霍尔传感器位移特性实验

合集下载

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告

霍尔传感器位移特性实验报告霍尔传感器位移特性实验报告一、引言霍尔传感器是一种常用的非接触式位移传感器,广泛应用于工业自动化、汽车电子、航空航天等领域。

本实验旨在探究霍尔传感器的位移特性,通过实验数据的采集和分析,了解霍尔传感器在不同位移条件下的响应特点。

二、实验目的1. 理解霍尔传感器的工作原理;2. 掌握霍尔传感器的位移测量方法;3. 分析霍尔传感器在不同位移下的输出特性。

三、实验装置与方法1. 实验装置:- 霍尔传感器:将霍尔传感器固定在测量平台上,与位移装置相连;- 位移装置:通过手动旋钮控制位移装置的运动,使其产生不同的位移;- 数据采集系统:使用万用表或示波器对霍尔传感器的输出信号进行采集。

2. 实验方法:- 将霍尔传感器与位移装置连接后,将位移装置调整到初始位置;- 通过手动旋钮控制位移装置,逐步改变位移,记录下每个位移条件下的传感器输出信号;- 将采集到的数据进行整理和分析。

四、实验结果与分析在实验过程中,我们按照不同的位移条件,记录下了霍尔传感器的输出信号。

通过对数据的整理和分析,我们得到了以下结果:1. 位移与输出信号的关系:我们发现,随着位移的增加,霍尔传感器的输出信号呈线性增加的趋势。

这与霍尔传感器的工作原理相吻合,即霍尔传感器通过感应磁场的变化来测量位移。

2. 输出信号的稳定性:在一定范围内,霍尔传感器的输出信号相对稳定,变化较小。

然而,当位移超出一定范围时,输出信号的变化较大。

这可能是由于霍尔传感器的灵敏度有限,在较大位移下无法准确测量。

3. 温度对输出信号的影响:在实验过程中,我们还发现温度对霍尔传感器的输出信号有一定影响。

随着温度的升高,输出信号呈现出一定的波动。

这可能是由于温度变化引起霍尔传感器内部电路的参数变化,进而影响输出信号的稳定性。

五、实验总结通过本次实验,我们深入了解了霍尔传感器的位移特性。

我们发现霍尔传感器的输出信号与位移呈线性关系,在一定范围内相对稳定。

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验1.实验目的通过对线性霍尔传感器位移特性的实验,使学生了解线性霍尔传感器的基本工作原理,并了解它在位移测量中的应用。

2.实验仪器线性霍尔传感器、数字万用表、调整电源。

3.实验原理线性霍尔传感器是一种基于霍尔效应工作的传感器。

当通过传感器的电流与磁场相互作用时,传感器的输出电压会发生变化。

通过调整传感器附近的磁场,可以改变传感器的输出电压。

线性霍尔传感器的输出电压与输出电流成正比,因此可以用来测量位移。

4.实验步骤(1)将调整电源的电压调整到3V左右,将线性霍尔传感器连接到数字万用表的电流输入端。

(2)将线性霍尔传感器固定在一个平面表面上,并将测量头固定在传动机构上。

(3)在传动机构上固定一块磁铁,并将磁铁与线性霍尔传感器保持一定的距离。

(4)用手慢慢地移动传动机构,观察及记录数字万用表的输出读数,同时测量传动机构的位移。

(5)按照步骤(4),沿一个方向不断地调整传动机构的位置,获得输出电压和位移数据。

然后,沿相反的方向重复这个过程。

(6)根据实验中获得的数据绘制线性霍尔传感器的位移特性曲线。

5.实验注意事项(1)实验时应防止磁场干扰,以免影响实验结果。

(2)在实验过程中需要减小环境磁场干扰。

(3)尽量减少传动机构的摩擦,以确保实验结果的准确性。

6.实验结果分析根据实验分析得到的数据,可以绘制线性霍尔传感器的位移特性曲线。

通过分析该曲线,可以了解线性霍尔传感器的工作特性。

根据曲线的斜率,可以计算出线性霍尔传感器的灵敏度,进一步推断出它在位移测量中的应用范围。

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验

线性霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:在半导体薄片两端通以控制电流I、并在薄片的垂直方向施加磁场强度为B的磁场,那么在垂直于电流和磁场的方向上将产生电势UH(称为霍尔电势或霍尔电压)。

