数字电压表设计

合集下载

数字电压表的设计毕业论文

数字电压表的设计毕业论文

数字电压表的设计毕业论文数字电压表的设计摘要:本文主要介绍了数字电压表的设计。

首先介绍了数字电压表的基本原理和功能,然后详细讲解了数字电压表的硬件设计和软件设计。

硬件设计包括电路设计和元器件选择,软件设计包括程序设计和界面设计。

最后对数字电压表进行了实验验证,并总结了设计过程中的经验和教训。

1. 引言数字电压表是一种常用的电子测量仪器,广泛应用于工业控制、科研实验和电子维修等领域。

本文将介绍一种基于单片机的数字电压表的设计方案。

2. 基本原理和功能数字电压表的基本原理是通过采集电压信号并将其转换成数字信号,然后通过显示器显示出来。

数字电压表的功能包括测量电压值、显示电压值、单位切换、数据保存等。

3. 硬件设计3.1 电路设计数字电压表的电路设计主要包括信号采集电路、信号转换电路和显示电路。

信号采集电路负责将待测电压信号转换成电压信号,信号转换电路负责将电压信号转换成数字信号,显示电路负责将数字信号显示出来。

3.2 元器件选择在数字电压表的设计中,元器件的选择非常重要。

需要选择合适的电阻、电容、集成电路等元器件,以确保电路的稳定性和精确度。

4. 软件设计4.1 程序设计数字电压表的程序设计主要包括信号采集程序、信号转换程序和显示程序。

信号采集程序负责采集电压信号,信号转换程序负责将电压信号转换成数字信号,显示程序负责将数字信号显示出来。

4.2 界面设计数字电压表的界面设计主要包括显示界面和操作界面。

显示界面负责将数字信号以合适的格式显示出来,操作界面负责提供操作按钮和设置选项。

5. 实验验证为了验证数字电压表的设计方案的准确性和可靠性,进行了一系列实验。

实验结果表明,设计方案能够准确测量电压值并显示出来。

6. 经验总结在数字电压表的设计过程中,我们遇到了一些问题和挑战。

通过实践和总结,我们得出了一些经验和教训。

例如,在硬件设计中,需要注意电路的稳定性和精确度;在软件设计中,需要考虑程序的效率和界面的友好性。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。

传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。

数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。

本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。

二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。

(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。

2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。

3、显示模块:用于实时显示测量的电压值。

三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。

(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。

(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。

四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。

(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。

然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。

最后将电压值发送到 LCD1602 进行显示。

(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。

数字电压表设计(icl7107)

数字电压表设计(icl7107)

数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。

1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。

也可以把芯片的缺口朝左放置,左下角也就是第一脚了。

许多厂家会在第一脚旁边打上一个小圆点作为标记。

知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。

(1 脚与 40 脚遥遥相对)。

2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。

第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。

芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。

在一开始,可以把它接地,造成“0”信号输入,以方便测试。

3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。

芯片的 33 和34 脚接的 104 电容也不能使用磁片电容。

4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。

--本文不讨论特殊要求应用。

5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。

比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。

我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。

数字电压表设计3

数字电压表设计3

目录一、整体设计思路框图及原理图 (2)二、模块分析 (3)1. AT89C51单片机 (3)2. A/D转换 (4)3. 显示电路 (5)三、软件设计 (5)四、仿真实验调试 (7)五、总结与体会 (7)六、参考文献 (8)七、附录 (9)一、 整体设计思路框图及原理图数字电压表的设计即将连续的模拟电压信号经过A/D 转换器转换成二进制数值,再经由单片机软件编程转换成十进制数值并通过显示屏显示。

按系统实现要求,决定控制系统采用AT89C51单片机,A/D 转换由于仿真软件里的ADC0809元件有问题,这里用ADC0808代替,它和ADC0809区别很小。

采用ADC0808。

数字电压表系统整体框图如下图1所示。

图1 整体框图系统通过软件设置单片机的内部定时器T1产生中断信号。

通过片选选择8路通道中的一路,将该路电压送入ADC0808的EOC 端口产生高电平,同时将ADC0808的OE 端口置为高电平,单片机将转换后结果存到片内RAM 。

系统调出转换显示程序,将转换为二进制的数据在转换成十进制数并输出到LCD 显示电路,将相应电压显示出来。

原理图见附录图7。

二、模块分析1.AT89C51单片机接口分配电路设计如右图2所示:P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/ 地址的第八位。

在这里P0口作为输入与输出分别与ADC0808的输出端和LCD显示的输入端相连,且P0外部被阻值为1KΏ的电阻拉图2 单片机接口电路高。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

简易数字电压表的设计(论文)

简易数字电压表的设计(论文)

