高中物理知识点之:气体的性质
高中物理化学知识点
高中物理化学知识点一、物理性质1、有色气体:F2(淡黄绿色)2(黄绿色)、Cl、Br2(g)(红棕色)2(g)、I(紫红色)、NO2(红棕色)3(淡蓝色)、O,其余均为无色气体。
其它物质的颜色见会考手册的颜色表。
;有臭2、有刺激性气味的气体:HF、HCl、HBr、HI、NH3、SO2、NO2、F2、Cl2、Br2(g)鸡蛋气味的气体:H2S。
3、熔沸点、状态:①同族金属从上到下熔沸点减小,同族非金属从上到下熔沸点增大。
②同族非金属元素的氢化物熔沸点从上到下增大,含氢键的NH3、H2O、HF反常。
③常温下呈气态的有机物:碳原子数小于等于4的烃、一氯甲烷、甲醛。
④熔沸点比较规律:原子晶体>离子晶体>分子晶体,金属晶体不一定。
⑤原子晶体熔化只破坏共价键,离子晶体熔化只破坏离子键,分子晶体熔化只破坏分子间作用力。
⑥常温下呈液态的单质有Br2、Hg;呈气态的单质有H2、O2、O3、N2、F2、Cl2;常温呈液态的无机化合物主要有H2O、H2O2、硫酸、硝酸。
⑦同类有机物一般碳原子数越大,熔沸点越高,支链越多,熔沸点越低。
同分异构体之间:正>异>新,邻>间>对。
⑧比较熔沸点注意常温下状态,固态>液态>气态。
如:白磷>二硫化碳>干冰。
⑨易升华的物质:碘的单质、干冰,还有红磷也能升华(隔绝空气情况下),但冷却后变成白磷,氯化铝也可;三氯化铁在100度左右即可升华。
⑩易液化的气体:NH3、Cl2,NH3可用作致冷剂。
4、溶解性①常见气体溶解性由大到小:NH3、HCl、SO2、H2S、Cl2、CO2。
极易溶于水在空气中易形成白雾的气体,能做喷泉实验的气体:NH3、HF、HCl、HBr、HI;能溶于水的气体:CO2、SO2、Cl2、Br2(g)、H2S、NO2。
极易溶于水的气体尾气吸收时要用防倒吸装置。
②溶于水的有机物:低级醇、醛、酸、葡萄糖、果糖、蔗糖、淀粉、氨基酸。
气体的特性与性质
气体的特性与性质气体在自然界中广泛存在,其特性与性质对我们的生活和科学研究具有重要意义。
本文将讨论气体的特性和性质,包括分子间距离大、无固定形状、压缩性、可扩散和可溶性等方面。
一、分子间距离大气体的分子之间距离很大,它们以高速无规则运动。
这是由于气体的分子间作用力较弱,导致分子之间相互距离较大。
相比之下,固体和液体的分子之间的吸引力更大,使得它们无法具有和气体类似的特性。
二、无固定形状气体没有固定的形状,可以充满容器的所有部分。
这是由于分子间的弱吸引力和高速无规则运动所致。
无论是在容器中,还是在自由空间中,气体分子都会扩散并填满可用的空间。
三、压缩性与固体和液体相比,气体是高度可压缩的。
当压力增加时,气体的体积会减小。
这是因为气体分子之间的间隔增加,它们与容器壁之间的碰撞增强,产生更大的压力。
这种压缩性使得气体在各种应用中都具有重要价值,例如气体储存和运输。
四、可扩散性气体分子具有高度的运动能量,因此它们能够自由地扩散和混合。
气体分子在容器中碰撞并传播,使得气体能够均匀地分布在整个容器中。
这种可扩散性使得气体在空气污染控制和化学反应等领域起着关键作用。
五、可溶性气体具有可溶性,可以溶解于液体或其他气体中。
溶解是指气体分子与溶剂分子之间的相互作用。
气体的溶解性受到多种因素的影响,如温度、压力和化学性质等。
一些气体溶解在水中形成溶液,例如碳酸气体溶解在水中形成碳酸饮料。
结论气体的特性与性质包括分子间距离大、无固定形状、压缩性、可扩散性和可溶性。
这些特性使气体在我们的日常生活和科学研究中发挥着重要作用。
通过深入理解气体的特性和性质,我们能够更好地应用和控制气体,推动科学技术的发展。
高中物理:第九章气体性质
第九章气体性质同步精练精练一(气体的状态参量气体的三个实验定律)1.如图所示,上端封闭的细玻璃管竖直插在汞槽中,管内有两段空气柱A和B,大气压强为75 cmHg,h1=20 cm,h2=15 cm,则空气柱A的压强为_______cmHg,空气柱B的压强为______cmHg。
2.如图所示,总质量为M的气缸放在地面上,活塞连同手柄的质量为m,活塞的截面积为S,大气压强为p0。