这种现象称为霍尔效应。

霍尔效应原理霍尔传感器有霍尔元件和集成霍尔传感器两种类型。

集成霍尔传感器是把霍尔元件、放大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。

本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变化来测量。

霍尔式位移传感器的工作原理和实验电路原理如图(a)、(b)所示。

将磁场强度相同的两块永久磁钢同极性相对放置着,线性霍尔元件置于两块磁钢间的中点,其磁感应强度为0,(a)工作原理(b)实验电路原理霍尔式位移传感器工作原理图设这个位置为位移的零点,即X=0,因磁感应强度B=0,故输出电压U H=0。

当霍尔元件沿X轴有位移时,由于B≠0,则有一电压U H输出,U H经差动放大器放大输出为V。

V与X有一一对应的特性关系。

*注意:线性霍尔元件有四个引线端。

涂黑二端是电源输入激励端,另外二端是输出端。

接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件就损坏。

三、需用器件与单元:主机箱中的±2V~±10V(步进可调)直流稳压电源、±15V直流稳压电源、电压表;霍尔传感器实验模板、霍尔传感器、测微头。

四、实验步骤:1、调节测微头的微分筒(0.01mm/每小格),使微分筒的0刻度线对准轴套的10mm 刻度线。

按图示意图安装、接线,将主机箱上的电压表量程切换开关打到2V档,±2V~±10V (步进可调)直流稳压电源调节到±4V档。

2、检查接线无误后,开启主机箱电源,松开安装测微头的紧固螺钉,移动测微头的安装套,使传感器的PCB板(霍尔元件)处在两园形磁钢的中点位置(目测)时,拧紧紧固螺钉。

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验

实验五霍尔传感器位移特性实验(共2页)(一)直流激励时位移特性实验一、实验目的:了解霍尔传感器的原理与应用。

二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:根据霍尔效应,霍尔电势U H=K H IB,其中K H为灵敏度系数,由霍尔材料的物理性质决定,当通过霍尔组件的电流I一定,霍尔组件在一个梯度磁场中运动时,就可以用来进行位移测量。

四、实验内容与步骤1.按图5-1接线。

图5-1 霍尔传感器直流激励接线图2.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“1cm”处,手动调节测微头的位置,先使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表显示为零。

3.分别向左、右不同方向旋动测微头,每隔0.2mm记下一个读数,直到读数近似不变,将读数填入下表5-1及5-2。

五、实验报告1.作出U-X曲线,计算灵敏度。

2.何为霍尔效应?制作霍尔元件应采用什么材料,为什么?(二)交流激励时位移特性实验一、实验目的:了解交流激励时霍尔传感器的特性二、实验仪器:霍尔传感器模块、霍尔传感器、测微头、直流电源、数显电压表。

三、实验原理:交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。

四、实验内容与步骤:1.接线如下图5-2。

图5-22.调节振荡器的音频调频和音频调幅旋钮,使音频振荡器的“00”输出端输出频率为1K,Vp-p=4V的正弦波(注意:峰峰值不应过大,否则烧毁霍尔组件)。

3.开启电源,直流数显电压表选择“2V”档,将测微头的起始位置调到“10mm”处,手动调节测微头的位置,使霍尔片大概在磁钢的中间位置(数显表大致为0),固定测微头,再调节Rw1使数显表为零。

4.分别向左、右不同方向旋动测微头,每隔0.2mm记一个读数,直到读数近似不变,将读数填入下表5-3及5-4。

五、实验报告1.作出U-X曲线,计算灵敏度。

传感器技术实验指导书

传感器技术实验指导书

实验四电涡流传感器位移特性实验一、实验目的:1、了解电涡流传感器测量位移的工作原理和特性。

2、了解不同的被测体材料对电涡流传感器性能的影响。

3、了解电涡流传感器位移特性与被测体的形状和尺寸有关。

二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。

电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图4-1所示。

根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。

我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图4-2的等效电路。

图中R1、L1为传感器线圈的电阻和电感。

短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。

线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。

图4-1电涡流传感器原理图图4-2电涡流传感器等效电路图根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。

因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q值为:Q=Q0{[1-(L2ω2M2)/(L1Z22)]/[1+(R2ω2M2)/(R1Z22)]}式中:Q0—无涡流影响下线圈的Q值,Q0=ωL1/R1;Z22—金属导体中产生电涡流部分的阻抗,Z22=R22+ω2L22。

由式Z、L和式Q可以看出,线圈与金属导体系统的阻抗Z、电感L和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。