目录1引言 (2)2系统硬件设计 (2)2.1 ATMEL89C5单片机系统和显示电路 (3)2.2 A/D转换电路 (4)3系统软件设计 (5)3.1初始化程序 (5)3.2 A/D转换子程序 (5)3.3显示子程序 (6)4系统安装调试及结果 (14)4.1系统安装调试 (14)4.1.1 电路焊接 (14)4.1.2 程序下载及程序下载 (14)4.2系统调试结果 (14)4.2.1 调试所用工具 (14)4.2.2记录测试数据 (14)5总结 (15)6致谢 (15)7注释8参考文献简易数字电压表的设计【内容摘要】此在现代检测技术中,常需用高精度数字电压表进行现场检测,将检测到的数据送入微计算机系统,完成计算、存储、控制和显示等功能。

本文中的数字电压表的控制系统采用ATMEL89C5单片机,A/D转换器采用TLC549为主要硬件,实现数字电压表的硬件电路与软件设计。

该系统的数字电压表电路简单,所用的元件较少,成本低,调节工作可实现自动化。

【关键词】数字单片机;数字电压表;A/D转换;模拟信号数字电压表(Digital Voltmeter )简称DVM它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。

与此同时,由DVMT展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

2系统硬件设计硬件电路设计主要包括:ATMEL89C5单片机系统,A/D转换电路,显示电路图2-1是数字电压表硬件电路原理图。

图2-1数字电压表硬件电路原理图2.1 ATMEL89C51单片机系统和显示电路由于单片机体积小、重量轻、价格便宜,所以本系统采用 ATMEL89C51单片机,其原理图如图1所示。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。

基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。

一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。

程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。

二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。

2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。

在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。

3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。

4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。

导线是电路板内部连接线路,电容等器用来平滑电压波动。

三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。

数字电压表的设计方案

数字电压表的设计方案

数字电压表的设计方案1. 引言数字电压表(Digital Voltmeter,简称DVM)是一种能够直接显示电压值的测量仪器。

它与传统的模拟电压表相比,具有精确度高、稳定性好、便于读取等优势。

本文将介绍一种基于集成电路的数字电压表的设计方案。

2. 设计原理数字电压表的设计基于模数转换技术,通过将输入的模拟电压信号转换为数字形式,并经过一系列处理后显示在数码管上。

通常的设计流程包括采样、量化、编码和显示四个步骤。

2.1 采样采样是将连续的模拟信号转换为离散的数字信号的过程。

在数字电压表中,采样过程通过使用一个模拟-数字转换器(ADC)来完成。

常见的ADC电路有逐次逼近型和闩锁型等,根据需求选择合适的ADC器件。

2.2 量化量化是将采样得到的模拟信号分为若干个不同电平的过程。

量化过程中,转换器将模拟信号映射到一个有限数量的离散值,通常为二进制数。

量化级别的选择会影响数字电压表的精度和分辨率。

2.3 编码编码是将量化后的模拟信号转换为与数码管对应的数字形式的过程。

常用的编码方式有二进制编码、格雷码等。

编码器可以是硬件电路,也可以是通过程序实现的软件算法。

2.4 显示显示是将编码后的数字信号以可读的形式呈现出来的过程。

在数字电压表中,常用的显示器件是七段数码管。

数码管的控制可以通过驱动电路来实现,同时需要考虑亮度控制和多位数显示的问题。

3. 系统组成数字电压表的系统组成主要包括模拟前端、模数转换、显示部分等。

3.1 模拟前端模拟前端是将待测电压信号处理成可以输入到模数转换器的范围内。

模拟前端通常包括电阻分压器、跨导放大器、滤波器等模块,其目的是将输入信号的幅度范围缩放到ADC的输入电压范围内。

3.2 模数转换模数转换是将模拟电压信号转换为数字信号的过程。

在数字电压表中,常用的模数转换器有逐次逼近型和闩锁型。

模数转换器的选择要考虑精度、速度、功耗等因素。

3.3 显示部分显示部分是将数字信号以可读的形式显示出来。

数字电压表设计002

数字电压表设计002

接口技术学生姓名:学号:学院:专业: 电子科学与技术题目: 数字电压表设计指导教师:数字电压表的设计一、设计概念资料1.数字电压表基本概念数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统智能化测量领域,示出强大的生命力。

与此同时,由DVM 扩展而成各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

2.数字电压表优缺点⑴显示清晰直观,读数准确,缩短读数和记录的时间。

新型数字电压表还增加了标志符显示功能,包括测量项目符号、单位符号和特殊符号。

⑵显示位数显示位数通常为3位~8位判定数字仪表的位数有两条原则:①能显示从0~9所有数字的位是整数值;②分数位的数值是以最大显示值中最高位数字为分子,用满量程时最高位数字做分母。