当气缸竖直放置时,气缸内空气压强为_____。
现用手握住手柄慢慢向上提,若不计摩擦和气体温度的变化,则在气缸离开地面时,气缸内气体的压强为________。
如图所示,上端封闭的均匀细玻璃管开口向下竖直放置,管长80 cm,离管口35 cm处有一开口通过开关K与外界相通。
当K关闭时,管内有齐管口长60 cm的汞柱,大气压强保持75 cmHg不变。
现打开K使之与外界相连通,待稳定后,管内残留的汞柱高度为_______cm,管内气柱长度为______cm。
3.如图所示,水平放置的气缸,活塞的面积为10 cm2,在气体温度为27℃时,被封闭气体的体积为100 cm2,若大气压强保持为105 Pa,活塞所受的最大静摩擦力为5 N,能使活塞移动的最低气温为_______℃。
精练二(气体的状态方程及其应用)4.如图所示,两端均开口的U形细玻璃管倒插入水杯中,管中有一段被水柱封闭的空气柱,在温度不变的情况下,把管子向上提一些,则左侧管内、外的水面高度差将_______;如保持管的位置不变,而使管内气体温度升高一些,则左侧管内、外的水面高度差将_______。
5.如图所示,绝热气缸中有一绝热的活塞,把气缸分成A、B两部分。
开始时,两部分气体的温度均为27℃,压强均为1.0×105 Pa,体积之比V A∶V B=4∶3,利用B中电热丝对B中气体加热,使活塞向左移动直至两部分体积之比V A′∶V B′=3∶4,此时气缸A内气体的温度为87℃。
高中物理气体知识点总结
高中物理气体知识点总结一、气体的性质1. 气体的无定形:气体没有固定的形状和体积,能够自由流动。
2. 气体的可压缩性:由于气体分子之间的间距较大,气体易受到外界压力的影响而发生压缩或膨胀。
3. 气体的弹性:气体分子之间存在相互作用力,当气体受到外力作用时,能够产生弹性形变。
二、气体的状态方程1. 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
2. 理想气体状态方程的应用:可以用于计算气体的压强、体积、物质的量和温度之间的关系,也适用于气体的混合、稀释等情况。
三、气体的压强1. 气体的压强定义:单位面积上气体分子对容器壁的撞击力。
2. 压强的计算公式:P = F/A,其中P为压强,F为气体分子对容器壁的撞击力,A为单位面积。
3. 压强的单位:国际单位制中,压强的单位为帕斯卡(Pa)。
4. 大气压:大气对地面单位面积上的压强,标准大气压为101325Pa。
四、气体的温度1. 气体的温度定义:气体分子的平均动能的度量。
2. 温度的单位:国际单位制中,温度的单位为开尔文(K)。
3. 摄氏度和开尔文度的转换:T(K) = t(℃) + 273.15。
五、气体的分子速率与平均动能1. 气体分子速率的分布:气体分子的速率服从麦克斯韦速率分布定律,速率越高的分子数目越少。
2. 平均动能与温度的关系:气体的平均动能与温度成正比,温度越高,气体分子的平均动能越大。
六、理想气体的压强与温度的关系1. Gay-Lussac定律:在等体积条件下,理想气体的压强与温度成正比,P1/T1 = P2/T2。
2. Charles定律:在等压条件下,理想气体的体积与温度成正比,V1/T1 = V2/T2。
3. 综合气体状态方程和Gay-Lussac定律、Charles定律,可以得到压强、体积和温度之间的关系。
七、气体的扩散和扩散速率1. 气体的扩散:气体分子由高浓度区域向低浓度区域的自由运动过程。
理想气体的性质
理想气体的性质
理想气体是指在一定条件下具有理想行为的气体。
它是理想化的气
体模型,假设气体中分子之间没有相互作用和体积,并且分子之间的
碰撞是弹性碰撞。
以下是理想气体的主要性质:
1. 理想气体的分子是无限小的,没有体积,分子之间没有相互作用力。
这意味着气体的体积可以无限压缩,并且气体分子之间不存在任
何引力或斥力。
2. 理想气体的分子运动是完全混乱的,分子在空间中自由运动,并
且沿各个方向上的速度分布是相等的。
这被称为分子速度均分定理。
3. 理想气体的压强与温度成正比,压力与体积成反比。