因此Z、L、Q均是x的非线性函数。

虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。

位移传感器 大学物理实验

位移传感器 大学物理实验

实验三十七 位移传感器实验实验目的1. 了解电容式传感器结构及其特点。

2. 了解霍尔效应及其霍尔位移传感器工作原理。

实验原理关于传感器的初步介绍请参见“应变片传感器”的相关内容。

位移传感器的功能在于把机械位移量转换成电信号。

根据不同的物理现象(或物理过程),可以设计不同类型的位移传感器。

本实验首先研究电容位移传感器,在研究与拓展部分再讨论霍尔位移传感器。

1. 电容式传感器基本原理电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器。

它实质上是具有一个可变参数的电容器。

利用平板电容器原理:0r SS C ddεεε==(1)式中,S 为极板面积,d 为极板间距离, 为真空介电常数, 为介质相对介电常数。

可以看出:当被测物理量使S 、d 或 发生变化时,电容量C 随之发生改变。

如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。

所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介电常数的变介电常数式。

本实验采用变面积式电容传感器。

变面积式电容传感器中,平板结构对极距特别敏感且边缘效应明显,测量精度容易受到影响,而圆柱形结构受极板间径向变化的影响很小,边缘效应很小,且理论上具有更好的线性关系(但实际由于边缘效应的影响,会引起极板间的电场分布不均,导致非线性问题仍然存在,且灵敏度下降,但比变极距型好得多),因而成为实际工作中最常用的结构,如图1所示。

两只圆柱形电容器C 1、C 2共享一个内圆柱极板,当内极板随被测物体移动时,两只电容器C 1、C 2内外极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出;通过处理电路将差动电容的变化转换成电压变化,进行测量,就可以计算内极板的移动距离。

根据圆柱形电容器计算公式,线位移单组式的电容量C 在忽略边缘效应时为:212ln(/)l C r r πε=(2) 式中l ——外圆筒与内圆柱覆盖部分的长度;r 2、r 1——外圆筒内半径和内圆柱外半径。

霍尔传感器实验带结果

霍尔传感器实验带结果
yq=polyval(k1,x(1:5));
yh=polyval(k2,x(6:10));
hold
figure(1)
plot(x,v11,'-*',x(1:5),yq,x(6:10),yh,'black')
grid on
xlabel('位移值(mm)');
ylabel('输出电压(mV)');
x=[0.1:0.1:1];%位移
v11=[1.42,2.85,4.32,5.71,7.10,8.52,9.91,11.06,11.19,11.19];%输出电压(1次正行程)
v12=-[-1.41,-2.84,-4.44,-5.91,-7.42,-8.81,-10.06,-10.13,-10.14,-10.14];%输出电压(1次正行程)
title('反射式光纤位移传感器输出特性图(1次正行程)');
lmd1q=k1(1)%灵敏度(前坡)
lmd1h=k2(1)%灵敏度(后坡)
y1q=v11(1:5)-yq;
y1h=v11(6:10)-yh;
l1q=max(y1q);%最大非线性绝对误差
l1h=max(y1h);%最大非线性绝对误差
mlcq=max(v11(1:5))-min(v11(1:5));
mlch=max(v11(6:10))-min(v11(6:10));
fxxwc1q=l1q/mlcq*100%非线性误差(算出来的值写的时候记得带正负号和百分号)
fxxwc1h=l1h/mlch*100%非线性误差(算出来的值写的时候记得带正负号和百分号)
y2=v11-v12;

霍尔传感器实验报告

霍尔传感器实验报告

霍尔传感器原理及其应用年级:2009级姓名:彭春华学号:200908063093专业:电子信息工程指导老师:刘刚2012年6月摘要20 世纪末,集成霍尔传感器技术得到了迅猛发展,各种性能的集成霍尔传感器不断涌现,它们已在汽车、纺织、化工、通讯、电机、电信、计算机等各个领域得到广泛的应用,特别是由集成开关型霍尔传感器制成的无刷直流电机(霍尔电机) 已经进入千家万户. 广泛应用于录音机、摄录像设备、VCD 、DVD 、及新型助力自行车等家用电器中. 笔者将集成开关型霍尔传感器及其计时装置应用于力学实验中,同时还可对该传感器的特性参数进行测量. 由于保留了传统的实验方法,所以使实验的内容更具综合性,它一方面能让学生从多角度地了解和掌握一些经典的测量手段和操作技能.另一方面由于加入了用集成开关型霍尔传感器来测量时间或周期的新方法,使学生对这种传感器的特性及在自动测量和自动控制中的作用有进一步的认识,从而真正领略这一最新传感技术的风采. 传统实验与现代化技术相结合对推进素质教育,培养想象能力和创新能力是十分有用的. 而这类实验已在我校的中学物理实验研究课程中开设,教师和学生都很有兴趣,教学效果很好。

