基于热敏电阻的温度控制器设计
热敏电阻温度计设计实验报告
热敏电阻温度计设计实验报告热敏电阻温度计设计实验报告引言:温度是我们日常生活中非常重要的一个物理量,它直接影响着我们的生活质量和健康状况。
因此,准确测量温度是科学研究和工程应用中的一个重要问题。
本文将介绍热敏电阻温度计的设计实验,通过实验验证其温度测量的准确性和稳定性。
一、热敏电阻的原理热敏电阻是一种电阻值随温度变化而变化的电阻元件。
其工作原理是基于材料的温度系数,即温度变化会导致材料电阻值的变化。
常见的热敏电阻材料有铂、镍、铜等。
在本实验中,我们选用了铂作为热敏电阻材料。
二、实验装置本实验使用了以下装置和元件:1. 热敏电阻:选用了铂热敏电阻,具有较高的灵敏度和稳定性。
2. 恒流源:为了保证热敏电阻上的电流恒定,我们使用了一个恒流源。
3. 电压表:用于测量热敏电阻两端的电压。
4. 温度控制装置:通过控制加热电流的大小,来控制热敏电阻的温度。
三、实验步骤1. 将热敏电阻连接到恒流源上,并将电压表连接到热敏电阻的两端。
2. 打开恒流源,并调整电流大小,使热敏电阻上的电流保持恒定。
3. 打开温度控制装置,并设置所需的温度。
4. 等待一段时间,直到热敏电阻的温度稳定下来。
5. 使用电压表测量热敏电阻两端的电压,并记录下来。
6. 将温度控制装置的温度调整到其他值,重复步骤4和5。
7. 根据测量结果绘制出热敏电阻的电阻-温度曲线。
四、实验结果与分析根据实验数据,我们绘制了热敏电阻的电阻-温度曲线。
从曲线可以看出,热敏电阻的电阻值随温度的升高而增加。
这符合热敏电阻的特性。
在实验中,我们还发现热敏电阻的灵敏度较高,即单位温度变化引起的电阻变化较大。
这使得热敏电阻在温度测量领域有着广泛的应用。
此外,我们还测试了热敏电阻的稳定性。
通过多次测量同一温度下的电压值,我们发现其变化范围较小,表明热敏电阻具有较好的稳定性。
五、实验误差分析在实验过程中,可能存在一些误差来源,如电流源的漂移、电压表的测量误差等。
这些误差可能会对实验结果产生一定的影响。
热敏电阻传感器温度检测电路设计
热敏电阻传感器温度检测电路设计摘要随着科技的提高,电子电器飞速进展,人民生活水平有了专门大提高。
各类高级家电和珍贵物品为许多家庭所拥有。
但是一些非法分子也愈来愈多。
这点确实是因为非法分子看到了大部份人防盗意识不够强所造成的结果。
因此愈来愈多的居民家庭对财产平安问题十分忧虑。
报警系统这时为人们解决了大部份问题。
:本文介绍了一种基于热释电效应的被动式红外报警器的设计,并对其工作原理进行了简要说明关键词:A/D转换器, AT89C51, PT100, ADC0809, 4位共阴数码管目录1 绪论 (1)课题描述 (1)大体工作原理及框图 (1)2 相关芯片及硬件 (1)单片机选型 (2)AT89C51的功能特性 (2)温度传感器选择 (3)模数转换器选型 (3)整体方案 (4)3 硬件电路设计 (4)时钟电路 (4)复位电路 (4)A/D转换设计 (5)位逐次逼近式A/D转换器ADC0809 (5)ADC0809应用注意事项 (5)模数转换模块电路 (5)放大电路设计 (6)显示电路设计 (7)报警电路 (8)4 系统软件设计 (9)主程序设计 (9)程序说明 (9)流程图 (9)AD转换设计 (9)标度变换说明 (9)显示子程序的设计 (10)总结 (17)致谢 (18)参考文献 (19)1绪论课题描述随着科技的提高,电子电器飞速进展,人民生活水平有了专门大提高。
各类高级家电和珍贵物品为许多家庭所拥有。
但是一些非法分子也愈来愈多。
这点确实是因为非法分子看到了大部份人防盗意识不够强所造成的结果。
因此愈来愈多的居民家庭对财产平安问题十分忧虑。
报警系统这时为人们解决了大部份问题。
可是市场上的报警系统大部份是适用于一些大公司的重要机构。
其价钱昂贵,使一般家庭难以经受。
若是设计一种价钱低廉,性能靠得住、智能化的报警系统,必将在私人财产的防盗领域起到庞大作用。
由于红外线是不可见光,隐蔽性能良好,因此在防盗、警戒等安保装置中被普遍应用。
热敏电阻温度计的设计实验
热敏电阻温度计的设计实验简介热敏电阻温度计是一种测量温度的传感器,它利用材料的电阻随温度变化的特性来实现温度的测量。
本文将详细介绍热敏电阻温度计的设计实验方法和步骤。
实验目的通过设计热敏电阻温度计的实验,掌握以下知识和技能: 1. 了解热敏电阻的基本原理和特点; 2. 掌握热敏电阻的测量方法和电路连接; 3. 学会使用热敏电阻测量温度。
实验器材和材料下面是进行热敏电阻温度计设计实验所需的器材和材料: 1. 热敏电阻 2. 连接线3. 变阻器 4. 示波器 5. 温度源 6. 温度计(参考)实验步骤步骤一:热敏电阻的特性测试1.连接热敏电阻和示波器:将热敏电阻的两端分别连接到示波器的输入端口。
2.设置示波器的垂直和水平方向的刻度,使得能够清晰地观察到热敏电阻的电阻变化。
3.通过改变温度源的温度,观察示波器上显示的电阻变化情况。
4.记录不同温度下的热敏电阻的电阻值,并绘制温度和电阻之间的关系曲线。
步骤二:热敏电阻的电路连接1.根据热敏电阻的数据手册,确定热敏电阻的额定电阻值和温度系数。
2.选择合适的电阻和电路连接方式,以便实现温度测量的精度和稳定性。
3.进行电路连接,并使用万用表测量电路的电阻值,确保电路连接正确无误。
步骤三:热敏电阻温度计的标定1.使用温度计准确测量一个已知温度,例如室温。
2.将已知温度下热敏电阻的电阻值测量结果和温度计的测量结果进行比较,得到电阻值和温度的对应关系。
3.根据已知温度和热敏电阻的电阻值,得到热敏电阻的标定曲线。
步骤四:热敏电阻温度计的实际温度测量1.使用标定曲线,根据热敏电阻的电阻值计算出实际温度。
2.将热敏电阻的电阻值连接到电路中,通过电路输出的电压或电流来测量实际温度。
结论通过实验设计和实施,我们成功地制作了一个热敏电阻温度计,并了解了热敏电阻的基本原理和特点。
我们还学会了热敏电阻的测量方法和电路连接,并掌握了使用热敏电阻进行温度测量的技能。
这些知识和技能将在实际应用中发挥重要作用,为温度测量和控制提供了有力支持。
热敏电阻温度计的设计方案
热敏电阻温度计的设计方案一、整体思路。
咱要做个热敏电阻温度计呢,就像给温度这个调皮的小怪兽做个探测器。
这个温度计的核心就是热敏电阻啦,它可神奇了,温度一变,它的电阻值就跟着变,就像个超级敏感的小卫士。
我们就利用这个特性,把温度这个看不见摸不着的东西转化成能看明白的数值,显示在屏幕上或者其他啥地方。
二、所需材料和工具。
1. 热敏电阻:这是咱的主角,就像电影里的超级英雄一样重要。
要选那种对温度变化反应灵敏的,不然这个温度计就成了个小迷糊,测不准温度啦。
2. 电源:得给这个小系统供电呀,就像给超级英雄补充能量一样。
