典型晶体结构类型
晶体的四种基本类型和特点
晶体的四种基本类型和特点晶体是由于原子、分子或离子排列有序而形成的固态物质。
根据晶体的结构特点,晶体可以分为四种基本类型:离子晶体、共价晶体、金属晶体和分子晶体。
1. 离子晶体离子晶体由正离子和负离子通过离子键结合而成。
正负离子之间的电荷吸引力使得离子晶体具有高熔点和脆性。
离子晶体的晶格结构稳定,形成高度有序的排列。
常见的离子晶体有氯化钠(NaCl)、氧化镁(MgO)等。
离子晶体在溶液中能够导电,但在固态下通常是绝缘体。
2. 共价晶体共价晶体由共价键连接的原子或分子组成。
共价键是由原子间的电子共享形成的,因此共价晶体具有很高的熔点和硬度。
共价晶体的晶格结构复杂多样,具有很高的化学稳定性。
典型的共价晶体包括金刚石(C)和硅(Si)。
共价晶体通常是绝缘体或半导体,由于共价键的稳定性,其导电性较弱。
3. 金属晶体金属晶体由金属原子通过金属键结合而成。
金属键是由金属原子间的电子云形成的,因此金属晶体具有良好的导电性和热传导性。
金属晶体的晶格结构常为紧密堆积或面心立方等紧密排列。
金属晶体的熔点通常较低,而且具有良好的延展性和韧性。
典型的金属晶体有铁(Fe)、铜(Cu)等。
4. 分子晶体分子晶体由分子通过弱相互作用力(如范德华力)结合而成。
分子晶体的晶格结构不规则,分子间的距离和角度较大。
由于分子间的相互作用力较弱,分子晶体通常具有较低的熔点和软硬度。
典型的分子晶体有水(H2O)、冰、石英(SiO2)等。
分子晶体在固态下通常是绝缘体,但某些分子晶体在溶液中能够导电。
总结起来,离子晶体由正负离子通过离子键结合,具有高熔点和脆性;共价晶体由共价键连接,具有高熔点和硬度;金属晶体由金属原子通过金属键结合,具有良好的导电性和热传导性;分子晶体由分子通过弱相互作用力结合,具有较低的熔点和软硬度。
这四种基本类型的晶体在结构、性质和应用上都有明显的差异。
研究晶体的类型和特点对于理解物质的性质和应用具有重要意义。
晶体结构的类型分类
晶体结构的类型分类晶体是由原子、离子或分子按照一定的规则排列而成的固体物质。
晶体结构的类型分类是对晶体结构进行系统性的整理和归纳,以便更好地理解和研究晶体的性质和行为。
本文将介绍晶体结构的主要类型分类,并对每种类型进行详细的描述和分析。
简单晶格简单晶格是最基本、最简单的晶体结构类型。
它由相同大小、相同形状的原子或离子按照规则排列而成。
简单晶格可以分为立方晶系、四方晶系、正交晶系、单斜晶系、菱面晶系和三斜晶系等六种类型。
立方晶系立方晶系是最简单的晶体结构类型,具有最高的对称性。
在立方晶系中,原子或离子按照等间距排列在立方体的顶点上。
立方晶系又可分为面心立方和体心立方两种类型。
四方晶系四方晶系与立方晶系非常相似,但其晶胞形状为长方体,其中一个边长与其他两个边长相等。
四方晶系只有一种类型,即体心四方晶系。
正交晶系正交晶系的晶胞形状为长方体,其中三个边长相互垂直且长度不等。
正交晶系包括体心正交晶系和面心正交晶系两种类型。
单斜晶系单斜晶系的晶胞形状为斜方体,其中一个边长与其他两个边长相等,且与第四个边垂直。
单斜晶系包括底心单斜晶系和侧心单斜晶系两种类型。
菱面晶系菱面晶系的晶胞形状为菱形,其中两个边长相等,另外两个边长也相等但不等于前两个边长。
菱面晶系只有一种类型,即底心菱面晶系。
三斜晶系三斜晶系的晶胞形状为斜方体,其中三个边长不相等且不垂直。
三斜晶系只有一种类型,即底心三斜晶系。
复式晶格复式晶格是由多种不同的原子或离子按照规则排列而成的复杂结构。
复式晶格可以分为两种类型:层状复式晶格和链状复式晶格。
层状复式晶格层状复式晶格是由多层原子或离子按照规则排列而成的结构。
每一层内的原子或离子之间的距离较小,而不同层之间的距离较大。
层状复式晶格包括六方密堆积、立方密堆积和六方密堆积等类型。
链状复式晶格链状复式晶格是由多个链状结构按照规则排列而成的结构。
链状复式晶格包括一维链状结构、二维链状结构和三维链状结构等类型。