⑶准确度高。

准确度愈高,测量误差愈小。

数字电压表的准确度远优于模拟式电压表。

⑷分辨率高。

从设计DVM的角度看,分辨力应受准确度的制约,并与之相适应。

⑸测量范围宽。

多量程DVM一般可测0~1000V直流电压,配上高压探头还可测量上万伏的高压。

(6扩展能力强。

在数字电压表的基础上、还可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪器,以满足不同的需要。

⑺测量速率快。

数字电压表在每秒钟内对被测电压的测量次数叫测量速率,单位是“次/秒”。

它主要取决于A/D 转换器的转换速率,其倒数是测量周期。

⑻输入阻抗高。

数字电压表具有很高的输入阻抗,通常为10MΩ~10000MΩ,最高1TΩ。

在测量时从被测电路上吸取的电流极小,不会影响被测信号源的工作状态,减小由信号源内阻引起的测量误差。

EDA课程设计数字电压表的设计

EDA课程设计数字电压表的设计

数字电压表的技术挑战与展望
技术挑战:高精度、 高稳定性、高可靠 性
技术挑战:低功耗、 低噪声、低漂移
技术挑战:高集成 度、高灵活性、高 可扩展性
展望:未来数字电 压表将更加智能化 、自动化、网络化
THANKS
汇报人:
数据处理算法
采样算法:采用定时器进行周期性采样,获取电压信号 滤波算法:采用低通滤波器对采样数据进行滤波,去除噪声干扰 量化算法:采用ADC将滤波后的电压信号转换为数字信号 转换算法:采用DAC将数字信号转换为模拟信号,显示在显示屏上
Part Five
数字电压表的测试 与调试
测试环境与设备
测试设备:数字电压表、示 波器、万用表等
结束:程序结束,等待下一次启动
A/D转换程序流程图
初始化:设置A/D转换器参数,如采样 频率、分辨率等
启动A/D转换:启动A/D转换器,开始 采样
数据采集:读取A/D转换器的数据,并 存储到缓冲区
数据处理:对采集到的数据进行处理, 如滤波、放大等
数据输出:将处理后的数据输出到显示 设备,如LCD、LED等
数字电压表的软件 设计
主程序流程图
初始化:设置初始状态,如电压、电流、 频率等
数据采集:读取传感器数据,如电压、电 流、频率等
数据处理:对采集到的数据进行处理,如 滤波、放大、转换等
数据显示:将处理后的数据显示在屏幕上, 如电压、电流、频率等
控制输出:根据处理后的数据控制输出, 如控制继电器、报警器等
添加标题
启动测试:启动电源, 观察电压表显示值与 实际值是否一致,如 有误差,调整参数进 行校准
添加标题
记录测试数据:记录 电压表在不同负载、 不同电压下的显示值 和实际值,进行分析 和比较

简易数字电压表课程设计

简易数字电压表课程设计

简易数字电压表课程设计一、课程目标知识目标:1. 学生能够理解电压表的基本工作原理和电路连接方式;2. 学生能够掌握简易数字电压表的使用方法和读数技巧;3. 学生能够了解电压的单位换算,并能进行简单的计算。

技能目标:1. 学生能够正确连接电压表的电路,并进行电压测量;2. 学生能够通过操作简易数字电压表,准确读取电压值,并记录数据;3. 学生能够运用所学知识解决实际电路中的电压问题。

情感态度价值观目标:1. 培养学生对电子测量工具的兴趣,激发学习电子技术的热情;2. 培养学生严谨、细致的实验态度,注重实验操作的规范性和安全性;3. 培养学生团队合作精神,学会分享和交流实验过程中的心得体会。

课程性质分析:本课程为电子技术基础课程,以实验为主,结合理论教学。

简易数字电压表是电子测量工具的基础,通过本课程的学习,使学生掌握基本的电压测量方法。

学生特点分析:学生为初中生,具备一定的物理知识和实验操作能力。

学生对电子技术感兴趣,但可能对电压表的使用方法和电路连接不够熟悉。

教学要求:1. 理论与实践相结合,注重实验操作技能的培养;2. 注重启发式教学,引导学生主动探究和解决问题;3. 关注学生的个体差异,提供个性化指导,确保每个学生都能达到课程目标。