这意味着如
果气体的温度升高,压强也会增加,反之亦然;如果气体的体积减小,压力也会增加,反之亦然。
这被称为理想气体状态方程或理想气体定律。
4. 理想气体的温度与体积成正比,温度与压强成正比。
这意味着如
果气体的体积增加,温度也会增加,反之亦然;如果气体的压强减小,温度也会减小,反之亦然。
这被称为理想气体的热力学性质。
需要注意的是,现实气体往往存在分子间相互作用和体积,因此它
们不完全符合理想气体模型。
然而,理想气体模型在许多实际应用中
仍然是一个非常有用的近似模型。
高中物理气体教案
高中物理气体教案
教学目标:
1. 理解气体的基本性质和状态方程。
2. 掌握理想气体状态方程的应用。
教学重点:
1. 气体的基本性质。
2. 理想气体状态方程的推导与应用。
教学难点:
1. 理解气体的微观本质。
2. 掌握理想气体状态方程的计算方法。
教学过程:
一、导入
教师通过介绍气体的特点和应用,引出本节课的主题。
二、讲解
1. 气体的基本性质:教师介绍气体的分子速度较高,分子间空隙较大等基本性质。
2. 理想气体状态方程的推导:通过对气体分子的运动特点进行分析,推导出理想气体状态
方程PV=nRT。
3. 理想气体状态方程的应用:教师讲解如何利用理想气体状态方程进行问题分析和计算。
三、实验
教师设计一个与气体状态方程相关的实验,让学生观察实验现象,巩固理论知识。
四、练习
布置相关练习题,让学生运用所学知识进行解答,提高对气体状态方程的理解和应用能力。
五、总结
教师对本节课的知识点进行总结,强化学生对气体性质和状态方程的理解。
六、作业
布置相关作业,巩固本节课内容。
教学资源:
1. 教科书《高中物理》
2. 实验器材
3. 多媒体教学辅助工具
教学评价:
1. 学生课堂表现
2. 学生练习与作业完成情况
教学反思:
教学过程中应注重培养学生的实验观察和问题解决能力,引导学生主动学习,提高学习兴趣。
高中物理理想气体经典总结讲解学习
高中物理理想气体经典总结知识要点:一、 基础知识1、气体的状态:气体状态,指的是某一定量的气体作为一个热力学系统在不受外界影响的条件下,宏观性质不随时间变化的状态,这种状态通常称为热力学平衡态,简称平衡态。
所说的不受外界影响是指系统和外界没有做功和热传递的相互作用,这种热力学平衡,是一种动态平衡,系统的性质不随时间变化,但在微观上分子仍永不住息地做热运动,而分子热运动的平均效果不变。
2、气体的状态参量:(1)气体的体积(V )① 由于气体分子间距离较大,相互作用力很小,气体向各个方向做直线运动直到与其它分子碰撞或与器壁碰撞才改变运动方向,所以它能充满所能达到的空间,因此气体的体积是指气体所充满的容器的容积。
(注意:气体的体积并不是所有气体分子的体积之和)② 体积的单位:米3(m 3) 分米3(dm 3) 厘米3(cm 3) 升(l ) 毫升(ml )(2)气体的温度(T )① 意义:宏观上表示物体的冷热程度,微观上标志物体分子热运动的激烈程度,是气体分子的平均动能大小的标志。
② 温度的单位:国际单位制中,温度以热力学温度开尔文(K )为单位。
常用单位为摄氏温度。
摄氏度(℃)为单位。
二者的关系:T=t+273(3)气体的压强(P )① 意义:气体对器壁单位面积上的压力。
② 产生:由于气体内大量分子做无规则运动过程中,对容器壁频繁撞击的结果。
③单位:国际单位:帕期卡(Pa )常用单位:标准大气压(atm ),毫米汞柱(mmHg )换算关系:1atm=760mmHg=1.013×105Pa1mmHg=133.3Pa3、气体的状态变化:一定质量的气体处于一定的平衡状态时,有一组确定的状态参量值。
当气体的状态发生变化时,一般说来,三个参量都会发生变化,但在一定条件下,可以有一个参量保持不变,另外两个参量同时改变。
只有一个参量发生变化的状态变化过程是不存在的。
4、气体的三个实验定律(1)等温变化过程——玻意耳定律① 内容:一定质量的气体,在温度不变的情况下,它的压强跟体积成反比。
高中物理理想气体知识点归纳
高中物理理想气体知识点归纳在一些热学习题解和高中生物理竞赛中,多次出现理想气体相关知识点,下面是店铺给大家带来的高中物理理想气体知识点归纳,希望对你有帮助。
