2019-2020和平区初三期末数学试题及答案
2019-2020学年天津市和平区九上期末数学试卷
2019-2020学年天津市和平区九上期末数学试卷一、选择题(共12小题;共60分)1. 下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )A. B.C. D.2. 一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5.若随机投掷一次小正方体,则朝上一面数字是5的概率为( )A. 16B. 15C. 14D. 133. 如图,⊙O的直径CD⊥AB,∠AOC=50∘,则∠CDB大小为( )A. 25∘B. 30∘C. 40∘D. 50∘4. 如图,利用标杆BE测量建筑物的高度,如果标杆BE=1.2m.测得AB=1.6m.BC= 18.4m.则建筑物的高CD=( )A. 13.8mB. 15mC. 18.4mD. 20m5. 抛物线y=x2−6x+9与x轴的公共点的坐标是( )A. (3,0)B. (3,3)C. (3,0),(13,0) D. (0,3)6. 下列说法,其中正确的有( )①各有一个角是60∘的两个等腰三角形相似;②各有一个角是80∘的两个等腰三角形相似;③各有一个角是100∘的两个等腰三角形相似;④两边成比例的两个等腰三角形相似.A. 1个B. 2个C. 3个D. 4个7. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OAʹBʹCʹ与矩形OABC关于点O位似,且矩形OAʹBʹCʹ的面积等于矩形OABC面积的14,那么点Bʹ的坐标是( )A. (3,2)B. (−2,−3)C. (2,3)或(−2,−3)D. (3,2)或(−3,−2)8. 如图,将正方形ABCD绕点A顺时针旋转35∘,得到正方形AEFG,DB的延长线交EF于点H,则∠DHE的大小为( )A. 90∘B. 95∘C. 100∘D. 105∘9. 如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于( )A. 12B. 13C. 23D. 2√5310. 如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=−16x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是( )A. 2mB. 4mC. 4√2mD. 4√3mx2+11. 已知抛物线y=x2+2mx+m−7与x轴的两个交点在(1,0)两旁,则关于x的方程14 (m+1)x+m2+5=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 有实数根D. 无实数根12. 二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表所示,下列结论,其中正确的个数为( )x−1013y−1353①ac<0;②当x>1时,y的值随x值的增大而减小;③当−1<x<3时,ax2+(b−1)x+c>0;④对于任意实数m,4m(am+b)−6b<9a总成立.A. 1个B. 2个C. 3个D. 4个二、填空题(共5小题;共25分)13. 已知正六边形的半径是4,则这个正六边形的周长为.14. 现有两个不透明的袋子,其中一个装有标号分别为1,2的两个小球,另一个装有标号分别为2,3,4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.15. 已知,AB是⊙O的直径,C,D是⊙O上的两点,且AC=CD.连接BC,BD.如图,若∠CBD=20∘,则∠A的大小为(度).16. 用一个圆心角为120∘,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.17. 已知抛物线y=x2−(t+1)x+c(t,c是常数)与x轴的公共点的坐标为(m,0),(n,0),且0<m<n<1,则m与t的大小关系为.三、解答题(共8小题;共104分)18. 如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度);(2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,请用无刻度的直尺,画出旋转后的△ABC,并简要说明旋转后点C和点B的对应点点Cʹ和点Bʹ的位置是如何而找到的(不要求证明).19. 已知关于x的一元二次方程:x2+ax−5=0的一个根是1,求a的值及该方程的另一根.20. 已知AB是⊙O的直径,点C,D是半圆O的三等分点.连接AC,DO.(1)如图①,求∠BOD及∠A的大小;(2)如图②,过点C作CF⊥AB于点F,交⊙O于点H,若⊙O的半径为2.求CH的长.21. 如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.22. 一个长方体的长与宽的比为5:2,高为5cm.表面积为40cm2.求这个长方体的宽.23. 