可以是电池,方便携带,要是做个固定在某个地方的温度计,接个电源适配器也不错。
3. 微控制器(比如单片机):这就像是温度计的大脑,负责处理热敏电阻传过来的信号,把电阻值的变化换算成温度值。
它可聪明啦,能按照我们设定好的程序进行复杂的计算。
4. 显示屏:这是温度计的脸蛋,把温度值显示出来给我们看。
可以是液晶显示屏(LCD),清楚又节能;要是想酷一点,用个OLED显示屏,显示效果那叫一个酷炫。
5. 其他小零件:像电阻、电容这些小零件也不能少,它们就像是超级英雄身边的小助手,帮助电路稳定运行,保证各个部分能和谐共处。
6. 工具方面:电烙铁是必须的,用来焊接那些小零件,就像厨师用锅铲做菜一样熟练地把各个零件连接起来。
还有万用表,用来检测电路是否正常,就像医生给病人做检查一样,找出电路中的毛病。
三、设计步骤。
1. 电路设计。
把热敏电阻接入电路。
可以设计一个简单的分压电路,让热敏电阻和一个普通电阻串联,然后接到电源两端。
这样,随着温度变化,热敏电阻的电阻值改变,它两端的电压也会跟着变,就像跳舞的小伙伴,随着音乐(温度)改变步伐(电压)。
接着,把这个电压信号接到微控制器的模拟输入引脚。
微控制器就像一个好奇的小侦探,时刻准备着接收这个信号并进行分析。
2. 微控制器编程。
在微控制器里,我们要写程序啦。
这个程序就像给小侦探(微控制器)一本秘籍,让它知道怎么根据接收到的电压值算出温度。
基于Pt100_热电阻的简易温度测量系统毕业设计论文1 精品
基于PT100热电阻的简易温度测量仪摘要:本文首先简要介绍了铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。
在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号的采集。
通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内达到±0.1℃。
本文采用STC89C52RC单片机,TLC2543 A/D转换器,AD620放大器,铂电阻PT100及液晶系统,编写了相应的软件程序,使其实现温度及温度曲线的实时显示。
该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。
关键词:PT100 单片机温度测量 AD620 TL431AbstractThis article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and use single-chip control, Amplifier, A / D converter. It can still improve the perform used two-wire temperature circuit and reduce the measurement eror. The temperature precision is reached ±0.1℃ between 0℃~100℃.The system contains SCM(STC89C52), analog to digital convert department (TLC2543), AD620 amplifier, PT100 platinum, LCD12864, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords:PT100 MCU Temperature Measures AD620 TL431目录前言 (4)第一章方案设计与论证 (6)1.1 传感器的选择 (6)1.2 方案论证 (7)1.3 系统的工作原理 (8)1.4 系统框图 (9)第二章硬件设计 (9)2.1 PT100传感器特性和测温原理 (9)2.2 硬件框图以及简要原理概述 (11)2.3 恒流源模块测温模块设计方案 (11)2.4 信号放大模块 (12)2.5 A/D转换模块 (15)2.6 单片机控制电路 (18)2.7 显示模块 (19)第三章软件设计 (19)3.1系统总流程的设计 (19)3.2 主函数的设计 (20)3.3 温度转换流程图的设计 (21)3.4 显示流程图 (21)3.5 按键流程的设计 (22)第四章数据处理与性能分析 (23)4.1采集的数据及数据处理 (23)4.2 性能测试分析 (23)第五章结论与心得 (24)1 结论 (24)2 心得 (24)附录1 原理图 (25)附录2 元器件清单 (26)附录3 程序清单 (27)前言随着科技的发展和“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
基于单片机的热敏电阻温度计的设计
基于单片机的热敏电阻温度计的设计
随着科技的不断发展,各种电子设备应用也越来越广泛。
热敏电
阻温度计便是其中之一,它是一种利用物质温度对电阻值的变化来实
现温度测量的智能仪器。
本篇文章将介绍热敏电阻温度计的设计及其
原理。
首先,我们需要准备的材料有单片机、热敏电阻、电阻、显示屏、连接线以及电源。
将这些材料准备齐全后,便可以开始进行热敏电阻
温度计的设计。
我们需要将热敏电阻、电阻、单片机连接成电路。
电路连接后,
需要进行编程,以使得单片机能够读取热敏电阻和电压值,并将其转
换成温度值。
通过显示屏将温度值显示出来,实现对温度的实时监测。
在热敏电阻温度计设计的过程中,需要注意以下几点:
1. 选用合适的热敏电阻:热敏电阻的温度系数决定了它在不同温
度下的电阻值,因此需要选择合适的热敏电阻。
2. 电路的稳定性:电路中各部分的连接不可松动,否则会影响温
度测量的准确性。
3. 编程的准确性:需要通过合理的代码编写来实现对热敏电阻和
电压值的正确读取和转换,确保温度测量的准确性。
总之,热敏电阻温度计因其简单易用、准确度高等优点被广泛应
用于各种领域中,例如工业制冷、医疗设备等。
希望通过本篇文章的
介绍,能够帮助读者更好地了解热敏电阻温度计的设计及其原理,以便于更好地应用于实际生活生产中。
基于单片机的热敏电阻温度计的设计
基于单片机的热敏电阻温度计的设计引言:热敏电阻是一种根据温度变化而产生变阻的元件,其电阻值与温度成反比变化。
热敏电阻广泛应用于温度测量领域,其中基于单片机的热敏电阻温度计具有精度高、控制方便等特点,因此被广泛应用于各个领域。
本文将介绍基于单片机的热敏电阻温度计的设计,并通过实验验证其测量精度和稳定性。
一、系统设计本系统设计使用STC89C52单片机作为控制核心,热敏电阻作为测量元件,LCD1602液晶显示屏作为温度显示设备。
1.系统原理图2.功能模块设计(1)温度采集模块:温度采集模块主要由热敏电阻和AD转换模块组成。