高中物理理想气体知识点基本定义编辑忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。
这种气体称为理想气体。
气体概述编辑气态方程全名为理想气体状态方程,一般指克拉珀龙方程:pV=nRT。
其中p为压强,V为体积,n为物质的量,R为普适气体常量,T为绝对温度(T的单位为开尔文(字母为K),数值为摄氏温度加273.15,如0℃即为273.15K)。
当p,V,n,T的单位分别采用Pa(帕斯卡),m3(立方米),mol,K时,R的数值为8.31。
该方程严格意义上来说只适用于理想气体,但近似可用于非极端情况(高温低压)的真实气体(包括常温常压)。
主要性质编辑1.分子体积与气体体积相比可以忽略不计;2.分子之间没有相互吸引力;3.分子之间及分子与器壁之间发生的碰撞不造成动能损失;4.在容器中,在未碰撞时考虑为作匀速运动,气体分子碰撞时发生速度交换,无动能损失;5.理想气体的内能是分子动能之和。
推导方式编辑当p,V,n,T的单位分别采用Pa(帕斯卡),m3(立方米),mol,K时,R的数值为8.31J/(mol*K)。
该方程严格意义上来说只适用于理想气体,但近似可用于非极端情况(低温或高压)的真实气体(包括常温常压)。
另外指的是克拉珀龙方程来源的三个实验定律:玻-马定律、盖·吕萨克定律和查理定律,以及直接结论pV/T=恒量。
波义耳-马略特定律:在等温过程中,一定质量的气体的压强跟其体积成反比。
即在温度不变时任一状态下压强与体积的乘积是一常数。
即p1V1=p2V2。
盖·吕萨克定律:一定质量的气体,在压强不变的条件下,温度每升高(或降低)1℃,它的体积的增加(或减少)量等于0℃时体积的1/273。
【高中物理】高中物理知识点:理想气体
【高中物理】高中物理知识点:理想气体理想气体:
1.定义:在任何温度和压力下严格遵守气体实验定律的气体称为理想气体
2.简化条件:实际气体,特别是那些不容易液化的气体,如氢气、氧气、氮气、氦气等,在压强不太大(不超过大气压的几倍),温度不太低(不低于负几十摄氏度)时,可以近似地视为理想气体
3.微观意义:在微观意义上,与分子之间的距离相比,理想气体分子的大小可以忽略不计,分子之间没有相互作用的引力和斥力
4.内能:
① 从微观角度来看:由于分子力为零,理想气体的分子势能为零,理想气体的内能等于所有分子的总动能
②从宏观角度:一定质量的理想气体,其内能只与温度有关,与体积无关
4.分子运动定律:
(1)分子运动性质:
① 分子可以在空间中自由移动,并填满它们能到达的空间,所以气体的体积就是容器的体积。
②气体分子间频繁地发生碰撞。
一个空气分子在1s内与其他分子的碰撞达65亿次之多,分子的频繁碰撞使每个分子速度的大小和方向频繁地发生改变,造成气体分子杂乱无章的热运动。
③ 在每一时刻,气体分子向各个方向运动的概率是相等的
(2)分子运动速率分布:
气体分子的运动速率是按照一定的规律分布的,速率过大或过小的分子数量非常少。
随着温度的升高,分子运动的平均速率增加,分子速率增加,分子量低,分子量减少,这仍然是“两头多,中间少”的分布规律。
高中物理人教版《气体的等容变化和等压变化》
解析:在p-V图象中
1.气体由A→B是等温过程,且压强减小,气体体积增大,A错。
2.由B→C是等容过程,且压强增大,气体温度升高,
3.由C→A是等压过程,且体积减小,温度降低.
C错
例3.有人设计了一种测温装置,其结构如图所示,玻璃泡A内封 有一定量气体,与A相连的B管插在水槽中,管内水银面的高 度x即可反映泡内气体的温度,即环境温度,并可由B管上的 刻度直接读出.设B管的体积与A玻璃泡的体积相比可忽略不 计.在1标准大气压下对B管进行温度刻度(1标准大气压相当 于76cmHg的压强,等于101kPa).已知当温度t1=27℃时,管 内水银面高度x1=16 cm,此高度即为27 ℃的刻度线,问t= 0 ℃的刻度线在何处.
TA TB
即 TA=VVABTB=00..46×300 K=200 K.