某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.(1)分析:根据问题中的数量关系.用含x的式子填表:原价每件降价1元每件降价2元⋯每件降价x元每件售价(元)353433⋯每天售量(件)505254⋯(2)由以上分析,用含x的式子表示y,并求出问题的解.24. 已知,在Rt△OAB中,∠OAB=90∘,∠ABO=30∘,OB=4.将Rt△OAB绕点O顺时针旋转60∘.得到Rt△ODC.点A,B的对应点分别为点D,C.连接BC.(1)如图1,OD的长=,∠BOC的大小=(度),∠OBC的大小=(度).(2)动点M,N同时从点O出发,在△OCB边上运动,动点M沿O→C→B路径匀速运动,动点N沿O→B→C路径匀速运动,当两点相遇时,运动停止.已知点M的运动速度为1.5个单位/秒,点N的运动速度为1个单位/秒,设运动时间为t秒(t>0),△OMN的面积为S.①如图2,当点M在边OC上运动,点N在边OB上运动时,过点N作NE⊥OC,垂足为点E,试用含t的式子表示S,并直接写出t的取值范围;②求当t为何值时,S取得最大值,并求出S的最大值(直接写出结果即可).25. 已知抛物线y1=ax2+bx+c(a≠0,a≠c)与x轴交于点A(1,0),顶点为B.(1)a=1时,c=3时,求抛物线的顶点B的坐标;(2)求抛物线y1=ax2+bx+c与x轴的另一个公共点的坐标(用含a,c的式子表示);,b+8),求(3)若直线y2=2x+m经过点B且与抛物线y1=ax2+bx+c交于另一点C(ca当x≥1时,y1的取值范围.答案第一部分1. B 【解析】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.2. D 【解析】因为共有6个面,分别标有数字1,1,2,4,5,5,所以朝上一面数字是5的概率为26=13.3. A 【解析】由垂径定理,得:AC⏜=BC⏜,所以∠CDB=12∠AOC=25∘.4. B 【解析】∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴BECD =ABAC,∵BE=1.2,AB=1.6,BC=18.4,∴AC=20,∴1.2CD =1.620,∴CD=15.5. A【解析】∵抛物线y=x2−6x+9=(x−3)2,∴当y=0时,x=3,即抛物线y=x2−6x+9与x轴的公共点的坐标是(3,0).6. B 【解析】各有一个角是60∘的两个等腰三角形都为等边三角形,它们相似,所以①正确;顶点为80度的等腰三角形与底角为80度的等腰三角形不相似,所以②错误;各有一个角是100∘的两个等腰三角形的底角都为40度,它们相似,所以③正确;腰与底边成比例的两个等腰三角形相似,所以④错误.7. D 【解析】∵矩形OAʹBʹCʹ与矩形OABC关于点O位似,矩形OAʹBʹCʹ的面积等于矩形OABC面积的14,∴矩形OAʹBʹCʹ与矩形OABC的位似比是12,∵点B的坐标是(6,4),∴点Bʹ的坐标是(3,2)或(−3,−2).8. C 【解析】∵将正方形ABCD绕点A顺时针旋转35∘,得到正方形AEFG,∴∠BAE=35∘,∠E=90∘,∠ABD=45∘,∴∠ABH=135∘,∴∠DHE=360∘−∠E−∠BAE−∠ABH=360∘−135∘−35∘−90∘=100∘.9. A 【解析】∵四边形ABCD是正方形,∴AB=AD,∠BAD=90∘,∴∠DAO+∠EAO=90∘,∵E为AB的中点,∴AE=12AB=12AD,∵AF⊥DE,∴∠AOE=∠DOA=90∘,∴∠DAO+∠ADO=90∘,∴∠EAO=∠ADO,∴△AOE∽△DOA,∴AODO =AEAD=12.10. D【解析】根据题意,得OA=12,OC=4.∴抛物线的顶点横坐标为6,即−b2a =b13=6,∴b=2,∵C(0,4),∴c=4,∴抛物线解析式为:y=−16x2+2x+4=−16(x−6)2+10,当y=8时,8=−16(x−6)2+10,解得x1=6+2√3,x2=6−2√3.则x1−x2=4√3.∴两排灯的水平距离最小是4√3.11. D 【解析】∵抛物线y=x2+2mx+m−7与x轴的两个交点在(1,0)两旁,∴当x=1时,y=1+2m+m−7<0,得m<2,∵方程14x2+(m+1)x+m2+5=0,∴Δ=(m+1)2−4×14×(m2+5)=2m−4<0,即方程14x2+(m+1)x+m2+5=0无实数根.12. B 【解析】①由图表中数据可得出:x=1时,y=5,∴二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,∴c=3>0,∴ac<0,故①正确;②∵二次函数y=ax2+bx+c开口向下,且对称轴为x=1.5,∴当x≥1.5时,y的值随x值的增大而减小,故②错误;③ ∵x =−1 时,ax 2+bx +c =−1, ∴x =−1 时,ax 2+(b −1)x +c =0,∵x =3 时,ax 2+(b −1)x +c =0,且函数有最大值, ∴ 当 −1<x <3 时,ax 2+(b −1)x +c >0,故③正确.