霍尔的实验原理当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产 生电位差,如图1所示,这种现象就称为霍尔效应。

两端具有的电位差值称为霍尔电势U ,其表达式为U= dB I K **其中K 为霍尔系数,I 为薄片中通过的电流,B 为外加磁场(洛伦慈力Lorrentz )的磁感应强度,d图1 是薄片的厚度。

由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。

霍尔接近开关是用“霍尔效应”的磁感应现象来实现电子开关的开关,工作电压范围5-24V 。

霍尔传感器对磁场感应特别灵敏,所以与他配合工作的是一块小磁铁。

当磁铁与它接近时。

若B 在一定值以上时,霍尔传感器输出高电平,若B 小于一定值时,霍尔传感器会输出低电平。

传感器测试实验报告

传感器测试实验报告

传感器测试实验报告实验一直流激励时霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。

二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。

具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为UHk_,式中k—位移传感器的灵敏度。

这样它就可以用来测量位移。

霍尔电动势的极性表示了元件的方向。

磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。

三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、15V直流电源、测微头、数显单元。

四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。

1、3为电源5V,2、4为输出。

2、开启电源,调节测微头使霍XX大致在磁铁中间位置,再调节Rw1使数显表指示为零。

图9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表9-1。

表9-1作出V-_曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成15V,否则将可能烧毁霍尔元件。

六、思考题:本实验中霍尔元件位移的线性度实际上反映的时什么量的变化七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

实验二集成温度传感器的特性一、实验目的:了解常用的集成温度传感器基本原理、性能与应用。

二、基本原理:集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。

霍尔传感器位移特性实验

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验141270046 自动化杨蕾生一、实验目的:了解直流激励时霍尔式传感器的特性。

二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。

四、实验步骤:1、霍尔传感器和测微头的安装、使用参阅实验九。

按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。

2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。

3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。

六、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

实验数据如下:表9-2(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm(2)由上图可得非线性误差:当x=1mm时,Y=-0.9354×1+1.849=0.9136Δm =Y-0.89=0.0236VyFS=1.88Vδf =Δm /yFS×100%=1.256%当x=3mm时:Y=-0.9354×3+1.849=-0.9572VΔm =Y-(-0.94)=-0.0172VyFS=1.88Vδf =Δm /yFS×100%=0.915%2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

霍尔传感器位移测量电路的设计

霍尔传感器位移测量电路的设计

目录第一章虚拟仪器课程设计的意义及任务 (2)1.1课程设计的意义 (2)1.2 课程设计任务说明 (2)第二章关于虚拟仪器和Labview (2)2.1 虚拟仪器简介 (2)2.2 Labview概述 (3)2.2.1 Labview的发展历程 (3)2.2.2 什么是VI? (3)2.2.3 Labview的操作面板 (3)第三章霍尔传感器位移测量电路的设计 (5)3.1 设计要求 (5)3.2测量电路原理与设计 (5)3.2.1 模型的建立 (5)3.2.2 放大电路设计 (6)第四章对电路仿真分析 (7)4.1 交流分析 (7)4.2 傅里叶分析 (8)4.3 直流扫描分析 (8)4.4 传递函数分析 (9)4.5 参数扫描分析 (9)第五章LabVIEW显示模块设计 (10)5.1 位移测量子程序的设计 (10)5.2 接口电路的设计与编译 (11)第六章总结 (15)第一章虚拟仪器课程设计的意义及任务1.1课程设计的意义虚拟仪器是随着计算机技术、电子测量技术和通信技术发展起来的一种新型仪器。

在国外,虚拟仪器技术已经比较熟了,由于其很强的灵活性,使得该技术非常适用于现代复杂的测试测量系统中。

近几年,虚拟仪器技术在国内的发展势也越来越受到重视。

成熟的虚拟仪器技术由三大部分组成:高效的软件编程环境、模块化仪器和一个支持模块化I/O集成的开放的硬件构架,该课程设计的目的就是,通过一些功能简单的仪表系统的设计,要在这三个方面上有更深一步的了解。

1.2 课程设计任务说明用霍尔传感器设计一个量程范围为-0.6mm~0.6mm的位移测量仪。

霍尔传感器是利用霍尔效应实现磁电转换的一种传感器。

当霍尔元件作线性测量时,最好选用灵敏度低一点、不等位电位小、稳定性和线性度优良的霍尔元件。

当物体在一对相对的磁铁中水平运动时,在一定的范围内,磁场的大小随位移的变化而发生线性变化,利用此原理可制成位移测量器。

通过本设计,要掌握以下内容:1)了解霍尔传感器测量位移的原理;2)掌握霍尔元件的测量电路;3)熟悉Labview 虚拟仪器向Multisim 10.0的导入方法;4)测量电路硬件实现后,当输出模拟信号,会用数据采集卡进行采集;5)掌握采集后的信号在LabVIEW中的处理,实现位移值的显示;6)了解分别采用软件仿真和实际硬件电路时,在LabVIEW中编程与处理的不同。