二、教学内容1. 电压表基本原理:讲解电压表的工作原理,包括磁电式电压表和数字电压表的区别与联系,重点介绍数字电压表的原理和特点。

教材章节:第二章第二节《电压表的原理与使用》2. 电压表的使用方法:详细讲解电压表的电路连接方法,操作步骤,读数技巧以及注意事项。

教材章节:第二章第三节《电压表的使用与维护》3. 电压单位换算:介绍电压的单位制,换算关系,并进行实际计算。

教材章节:第一章第四节《电学单位制》4. 实际电路电压测量:设计实际电路,指导学生运用电压表进行电压测量,分析测量结果。

教材章节:第二章第四节《电压测量》5. 数字电压表操作练习:安排学生进行数字电压表的实操练习,巩固所学知识,提高操作技能。

《数字电压表的设计》课件

《数字电压表的设计》课件

技术创新
介绍一些新兴的电压测量 方法,包括数字信号处深入剖析数字电压表的工作原理,从精确测量电压的角度解释数字电路的设计和实现。讲解信号采集、 放大、转换和显示等关键步骤。
数字电压表的主要部件和结构
数字显示屏
介绍数字电压表常用的数字显 示屏类型和原理。
模数转换器
3
示波器实现案例
展示示波器电路的实际应用案例。
模数转换器的原理和实现
模数转换器类型
讨论不同类型的模数转换器, 包括逐次逼近型和积分型转 换器。
模数转换器设计
探讨模数转换器的设计和参 数选择的重要性。
模数转换器实现技术
介绍模数转换器的实现技术 和性能优化方法。
数字电路设计与实现技术
1 数字电路基础
数字电压表的设计
数字电压表是一种用于测量电压的现代化仪器,广泛应用于电子领域和实验 室。本课件将介绍数字电压表的概念和应用范围。
常用电压测量方法和数码电压表的优势
传统测量方法
介绍传统电压测量方法, 比如示波器和模拟电压表。
数码电压表的优势
探讨数码电压表相比传统 仪器的优势,如精确度、 易读性和功能丰富。
解释模数转换器的作用和不同 类型的实现方法。
电压测量电路
讨论电压测量电路的设计和注 意事项。
电流-电压转换电路的设计和实现
详细讲解电流-电压转换电路的原理和设计技巧,包括电阻测量和放大器的使用。
示波器电路设计与实现
1
示波器基本原理
介绍示波器的基本原理和常见功能。
2
示波器电路设计
讲解示波器电路的设计和关键参数的选择。
2 逻辑门电路设计
概述数字电路设计的基本原理和常见元件。
讨论逻辑门电路的设计和布线技巧。