④将 x =−1,y =−1,x =0,y =3,x =1,y =5 代入 y =ax 2+bx +c ,得 {a −b +c =−1,c =3,a +b +c =5, 解得:{a =−1,b =3,c =3,∴y =−x 2+3x +3=−(x −32)2+214,可知当 x =32 时,y 取得最大值,即当 x =m 时,am 2+bm +c ≤94a +32b +c ,变形可得 4m (am +b )−6b ≤9a ,故④错误. 第二部分 13. 24【解析】正六边形的半径为 2 cm ,则边长是 4,因而周长是 4×6=24. 14. 16【解析】画树状图得:∴ 一共有 6 种等可能的结果,两球标号恰好相同的有 1 种情况, ∴ 两球标号恰好相同的概率是 16. 15. 70【解析】∵AC =CD , ∴AC⏜=CD ⏜, ∴∠ABC =∠CBD =20∘, ∵AB 是 ⊙O 的直径, ∴∠ACB =90∘,∴∠A =90∘−20∘=70∘. 16. 43【解析】120π×4180=2πr ,解得 r =43.17. m >t【解析】∵y =x 2−(t +1)x +c , ∴ 其对称轴为 x =t+12,∵ 与 x 轴交于 (m,0),(n,0) 两点,∴m+n2=t+12,整理可得n=t+1−m,又0<m<n<1,∴n<1,∴t+1−m<1,即t<m.第三部分18. (1)90【解析】∵AC=3√2,BC=4√2,AB=5√2,∴AB2=AC2+BC2,∴∠ACB=90∘.(2)如图,延长AC到格点Bʹ,使得ABʹ=AB=5√2,取格点E,F,G,H,连接EG,FH交于点Q,取格点Eʹ,Fʹ.Gʹ,Hʹ,连接EʹGʹ,FʹHʹ交于点Qʹ,作直线AQʹ,直线BʹQ交于点Cʹ,△ABʹCʹ即为所求.19. ∵关于x的一元二次方程:x2+ax−5=0的一个根是1,∴12+a−5=0,解得a=4;设方程的另一个根为x2,则x2+1=−4,解得:x2=−5.故方程的另一根为−5.20. (1)如图①,连接OC,∵点C,D是半圆O的三等分点,∴∠AOC=∠COD=∠BOD,∵AB为直径,×180∘=60∘,∴∠AOC=∠COD=∠BOD=13∵OC=OA,∴△AOC为等边三角形,∴∠A=60∘;即∠BOD及∠A的大小为60∘,60∘;(2)如图②,连接OC.∵CF⊥AB,∴CF=HF,在Rt△OCF中,∵∠COF=60∘,OC=1,∴OF=12∴CF=√3OF=√3,∴CH=2CF=2√3.21. (1)如图连接OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP,∴四边形ANMO是矩形,OM=AN.(2)连接OB,则OB⊥BP,∴∠OBM=∠MNP=90∘,∵OA=MN,OA=OB,OM∥AP,∴OB=MN,∠OMB=∠NPM,∴△OBM≌△MNP,∴OM=MP,设OM=x,则NP=9−x,在Rt△MNP中,有x2=32+(9−x)2,∴x=5,即OM=5.22. 设这个长方体的宽为2x cm,则长为5x cm,依题意,得:2(5x⋅2x+5⋅5x+5⋅2x)=40,整理,得:2x2+7x−4=0,解得:x1=12,x2=−4(不合题意,舍去),所以2x=1.答:这个长方体的宽为1cm.23. (1)35−x;50+2x(2)根据题意,每天的销售额y=(35−x)(50+2x)(0<x<35),配方得y=−2(x−5)2+1800,∵a<0,∴当x=5时,y取得最大值1800.答:当每件商品降价5元时,可使每天的销售额最大,最大销售额为1800元.24. (1)2;60;60【解析】由旋转性质可知:OB=OC,∠BOC=60∘,所以△OBC是等边三角形,所以∠OBC=60∘.(2)①当M在OC上运动,N在OB上运动时,由(Ⅰ)知,△OBC是等边三角形,所以OB=OC=BC=4,由运动知,1.5t≤4,所以t≤83,即:0<t≤83,由运动知,ON=t,OM=1.5t,过点N作NE⊥OC且交OC于点E,则NE=ON⋅sin60∘=√32t,所以S△OMN=12⋅OM⋅NE=12×1.5t×√32t,所以S=3√38t2(0<t≤83).②当t为83秒时,S取得最大值,最大值为8√33.【解析】②当0<t≤83时,由①知,S=3√38t2(0<t≤83),此时,当t=83时,S最大=8√33;当83<t≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8−1.5t,MH=BM⋅sin60∘=√32(8−1.5t),所以S=12×ON×MH=−3√38t2+2√3t=−3√38(t−83)2+8√33,而−3√38<0,所以S由8√33逐渐减小,减小到2√3,当4<t≤245时,M,N都在BC上运动,作OG⊥BC于G.MN=12−2.5t,OG=AB=2√3,所以S=12⋅MN⋅OG=12√3−5√32t,而−5√32<0,S由2√3逐渐减小,减小到接近于0,由此可知,当t为83秒时,S取得最大值,最大值为8√33.25. (1)∵抛物线y1=ax2+bx+c(a≠0,a≠c)与x轴交于点A(1,0),∴a+b+c=0.