基于MATLAB的霍尔传感器特性实验报告

基于MATLAB的霍尔传感器特性实验报告
基于 MATLAB 的霍尔传感器特性实验 一.V-X 关系曲线、线性度
拟合关系式: y = −4.1x − 0.024
所以其灵敏度
kn
=
y x
=
4.1
二. 重复性
三. 迟滞性
重复性误差 eR
=
max yFS
= 0.0059
et
=
max yFS
=
0.0301
四.MATLAB 程序
%% 要求:线性、重复性、灵敏度、迟滞曲线
%% 绘图
figure
plot(x(:,1:6),z(:,1:6),'LineWidth',2,'Color',[0 0 1]);
hold on
plot(x(:,1:6),f(:,1:6),'DisplayName','反行程','LineWidth',2,'Color',[0 1 0]);
plot(x(:,6:10),z(:,6:10),'LineWidth',2,'Color',[1 0 0]);
close all
clear all
clc
%% 数据导入
x=0:0.5:4.5;
%% 霍尔效应
z1=[0.00 10.19 ];
-2.10 -4.06 -6.14 -8.28 -10.15 -10.19 -10.19 -10.19 -
f1=[-0.23 10.19 ];
-2.18 -4.25 -6.46 -8.72 -10.17 -10.19 -10.19 -10.19 -
plot(x(:,1:6),z1(:,1:6),'LineWidth',1,'Color',[0 0 1]); hold on plot(x(:,1:6),f1(:,1:6),'DisplayName','反行程','LineWidth',1,'Color',[0 1 0]);

霍尔传感器如何测量位移800字(优秀范文7篇)

霍尔传感器如何测量位移800字(优秀范文7篇)