14种晶体结构
14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。
晶体结构是指晶体中原子、离子或分子排列的规则和顺序。
在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。
2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。
3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。
4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。
5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。
6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。
7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。
8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。
9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。
10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。
11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。
12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。
13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。
14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。
晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。
研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。
因此,对晶体结构的研究具有重要的科学意义和应用价值。
7第六章晶体的典型结构类型
• 可制作高温坩锅,发热体和电 极,机械工业上可做润滑剂等, 是多用途的材料。
• 同结构晶体:人工合成的六 方氮化硼(HBN)等 。
AX型晶体
NaCI型结构
矿物名称:石盐。
返回目录
化学式为:NaCI
CI- Na+
NaCl晶体的结构
氯化钠晶体结构
如何算出的?
结构描述:
1/8小立方体的中心,即1/2 的四面体空隙中。
1/2 的四面体空隙
结构投影图:(俯视图)用标高来表示,0-底面; 25-1/4; 50-1/2; 75-3/4。
(0-100;25-125;50-150是等效的)
• 配位数: CN+=CN-=4;极性共价键, 配位型共价晶体。
• 配位多面体:〔ZnS4〕四面体,在空间以 共顶方式相连接
位移型转变
金红石型结构
化学式:
TiO2
晶体结构 四方晶系,a=0.459nm;c=0.296nm;Z=2
L44L25PC
格子类型:四方原始格子。Ti4+位于结点位置,体心的属另 一套格子。O2-处在一些特殊位置上,
质点坐标:Ti4+ :000;1/2 1/2 1/2; O2- : uu0; (1-u)(1-u)0; (1/2+u)(1/2-u)1/2; (1/2-u)(1/2+u)1/2
(4) CaTiO3的结构可看成O2-和半径较大的Ca2+离子共同组成 立方紧密堆积,Ti4+离子充填于1/4的八面体空隙中。其Z=4
(5) 结点坐标为:
Ca2+ 000 , 001 ,010 , 100 ,110 ,011 ,101 , 111
