅里叶变换等于各自傅里叶变换的线性组合。

平移性:时域信号的平移会导致频域信号相位的变化。

尺度变换:时域信号的时间缩放会导致频域信号的频率变化。

傅里叶变换的应用:信号滤波:可以利用傅里叶变换将信号转换到频域进行滤波处理,例如去除噪声。

频谱分析:通过傅里叶变换可以获得信号的频谱信息,了解信号的频率成分和频率特性。

图像处理:傅里叶变换在图像处理中常用于图像增强、边缘检测等方面。

傅里叶变换计算

傅里叶变换计算

傅里叶变换计算傅里叶变换是一种在数学和工程领域广泛应用的重要工具,它可以将一个函数从时间域转换到频率域。

傅里叶变换的基本概念是将一个函数表示为一系列正弦和余弦函数的加权和。

这种转换可以帮助我们更好地理解信号的频谱特性,从而在各种应用中发挥重要作用。

让我们来了解一下傅里叶变换的基本原理。

傅里叶变换将一个函数$f(t)$转换为另一个函数$F(\omega)$,其中$t$表示时间,$\omega$表示频率。

傅里叶变换的公式可以表示为:$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$这个公式告诉我们,$F(\omega)$是$f(t)$在频率为$\omega$的正弦函数上的投影。

换句话说,傅里叶变换将一个函数分解成一系列不同频率的正弦函数,并给出每个频率的权重。

傅里叶变换有许多实际应用。

首先,它在信号处理中起着重要作用。

通过将一个信号转换到频率域,我们可以分析信号的频谱特性,例如频率分量的大小和相位信息。

这对于音频和图像处理等领域非常重要,例如音频信号的压缩和图像的滤波。

傅里叶变换在通信系统中也有广泛的应用。

通过将信号转换到频率域,我们可以将不同频率的信号分离开来,从而实现多路复用和频谱分配。

这对于无线通信和宽带网络等领域非常重要。

傅里叶变换还在图像处理和图像识别中发挥着重要作用。

通过将图像转换到频率域,我们可以提取图像的纹理特征和边缘信息。

这对于图像的分割和识别非常有用。

傅里叶变换的应用还可以扩展到其他领域。

例如,在量子力学中,傅里叶变换被用来分析波函数在不同动量和能量上的分布。

在经济学中,傅里叶变换可以用于分析经济时间序列数据。

在地震学中,傅里叶变换可以用于分析地震波的频谱特性。

傅里叶变换是一种非常强大的工具,它在数学和工程领域有着广泛的应用。

通过将函数从时间域转换到频率域,我们可以更好地理解信号的频谱特性,并在各种应用中发挥作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从头到尾彻底理解傅里叶变换算法、上从头到尾彻底理解傅里叶变换算法、上前言第一部分、DFT第一章、傅立叶变换的由来第二章、实数形式离散傅立叶变换(Real DFT)从头到尾彻底理解傅里叶变换算法、下第三章、复数第四章、复数形式离散傅立叶变换前言:“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?傅里叶变换(Fourier transform)是一种线性的积分变换。

因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。

哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。

这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。

ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:以下就是傅里叶变换的4种变体(摘自,维基百科)连续傅里叶变换一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。

连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。

连续傅里叶变换的逆变换(inverse Fourier transform)为:即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。

一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。

除此之外,还有其它型式的变换对,以下两种型式亦常被使用。

在通信或是信号处理方面,常以来代换,而形成新的变换对:或者是因系数重分配而得到新的变换对:一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。

分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。

分数傅里叶变换的物理意义即做傅里叶变换a 次,其中a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。

当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform).另一个值得注意的性质是,当f(t)为纯实函数时,F(−ω) = F*(ω)成立.傅里叶级数连续形式的傅里叶变换其实是傅里叶级数(Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。

对于周期函数,其傅里叶级数是存在的:其中Fn为复幅度。

对于实值函数,函数的傅里叶级数可以写成:其中an和bn是实频率分量的幅度。

离散时域傅里叶变换离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。

DTFT 在时域上离散,在频域上则是周期的。

DTFT可以被看作是傅里叶级数的逆变换。

离散傅里叶变换离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。

即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。

在实际应用中通常采用快速傅里叶变换以高效计算DFT。

为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性或周期性条件。

这种情况下,使用离散傅里叶变换(DFT),将函数xn表示为下面的求和形式:其中Xk是傅里叶幅度。

直接使用这个公式计算的计算复杂度为O(n*n),而快速傅里叶变换(FFT)可以将复杂度改进为O(n*lgn)。

(后面会具体阐述FFT是如何将复杂度降为O(n*lgn)的。

)计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。

下面,比较下上述傅立叶变换的4种变体,如上,容易发现:函数在时(频)域的离散对应于其像函数在频(时)域的周期性。

反之连续则意味着在对应域的信号的非周期性。

也就是说,时间上的离散性对应着频率上的周期性。

同时,注意,离散时间傅里叶变换,时间离散,频率不离散,它在频域依然是连续的。

如果,读到此,你不甚明白,大没关系,不必纠结于以上4种变体,继续往下看,你自会豁然开朗。

(有什么问题,也恳请提出,或者批评指正)ok,本文,接下来,由傅里叶变换入手,后重点阐述离散傅里叶变换、快速傅里叶算法,到最后彻底实现FFT算法,全篇力求通俗易懂、阅读顺畅,教你从头到尾彻底理解傅里叶变换算法。

由于傅里叶变换,也称傅立叶变换,下文所称为傅立叶变换,同一个变换,不同叫法,读者不必感到奇怪。

第一部分、DFT第一章、傅立叶变换的由来要理解傅立叶变换,先得知道傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

一、傅立叶变换的提出傅立叶是一位法国数学家和物理学家,原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。

当时审查这个论文拉格朗日坚决反对此论文的发表,而后在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。

直到拉格朗日死后15年这个论文才被发表出来。

谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。

但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。

为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。

用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。

一个正余弦曲线信号输入后,输出的仍是正余弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。

且只有正余弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

二、傅立叶变换分类根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:1、非周期性连续信号傅立叶变换(Fourier Transform)2、周期性连续信号傅立叶级数(Fourier Series)3、非周期性离散信号离散时域傅立叶变换(Discrete Time Fourier Transform)4、周期性离散信号离散傅立叶变换(Discrete Fourier Transform)下图是四种原信号图例(从上到下,依次是FT,FS,DTFT,DFT):这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。

因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。

面对这种困难,方法是:把长度有限的信号表示成长度无限的信号。

如,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离散信号,我们可以用到离散时域傅立叶变换(DTFT)的方法。

也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法(DFT)进行变换。

本章我们要讲的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。

但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。

所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。

这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考虑周期性信号是从哪里得到或怎样得到是无意义的。

每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶变换就更容易了,所以我们先把复数的傅立叶变换放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。

还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。

三、一个关于实数离散傅立叶变换(Real DFT)的例子先来看一个变换实例,下图是一个原始信号图像:这个信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:9个余弦信号:9个正弦信号:把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:上图中左边表示时域中的信号,右边是频域信号表示方法,从左向右,-->,表示正向转换(Forward DFT),从右向左,<--,表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组(即时间x-->频率X),因为有N/2+1种频率,所以该数组长度为N/2+1,X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],另一种是表示正弦波的不同频率幅度值:Im X[],Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。

相关文档
最新文档