数字电压表设计方案

数字电压表设计方案

数字电压表设计方案数字电压表是一种用来测量电压大小的仪器,它使用数字显示电压值,相比于传统的模拟电压表具有精确度高、可读性好、易于读数等优势。

在设计数字电压表时,需要考虑以下几个方面。

首先,数字电压表的测量范围和测量精度是设计的关键。

通常根据实际需要确定电压测量范围,常见的有0-10V、0-100V、0-1000V等不同的量程。

测量精度一般采用位数来表示,如31/2位、4位、5位等。

更高位数的电压表具有更高的精度,但也会增加成本。

在确定测量范围和精度时,需要考虑被测电压的变化范围和需要测量的精度要求。

其次,需要设计合适的电压测量电路。

数字电压表的核心部分是ADC(模数转换器),它将模拟电压转换为数字信号。

常见的ADC有逐次逼近型、逐次逼近型递增型、Σ-Δ型等。

此外,还需要选择合适的参考电压源和滤波电路以提高测量精度和稳定性。

另外,数字电压表还需要具备显示功能和操作功能。

显示部分可以选择LED、LCD等数字显示器件,其中LCD显示器具有低功耗、可视角度广、视觉舒适等特点。

操作功能可以通过面板上的按键或旋钮实现,包括开关机、零点校准、量程切换等。

此外,为了提高用户体验,还可以设计报警功能、存储功能等。

最后,还需要考虑数字电压表的外观设计和材质选用。

外观设计应简洁、美观,考虑到使用者的习惯和工作环境,合理安排面板上的元件和按键。

材质选用应考虑仪器的稳定性和耐用性,一般使用高强度塑料或金属制成。

综上所述,设计数字电压表需要考虑测量范围和精度、测量电路、显示和操作功能以及外观设计等方面。

通过合理的设计,可以实现高精度、易于使用的数字电压表,满足工业和实验室等领域的测量需求。

直流数字电压表设计方案及原理

直流数字电压表设计方案及原理

直流数字电压表设计方案及原理直流数字电压表是一种用于测量直流电压的电子设备。

其设计方案及原理如下:设计方案:1. 选择合适的电压测量范围:根据实际需求选取合适的电压测量范围,可以是几个固定的范围或可调节的范围。

2. 选择适当的电压分压电阻:为了避免将高电压直接施加在测量电路上,通常会使用电压分压电阻将输入电压降低到安全范围内。

3. 选择合适的运算放大器:运算放大器用于放大电压信号,并将其转换为数字信号。

选择合适的运算放大器可以保证测量的准确性和稳定性。

4. 添加A/D转换器:A/D转换器将模拟电压信号转换为数字信号,以便于微处理器或显示器进行处理和显示。

5. 添加微处理器或显示器:微处理器可以对转换后的数字信号进行处理、计算和显示。

显示器可以直接显示测量结果。

原理:1. 电压分压:通过选择合适的电阻进行电压分压,将输入电压降低到运算放大器可接受的范围内。

2. 运算放大器放大:运算放大器将输入电压放大到合适的范围内,通常使用差分放大器进行放大,并通过负反馈控制放大倍数。

3. A/D转换:通过A/D转换器将模拟电压信号转换为数字信号。

A/D转换器将连续的模拟信号离散化为一系列数字值,通常使用逐次逼近型或积分型A/D转换器。

4. 数字处理和显示:微处理器对转换后的数字信号进行处理和计算,可以进行单位转换、数据平滑等操作,并将结果显示在显示器上。

总结:直流数字电压表通过电压分压、运算放大、A/D转换和数字处理等步骤,将输入的直流电压转换为数字信号,并通过显示器显示测量结果。

设计方案需要选择合适的电压测量范围、电压分压电阻、运算放大器、A/D转换器和显示器,以保证测量的准确性和稳定性。

数字电压表 电子线路设计

数字电压表 电子线路设计

【实验题目】: 数字电压表的设计与制作【实验目的】:通过该题目的设计和实验,了解数字电压表的电路组成与基本工作原理,掌握通用数字电压表的设计方法与电路调整、测试技能。

掌握双积分型A/D 转换器的工作原理,更加深入理解与掌握模拟电子技术和数字电子技术的理论,增进工程实践能力。

【设计内容及要求】:① 基本设计内容 设计并制作一个通用液晶显示213位的数字电压表电路,技术指标要求是:1.直流电压测量范围(0-200V): 共分四档 200mV 2V 20V 200V ;2.基本量程:200mV ,测量速率(2-5)次任选;3.分辨率0.1mV;4.测量误差:%1.0±≤γ5.具有正、负电压极性显示、小数点显示和超量程显示。

② 设计要求数字电压表的电路组成框图如图1所示:图1 数字电压表电路组成框图1.给定A/D 转换器为ICL7106,液晶显示器为EDS801A.2.设计电路并计算所用元件的参数值,画出数字电压表的原理电路图。

3.安装所设计的电路,按照数字电压表的调试步骤,逐步进行调整与功能测试。

4.撰写实验报告1方案论证1.1方案一:采用AT89S52单片机为核心、以AD0809数模转换芯片采样、以1602液晶屏显示制作具有电压测量功能的具有一定精度的数字电压表。

AT89S52是一个低功耗,高性能CMOS 8位单片机;8位AD转换器ADC0809,编程简单方便,价格便宜;采用液晶1602做为显示电路,功能强大,适合做各类扩展。

但该方案涉及的编程复杂,同时硬件电路也颇复杂。

1.2方案二:采用ICL7106A/D转换器,液晶显示器EDS801A配以外围电路进行设计。

ICL7106是美国Intersil公司专为数字仪表生产的数字仪,满幅输入电压一般取200mV或2V。

该芯片集成度高,转换精度高,抗干扰能力强,输出可直接驱动LCD 液晶数码管,只需要很少的外部元件,就可以构成数字仪表模块,硬件电路简单,而且精度高,完全可以实现要求。

简易数字电压表课程设计

简易数字电压表课程设计

简易数字电压表课程设计一、课程目标知识目标:1. 学生能理解电压表的基本工作原理,掌握其电路组成和功能。

2. 学生能描述简易数字电压表的结构,了解其显示原理。

3. 学生掌握电压的测量方法,能够正确使用简易数字电压表进行电压测量。

技能目标:1. 学生能够独立完成简易数字电压表的组装和调试。

2. 学生能够运用所学的电压测量知识,解决实际电路中的电压测量问题。

3. 学生通过实际操作,提高动手能力和问题解决能力。

情感态度价值观目标:1. 学生培养对电子技术的兴趣,激发学习热情,形成积极探索的学习态度。

2. 学生通过合作学习,培养团队协作精神和沟通能力。

3. 学生了解电压表在实际应用中的作用,认识到电子技术在日常生活和工业生产中的重要性。

课程性质:本课程为电子技术基础课程,通过理论与实践相结合的方式,使学生掌握电压测量方法,提高学生的实际操作能力。

学生特点:本课程针对初中或高中年级学生,他们对电子技术有一定的基础知识,好奇心强,动手能力逐渐提高。

教学要求:教师需采用启发式教学,引导学生主动探索,注重培养学生的动手能力和问题解决能力。

在教学过程中,关注学生的个体差异,给予每个学生充分的实践机会。

通过课后评估,检验学生的学习成果,确保课程目标的实现。

二、教学内容1. 电压表基本原理:介绍电压表的工作原理,包括磁电式和数字式电压表的原理区别。

- 教材章节:第二章第三节《电压与电压测量》2. 简易数字电压表结构:分析简易数字电压表的电路组成,显示部分原理。

- 教材章节:第二章第五节《数字电压表的组成与原理》3. 电压测量方法:讲解电压测量的步骤、注意事项以及不同量程的选择。

- 教材章节:第二章第四节《电压测量方法及注意事项》4. 实践操作:进行简易数字电压表的组装、调试及实际电压测量。

- 教材章节:实验章节《电压测量实验》5. 故障分析与处理:介绍常见的电压表故障现象,分析原因并学会处理方法。

- 教材章节:附录《电压表常见故障及处理方法》教学内容安排与进度:第一课时:电压表基本原理,介绍磁电式和数字式电压表的原理区别。

数字电压表课程设计报告

数字电压表课程设计报告

数字电压表课程设计报告一、实验目的本实验旨在使学生掌握数字电压表的基本原理、构成和使用方法,通过实践锻炼学生的动手操作能力和实际问题解决能力。

二、实验器材数字电压表、直流稳压电源、电阻箱、待测电路板等。

三、实验内容1.数字电压表的基本原理、构成和使用方法的介绍;2.根据实验要求搭建待测电路;3.调节直流稳压电源输出电压为所需值;4.连接数字电压表到待测电路上并测量电压值;5.对测得的电压值进行分析、处理和讨论。