O2- 0 1/2 1/2 , 1/2 0 1/2 , 1/2 1/2 0 ,1 1/2 1/2 ,1/2 1 1/2 ,1/2 1/2 1
金属晶体的常见结构
金属晶体的常见结构
金属晶体的常见结构有以下几种:
1. 面心立方(FCC)结构:在这种结构中,金属原子分别位于正方形面的角点和中心,以及正方形面的中心。
每个原子都与12个邻近原子相接触,形成一个紧密堆积的结构。
典型的例子是铜、铝和金。
2. 体心立方(BCC)结构:在这种结构中,金属原子分别位于正方体的角点和正方体的中心。
每个原子都与8个邻近原子相接触,形成一个比较紧密的结构。
铁和钨是常见的具有BCC结构的金属。
3. 密排六方(HCP)结构:在这种结构中,金属原子以一定的方式排列,形成六边形的密排层,其中每个层的原子位于前一层原子的空隙上。
这些层之间存在垂直堆叠,形成一个紧密堆积的结构。
典型的例子是钛和锆。
除了以上三种常见的金属晶体结构外,还有其他特殊的结构,如体心立方密堆积(BCC HCP)和面心立方密堆积(FCC HCP)等。
这些不同的结构对于金属的性质和行为有着重要的影响。
1。
常见九种典型的晶体结构
反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)
构
氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。
从图可看出,[SZn4] 四面体([ZnS4] 四面体 也是一样)共角顶联成的 四面体基元层与[111]方 向垂直。
由于S2-和Zn2+都呈配位四面体,所以闪锌矿只用一种配位 多面体结构形式表达(S和Zn互换是一样的)。
(Fe3+(Fe2+Fe3+)2O4)。
当结构中四、八面体孔隙被A2+和B3+无序占据时, 叫混合尖晶石结构,代表晶相是镁铁矿(Fe, Mg)3O4。
具有尖晶石型结构的部分物质
Fe3O4 VMn2O4 NiAl2O4 NiGa2O4 Co3S4 TiZn2O4 γ-Fe2O3 LiTi2O4 CoAl2O4 MgGa2O4 NiCo2S4 VZn2O4 MnFe2O4 MnTi2O4 ZnAl2O4 MnGa2O4 Fe2SiO4 SnMg2O4 MgFe2O4 ZnCr2O4 Co3O4 ZnIn2S4 Ni2SiO4 TiMg2O4 Ti Fe2O4 CoCr2O4 GeCo2O4 MgIn2O4 Co2SiO4 WNa2O4 LiMn2O4 CuMn2O4 VCo2O4 CuV2S4 Mg2SiO4 CdIn2O4
常见的三种晶格类型
常见的三种晶格类型晶格是一种以点阵组成的物质结构,是物质最基本的结构单元。
晶体的晶格类型是晶体结构的重要组成部分,是晶体结构的决定性因素。
在晶体的晶格类型中,最常见的有三种,分别是立方晶体结构、六方晶体结构和四方晶体结构。
立方晶体结构是最常见的晶格类型之一。
它由八个原子单元构成,每个原子单元都位于立方体的六条边的中心点上。
这种晶格类型具有良好的热稳定性,被广泛用于金属材料。
例如,铜、铅、铝等大多数金属材料的晶体结构都是立方晶体结构。
六方晶体结构是另一种常见的晶格类型,它是由一个六边形的中心点和六个顶点的单元构成的。
这种晶格类型具有良好的光学性质,被广泛用于玻璃和有机光学材料。
例如,石英、硅、水晶等都具有六方晶体结构。
最后,四方晶体结构是一种常见的晶格类型。
它由四个原子单元构成,每个原子单元都位于四方体的四个角的中心点上。
这种晶格类型的稳定性比立方晶体结构要差,但是它能够控制材料的硬度,被广泛用于陶瓷材料。
例如,氧化钛、氧化锆、氧化钴等大多数陶瓷材料的晶体结构都是四方晶体结构。
总而言之,立方晶体结构、六方晶体结构和四方晶体结构是最常见的晶格类型,它们各有不同的性能和特点,被广泛应用于各种材料。
它们所拥有的性能和优势,往往决定了材料的特点和性能,因此,晶格类型的选择是了解材料性能的重要环节。
此外,晶体结构也受到其他参数的影响,包括晶体尺寸、层厚度和原子排布等。