霍尔传感器如何测量位移800字(优秀范文7篇)关于霍尔传感器如何测量位移,精选5篇优秀范文,字数为800字。

在具体的位移测量中,我们需要将霍尔传感器固定在需要测量位移的物体上,同时将磁铁固定在参考位置上。

当物体移动时,磁铁的位置相对于传感器会发生改变,进而改变了磁场的强度。

霍尔传感器会感知到这种变化并产生相应的霍尔电压。

霍尔传感器如何测量位移(优秀范文):1随着科技的不断进步和应用的广泛,霍尔传感器作为一种常见的传感器,被广泛使用于位移测量中。

那么,究竟什么是霍尔传感器,它又如何实现位移的测量呢首先,我们来了解一下霍尔传感器的基本原理。

霍尔效应是指当电流通过一个载流导体时,会在其周围产生磁场。

当导体中存在磁场时,导体内的移动电子会受到的作用而偏转,从而产生电势差,称为霍尔电压。

这种霍尔电压与导体中的磁场强度成正比,利用这个原理就可以实现位移的测量。

那么,霍尔传感器是如何利用霍尔效应来测量位移的呢?首先,我们需要一个磁铁和一个霍尔传感器。

磁铁可以产生一个稳定的磁场,而霍尔传感器可以感知到这个磁场并测量出与之相关的霍尔电压。

通常情况下,霍尔传感器由霍尔元件、运算放大器和输出电路组成。

霍尔元件是核心部分,能够感知磁场并产生霍尔电压。

运算放大器可以对霍尔电压进行放大和处理,以提高测量的准确性和稳定性。

而输出电路则将最终的信号转化为模拟电压或数字信号输出,供其他设备进行处理和分析。

在具体的位移测量中,我们需要将霍尔传感器固定在需要测量位移的物体上,同时将磁铁固定在参考位置上。

当物体移动时,磁铁的位置相对于传感器会发生改变,进而改变了磁场的强度。

霍尔传感器会感知到这种变化并产生相应的霍尔电压。

通过测量霍尔电压的变化,我们就可以得到物体的位移信息。

一般情况下,通过校准和调整霍尔传感器的灵敏度,可以实现较高精度的位移测量。

需要注意的是,霍尔传感器的位移测量是基于磁场的变化,因此在实际应用中需要考虑到外部磁场的影响。

线性霍尔式传感器位移特性实验

线性霍尔式传感器位移特性实验
霍尔传感器有霍尔元件和集成霍尔传感器两种类型。集成霍尔传感器是把霍尔元件、放
大器等做在一个芯片上的集成电路型结构,与霍尔元件相比,它具有微型化、灵敏度高、可
靠性高、寿命长、功耗低、负载能力强以及使用方便等等优点。
本实验采用的霍尔式位移(小位移1mm~2mm)传感器是由线性霍尔元件、两只半
圆形永久磁钢组成,其它很多物理量如:力、压力、机械振动等本质上都可转变成位移的变
外二个2(V-)、4(Vo-)是输出端。接线时,电源输入激励端与输出端千万不能颠倒,否则霍尔元件要损坏。
3、将测头从处调到3=处作为位移起点并记录电对针方向)仔细调节测微头的微分筒(0.01m/每小格)△x=0.1m(实验总位移从15mm~5mm)从电压表上读出相应的电压Vo值,填人下表24表24霍尔传感器位移实验数据
9.3
0.725
4.9
-0.038
0.6
-0.607
9.2
0.725
4.8
-0.067
0.5
-0.607
9.1
0.724
4.7
-0.1
0.4
-0.607
9
0.723
4.6
-0.135
0.3
-0.607
8.9
0.722
4.5
-0.159
0.2
-0.607
8.8
0.721
4.4
-0.187
0.1
-0.607
式中:RB=-1/(ne)是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数
KH=R/d灵敏度系数,与材料的物理性质和几何尺寸有关。
具有上述霍尔效应的元件称为霍尔元件,霍尔元件大多采用N型半导体材料(金属材料中

霍尔传感器

霍尔传感器

一.霍尔传感器市场调研1.霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H的霍尔电压。

2.霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。

霍尔效应是磁电效应的一种,这一现象是霍尔(1855—1938)于1879年在研究金属的导电机构时发现的。

后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

3.霍尔传感器的工作原理霍尔电流传感器有两种工作方式,即磁平衡式和直式。

霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、次级线圈和放大电路等组成。

①直放式电流传感器(开环式)众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。

这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。

②磁平衡式电流传感器(闭环式)磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。

磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。

这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。

当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过Is来平衡。

霍尔位移传感器

霍尔位移传感器

霍尔传感器资料霍尔效应定义:霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855~1938)于1879年在研究金属的导电机构时发现的。

当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。

这个电势差也被叫做霍尔电势差。

霍尔传感器定义:霍尔传感器是根据霍尔效应制作的一种磁场传感器。

霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。

后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。

霍尔效应是研究半导体材料性能的基本方法。

通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

霍尔元件定义:根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。

它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

霍尔传感器工作原理霍尔电流传感器是根据霍尔原理制成的。

它有两种工作方式,即磁平衡式和直式。

霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。

[1]1 直放式电流传感器(开环式)众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。

这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。

2 磁平衡式电流传感器(闭环式)磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。

磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。

霍尔传感器实验数据

霍尔传感器实验数据

1.直流激励时霍尔传感器的位移特性实验数据
表1 直流激励时霍尔传感器的位移特性实验数据记录
2.交流激励时霍尔传感器的位移特性实验数据
表2 交流激励时霍尔传感器的位移特性实验数据记录
1.直流激励时霍尔传感器的位移特性实验
图1 直流激励时霍尔传感器的位移特性曲线
经观察,我们可以发现曲线可分为3部分,中间、左下和右上,下面对3部分分别进行拟合:
对曲线中间部分进行拟合
图2 直流激励时的位移特性曲线中间部分拟合曲线
对曲线左下部分进行拟合
图3 直流激励时的位移特性曲线左下部分拟合曲线
表5 直流激励时霍尔传感器的位移特性曲线右上部分数据
对曲线右上部分进行拟合
图4 直流激励时的位移特性曲线右上部分拟合曲线
2.交流激励时霍尔传感器的位移特性实验
图5 交流激励时霍尔传感器的位移特性曲线
下面分3段进行拟合,首先对中间段拟合,数据如下
表6 交流激励时霍尔传感器的位移特性曲线中间部分数据
拟合图如下: 图6 交流激励时的位移特性曲线中间部分拟合曲线
对左下段进行拟合,数据如下:
图7 交流激励时的位移特性曲线左下部分拟合曲线对右上段进行拟合,数据如下:
拟合图如下:
图8 交流激励时的位移特性曲线右上部分拟合曲线。

实验09 霍尔传感器(直流、交流位移、转速)

实验09 霍尔传感器(直流、交流位移、转速)