四、实验流程及步骤1.实验器材准备:数字电压表、直流稳压电源、电阻箱、待测电路板等器材;2.理解数字电压表的基本原理与构成,并熟练掌握使用方法;3.根据实验所需,找到相应的电路板,搭建待测电路,并连接好直流稳压电源;4.调节直流稳压电源的输出电压为所需值,并连接数字电压表到待测电路上;5.测量待测电路的电压值,并在数字电压表上进行记录;6.对测得的电压值进行分析、处理和讨论,并得出实验结论。

五、实验注意事项1.在操作实验器材时,务必严格按照使用说明书和教师的要求进行操作;2.实验器材保持完好无损,任何破损的器材均不能使用;3.实验前需仔细了解实验内容,规划实验流程;4.在操作实验时,要认真记录实验数据,并进行及时分析处理;5.实验结束后,将实验器材妥善归位,保持实验室整洁干净。

六、实验结果及结论通过实验,我们得到了待测电路的电压值,并对其进行了分析、处理和讨论。

根据实验结果和所给数据,我们得出了结论:数字电压表可准确测量待测电路的电压值,为后续研究和实践提供重要依据。

七、实验心得体会通过本次实验,我对数字电压表的原理及其使用方法有了更深入的了解,并通过实践掌握了一定的动手操作能力和实际问题解决能力。

同时,我认识到在实验中必须注重细节和注意安全,仔细完成每一个实验步骤,及时记录和分析实验数据,才能使实验结果更加准确和可靠。

单片机数字电压表设计LED显示含C源代码

单片机数字电压表设计LED显示含C源代码

1. 绪论............................... 错误!未定义书签。

1.1 课程设计规定...................... 错误!未定义书签。

1.2 数字电压表简介.................... 错误!未定义书签。

2. 硬件单元电路设计................... 错误!未定义书签。

2.1数字电压表构造框图................. 错误!未定义书签。

2.1.1 AT89C51单片机简介............ 错误!未定义书签。

2.1.2 ADC0832转换器简介............ 错误!未定义书签。

2.1.3 时钟电路..................... 错误!未定义书签。

2.1.4 复位电路..................... 错误!未定义书签。

2.1.5 LED显示电路.................. 错误!未定义书签。

3. 软件单元电路设计................... 错误!未定义书签。

3.1 主程序流程图...................... 错误!未定义书签。

3.2显示子程序流程图................... 错误!未定义书签。

3.3 A/D转换子程序流程图............... 错误!未定义书签。

3.4 数据解决子程序流程图.............. 错误!未定义书签。

4. 数字电压表仿真设计图与实物图....... 错误!未定义书签。

4.1 仿真图............................ 错误!未定义书签。

4.2 器件清单.......................... 错误!未定义书签。

4.3 硬件电路实物图.................... 错误!未定义书签。

5. 程序代码.............................. 错误!未定义书签。

简易数字电压表的设计

简易数字电压表的设计

一、简易数字电压表的设计l.功能要求简易数字电压表可以测量0~5V的8路输入电压值,并在四位LED数码管上轮流显示或单路选择显示。

测量最小分辨率为0.019 V,测量误差约为土0.02V。

2.方案论证按系统功能实现要求,决定控制系统采用AT89C52单片机,A/D转换采用ADC0809。

系统除能确保实现要求的功能外,还可以方便地进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。

数字电压表系统设计方案框图如图1-1。

图1-1 数字电压表系统设计方案3.系统硬件电路的设计简易数字电压测量电路由A/D转换、数据处理及显示控制等组成,电路原理图如图1-2所示。

A/D转换由集成电路0809完成。

0809具有8路模拟输人端口,地址线(23~25脚)可决定对哪一路模拟输入作A/D转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us宽高电平脉冲时,就开始A/D 转换,7脚为A/D转换结束标志,当A/D转换结束时,7脚输出高电平,9脚为A/D 转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz时钟。