这些参数受材料的成分、晶体形状、环境温度等因素的影响,它们也可以影响材料的性能。
因此,研究和探索材料晶体结构和物理特性之间的关系,对材料的开发和应用具有重要意义。
综上所述,立方晶体结构、六方晶体结构和四方晶体结构是最常见的三种晶格类型,它们各自具有不同的特点和性质,能够影响材料的性能和特点,为材料的应用和开发提供重要参考。
高中化学常见晶胞类型
高中化学常见晶胞类型
1. 立方晶胞:具有三个相等的边长和90度的角度,分为简单立方晶胞、面心立方晶胞和体心立方晶胞。
2. 正交晶胞:具有三个不相等的边长和90度的角度,分为基本正交晶胞和体心正交晶胞。
3. 单斜晶胞:具有两个相等的边长和90度的角度,一个不等的边长和不等的角度,分为基本单斜晶胞和简单单斜晶胞。
4. 正交二斜晶胞:具有三个不相等的边长和不等的角度,分为基本正交二斜晶胞和简单正交二斜晶胞。
5. 六方晶胞:具有三个相等的边长和120度的角度,一共有四种晶胞形式。
6. 四方晶胞:具有两个相等的边长和90度的角度,一个不等的边长和不等的角度,常见的晶胞形式有两种。
7. 三斜晶胞:具有三个不相等的边长和不等的角度,其中一种形式被称为"菱房晶胞"。
常见的晶体结构
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数
。
电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体
典型晶体结构类型
典型晶体结构类型晶体结构是指晶体中原子、离子或分子的排列方式。
根据晶体中化学键和原子排列的性质,可以将晶体结构分为许多不同的类型。
下面将介绍一些典型的晶体结构类型。
1.离子晶体结构:离子晶体是由离子通过静电力相互作用形成的晶体。
其中,阳离子和阴离子通过离子键连接。
离子晶体的典型例子包括氯化钠(NaCl)和氧化铝(Al2O3)。
在这些晶体中,正离子在晶体中形成一个晶格,负离子在晶体中形成另一个晶格。
离子晶体结构稳定,具有高熔点和良好的电导性。
2.共价晶体结构:共价晶体是由共价键连接的原子或分子形成的晶体。
在共价晶体中,原子通过共用电子形成稳定的化学键。
典型的共价晶体结构包括金刚石、石英和硅晶体。
这些晶体具有高硬度、高熔点和良好的热导性。
3.金属晶体结构:金属晶体是由金属元素形成的晶体。
金属晶体的特点是原子间有大量自由电子可以运动,因此具有良好的导电性和导热性。
金属晶体结构可以分为紧密堆积结构和体心立方结构。
紧密堆积结构中,原子排列紧密,如铜和铝。
体心立方结构中,原子在晶格的每个球站的中心和每个面心站位的中心分别占据一个位置,如铁和钨。
4.分子晶体结构:分子晶体是由分子通过范德华力连接形成的晶体。
在分子晶体中,分子通过互相排列并通过弱范德华力相互作用形成3D晶体结构。
分子晶体具有较低的熔点和较弱的化学键。
典型的分子晶体包括蓝绿宝石和冰。
5.共价网络晶体结构:共价网络晶体是由每个原子通过共价键连接形成的大的晶体结构。
共价网络晶体具有非常高的熔点和硬度。
典型的共价网络晶体包括石墨和二硫化碳。
除了这些典型的晶体结构类型,还有许多其他类型的晶体结构,例如层状晶体、孔隙晶体和液晶体等。
每种晶体结构具有独特的性质和应用。
了解不同类型的晶体结构有助于我们理解晶体的性质,并在材料科学和工程中应用晶体材料。
典型晶体结构类型
(a)面心立方 (A1型)
(b)体心立方 (A2型)
(c)密排六方 (A3型)
有些金属由于其键的性质发生变化, 常含有一定成分的共价键,会呈现一些不 常见的结构。锡是A4型结构(与金刚石相 似),锑是A7型结构等。
二、非金属单质的晶体结构
1、惰性气体元素的晶体
惰性气体以单原子分子形式存在,在低温 下形成的晶体为A1(面心立方)型或A3(六方 密堆)型结构。
NaCl 晶胞图
NaCl型:MgO、CaO、SrO、BaO、MnO、FeO、
CoO、NiO等
方解石晶体结构
CaCO3