热敏电阻是根据温度变化而改变阻值的元件,它与AD转换模块相连,将电阻变化转换为与温度成正比的电压信号。
(2)AD转换模块:AD转换模块将热敏电阻的电压信号转换为数字信号,并通过串口将转换结果传输给单片机。
在该设计中,使用了MCP3204型号的AD转换芯片。
(3)驱动显示模块:驱动显示模块使用单片机的IO口来操作LCD1602液晶显示屏,将温度数值显示在屏幕上。
(4)温度计算模块:温度计算模块是通过单片机的计算功能将AD转换模块传输过来的数字信号转换为对应的温度值。
根据热敏电阻的特性曲线,可以通过查表或采用数学公式计算获得温度值。
二、系统实现1.硬件设计(1)单片机电路设计单片机电路包括单片机STC89C52、晶振、电源电路等。
根据需要,选用合适的外部晶振进行时钟信号的驱动。
(2)AD转换电路设计AD转换电路采用了MCP3204芯片进行温度信号的转换。
根据芯片的datasheet,进行正确的连接和电路设计。
(3)LCD显示电路设计LCD显示电路主要由单片机的IO口控制,根据液晶显示模块的引脚定义,进行正确的连接和电路设计。
(4)温度采集电路设计温度采集电路由热敏电阻和合适的电阻组成,根据不同的热敏电阻特性曲线,选择合适的电阻和连接方式。
2.软件设计(1)初始化设置:单片机开机之后,需要进行一系列的初始化设置,包括对IO口、串口和LCD液晶显示屏的初始化设置。
基于NTC热敏电阻的温度测量与控制系统设计
基于NTC热敏电阻的温度测量与控制系统设计摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。
温度值的线性转换通过软件的插值方法实现。
该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。
由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。
关键词: NTC TL431 温度线性转换Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D andD/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy +1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function.Keyword: NTC TL431 temperature linear conversion目录1方案设计与论证 (3)1.1 整体设计方案比较和选择 (3)2 系统设计 (5)2.1 总体设计 (5)2.2各单元模块功能介绍及电路设计 (5)2.2.1 学习板电路 (5)2.2.2测温通道电路 (7)2.2.3 模数转换电路 (8)2.3 特殊器件的介绍 (8)3 软件设计 (9)3.1 软件流程图 (9)3.2 线性转换处理--线性插值 (10)4 系统测试 (11)4.1测试方法 (11)4.2 测试结果 (12)4.3结果分析 (14)5 结论 (14)参考文献 (14)附录: (15)附1:元器件明细表 (15)附2:仪器设备清单 (15)附3:电路图图纸 (16)附4:程序清单 (17)1方案设计与论证1.1 整体设计方案比较和选择温度测量和控制系统,基于NTC热敏电阻的特性进行设计。
采用热敏电阻制作温度报警器
采用热敏电阻制作温度报警器1绪论:温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。
随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度。
温度控制电路在工农业生产中有着广泛的应用。
日常生活中也可以见到,如电冰箱的自动制冷,空调器的自动控制等等。
利用热敏电阻器和音乐集成电路制作一个温度报警器,也可以演示自动控制电路的工作原理。
电路的触发端接在热敏电阻器和微调电阻器的中间,当环境温度升高时,热敏电阻器的阻值减小,电路的触发端电压升高,触发音乐集成电路工作。
调节微调电阻器的阻值,可以改变电路报警时的温度。
现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。
传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。
因此传感器在此温度报警器的制作中起了重要的作用。
2 温度报警器基本介绍2.1温度报警器的功能现代社会是信息化的社会,随着安全化程度的日益提高,机房一一作为现代化的枢纽,其安全工作已成为重中之重,机房内一旦发生故障,将导致整个系统的瘫痪,造成巨大的损失和社会影响;敏探公司研发出机房超温报警系统,功能强大。
造成高温火灾有:电气线路短路、过载、接触电阻过大等引发高温或火灾;静电产生高温或火灾;雷电等强电侵入导致高温或火灾;最主要是机房内电脑、空调等用电设备长时间通电工作,导致设备老化,空调发生故障,而不能降温;因此机房内所属的电子产品发热快,在短时间内机房温度升高超出设备正常温度,导致系统瘫痪或产生火灾,这时超温报警系统就发挥应有的功能。
本文介绍的是采用热敏电阻作为敏感元件的温度报警器,当由金属探头所接触的温度通过传感器到开关,如果温度超过预定值,此时的开关即开启,连接报警器发出报警声,此时。
单片机课程设计报告 基于单片机的热敏电阻测温系统设计
单片机课程设计报告-- 基于单片机的热敏电阻测温系统设计单片机课程设计报告2011 / 2012 学年第 2学期课程名称:单片机课程设计上机项目:基于单片机的热敏电阻测温系统设计专业班级:电子信息工程02班1摘要在日常生活及工业生产过程中,经常要用到温度的检测及控制,温度是生产过程和科学实验中普遍而且重要的物理参数之一。
传统的测温元件有热电偶和热电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。
我们用一种相对比较简单的方式来测量。
我们采用温度传感器DS18B20作为检测元件,温度范围为-55~125 ºC,最高分辨率可达0.0625 ºC。
DS18B20可以直接读出被侧温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。
本文介绍一种基于STC12C5608AD单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用数码管驱动芯片CH451显示,能设置温度报警上下限。
正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,STC12C5608AD单片机功能和应用。