把a=1,c=3代入上式,得1+b+3=0,解得b=−4.∴y1=x2−4x+3=(x−2)2−1.∴抛物线的顶点B的坐标是(2,−1).(2)由(Ⅰ)知,a+b+c=0,则b=−a−c.则抛物线y1=ax2+bx+c=ax2+(−a−c)x+c.方程ax2+(−a−c)x+c=0的两个根是x1=1,x2=ca.∵a≠c,∴抛物线y1=ax2+bx+c与x轴的另一个公共点的坐标是(ca,0).(3)∵C(ca,b+8)在抛物线上,由(Ⅱ)知(ca,0)也在抛物线上,∴b+8=0,即b=−8,∵a+c=−b,∴c=8−a. ⋯⋯①由y1=ax2−8x+c得到顶点B的坐标是(4a ,c−16a).把C点代入直线解析式y2=2x+m得:0=2ca+m.m=−2ca.把B(4a ,c−16a)代入y2=2x−2ca,得c−16a =2×4a−2ca. ⋯⋯②联立①,②并求解得:a=2,c=6或a=4,c=4.∵a≠c.∴a=2,c=6.∴抛物线表达式为:y1=2x2−8x+6,A,B,C点的坐标分别为(1,0),(2,−2),(3,0).当x≥1时,y1的最小值是−2,无最大值.∴y1的取值范围为:y1≥−2.。
(2019秋)天津市和平区九年级上期末数学试卷(有答案)-精品.doc
2019-2020学年天津市和平区九年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)23.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对 C.2对 D.1对5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC 放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④9.(3分)已知反比例函数y=的图象经过点A(2,2)、B(x,y),当﹣3<x<﹣1时,y的取值范围是()A.﹣4<y<﹣B.﹣<y<﹣4 C.<y<4 D.﹣1<y<﹣10.(3分)已知点A(4,y1)、B(,y2)、C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1,y2,y3的大小关系()A.y1>y3>y2B.y1>y2>y3C.y3>y2>y1D.y3>y1>y211.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:A.0<x<4 B.﹣4<x<4 C.x<﹣4或x>4 D.x>412.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转度,才能和原图形重合.14.(3分)面积等于6cm2的正六边形的周长是.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,=.则S△AOB17.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长=.18.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小=(度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=(度),点D的坐标为.三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.22.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了份合同;(Ⅱ)列出方程并完成本题解答.23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y 轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.2019-2020学年天津市和平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.3.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对 C.2对 D.1对【解答】解:(1)∵∠E=∠E,∠FCE=∠D,∴△CEF∽△ADF.(2)∵∠E是公共角,∠B=∠FCE,∴△ABE∽△CEF,(3)∴△ABE∽△ADF.故有3对.故选:B.5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC 放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)【解答】解:由坐标系可知,点A、点B、点C的坐标分别为(4,3),(3,1),(1,2),∵以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为(4×2,3×2),(3×2,1×2),(1×2,2×2)或(﹣4×2,﹣3×2),(﹣3×2,﹣1×2),(﹣1×2,﹣2×2),即(8,6),(6,2),(2,4)或(﹣8,﹣6),(﹣6,﹣2),(﹣2,﹣4),故选:C.6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.