变形的NaCl结构形式
Ca2+的配位数为6
晶胞常数 a0
理论密度 D0
a0 2r r
D0 nM / N a
3 0
例: MgO具有NaCl结构。根据O2-半径为0.140nm 和Mg2+半径为0.072nm,计算球状离子所占据的体 积分数和MgO的密度。画出MgO在(111)/(110)/ (100)晶面上的离子排布图,计算每个晶面上离子 排列的面密度,并指出四面体和八面体空隙的位子。
分析离子晶体结构的方法:
1、确定阴离子的堆积方式,明确阴离子的位置 (坐标)和四、八面体空隙的位置。 2、根据 r+/r- 值,确定阳离子配位数CN。 3、单位晶胞的分子数 4、阳离子在四、八面体空隙中的填充情况。 5、配位多面体之间的关系。
(一)AX型结构
主要有CsCl型、NaCl型、ZnS型、NiAs型等 1、NaCl型结构
对于第V族元素:
每个原子周围共价单键个数为:8-5=3 其晶体结构是:原子之间首先共价结合形成 无限层状单元,层状单元之间借助范德华力结合 形成晶体
非金属元素单质晶体的结构基元:第V族元素
常见的晶体结构
体心上。
(3)单位晶胞原子数:
单位晶胞原子数: n=2 ; 晶胞 含有: 2个八面体空隙
4个四面体空隙; (4)原子的空间坐标:
000, 1 1 1 222
(5)原子半径与点阵常数:
体心立方结构( a=b=c ):
2a2 ? a2 ? ?2r ? 2r ?2
(2)质点坐标:
Cl ? : 000
Cl ? : 1 1 1
Cs ? : 1 1 1或Leabharlann 222 Cs ? : 000
222
(3)配位数与配位多面体:
r? ? 0.174nm ? 0.96 ? 0.732 r? 0.181nm
? CN ? 8, 立方体配位
CsCl 型:CsBr 、CsI 、TlCl 、NH4Cl……
形成[NaCl6]八面体共棱连接 NaCl 型:MgO 、CaO 、SrO 、BaO 、MnO 、FeO 、
CoO 、NiO 等
2、CsCl 型结构 ——立方晶系
(1)密堆积情况:
Cl- 简单立方堆积; Cs +离子填充立方体空隙; 晶胞分子数: Z=1 ;
晶胞常数: a0 ? 2?r? ? r? ? 3
(3)单位晶胞原子数:
六方晶胞原子数: Z=6 ;
单位晶胞原子数: Z=2 ; 晶胞含有:
6(2)个八面体空隙; 12(4)个四面体空隙;
(4)原子的空间坐标:
000 , 1 2 1 332
(5)原子半径与点阵常数: 密排六方结构( a=b=c ): a ? 2r c ? 1.633 a
(6)配位数: CN=12
a? 4 3r 3
(6)配位数: CN=8
晶体的典型结构类型
石墨的多型
键型:层内为共价键,层间为分子键
性质:碳原子有一个电子可以在层内移动,平行于层的方向 具有良好的导电性。石墨的硬度低,熔点高,导电性 好。 石墨与金刚石属同质多像变体。
2.4 氯化铯型结构
晶体化学:Cs Cl 晶体结构:立方晶系,a=0.411nm
Z=1 空间格子:Cs Cl是原始格子
Ca2+可被Mn2+、Fe2+、Sr2+、Pb2+、Ba2+代 替,形成类质同像。
2.14
尖晶石型结构
化学式: 通式AB2O3 ;MgAl2O4
晶体结构: 立方晶系,a=0.808nm,Z=8
空间格子: O2-是按立方密堆积的形式排列。二价离子A充 填1/8 四面体空隙,三价离子B充填于1/2八面 体空隙(正尖晶石结构)。
与金刚石结构相同的有:
硅、锗、灰锡、合成的立 方氮化硼等
2.3
石墨结构
化学式: C
晶体结构:六方晶系(2H),
a= 0.146nm ,
c=0.670nm
三方晶系(3R)
结构表现:C原子组成层状排 列,层内C原子成 六方环状排列,每 个碳原子与三个相 邻的碳原子之间的 距离为0.142nm, 层与层之间的距离 为0.335nm
配位数: CN+=6;CN-=3
多面体: 〔TiO6〕八面体
连接方式:Ti-O八面体以共 棱方式连接成链, 链与链之间以共顶 方式相连。