该电路设计新颖、功能强大、结构简单。
关键词:温度测量DS18B20 STC12C5608AD CH451目录2摘要 (2)第1章绪论 (4)第2 章时间安排 (5)第3章设计方案及选材 (6)3.1 系统器件的选择 (7)3.1.1温度采集模块的选择与论证 (7)3.1.2 显示模块的选择与论证 (8)3.2 设计方案及系统方框图 (8)3.2.1 总体设计方案 (8)3.2.2 系统方框图 (9)第4章硬件设计 (10)4.1 总系统组成图 (10)4.2 温度测量传感器部分 (10)4.3 控制部分 (10)4.4 显示部分 (11)4.5 报警部分 (12)第5章程序流程图设计 (13)5.1 主程序流程图 (13)5.2 温度采集流程图 (14)第6章总结 (15)参考文献 (16)3第1章绪论现在电子技术日新月异,各种新型的自动控制系统也越来越多地运用到人们的日常生活、工业生产等领域,它不但可以提高劳动生产率,而且可以使控制的设备或执行的操作更加精确。
简易温度控制器制作(热敏电阻作为温度传感器)
电子技术综合训练设计报告题目:简易温度控制器制作姓名:学号:班级:学院:日期:摘要我们本次课程设计的主题是做一个简易温度控制器。
具体方法是采用热敏电阻作为温度传感器,将温度模拟量转化为数字量,再利用比较运算放大器与设置温度值进行比较,输出高或低电平至电路控制元件从而对控制对象进行控制。
整个电路分为四个部分:测温电路,比较电路,报警电路,控制电路。
其中后三者为技术重点。
目录第一部分:任务要求 (4)第二部分:概述 (5)第三部分:技术要求及方案 (6)第四部分:工作原理 (7)第五部分:单元电路 (8)第六部分:参考文献 (10)第七部分:总结及体会 (11)第八部分:附录 (12)一:任务要求2010 年春季学期二:概述设计并制作一个温度监控系统,用温度传感器检测容器内水的温度,以检测到的温度信号控制加热器的开关,将水温控制在一定的范围之内。
具体要求如下:1、当水温小于50℃时,H1、H2两个加热器同时打开,将容器内的水加热,;2、当水温大于50℃,但小于60℃时,H1加热器打开,H2加热器关闭;3、当水温大于60℃时,H1、H2两个加热器同时关闭;4、当水温小于40℃,或者大于70℃时,用红色发光二极管发出报警信号;5、当水温在40℃~70℃之间时,用绿色发光二极管指示水温正常;6、电源:220V/50HZ的工频交流电供电。
(注:直流电源部分仅完成设计即可,不需制作,用实验室稳压电源调试)按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行必要的仿真,仿真通过后购买元器件,用万用板焊接电路,然后对制作的电路完成调试,撰写设计报告,通过答辩。
设计电路时,应考虑方便调试。
三:技术要求及方案主要技术要求为将得到的数字温度信号转化为控制信号,对报警电路和控制电路进行控制。
任务要求有四个温度控制点(分别存在各个器件的控制).如下(H1.H2均为加热器):通过查阅资料,可采用555集成逻辑电路、比较运算放大器和555集成逻辑电路的组合电路、纯比较运算放大器电路、单片机。
基于单片机的热敏电阻温度计的设计
基于单片机的热敏电阻温度计的设计热敏电阻温度计是一种利用热敏电阻的温度特性来测量温度的传感器。
热敏电阻的电阻值随温度变化而变化,其电阻值与温度之间存在着一定的函数关系。
因此,通过测量热敏电阻的电阻值,就可以得到被测物体的温度。
本文将介绍一种基于单片机的热敏电阻温度计的设计方案。
硬件设计硬件设计主要包括电路设计和元器件选择。
电路设计本设计采用的是电桥式热敏电阻温度计电路,如图所示。
电桥式电路由四个电阻组成,其中两个电阻为热敏电阻,另外两个电阻为定值电阻。
当被测物体的温度发生变化时,两个热敏电阻的电阻值会发生变化,从而导致电桥不再平衡。
为了使电桥平衡,需要通过调整定值电阻的阻值来实现。
为了方便调节电桥平衡,我们可以在电桥两侧分别接入两个放大器,如图所示。
通过调节放大器的增益,可以实现对电桥平衡的微调。
元器件选择在选择热敏电阻时,需要注意其温度响应特性和电阻值范围。
热敏电阻的温度响应特性应该与被测物体的温度范围相匹配,同时其电阻值范围也应该适合于电桥的设计。
在选择放大器时,需要注意其放大倍数和电源电压范围。
放大器的放大倍数应该与电桥的灵敏度相匹配,同时其电源电压范围也应该适合于电桥的设计。
单片机设计单片机设计主要包括程序设计和接口设计。
程序设计程序设计主要包括采集和处理温度数据的程序。
在程序中,我们需要通过模拟输入口(ADC)来采集热敏电阻的电压信号,并将其转换为温度值。
同时,我们还需要对采集到的温度数据进行处理,并将其显示在LCD屏幕上。
接口设计接口设计主要包括单片机与电桥、放大器、LCD屏幕之间的连接方式。
在接口设计中,我们需要考虑接口的电气特性和信号处理方式。
同时,我们还需要注意接口的可靠性和稳定性。
总结基于单片机的热敏电阻温度计是一种简单、实用的温度测量方案。
通过合理的硬件设计和程序设计,可以实现对被测物体温度的准确测量和显示。
同时,这种方案还具有成本低、易于维护等优点,因此在实际应用中具有广泛的应用前景。
基于直流PTC热敏电阻恒温控制系统的设计
基于直流PTC热敏电阻恒温控制系统的设计直流PTC热敏电阻恒温控制系统是一种通过热敏电阻的电阻值随温度变化的特性来实现温度控制的系统。
采用PTC热敏电阻的优点是不需要外部传感器,简化了系统的设计和实现。
下面将从系统的原理、硬件设计和软件设计三个方面详细介绍基于直流PTC热敏电阻恒温控制系统的设计。
一、系统原理直流PTC热敏电阻的电阻值与温度呈正相关关系,当温度升高时,PTC电阻值增大,反之,温度下降时,PTC电阻值减小。
基于这个原理,可以通过测量PTC电阻的电阻值来反馈当前温度,并根据设定的目标温度进行比较和控制。
二、硬件设计硬件设计包括电路设计和传感器连接两个方面。
1.电路设计电路设计中主要包括供电部分、测量部分和控制部分。
供电部分:系统使用直流供电,电源电压适应系统的要求,并提供稳定的电源。
测量部分:利用ADC(模数转换器)将PTC电阻的电阻值转换为数字信号,再通过微处理器或单片机进行处理。
控制部分:根据设定的目标温度和测量到的温度进行比较,然后根据比较结果控制加热或降温。
2.传感器连接将PTC热敏电阻连接到电路中,通过合理的接线使PTC电阻与电路中的测量和控制部分连接。
三、软件设计软件设计主要包括温度测量、目标温度设定和温度控制等功能的实现。
1.温度测量通过采集PTC电阻的电阻值,并利用ADC将模拟信号转换为数字信号,从而得到当前的温度值。
2.目标温度设定通过人机交互界面,输入设定的目标温度值,并将其保存在内部存储器中。