实验9霍尔效应传感器(直流、交流、测速)在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范围可从~1015-310T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。

常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。

一般地,霍尔效应法用于测量10~104-T 的磁场。

此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。

但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。

用半导体材料制成的霍尔器件,在磁场作用下会出现显著的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。

如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。

了解这一富有实用性的实验,对于日后的工作将有益处。

【实验目的】1. 了解霍尔效应产生的机理。

2. 掌握用霍尔器件测量磁场的原理和基本方法。

3. 学习直流激励时霍尔式传感器位移特性及测量方法。

4. 学习交流激励时霍尔式传感器位移特性及测量方法。

5.学习霍尔转速传感器的应用。

【仪器用具】霍尔传感器实验模板、霍尔传感器、直流源、测微头、数显单元,相敏检波、移相、滤波模板、双线示波器,霍尔转速传感器、直流源、转动源(2-24V )、转动源单元。

【实验原理】1. 霍尔效应产生的机理置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。

实验四 霍尔式传感器的特性—直流激励

实验四 霍尔式传感器的特性—直流激励

北京XXX大学实验报告课程(项目)名称:实验四霍尔式传感器的特性—直流激励学院:专业:班级:学号:姓名:成绩:2013年12月10日一、任务与目的了解霍尔式传感器的原理与特性。

二、实验仪器所需单元及部件:霍尔片、磁路系统、电桥、差动放大器、F/V表、直流稳压电源、测微头、振动平台、主、副电源。

有关旋钮初始位置:差动放大器增益旋钮打到最小,电压表置20V档,直流稳压电源置2V档,主、副电源关闭。

三、原理(条件)霍尔式传感器是由两个环形磁钢组成梯度有头磁场和位于梯度磁场中的霍尔元件组成,当霍尔元件通过恒定电流时霍尔元件在梯度磁场中上、下移动时输出的霍尔电势V取决于其在磁场中的位移量X,所以测得霍尔电势的大小便可获知霍尔元件的静位移。

四、内容与步骤(1)了解霍尔式传感器的结构及实验仪上的安装位置,熟悉实验面板上霍尔片的符号。

霍尔片安装在实验仪的振动圆盘上,两个半圆永久磁钢固定在实验仪的顶板上,二者组合成霍尔传感器。

(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。

将差动放大器的输出端与F/V表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最小位置,然后调整差动放大器的调零旋钮使F/V21接线,W1、r为电桥单元的直流电桥平衡网络。

图21(3)装好测微头,调节测微头与振动台吸合并使霍尔片置于半圆磁钢上下正中位置,记下此时测微头的读数。

(4)开启主、副电源调整W1使电压表指示为零。

(5)上下旋动测微头,记下电压表的读数,建议每0.1mm(副尺转过10个格)读一个数,将读数填入下表:(6)将测微头调制初始位置,然后旋转测微头向相反方向转动,建议每0.1mm读一个电压表的读数,将读书填入表格中(7)作出V-X曲线指出线性范围,求出灵敏度,关闭主、副电源。

五、数据处理(现象分析)(1)上下旋动测微头,记下电压表的读数,每0.1mm(副尺转过10个格)读一个数,读数见(2)将测微头调制初始位置,然后旋转测微头向相反方向转动,每0.1mm读一个电压表的读书,读数见下表:(3)作出V-X曲线指出线性范围,求出灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验14 直流激励时霍尔传感器位移特性实验
141270046 自动化杨蕾生
一、实验目的:
了解直流激励时霍尔式传感器的特性。

二、基本原理:
根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。

三、需用器件与单元:
主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。

四、实验步骤:
1、霍尔传感器和测微头的安装、使用参阅实验九。

按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。

2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。

3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。

五、实验注意事项:
1、对传感器要轻拿轻放,绝不可掉到地上。

2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。

六、思考题:
本实验中霍尔元件位移的线性度实际上反映的是什么量的变化?
答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。

七、实验报告要求:
1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。

实验数据如下:
表9-2
(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm
(2)由上图可得非线性误差:
当x=1mm时,
Y=-0.9354×1+1.849=0.9136
Δm =Y-0.89=0.0236V
yFS=1.88V
δf =Δm /yFS×100%=1.256%
当x=3mm时:
Y=-0.9354×3+1.849=-0.9572V
Δm =Y-(-0.94)=-0.0172V
yFS=1.88V
δf =Δm /yFS×100%=0.915%
2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进
行补偿。