与金红石结构相同的晶体有: SnO2;PbO2; MnO2;MoO2; WO2;MnF2; MgF2;VO2
2.10
碘化镉型结构
化学式: CdI2
晶体结构:三方晶系 a=0.424nm;c=0.684nm; Z=1
2.5
闪锌矿型结构
晶体的结构类型
晶体的结构类型
晶体是由周期性排列的原子、离子或分子构成的固体,其结构可以根据原子排列方式的不同分为不同的结构类型。
常见的晶体结构类型包括立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系和六方晶系等。
这些结构类型都具有一定的对称性,可以通过晶体学方法进行分析和描述。
晶体结构类型的不同决定了晶体在物理、化学和技术等领域中的应用及性质。
例如,石墨烯的结构类型决定了其具有优异的导电性和热导性,而钻石的结构类型则决定了其具有极高的硬度和耐腐蚀性。
研究晶体结构类型对于深入了解晶体的性质和应用具有重要的意义。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非金属元素单质晶体的结构基元:第VI族元素
对于第V族元素:
每个原子周围共价单键个数为:8-5=3 其晶体结构是:原子之间首先共价结合形成 无限层状单元,层状单元之间借助范德华力结合 形成晶体
非金属元素单质晶体的结构基元:第V族元素
对于第IV族元素:
每个原子周围共价单键个数为:8-4=4 其中:C、Si、Ge皆为金刚石结构,由四面体 以共顶方式共价结合形成三维空间结构。
刚玉型:α-Fe2O3、Cr2O3、Ti2O3、V2O3、FeTiO3、 LiNbO3
(四)ABO3型结构
—— CaTiO3(钙钛矿)型结构
CaTiO3(钙钛矿)型:PbTiO3、BaTiO3……
在理想对称的ABO3型结构中,三种离子半径 有如下关系:
rA rO 2 rB rO
第二章 晶体结构与晶体 中的缺陷
典型结构类型
硅酸盐晶
金属单质晶体结构 非金属单质晶体结构
无机化合物晶体结构
一、金属单质晶体结构
同种元素组成的晶体称为单质晶体。 典型金属的晶体结构是最简单的晶体结 构。由于金属键的性质,使典型金属的晶体 具有高对称性,高密度的特点。常见的典型
非金属元素单质晶体的结构基元:第IV族元素
典型非金属元素晶体结构
(1)金刚石结构
金刚石结构:Si、Ge、灰锡α-Sn、人工合成的立方氮化硼BN……
(2)石墨结构
石墨型结构:人工合成的六方氮化硼BN……
三、无机化合物晶体结构(离子晶体)
根据数量关系(化学式):
AX型、 AX2型、 A2X3型、 ABO3型、 ABO4型、AB2O4型 根据密堆积形式: 面心立方紧密堆积 六方紧密堆积 常用分析方法: 坐标系法、密堆积法和多面体配置法
对于第VII族元素:
每个原子周围共价单键的个数为:8-7=1
因此,其晶体结构是:两个原子先以单键共
价结合成双原子分子,双原子分子之间再通过范
德华力结合形成分子晶体,
对于第VI族元素:
每个原子周围共价单键个数为:8-6=2 其晶体结构是:共价结合的无限链状分子 或有限环状分子,链或环之间由通过范德华力 结合形成晶体
2、TiO2(金红石)型结构
TiO2(金红石)型:GeO2、SnO2、PbO、MnO2……
3、CdI2(碘化镉)型结构
CdI2型:Ca(OH)2、Mg(OH)2、CaI2、MgI2……
(三)A2X3型结构
——α-Al2O3(刚玉)型结构
α-Al2O3结构中,O-Al 排列次序:
OAAlDOBAlEOAAlFOBAlDOAAlEOBAlFOAAlD
[ZnS4]四面体层的配置情况不同
(二)AX2型结构
主要有萤石(CaF2)型、金红石(TiO2)型、 CdI2(碘化镉)型等
1、 CaF2 (萤石)型结构
萤石型晶体结构中多面体连接方式
萤石型(RO2): ZrO2、ThO2、CeO2、VO2、BaF2等 反萤石型(R2O): Li2O、Na2O、K2O…….