3.温度控制将测量到的温度值与设定的目标温度进行比较,根据比较结果控制加热或降温。
当测量到的温度低于目标温度时,开启加热装置;当测量到的温度高于目标温度时,则关闭加热装置。
总结:基于直流PTC热敏电阻的恒温控制系统设计中,硬件设计包括电路设计和传感器连接两个方面,软件设计包括温度测量、目标温度设定和温度控制等功能的实现。
通过合理的电路设计和软件设计,可实现对温度的精确控制,满足恒温控制系统的需求。
基于热敏电阻的温度计设计
Hefei University温度计设计报告基于热敏电阻的温度计设计引言热敏电阻是一种敏感元件,其特点是电阻随温度的变化而显著变化,因而能直接将温度的变化转换为电量的变化,也就是说能将温度信号转化为电信号,从而实现了非电量的测量。
热敏电阻一般是用半导体材料制成的温度系数范围约为:(-0.003~+0.6)/℃。
热敏电阻的温度系数有正有负,因此分成PTC热敏电阻和NTC热敏电阻两类。
NTC热敏电阻是以锰、钴、镍铜和铝等金属氧化物为主要原料,采用陶瓷工艺制成。
这些金属氧化物都具有半导体性质。
近年来还有用单晶半导体如碳化硅等材料制成的(国产型号 MF91~MF96)负温度系数热敏电阻器。
NTC热敏电阻做为温度传感器具有体积小,结构简单,灵敏度高,并且本身阻值大,一般在102~105之间,不需要考虑引线长度带来的误差,易于实现远距离测量和控制。
NTC热敏电阻的测温范围较宽,特别适用于-100~300℃之间的温度测量。
NTC热敏电阻在工作温度范围内,其阻值随温度增加而显著减小,大多用于测温和控温,可以制成流量计和功率等。
一、 实验原理1、负温度系数热敏电阻的温度特性统计理论指出,热敏电阻的电阻值与温度的关系为:Rt = A ·exp B /T ,其中A 、B —半导体有关的常熟(理论分析和实验结果表明,B 值随温度略有变化,但在一般工作温度范围内近似为常数;B 值越大,阻值随温度的变化越大); T 表示热力学温度。
t 表示摄氏温度,且T =273.15+t ;Rt —在摄氏温度为t 时的电阻值,随温度上升,其电阻值呈指数关系下降(如图一)。
图1 负温度系数热敏电阻的温度特性 图2 非平衡电桥 图3 热敏电阻温度计的温度与电流特性T2、非平衡电桥电桥是一种用比较法进行测量的仪器。
所谓非平衡电桥,是指在测量过程中电桥是不平衡的。
桥路上的电流不为零,桥路上的电路的大小与电源电压,桥臂电阻有关。
利用非平衡电桥进行测量时,应具体选定,除待测电阻外其他电阻的阻值以及电源电压,这样待测电阻Rt与桥路上的电流Ig 就有唯一对应的关系,确定Rt-Ig的关系的过程,即为非平衡电桥的定标。
基于热敏电阻的数字温度计课程设计
目录1 绪论12 系统硬件电路设计3测温电桥电路3信号放大电路 (6)AD转换电路 (7)控制电路 (9)声光报警电路 (10)显示电路 (11)电源电路 (12)3 系统软件设计154 总结与展望 (16)参考文献 (17)1概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一;随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题;目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应;温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小;将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来;系统硬件原理图如图1—1图1—1系统框图系统硬件原理图如图1—1所示,由热电阻传感器测的外界温度,经过信号放大,然后送给模数转换,将原有的模拟信号转换为可以贝单片机识别和运算的数字信号,然后在通过软件编程通过显示电路显示出来当前所测得的温度;它的各部分电路说明如下: 1.测温模块:该部分电路主要使用测温电桥,当温度变化时,电桥处于不平衡状态,从而输出不平衡电压,为测温的基础; 2.信号处理部分:该部分电路包括电压信号的放大和AD转换,实现模数变换,以及硬件滤波;3.单片机部分:AT89C51 单片机系统是数字霍尔电流表的核心部分,主要任务有:控制TLC2543,为其提供合适的时序,使其正常工作和采集模数转换后的数字信号,使用软件滤除干扰,并对数字信号进行计算,然后输出显示;4.电源电路部分:该部分电路负责将输入的9V~12V直流电,分别转换为稳定的9V、5V、-9V直流电,给传感器,放大电路,单片机,TLC2543等供电;5.显示电路,声光报警电路:显示电路的作用是将测量的温度实时显示出来,当测量温度超过限定值时报警电路将发出声光进行报警;2 数字温度计系统硬件电路设计系统由五大部分组成:1测温电桥温量电路;2数据采集,滤波,放大,AD转换电路;3单片机AT89C51控制及数据计算电路;4电源电路;5温度实时显示电路和声光报警电路;测温电桥电路本次课程设计的测温电路为测温电桥,测温电桥的主要部分是热敏电阻;热敏电阻的主要特点是:①较高,其要比金属大10~100倍以上,能检测出10-6℃的温度变化;②宽,常温适用于-55℃~315℃,高温器件适用温度高于315℃目前最高可达到2000℃,低温器件适用于-273℃~55℃;③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在~100kΩ间任意选择;⑤易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强;本次设计采用的是正温度系数的热电阻PT100,它是最常用的温度传感器之一,与其他热敏电阻相比,它的主要优点是测量精度高可精确到摄氏度,线性度好,测量范围广-200℃~650℃,性能稳定,使用方便,完全满足设计要求,所以我最终选择铂电阻PT100作为传感器;PT100温度传感器属于正电阻系数,其电阻阻值与温度的关系可以近似用下式表示:在0~650℃范围内:Rt =R0 1+At+Bt2在-200~0℃范围内:Rt =R0 1+At+Bt2+Ct-100t3式中A、B、C 为常数,其中A=×10-3;B=×10-7;C=×10-12;图2-2 电阻温度曲线图由于它的电阻—温度关系的线性度非常好,电阻温度曲线如图2-2 