2.由 图 甲 可 知 , 由B C是 等 容 变 化 过 程 , 根据 查 理 定 律
得 PB TB
PC TC
PC
TC TB
PB
4 3
0 0
0 0
PB
4 3
PA
2.0105 Pa
由A B C的P T图像如图。
• A.下部两侧水银面A、B高度差h减小 • B.h增大
• C.右侧封闭气柱体积变小
• D.水银面A、B高度差h不变
分析:在左管 中注入水银过程 中
例4..如图所示,活塞的质量为m,大气压强为p0,当 密闭气体的温度由T1升高到T2时,求: (1)温度为T2时气体的压强; (2)温度为T2时的气体体积. (汽缸的横截面积为S,忽略活塞与汽缸间的摩擦,温 度T1时气体的体积为V1)
解 析 : 1.取 活 塞 为 研究 对 象 进 行 受 力 分 析
高中物理 第五章理想气体的热力性质和热力过程
1300c
9001.11713001.081 900 479.2kJ / kg
Qp mqp 100479.2 47920 kJ
查表5-2
c pm 0.9956 0.000093 t
t 900 1300 2200
c1300 0.000093 22001.2002 kJ /(kg K ) pm900 0.9956
dh dt
h u pv u RT h(T )
二、应用比热容计算热量的 方法
1. 曲线关系
q
2
c
t2
t1
cdt
t
面积ABCDA
c=a+bt+et2+ ┉ B
A
c m t12 (t 2 t1 )
=面积1BC01-面积1AD01
1
0 t
D(t1)
C(t2)
= 02- 01
k J (kg K )
k J ( kg K )
q du pdv
定容过程 和定压过程 dv 0
q dh vdp
dp 0
(q) p dh dh cp ( )p dt
(q) v du du cv ( )v dt
理想气体
u u (T )
cv
cp
du dT
u u (T )
理想气体:氧气、氢气、氮气、一氧化碳、二氧化碳、空气、 燃气、烟气……(在通常使用的温度、压力下) 实际气体:氨、氟里昂、蒸汽动力装置中的水蒸气……
二、理想气体状态方程
1kg气体: 1kmol气体:
pv RT pVM RM T
m kg气体: n kmol气体:
气体知识点的总结归纳
气体知识点的总结归纳首先,我们来探讨气体的性质。
气体的分子间距较大,分子之间存在很弱的相互作用,因此气体具有较低的密度和可压缩性。
此外,气体具有较强的扩散性和渗透性,能够通过半透膜扩散到另一边。
气体的温度和压力对其性质有显著的影响,温度升高会增加气体的分子速度,压力增大会使气体分子紧密排列。
而气体的密度是通过气体的摩尔质量和压力来决定的。
其次,我们将讨论气体的行为。
理想气体是理想化的气体模型,它假设分子之间不存在相互作用力,分子之间的碰撞是完全弹性的。
根据理想气体定律,PV=nRT,其中P表示气体压力,V表示气体体积,n表示气体的摩尔数,R是气体常数,T表示气体的温度。
实际气体则不符合理想气体的假设,存在分子之间相互作用力和分子体积,因此需要修正理想气体定律。
例如范德华力修正和分子体积修正等。
此外,气体还具有一些特殊的行为。
如气体的液化和气化过程、气体的流体性和热传导性等。
气体的液化和气化过程是利用温度和压力对气体进行控制,将气体转化为液体或气体状态。
而气体的流体性使其能够流动,易于扩散和混合。
气体的热传导性则表现为气体能够通过分子碰撞传递热量。
最后,我们将介绍气体的应用。
气体在日常生活中有许多应用,如氧气和氮气用于医疗和工业,天然气和液化天然气用于能源生产,空气净化和空调系统中的制冷剂等。
此外,气体还被用于科学研究和实验室中。
例如氢气在化学实验中作为还原剂,氦气在核磁共振和激光技术中的应用等。
综上所述,气体是一种重要的物质状态,具有许多特殊的性质和行为。
了解气体的基本知识对于理解自然界和应用中的气体问题具有重要意义。
通过本文的总结和归纳,希望读者能够对气体有更深入的理解,并在实际生活和工作中加以应用。
物理选修3-3知识点
物理选修3-3知识点物理选修3-3通常指的是高中物理课程中的一个选修模块,这个模块主要涉及分子动理论、热力学定律、气体的性质、振动和波等知识点。
以下是物理选修3-3的主要内容概述:1. 分子动理论- 物质是由大量分子组成的,分子在不停地做无规则运动。
- 分子间的相互作用力包括引力和斥力。
- 温度是分子热运动平均动能的标志。
- 扩散现象表明分子在不停地做无规则运动。
2. 热力学定律- 第零定律:如果两个系统分别与第三个系统处于热平衡状态,则这两个系统之间也处于热平衡状态。
- 第一定律:能量守恒定律在热力学中的表现形式,即系统的内能变化等于热量与做功的代数和。
- 第二定律:自然过程中熵总是增加的,或者不可能从单一热源吸热使之完全变为功,而不向其他热源排热。