单片机的P1、P3.0~P3.3端口作为四位LED数码管显示控制。

P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。

P0端口作A/D转换数据读入用,P2端口用作0809的A/D转换控制。

4.系统程序的设计(1)初始化程序系统上电时,初始化程序将70H~77H内存单元清0,P2口置0。

(2)主程序在刚上电时,系统默认为循环显示8个通道的电压值状态。

当进行一次测量后,将显示每一通道的A /D 转换值,每个通道的数据显示时间为1s 左右。

主程序在调用显示子程序和测试子程序之间循环,主程序流程图见图1-3。

(3)显示子程序 显示子程序采用动态扫描法实现四位数码管的数值显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路硬件课程设计总结报告课题:数字电压表设计班级:作者:学号:指导老师:摘要一个测试结果稳定、准确的数字电压表,既能减少了使用者的工作量,又提高了测量的精准度,而且人为误差被大大减小,方便与电路打交道的人快速有效的完成自己的工作。

本项目设计并实现了一个能够对0-200V范围的直流电压进行测量的数字电压表,测量分为4挡:200mV、2V、20V和200V,手动控制档位选择,显示部分小数点自动实现切换。

项目基于AT89C51单片机,拓展AD转换、显示部分。

不同档位的待测电压通过不同档位的衰减电路后变为0-200mV,再通过一个OPA336一致放大到0-2V送入AD的输入端,然后通过芯片AT89C51内的程序控制AD转换并输出。

不同档位的电压信号又不同的程序控制输出到数码管显示。

整个电路连线简单易于实现,而且成本很低,测出的电压精度也足够满足需求。

关键字:数字电压表; AT89C51单片机;易于实现AbstractA digital voltmeter which is stable and accurate can not only reduce the work of the user, but also free off the error produced by using wrong. It is convenient to people who work with the circuit.This voltmeter is designed to measure a voltage between 0 to 200. It’s divided into four gears as 200 millivolt, 2 volt, 20volt, and 200volt. Gears changing is worked by hang. The project is base on the chip AT89C51 of one-chip computer. An analog to digital converter, a display section, and a voltage attenuation are attached to the chip and they make up the design. The voltage of different gears are changed into 0-200 millivolt. Then they are sent to an OPA336, and it’s output is 0-2 volt. The output is sent to the analog to digital converter.Then the chip control the analog to digital converter’s output to the displaying section.The whole circuit is easy. And although it’s cost is very low, the accuracy of the outcome is fine.key words: digital voltmeter, one-chip computer, AT89C51一、项目概述数字电压表(Digital Voltmeter)简称DVM,它是利用模拟/数字变换器(A/D)原理,以十进制数字形式显示被测电压值的仪表。

DVM除了广泛用于电压测量外,通过各种变换器还可以测量其他电量或非电量,用途十分广泛。

DVM的高速发展,使它已成为实现量程自动化、提高工作效率不可缺少的仪表。

数字化是当前计量仪器仪表发展的主要方向之一。

而高准确度直流DVM的出现,又使DVM进入了精密标准测量领域。

DVM广泛应用在测量领域中,其测量结果的准确度和可信度取决于它结构主要性能和技术指标。

评价某种DVM性能的优劣,产品质量是否合格,是否满足技术指标的要求,必须通过正确的鉴定和测试结果才能分析判断出来。

传统的指针式电压表功能单一,精度底,读数不方便,不能满足数字化时代的需要。

采用单片机的数字电压表,具有精度高,抗干扰能力强,可扩展性强等优点。

现今,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量,工业自动化仪表,自动测试系统等智能化测量领域,展示了强大的生命力。

而且,由DVM扩展而成的各种通用及专用数字仪表仪器,也把电量及非电量测量技术提高到新的水平。

本设计中电压表可以测量直流电压测量范围(0~200V)共分四档:200mv、2v、20v、200v,并且通过4位LED数码管三位半显示其数值。

所谓三位半的三位是指可以显示0-9的十个数字,称作全位。

千位数最大显示为1(小于1时消隐),这位在理论上讲最大能显示2,比如在2V挡,最大显示应该是2.000,但实际显示1.999,和理论值还差一。

那么这位理论值最大应该显示2,而实际只能显示1,就叫做1/2位。

理论值为分母,实际显示最大值为分子。

根据数字电压表的功能实现要求,选用AT89C51单片机作控制系统,由ADC0809实现A/D转换功能,放大器选用OPA336实现放大10倍的功能。

在保证送入A/D的电压为2V的等效电压时,利用AD还可以较精确地测出其值。

因为对不同电压档位采用不同的端口和程序控制,所以可以大大减小电路的要求,更利于实现。

二、项目设计目标(1) 项目综合描述本项目要求设计并实现一个数字电压表的装置,该装置能够对0~200V 范围的直流电压进行测量。

测量分为4挡:200mV 、2V 、20V 和200V 。

输入为模拟直流电压,输出为数字量,并在必要的辅助输出显示设备上显示。

同时具有正、负电压极性显示,小数点显示。

能判读并显示被测量信号超出所选择的量程范围。

并根据不同的量程能自动调整小数点。

(2) 任务要求:① 数字电压表有4个测量挡:200mV 、2V 、20V 和200V ,能将被测的模拟直流电压在显示设备上显示出来。

② 数字电压表以基本量程为基础,同时设计衰减器进行量程的扩展。

③ 具有213位(三位半)显示:有3位完整的显示,另外最高位只显示0或1。

④ 能够判读并显示被测电压的极性。

⑤ 测量速度为2~5 次/秒,分辨率为0.1mV ,测量误差γ<±0.1%。

(3)发挥部分1) 设计并调试自动量程转换电路。

2) 设计并调试小数点自动切换电路。

三、项目方案论证方案一:用A/D转换、LED显示芯、各种需要的中规模门电路芯片、电阻、电容等纯硬件实现数字电压表:通过电阻衰减网络得到衰减后的电压,送入CC7107,将其输出的数字量接入LED显示。