所示,因此在测量较小范围内其电阻和温度变化的关系式如下:R=Ro1+αT其中α=, Ro为100Ω在0℃的电阻值,T为华氏温度;Pt100是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度;测温电路原理图如下图所示:图如上图所示,热敏电阻RT和RA1,RB1,RC1,以及可变电阻R2组成一个测温电桥,在温度为20度时,调节R2使电桥达到平衡;当温度升高时,热敏电阻的阻值变大,电桥失去平衡,电桥输出的不平衡电压,经过滤波后,输入运算放大器,进行放大处理;电桥的分析:电桥原理图:电桥灵敏度的分析:当各桥臂发生微小变化时,电桥失去平衡,其输出为:信号放大电路本次课程设计,放大模块采用的是OP07放大集成电路;OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路;由于OP07具有非常低的输入失调电压对于OP07A 最大为25μV ,所以 OP07在很多应用场合不需要额外的调零措施;OP07同时具有输入偏置电流低OP07A为±2nA 和开环增益高对于OP07A为300V/mV的特点,这种低失调、高开环增益的特性使得 OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面;OP07具有以下特点:超低偏移: 150μV最大 ;低输入偏置电流: ;低失调电压漂移:μV/℃ ;超稳定,时间: 2μV/month 最大高电源电压范围:±3V至±22VOP07的引脚分布如下图所示:OP07芯片引脚功能说明:1和8为偏置平衡调零端,2为反向输入端,3为正向输入端,4接地,5空脚 6为输出,7接电源+;OP07放大电路的电路原理图如下所示:如上图所示,将测温电桥的输出用差分的方式输入OP07,放大60倍以获得合适的AD输入电压;AD转换电路此次课程设计的AD转换电路,负责将放大后的模拟电压信号转化为可供单片机识别的数字信号;主要采用TLC2543.TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程;由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用;2TLC2543的特点:112位分辩率A/D转换器;2在工作温度范围内10μs转换时间;311个模拟输入通道;43路内置自测试方式;5采样率为66kbps;6线性误差±1LSBmax;7有转换结束输出EOC;8具有单、双极性输出;9可编程的MSB或LSB前导;10可编程输出数据长度;TLC2543的引脚分布如下图所示:引脚说明1电源引脚Vcc ,20脚:正电源端,一般接+5V;GND,10脚:地;REF+,14脚:正基准电压端,一般接+5V;REF-,13脚:负基准电压端,一般接地;2控制引脚CS,15脚:片选端,由高到低有效,由外部输入;EOC,19脚:转换结束端,向外部输出;I/O CLOCK,18脚:控制输入输出的时钟,由外部输入;3模拟输入引脚AIN0~AIN10 ,1~9脚、11~12脚:11路模拟输入端,输入电压范围:~Vcc+;4控制字输入引脚DATA TN PUT,17脚:控制字输入端,选择通道及输出数据格式的控制字由此输入;5转换数据输出引脚DATA OUT ,16脚:A/ D 转换结果输出的3态串行输出端;TLC2543在本设计的电路原理图如下所示:控制电路AT89C51单片机最小系统由AT89C51单片机及其外围电路组成,是数字温度计系统的核心;AT89C51单片机在高温环境中稳定性好,支持在线编程ISP,无需专用的编程器,方便调试.AT89C51单片机对很多嵌入式控制应用提供了一个高灵活有效的解决方案;它的作用是控制TLC2543进行模数转换、形成必要的时序、进行数据计算以及控制数码管显示;AT89C51单片机各个引脚分布如图所示:图1 图2图3图1为单片机的晶振电路,图2为单片机的复位电路,图3为单片机的引脚分布及各引脚的接口,单片机采用5V供电;D1为单片机上电电源指示灯,为报警指示灯的接口,为报警蜂鸣器的接口,为74HC373的8位数据接口,X1,X2为晶振电路的接口,与晶振电路相连;为TLC2543的控制端口,为显示数码管的为位选控制端口,RST为单片机的复位端口,与复位电路相连;声光报警电路当测量的温度超过限定值时,声光电路将进行声光报警,提醒操作人员及时进行处理,避免系统长时间工作在高温情况下,影响系统的性能和使用寿命;声光报警电路由一个发红色光LED灯和蜂鸣器构成;电路原理图如下所示:声光报警电路显示电路显示电路由8位锁存器74HC373,4个八段数码管构成,74HC373的8个输出口分别与各个数码的8个段选端口相连;经过单片机P0输出的8位数据,进入74HC373中,先锁存,再通过单片机的口来选择要显示的位,即控制数码管的位选,通过以上所述来达到实时显示温度的目的;显示电路原理图如下所示:74HC373是八位D型锁存器,其的逻辑图和引脚排列图如下:由图可见它是三态输出结构,1引脚为输出使能控制信号端,当1引脚为低电平时,8个输出三态门导通;当其为高电平时,输出三态门为高阻态;74HC373内部集成有8位D型锁存器,1D,2D,```````8D是8个数据输入端,CP是锁存控制信号;在输出使能信号CS=0情况下,若CP为高电平,输出Q跟随输入数据D变化而变化,即D=0,Q=0,D=1,Q=1,若CP为低电平,输出Q的状态被锁存在CP变0之前时刻各相应数据输入端的电平上,当CS=1时,输出虽然为高阻态,已有的锁存数据仍然保留,新的数据也可以进入,因而输出使能信号CS不影响内部锁存功能;电源电路电源是整套系统工作的基础,要实现温度的精确测量与显示跟一个合适的稳定的电源是密不可分的,由系统组成可知,系统要正常工作需要一个稳定的+5V 电源,用来给测温电桥,单片机,显示模块,AD模块供电,要实现信号的放大还需要给放大模块提供稳定的+9V ,-9V电源;电源模块的电路原理图如下所示:由原理图可知,220V交流电经过变压,整流,滤波后分成两个支路,一路经过滤波后输入LM7809,另一路进过滤波后输入LM7909C1、C7分别为7809和7909的输入滤波电容,两路的输出经过滤波C2和C8分别为滤波电容,去高频耦合C5和C10为去耦电容后分别提供+9V,-9V稳定电压,其中路经LM7809的支路,输出后又经LM7805稳压输出+5V电源,通过上述的电压变化可以达到电路的需求;常见的三端稳压集成电路有正电压输出的78 ××系列和负电压输出的79××系列;顾名思义,三端IC是指这种稳压用的集成电路,只有三条引脚输出,分别是输入端、接地端和输出端;它的样子象是普通的三极管,TO- 220 的标准封装,也有9013样子的TO-92封装;用78/79系列三端稳压IC 来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜;该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V;7805和7809的封装与管脚图如图1所示,7909的封装与管脚图如图2所示图1 