3. 气体的性质- 理想气体状态方程:\( pV = nRT \),其中\( p \)是压强,\( V \)是体积,\( n \)是摩尔数,\( R \)是气体常数,\( T \)是温度。
- 气体压强的微观意义:大量分子对容器壁的频繁碰撞产生了压强。
- 气体分子的平均速率和根均方速率。
4. 振动和波- 简谐振动的特征和描述,包括位移、回复力、周期和频率。
- 阻尼振动、受迫振动和共振现象。
- 机械波的产生、传播和接收,包括横波和纵波。
- 波速、波长、频率和振幅的关系。
- 声波的特性,包括声速、响度、音调和音色。
5. 光学现象- 光的反射定律和折射定律。
- 平面镜、凹面镜和凸面镜的成像规律。
- 光的干涉、衍射和偏振现象。
- 光的粒子性和波动性,即波粒二象性。
6. 电磁学基础- 静电场的基本概念,包括电场强度、电势和电容。
- 直流电路的基本规律,如欧姆定律和基尔霍夫定律。
- 磁场的基本概念,包括安培力、洛伦兹力和磁通量。
- 电磁感应现象,包括法拉第电磁感应定律和楞次定律。
以上是物理选修3-3的主要知识点概述,每个知识点都需要通过实验、问题解决和理论学习来深入理解。
高中物理气体固体和液体知识点
高中物理气体固体和液体知识点一、气体。
1. 理想气体状态方程。
- 表达式:pV = nRT,其中p是压强,V是体积,n是物质的量,R是摩尔气体常量(R = 8.31J/(mol· K)),T是热力学温度。
- 适用条件:理想气体,即气体分子间没有相互作用力(除碰撞瞬间外),分子本身没有体积的气体。
实际气体在压强不太大、温度不太低的情况下可近似看作理想气体。
- 应用:- 已知其中三个量可求第四个量。
例如,一定质量的理想气体,压强p_1、体积V_1、温度T_1,变化后压强p_2、体积V_2,根据(p_1V_1)/(T_1)=(p_2V_2)/(T_2)(当n不变时)可求解相关量。
- 对于气体的等温、等压、等容变化的分析。
- 等温变化(玻意耳定律):p_1V_1 = p_2V_2(T不变,n不变)。
- 等压变化(盖 - 吕萨克定律):(V_1)/(T_1)=(V_2)/(T_2)(p不变,n 不变)。
- 等容变化(查理定律):(p_1)/(T_1)=(p_2)/(T_2)(V不变,n不变)。
2. 压强的微观解释。
- 气体压强是大量气体分子频繁地碰撞器壁而产生的。
压强的大小与分子的平均动能和分子的密集程度有关。
- 从微观角度看,温度T是分子平均动能的标志,温度越高,分子平均动能越大;体积V减小时,分子的密集程度增大。
3. 气体实验定律的图象。
- 对于等温变化p - V图象是双曲线,p-(1)/(V)图象是过原点的直线。
- 等容变化p - T图象是过原点的直线(压强p与热力学温度T成正比)。
- 等压变化V - T图象是过原点的直线(体积V与热力学温度T成正比)。
二、固体。
1. 晶体和非晶体。
- 晶体。
- 有规则的几何外形,如食盐晶体是立方体,冰晶体呈六角形等。
- 具有各向异性,即在不同方向上物理性质(如硬度、导热性、导电性等)不同。
例如,石墨沿层方向的导电性比垂直层方向的导电性好。
- 有固定的熔点,例如冰在0^∘C时熔化,在熔化过程中温度保持不变。
气体的性质高中物理知识点
气体的性质高中物理知识点气体的性质高中物理知识点1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}高考物理答题注意事项1.审题:对于高考物理解答题,首先要仔细读题,弄清题意。
对题目中的信息进行搜索、提取、加工,在物理审题中,要全面细致,重视题中的关键词和数据,还常常要通过画草图展示物理情景来帮助理解题意,保证审题的准确性。
否则,高考物理审题...2.计算:高考物理解答题通常都立足于数学方法,解题就是方程,然后求解。
方程蕴含在物理过程中以及整个过程的各个阶段中,存在于状态或状态变化之中。
要注意计算的结果的准确,否则及时过程再好也是徒劳。
3.书写:在高考物理答题是要注意规范作答,保证一定的卷面分,高考物理答题过程尽量使用专业术语简单明了、突出物理知识点。
方程式准确、条理规范,文字符号要统一,单位使用要统一,作图要规范,结果要检验,最后要有明确结论。
高中物理考试高分技巧高中物理考试答题一定要规范有的同学,考试时题题都会做,离开考场后自我感觉良好”,但是考试成绩却得不到高分。
究其原因,是字迹潦草,书写草率,不懂得答题规范,因此被扣掉不少分。
如何才能做到答题规范,减少被扣分呢?请注意以下几点:1. 字迹清楚、卷面整洁你的字不一定要好看,跟书法一样,但是一定要清楚,让评卷人易读易认,不至于误解你的意思或者需要他去猜测你写的是什么。
高中物理3-3气体知识点总结