2、CsCl型结构
CsCl型:CsBr、CsI、TlCl、NH4Cl……
3、β-ZnS(闪锌矿)型结构
闪锌矿晶体结构 闪锌矿型:β-SiC, Be、Cd、Hg等的硫化物、硒化物 和碲化物,CuCl 等
4、α-ZnS(纤锌矿)型结构
纤锌矿型:BeO、ZnO、AlN、CdS、GaAs等
闪锌矿与纤锌矿的结构区别:
NaCl 晶胞图
NaCl型:MgO、CaO、SrO、BaO、MnO、FeO、
CoO、NiO等
方解石晶体结构
CaCO3
变形的NaCl结构形式
Ca2+的配位数为6
晶胞常数 a0
理论密度 D0
a0 2r r
D0 nM / N a
3 0
例: MgO具有NaCl结构。根据O2-半径为0.140nm 和Mg2+半径为0.072nm,计算球状离子所占据的体 积分数和MgO的密度。画出MgO在(111)/(110)/ (100)晶面上的离子排布图,计算每个晶面上离子 排列的面密度,并指出四面体和八面体空隙的位子。
实际晶体的测定发现:
rA rO t 2 rB rO
t为容差因子,其值为0.77~1.10范围时,钙钛矿型
结构都稳定。
(五)AB2O4型结构
—— MgAl2O4(尖晶石)型结构
正尖晶石:二价阳离子A填充于四面体空隙,
三价阳离子B填充于八面体空隙的叫正尖晶石。
反尖晶石:二价阳离子A填充于八面体空隙,
1、惰性气体元素的晶体
惰性气体以单原子分子形式存在,在低温 下形成的晶体为A1(面心立方)型或A3(六方 密堆)型结构。
2、非金属元素的晶体结构
—— 分子晶体 休谟-偌瑟瑞(Hume-Rothery)规则: 如果某非金属元素的原子能以单键与其它原子 共价结合形成单质晶体,则每个原子周围共价单键 的数目为8减去元素所在周期表的族数(m),即 共价单键数目为8-m,亦称为8-m规则。
分析离子晶体结构的方法:
1、确定阴离子的堆积方式,明确阴离子的位置 (坐标)和四、八面体空隙的位置。 2、根据 r+/r- 值,确定阳离子配位数CN。 3、单位晶胞的分子数 4、阳离子在四、八面体空隙中的填充情况。 5、配位多面体之间的关系。
(一)AX型结构
主要有CsCl型、NaCl型、ZnS型、NiAs型等 1、NaCl型结构
三价阳离子B一半填充四面体空隙,另一半填充在
八面体空隙中称为反尖晶石。
▲ A、B位置的分布由晶体场理论的八面体择位能决定。
重 点
▲▲ 金刚石、CsCl型、NaCl型、CaF2型、 CaTiO3型 ▲ 尖晶石型、金红石型、刚玉型
金属晶体是面心立方、体心立方和密排六方
三种晶体。
常见金属晶体的晶胞结构
(a)面心立方 (A1型)
(b)体心立方 (A2型)
(c)密排六方 (A3型)
有些金属由于其键的性质发生变化, 常含有一定成分的共价键,会呈现一些不 常见的结构。锡是A4型结构(与金刚石相 似),锑是A7型结构等。
二、非金属单质的晶体结构