该方法是用纯硬件实现数字电压表,硬件连接较复杂,电路体积大,测量方式不灵活,测量的误差比较大、精确度难做高。

利用ICL7106实现的电路连线图如图1ICL7106是美国Intersil公司的产品,是目前应用最广泛的一种单片三位半的A/D转换器。

图1该仪表的量程UM=200Mv,称之为基本表或基本档。

其中:C1、R1分别为振荡电容和振荡电阻。

RP、R2组成基准电压的分压电路。

RP采用精密多圈电位器,R2为固定电阻,调整RP可使基准电压Uref=100.0mV。

R3、C3为模拟输入端的高频阻容式滤波器,以提高仪表的抗干扰能力。

因ICL7106的输入阻抗很大,输入电流很小,故可取R3=1MΩ,C3=0.01uF。

C2、C4分别为基准电容与自动调零电容。

C5,R4依次为积分电容和积分电阻。

仪表采用9V电池供电。

电路中将IN-端与COM端短接。

该电压表的测量速率约为2.5次/秒。

而ICL7106只有液晶笔段及背电极驱动端,没有小数点驱动端[8]。

要显示小数点,需另加外围电路。

方案二:采用单片机+A/D芯片+显示芯片设计数字电压表:单片机型号广泛、并且价格低廉。

只要单片机内部具有中断、I/O、RS232等模块就能够满足选型基本要求,系统的精度能够保证。

该方法硬件连接相对简单,测量误差较小,精度较高。

原理框图如图2据数字电压表的功能实现要求,选AT89C51单片机作控制系统,低电压经放大器选用OPA336实现放大10倍、高电压经大电阻分压从而控制输入ADC0809的信号在2V左右实现A/D转换经AT89C51送入LED显示。

图2A/D转换方案模/数转换器是一种连接的模拟量转化成离散数字量的一种电路或器件。

模拟信号转换为数字信号一般需要经过抽样保持和量化编码两个过程。

针对不同的采样对象,有不同的A/D转换器可供选择,其中有通用的也有专用的。

有些ADC 还包含有其他的功能,在选择A/D器件时需要考虑多种因素,除了关键参数、分辨率和转换速度以外,还需考虑其他因素,如静态与动态精度,数据接口类型,控制接口与定时,采样保持性能,基本要求,校准能力、功耗、使用环境要求、封装形式以及与软件相关的问题。

ADC按功能划分可以分为直接转换和非直接转换两大类,其中非直接转换又有逐次分级转换、积分式转换等类型。

A/D转换器在实际应用时,除了要设计适当的采样/保持电路、基准电路和多路模拟开关等电路外,还应根据实际选择的具体芯片进行输入模拟信号极性转换等设计。

方案1:采用分级式转换器,这种转换采用两步或多步进行分辨率的闪烁式转换,进而快速的完成模/数转换,同时可以实现较高的分辨率。

例如,在利用两步分级完成n位转换的过程中,首先完成m位的粗转换,然后使用精度至少为m 位的模/数转换器,将此结果转换达到1/2的精度并且与输入信号比较。

对此信号用一个k位转换器转换,最后将两个输出结果合并。

方案2:采用双积分型A/D转换器,如ICL7153等。

双积分型A/D转换器转换精度高,但转换速度不太快,若用于温度测量,不能及时地反映当前温度值,而且多数双积分型A/D转换器其输出端都不是二进制码,而是直接驱动数码管的。

所以,若直接将其输出端接I/O接口会给软件设计带来极大的不方便。

方案3:采用逐次逼近式转换器,对于这种转换方式,通常是采用一个比较器输入信号与为基准的n位DAC输出进行比较,并执行n次1位转换。

这种方法类似于天平上用二进制码称量物质。

采用逐次逼近寄存器,输入信号仅与高位比较,确定DAC的高位。

确定后结果别、被锁存,同时加到DAC上,以决定DAC的输出。

逐次逼近型转换器,如ADC0809,AD574等,其特点是转换速度快,精度也比较高,输出为二进制码,直接接I/O口,软件设计简单。

ADC0809芯片内包含8位模/数转换器,8通道多路转换器与微控制器兼容的控制逻辑。

8通道多路转换器能直接连通8个单端输入信号中的任何一个。

相关文档
最新文档