高中物理3-3气体知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中物理3-3气体知识点总结气体是普通高中课程标准实验教材的模块内容之一,为高考的知识点,下面是本店铺给大家带来的高中物理3-3气体知识点总结,希望对你有帮助。
高中物理知识点气体部分知识总结大全
高中物理知识点气体部分知识总结大全【高中物理知识点】气体部分知识总结大全一、重要概念和规律1.一定质量理想气体的实验定律玻意耳定律:温度T、体积V。
改变方式做功通过宏观机械运动实现机械能与内能的转换;热传递通过微观的分子运动实现物体与物体间或同一物体各部分间内能的转移。
这两种方式对改变内能是等效的。
定量关系△E=WQ热力学第一定律。
2.温度温度是物体分子热运动的平均动能的标志。
它是大量分子热运动的平均效果的反映,具有统计的意义,对个别分子而言,温度是没有意义的。
任何物体,当它们的温度相同时,物体内分子的平均动能都相同。
由于不同物体的分子质量不同,因而温度相同时不同物体分子的平均速度并不一定相同。
高考物理知识记忆十五法gg随高度、纬度、不同星球上不同有18条定律、2条定理1万有引力定律B2胡克定律B3滑动摩擦定律BAB4牛顿第一定律B5牛顿第二定律B力学6牛顿第三定律B7动量守恒定律B8机械能守恒定律B9能的转化守恒定律.10电荷守恒定律2弹力:F=K3滑动摩擦力:F滑=N4静摩擦力:Of静fm由运动趋势和平衡方程去判断5浮力:F浮=gV排6压力:F=1m2=Gr211真空中的库仑定律12欧姆定律13电阻定律B电学14闭合电路的欧姆定律B15法拉第电磁感应定律16楞次定律B17反射定律18折射定律B定理:①动量定理B②动能定理B做功跟动能改变的关系q1q28库仑力:F=Kr29电场力:F电=qE=q真空中、点电荷ud10安培力:磁场对电流的作用力F=BILBI方向:左手定则11洛仑兹力:磁场对运动电荷的作用力f=BqVBV方向:左手定则12分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快。
.13核力:只有相邻的核子之间才有核力,是一种短程强力。
5种基本运动模型1静止或作匀速直线运动(平衡态问题);2匀变速直、曲线运动(以下均为非平衡态问题);3类平抛运动;4匀速圆周运动;5振动。
高中乙烷知识点总结
高中乙烷知识点总结
【物理性质】
1. 外观:无色无味气体
2. 密度:0.61 克/升
3. 沸点:-88.6°C
4. 熔点:-182.8°C
【化学性质】
1. 燃烧性:乙烷可以与氧气反应发生燃烧,生成二氧化碳和水。
在充足的氧气条件下,乙烷燃烧时产生的热量很大,是理想的燃料之一。
2. 与卤素的反应:乙烷可以和卤素发生替代反应,生成卤代烷。
例如,乙烷和氯气反应可生成氯代乙烷。
3. 与氢卤酸的反应:乙烷可以和氢卤酸发生加成反应,生成卤代乙烷。
例如,乙烷和氢氯酸反应生成氯代乙烷。
4. 氧化反应:乙烷可以和氧发生氧化反应,生成一氧化碳和水。
这种反应需要高温和催化剂的存在。
【应用】
1. 燃料:乙烷可以作为甲烷的替代燃料,用于炉灶、取暖和燃料电池等领域。
2. 化工原料:乙烷可以用于合成乙烯、乙炔等重要的化工原料,用途广泛。
3. 医药化工:乙烷可以用于医药化工领域,如用作溶剂、制冷剂等。
【安全注意事项】
1. 乙烷是易燃气体,要远离明火和高温。
2. 乙烷具有一定的毒性,长期接触可能对人体造成伤害,要注意防护措施。
【环境影响】
1. 乙烷是一种温室气体,能够对大气层产生影响,加剧全球变暖。
2. 乙烷的燃烧会释放大量的二氧化碳,对环境造成污染。
总之,乙烷是一种重要的烷烃类化合物,具有广泛的应用价值。
在使用乙烷时,要注意其安全性和环境友好性,避免对环境和人体造成不良影响。
高中物理气体
高中物理气体高中物理气体气体是物质的一种状态,其分子之间的间距相对较大,分子运动自由且混乱。
在高中物理中,学生会学习气体的性质、特点、运动规律以及相关的理论模型。
1. 理想气体状态方程:高中物理课程中,学生会学习到理想气体状态方程PV=nRT,其中P是气体的压力,V是气体的体积,n是气体的物质的量,R是气体常数,T是气体的温度。
这个方程描述了理想气体在不同条件下的状态。
2. 理想气体的性质:在高中物理中,学生会探究理想气体的性质。
理想气体分子之间没有相互作用力,分子间碰撞是完全弹性的。
理想气体的温度与其分子平均动能成正比,而与分子质量和分子数无关。
理想气体在高温、低压下遵循玻意耳定律,即P与V成反比,P与T 成正比。
这些性质是理解气体行为的基础。
3. 理想气体的压力:在高中物理中,学生会学习到气体的压力及其计算方法。
气体的压力是由分子对容器壁的碰撞所引起的,压力与分子碰撞的频率和力量有关。
利用气体分子的平均动能和分子数密度,可以计算气体的压力。
4. 理想气体的体积:学生也会学习到气体体积的概念及其测量方法。
气体的体积可以通过容器的尺寸来表示,通常使用升、立方厘米或立方米作为单位。