图2在实际应用中,应在三端集成稳压电路上安装足够大的散热器当然小功率的条件下不用;当稳压管温度过高时,稳压性能将变差,甚至损坏;散热片总是和接地脚相连;这样在78系列中,散热片和②脚连接,而在79系列中,散热片却和①脚连接;78系列的稳压集成块的极限输入电压是36V,最低输入电压比输出电压高3-4V;还要考虑输出与输入间压差带来的功率损耗,所以一般输入为9-15V 之间;7909的参数如下图所示:3 数字温度计系统软件设计软件总体流程设计软件设计采用c语言编程,运用模块化程序设计思想,对不同功能模块的程序进行分别编程,以便移植或调用,这样使软件层次结构清晰,有利于软件的调试修改;系统程序构建数字温度计系统软件部分采用模块化设计思想,将系统分为主程序、初始化处理模块、中断检测模块、延时处理模块、数据处理模块、显示模块,其软件系统的主程序实现流程如下图所示:NO4 总结与展望数字温度计是为了测温而设计开发的;在单片机技术与热敏电阻的巧妙结合下,可以有效测出温度,并实时数字显示,当温度超过限定值时会及时发出报警,提高了操作的安全性,同时为测量人员提供了方便;本文设计应用中,主要进行了以下几方面的工作:1 本文在前半部分详细叙述了利用热敏电阻,组成测温电桥的测温的原理及为何选用PT100,使我更加了解本设计的设计目的及要求;2 在了解热阻效应和PT100的工作原理的基础上研究和分析了系统设计方案,并对系统中遇到的不同的场景进行了分析;3 完成了数字温度计系统的硬件选型和电路设计;4 完成了系统的软件流程图设计;本文通过对数字温度计系统的设计过程及计算得出如下结论:本系统对有限温度范围内的温度测量具有较高的精度,实现了测量温度显示和超出限定温度报警功能,其主要技术指标达到了系统设计要求;本文关于数字温度计的设计,虽然可以满足广大普通客户的需求,也做了一些尝试性的探索工作,但是还存在很多不完善的地方,仍有许多方面有待进一步深入研究:1需要对热敏电阻的线性度和系统电路设计的可靠性进行进一步的研究;2本文在系统的精度方面研究非常局限,并没有做到非常精确,这就要求以后在这方面还有更近一步研究;3本次课程设计的数字温度计的测量范围具有很大的局限性,只是在理论上通过了,在实际电路中必将遇到很多问题,在硬件电路中如电源的稳定输出,滤波等方面有待很大的改善;。
热敏电阻----单片机温度控制系统电路设计
热敏电阻----单片机温度控制系统电路设计
表4—2 键盘功能表
4.3 LED显示设计
4.3.1 LED显示器结构与原理
LED显示器是由发光二极管显示字段组成的显示器件。
该系统中采用的是七段LED。
这种显示器有共阴极和共阳极两种,该系统选用的是共阴极七段LED显示器。
七段LED显示器中有8个发光二极管,其中7个发光二极管构成7笔字形“8”。
一个发光二极管构成小数点。
七段LED显示器的管脚如图4—2所示。
从a~g管脚输入不同的8位二进制数,可显示不同的数字或字符。
LED的电流通常较小,一般均需在回路中接上限流电阻。
图4—2 显示器结构图
4.3.2 LED显示器的显示方式
该系统共用六个七段LED显示器,采用动态显示方式。
LED动态显示是将所有位的段选线并接在一个I/O口线上,共阴极端分别由相应的I/O口线控制。
在任一时刻,只有一位LED 是点亮的,但只要扫描的频率足够高(一般大于25Hz),由于人眼的视觉暂留特性,直观上感觉却是连续点亮的。
如图4—2所示:所有位的段选线并接在8255的PA口线上,共阴极端分别由PB口中的PB0~PB5控制。
在任一时刻,PB0~PB5中只有一条线是低电平,即只有一只LED被选通,此时刻单片机的P0口通过8255的PA口将相应的数据传输给被选通的LED,使LED点亮。
下一时刻另一只LED被选通,单片机同样传输给其相应数据使其点亮。
如此逐一进行扫描,6只LED显示器逐一被点亮,由于扫描频率很高,所以视觉上6只LED都被点亮了,并无闪烁。
这样系统就实现了显示功能。
基于单片机的热敏电阻温度计的设计
基于单片机的热敏电阻温度计的设计随着科技的不断发展,人们对于温度的测量也越来越精确。
在工业、医疗、环保等领域,温度的测量是非常重要的。
而热敏电阻温度计是一种常见的温度测量设备,它可以通过测量电阻值来计算出温度值。
本文将介绍基于单片机的热敏电阻温度计的设计。
一、热敏电阻的原理热敏电阻是一种电阻值随温度变化的电阻器件。
它的原理是:当温度升高时,热敏电阻的电阻值会下降;当温度降低时,热敏电阻的电阻值会上升。
这是因为热敏电阻的电阻值与其材料的温度系数有关。
温度系数越大,电阻值随温度变化的幅度就越大。
二、单片机的原理单片机是一种集成电路,它包含了中央处理器、存储器、输入输出接口等多个功能模块。
单片机可以通过编程来实现各种功能,如控制电机、测量温度等。
三、基于单片机的热敏电阻温度计的设计基于单片机的热敏电阻温度计的设计需要用到以下材料和器件:1. 热敏电阻2. 单片机3. LCD液晶显示屏4. 电位器5. 电容6. 电阻7. 电源设计步骤如下:1. 将热敏电阻连接到单片机的模拟输入端口。
2. 将LCD液晶显示屏连接到单片机的数字输出端口。
3. 将电位器连接到单片机的模拟输入端口,用于调节LCD液晶显示屏的对比度。
4. 将电容和电阻连接到单片机的复位端口,用于复位单片机。
5. 将电源连接到单片机的电源端口,用于为单片机供电。
6. 编写单片机程序,实现测量热敏电阻的电阻值,并将其转换为温度值。
将温度值显示在LCD液晶显示屏上。
7. 调试程序,确保测量结果准确无误。
四、总结基于单片机的热敏电阻温度计是一种简单、实用的温度测量设备。
它可以通过测量热敏电阻的电阻值来计算出温度值,并将结果显示在LCD液晶显示屏上。
这种设计可以应用于各种领域,如工业、医疗、环保等。
基于555和热敏电阻的温控加热器电路设计
基于555和热敏电阻的温控加热器电路设计温控加热器是一种能够根据环境温度的变化来调节加热器工作状态的电路。
本文将基于555定时器和热敏电阻设计一个温控加热器电路。
首先,我们需要了解一些基本的电子元件和原理。
555定时器是一个广泛应用于电子装置中的标准集成电路,它可以提供多种不同的工作模式。
热敏电阻是一种具有温度敏感特性的电阻器,它的电阻值会随着环境温度的变化而变化。
接下来,我们将详细介绍温控加热器电路的设计步骤:1.确定需要监测和控制的温度范围。
这个范围将决定我们需要选择的热敏电阻和其他电子元件的参数。
2.选择合适的热敏电阻。
根据需求,选择一个在需要监测的温度范围内电阻值变化较大且稳定的热敏电阻。
3.设计电流调度电路。
由于热敏电阻的电阻值较大,为了提供足够的电流对其进行测量,我们需要设计一个电流放大器电路。
4.设计一个基于555定时器的矩形波发生器电路。
这个电路将产生一个固定频率和占空比的方波信号。