答:(1)零位误差。

零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。

补偿方法是加一不等位电势补偿电路。

(2)温度误差。

因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。

补偿方法是采用恒流源供电和输入回路并联电阻。

实验15 交流激励时霍尔传感器位移特性实验
一、实验目的:
了解交流激励时霍尔式传感器的特性。

二、基本原理:
交流激励时霍尔式传感器与直流激励一样,基本工作原理相同,不同之处是测量电路。

三、需用器件与单元:
主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元、移相器/相敏检波器/低通滤波器模板、双线示波器。

四、实验步骤:
1、传感器、测微头安装使用同实验九。

实验模板接线见下图
2、首先检查接线无误后,合上主机箱总电源开关,调节主机箱音频振动器的频率和幅度旋钮,用示波器、频率表监测Lv输出频率为1KHz,幅值为4V的峰--峰值;关闭主机箱电源,再将Lv输出电压(1KHz、4V)作为传感器的激励电压接入图15的实验模板中。

3、合上主机箱电源,调节测微头使霍尔传感器的霍尔片处于两磁钢中点,先用示波器观察使霍尔元件不等位电势为最小,然后从数显表上观察,调节电位器Rw1、Rw2使显示为零。

4、调节测微头使霍尔传感器产生一个较大位移,利用示波器观察相敏检波器输出,旋转移相单元电位器Rw和相敏检波电位器Rw,使示波器显示全波整流波形,且数显表显示相对值。

5、使数显表显示为零,然后转动测微头记下每转动0.2mm时表头读数,填入下表。

6、根据表15作出V-X曲线,计算不同量程时的非线性误差。

(1)由上图可知灵敏度为S=ΔV/ΔX=0.173V/mm
(2)由上图可得非线性误差:
当x=1mm时,
Y=0.173×1-0.0179=0.151
Δm =Y-0.15=0.001V
yFS=0.36V
δf =Δm /yFS×100%=0.278%
当x=3mm时:
Y=0.173×3-0.0179=0.5011V
Δm =Y-0.52=-0.0189V
yFS=0.36V
δf =Δm /yFS×100%=5.25%
实验16 霍尔测速实验
一、实验目的:
了解霍尔转速传感器的应用。

二、基本原理:
利用霍尔效应表达式,U H=K H IB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次。

每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。

三、需用器件与单元:
主机箱、霍尔转速传感器、转动源。

四、实验步骤:
1、根据图16将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约2~3mm
2、首先在接线以前,合上主机箱电源开关,将主机箱中的转速调节电源2—24V 旋钮调到最小(逆时针方向转到底)后接入电压表(显示选择打到20V 档)监测大约为1.25V ;然后关闭主机箱电源,将霍尔转速传感器、转动电源按图16所示分别接到主机箱的相应电源和频率/转速表(转速档)的Fin 上。

3、合上主机箱电源开关,在小于12V 范围内(电压表监测)调节主机箱的转速调节电源(调节电压改变电机电枢电压),观察电机转动及转速表的显示情况。

4、从2V 开始记录每增加1V 相应电机转速的数据(待电机转速比较稳定读取数据);画出电机的V —N (电机电枢电压与电机转速转速的关系)特性曲线。

实验完毕,关闭电源。

V(V) 2 3 4 5 6 7 8 9 10 11 12 N(rad/s) 330 540 770 1010 1230 1450 1680 1910 2130 2360 2580 画出电机的V —N 特性曲线:
霍尔式y = 226x - 128.36R 2 = 0.9999050010001500200025003000
024********
五、思考题:
1、利用霍尔元件测转速,在测量上有否限制?
答:利用霍尔元件测转速时,每当磁感应强度发生变化时霍尔元件就输出一个脉冲,如果转速过慢,磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。

2、本实验装置上用了6只磁钢,能否用一只磁钢?
答:可以用一只磁钢, 只是用一只磁钢测量的灵敏度会降低。

实验17 磁电式转速传感器测速实验
一、实验目的:
了解磁电式测量转速的原理。

二、基本原理:
基于磁电感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次变化。

通过放大、整形和计数电路就可以测量被测旋转物的转速。

三、需用器件与单元:
主机箱、磁电式转速传感器、转动源。

四、实验步骤:
磁电式转速传感器测速实验除了传感器不用接电源外,其余完全与实验16相同;请按图17和实验16中的实验步骤做实验。

实验完毕,关闭电源
V(V) 2 3 4 5 6 7 8 9 10 11 12 N(rad/s) 400 620 830 1050 1280 1480 1680 1910 2150 2380 2600
磁电式
y = 219.27x - 45.818
R 2
= 0.9997
050010001500200025003000
2
4
6
8
10
12
14。

相关文档
最新文档