气体的体积可以通过气体分子的平均运动速度和碰撞频率来计算。
5. 理想气体的温度:在高中物理中,学生会学习到气体的温度概念及其测量方法。
温度是衡量物体分子平均运动能量的物理量。
在理想气体中,温度与气体分子的平均动能成正比。
温度可以通过热力学温标来表示,如摄氏度、华氏度或开尔文度。
除了上述内容,高中物理课程还会涉及到其他与气体相关的内容,如气体的物态变化、气体的扩散、气体的混合等。
通过学习这些知识,学生可以了解气体的基本性质和行为规律,提高对物质状态和气体力学的理解。
高中物理理想气体经典总结
高中物理理想气体经典总结知识要点:一、 基础知识1、气体的状态:气体状态,指的是某一定量的气体作为一个热力学系统在不受外界影响的条件下,宏观性质不随时间变化的状态,这种状态通常称为热力学平衡态,简称平衡态。
所说的不受外界影响是指系统和外界没有做功和热传递的相互作用,这种热力学平衡,是一种动态平衡,系统的性质不随时间变化,但在微观上分子仍永不住息地做热运动,而分子热运动的平均效果不变。
2、气体的状态参量:(1)气体的体积(V )① 由于气体分子间距离较大,相互作用力很小,气体向各个方向做直线运动直到与其它分子碰撞或与器壁碰撞才改变运动方向,所以它能充满所能达到的空间,因此气体的体积是指气体所充满的容器的容积。
(注意:气体的体积并不是所有气体分子的体积之和)② 体积的单位:米3(m 3) 分米3(dm 3) 厘米3(cm 3) 升(l ) 毫升(ml )(2)气体的温度(T )① 意义:宏观上表示物体的冷热程度,微观上标志物体分子热运动的激烈程度,是气体分子的平均动能大小的标志。
② 温度的单位:国际单位制中,温度以热力学温度开尔文(K )为单位。
常用单位为摄氏温度。
摄氏度(℃)为单位.二者的关系:T=t+273(3)气体的压强(P )① 意义:气体对器壁单位面积上的压力。
② 产生:由于气体内大量分子做无规则运动过程中,对容器壁频繁撞击的结果。
③单位:国际单位:帕期卡(Pa )常用单位:标准大气压(atm ),毫米汞柱(mmHg )换算关系:1atm=760mmHg=1.013×105Pa1mmHg=133.3Pa3、气体的状态变化:一定质量的气体处于一定的平衡状态时,有一组确定的状态参量值。
当气体的状态发生变化时,一般说来,三个参量都会发生变化,但在一定条件下,可以有一个参量保持不变,另外两个参量同时改变。
只有一个参量发生变化的状态变化过程是不存在的.4、气体的三个实验定律(1)等温变化过程—-玻意耳定律① 内容:一定质量的气体,在温度不变的情况下,它的压强跟体积成反比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理知识点之:气体的性质
气体有实际气体和理想气体之分。
理想气体被假设为气体分子之间
没有相互作用力,气体分子自身没有体积,用理想气体讨论得到的结论只适
用于压力不高,温度不低的实际气体。
下面小编为同学们介绍一下高中物理
知识点之:气体的性质方面的知识,希望对同学们的学习高中物理有帮助。
气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,
物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:
T=t+273{T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据
的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子
频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态
方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}注:(1)理想气体
的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均
为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),
而T为热力学温度(K)。
有色气体氯气(Cl2):颜色\气味\状态:通常情况下为
有强烈刺激性气味的黄绿色的有毒气体。
二氧化氮(NO2):在21.1℃温度时
为棕红色刺鼻气体。
有毒气体.密度比空气大易液化。
易溶于水;在21.1℃以下时呈暗褐色液体。
氟气(F2):氟气,元素氟的气体单质,化学式F2,淡黄色,腐蚀性非常强,甚至能与极不活泼的金发生反应。
溴蒸气(Br2):溴分子在标
准温度和压力下是有挥发性的红棕色液体,活性介于氯与碘之间。
碘蒸气(I):单质碘呈紫黑色晶体,易升华,升华后易凝华。
有毒性和腐蚀性。
碘单质遇
淀粉会变蓝紫色。
加热时,碘升华为紫色蒸汽,这种蒸气有刺激性臭味,有。