5.将矩形波信号和热敏电阻测量电路相连接。
矩形波信号将作为激励信号,而热敏电阻将作为测量物体的敏感元件。
6.设计一个比较器电路。
比较器将测量到的热敏电阻值与设定的温度阈值进行比较,并输出一个控制信号。
7.设计一个继电器驱动电路。
继电器将根据比较器输出的控制信号,打开或关闭加热器。
8.将继电器连接到加热器。
继电器将根据控制信号打开或关闭加热器,从而控制加热器的工作状态。
以上是基于555定时器和热敏电阻设计温控加热器电路的步骤。
通过这个电路,我们可以实现对加热器的温度控制,并根据实际需求对温度进行自动调节。
这个电路在许多领域中都有广泛应用,如恒温箱、温控水壶等。
当然,在实际设计过程中,还涉及到电路的参数选择、连接设计和电源供应等方面的考虑。
因此,在进行具体设计前,还需要进行更详细的研究和分析。
希望以上的简要介绍能够对你的温控加热器电路设计提供一些帮助。
基于ntc热敏电阻的温度检测报警电路设计
基于ntc热敏电阻的温度检测报警电路设计下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着科技的不断进步,基于NTC(Negative Temperature Coefficient)热敏电阻的温度检测报警电路设计已成为现代电子领域中备受关注的话题之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于热敏电阻的温度控制器设计
王芬
电子信息学院测控技术与仪器1031班
摘要:介绍一种以单片机为核心的温度控制系统。
该系统利用热敏电阻的阻值随温度的变化转化为频率的变化,再由单片机处理后显示温度值,并实时处理。
可以通过编程实现设置和显示温度的上下限和加热控制。
测量范围为10度到80度,适合用于空调机内部。
关键字:单片机、温度、控制系统、非线性、线性化
1 引言
在现实生活中,温度的监测和控制在纺织工业、林业、化工、各种军用、民用房以及气象和模拟人工气侯环境中等方面都有着广泛的应用。
因此,能否有效地对这些领域的环境温度进行实时监测,是一个必须解决的重要课题目前,国际上新型温度测控系统从集成化向智能化、网络化的方向飞速发展,小型、低功耗、高可靠性、低成本的温度测控系统已经越来越受到关注,并广泛应用于工业控制和自动化测量系统中,给人们的生活带来了根本性的变化。
基于其现实的诸多作用,设计了该温度控制器,也可在此基础上修改为其他非电量的测量系统。
2本系统工作原理
基于热敏电阻的温度控制器系统由前向通道、单片机、后向通道组成。
前
向通道是单片机对被测控温度的输入通道,后向通道是单片机把处理后的数字
量进行传递、输出显示、控制和调节的通道。
其结构框图如图1所示:
图1. 基于热敏电阻的温度控制器系统结构框图
3硬件的实现
3.1 温度传感器
温度传感器采用负温度系数的热敏电阻(NTC),NTC的温度系数大,价格低
廉,用此制造的测温、控温装置在科研、生产等方面使用非常广泛。
但由于NTC 的温度特性存在严重的非线性,其非线性曲线图如图2所示。
因此必须对系统进行线性化处理,线性化处理的方法很多。
有硬件电路的互补法,软件上的最小二乘法等。
下面文章将介绍一种新的方法。
图2:NTC 的非线性曲线图
通过观察由理想情况的测得的热敏电阻t R 和温度T 的多组数据,在Excel 上拟和出得出t R 与T 的曲线图,根据图形观察得到t R 和T 的表达式为:
t a bT
R c dT
+=
+ (1) 再通过C 语言编程计算出表达式中的系数a,b,c 和d 。
再根据R/F 转换器中
1
0.7(2)
t f C R R =
+ (2)
精确计算出参数C 和t R ,就能得到f 与T 的线性表达式。
T mf n =+ (3) (3)式中的系数m 和n 可通过(1)式和(2)式计算得到。
3.2 R/F 转换器
本系统的特点是用555定时器构成的多谐振荡器能产生矩形脉冲波,把NTC 电阻的变化直接转换为频率的变化,通过555的3脚接到单片机P3.4口定时/计数器0来对R/F 的脉冲计数,计数结果即为A/D 转换的结果。
555内部的比较器灵敏度较高,而且采用差分电路形成,它的振荡频率受电源和温度的变化的影响很小。
这种方法省去了传统方法中的的放大电路,采样保持器,放大器,A/D 转换器,不论是在硬件电路还是在软件设计上都的到了简化。
R/F 转换器的原理图如图3:
图3、R/F转换器原理图
3.3 单片机
8051单片机是目前过内外工业测量控制领域内使用极为广泛的一类8位微控制器,它使用灵活方便,外围硬件支持十分丰富,而且具有体积小,价格低,功能强,利用单片机设计温度测量系统,既可满足功能要求,又经济实惠。
它不但面向控制,可靠性高,抗干扰能力强,而且具有掉电保护功能。
另外,它的I/O接口功能很强,便于系统扩展,应用研制周期短,开发效率高。
3.4 键盘
为了完成预定值设置,系统中设置了3个按键分别为功能键S1、加1键S2和减1键S3,用来设置温度的上下限值。
功能键S1第一次按下时,设置参数为0,LED显示下限温度值,可通过S2和S3设置下限温度;功能键S1第二次按下时,设置参数为1,LED显示上限温度,可通过S2和S3设置上限温度;功能键S1第三次按下,设置参数为2,LED显示当前温度值。
按键的次数和功能依次循环。
若不按功能键直接按加1键或减1键则为无效键。
3.5 显示系统
LED动态显示的基本做法在于分时轮流选通数码管的公共端,使得各数码管同时导通,在选通相应的LED后即在显示字段上得到显示的字形码。
LED动态显示提高了LED的发光效率,而且由于各个数码管的字段线是并联使用的,从而大大简化了硬件线路。
因此。
采用LED共阴动态显示是很合适的。
3.6 加热系统
当测量温度低于设定值的下限时,微处理器将使P2.0口输出低电平,启动加热电路使电加热元件开始工作,加热系统。
当测量温度大于设定温度上限时,P2.0口输出高电平,关闭加热系统。
加热系统如图4:
图4、加热电路
4 系统流程图
系统流程图如图5所示。
5 结束语
本文设计实现了以单片机为核心的,基于热敏电阻的温度控制器的监测、显示很控制系统。
该系统结构简单,操作方便,而且通过编程可以实现较高的精度高。
省去了传统设计中的温度传感器,A/D转换器等,很大的节约了硬件成本。
6 参考文献
《单片微型计算机原理与接口技术》陈光东赵性初编著华中科技大学出版社
《8051单片机实践教程》徐爱钧编著电子工业出版社
《测控系统原理与设计》孙传友孙晓斌汉泽西张欣编著北京航空航天大学出版社
《测控电路及装置》孙传友孙晓斌李胜玉张一编著北京航空航天大学出版社
《通用电子电路400例》何希才邹炳强编著电子工业出版社
《电子控制电路实例》陈尔绍编著电子工业出版社
图5.主流程框图。