【解答】解:∵DE∥BC,∴△ADP∽△ABQ,△APE∽△AQC,∴=,=,∴==.故选:A.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.【解答】解:画树状图如下:一共有8种情况,有两只雄鸟的情况有3种,所以,P(恰有两只雄鸟)=.故选:B.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.9.(3分)已知反比例函数y=的图象经过点A(2,2)、B(x,y),当﹣3<x<﹣1时,y的取值范围是()A.﹣4<y<﹣B.﹣<y<﹣4 C.<y<4 D.﹣1<y<﹣【解答】解:∵反比例函数关系式为y=(k≠0)图象经过点A(2,2),∴k=2×2=4,∴y=,当x=﹣3时,y=﹣,当x=﹣1时,y=﹣4,∴当﹣3<x<﹣1时,﹣4<y<﹣.故选:A.10.(3分)已知点A(4,y1)、B(,y2)、C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1,y2,y3的大小关系()A.y1>y3>y2B.y1>y2>y3C.y3>y2>y1D.y3>y1>y2【解答】解:∵y=(x﹣2)2﹣1,∴图象的开口向上,对称轴是直线x=2,A(4,y1)关于直线x=2的对称点是(0,y1),∵﹣2<0<,∴y3>y1>y2,故选:D.11.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:A.0<x<4 B.﹣4<x<4 C.x<﹣4或x>4 D.x>4【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故选:A.12.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转120度,才能和原图形重合.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.(3分)面积等于6cm2的正六边形的周长是12cm.【解答】解:如图,设正六边形外接圆的半径为a,∵正六边形的面积为6cm2,=×6=cm2,∴S△AOF即a•a•sin∠OFA=a2•=.∴a=2cm,∴正六边形的周长是12cm,故答案为:12cm.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=40°.【解答】解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,=2.则S△AOB==2,【解答】解:根据题意得:S△AOB故答案为:217.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长=10.【解答】解:如图连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.∵△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F∴可以假设设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,∵AC2+BC2=AB2,∴(a+2)2+(b+2)2=(a+b)2,∴4a+4b+8=2ab,∴4(a+b)=48﹣8∴a+b=10,∴AB=10.故答案为1018.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小=30(度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=90(度),点D的坐标为(3,﹣3).【解答】解:(1)∵线段OC,OD由OB旋转而成,∴OB=OC=OD.∴点B、C、D在以O为圆心,AB为半径的圆上.∴∠BDC=∠BOC=30°.(2)如图2,过点O作OM⊥CD于点M,连接EM,过点D作BF⊥BO的延长线于点F.∵∠OMD=90°,∴∠OMC=90°.在△OEB与△OMC中,,∴△OEB≌△OMC(AAS).∴OE=OM,∠BOE=∠COM.∴∠EOM=∠EOC+∠COM=∠EOC+∠BOE=∠BOC=60°.∴△OEM是等边三角形.∴EM=OM=OE.∵OC=OD,OM⊥CD,∴CM=DM.又∵∠DEC=90°,∴EM=CM=DM.∴OM=CM=DM.∴点O、C、D、E在以M为圆心,MC为半径的圆上.∴α=∠COD=90°,∴∠FOD=30°,∴OF=3,DF=3,∴点D的坐标为(3,﹣3).故答案为:(1)30;(2)90,(3,﹣3).三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.【解答】解:将x=1代入原方程,得:1+k+3+k=0,解得:k=﹣2.设方程的另一个根为x1,根据题意得:1+x1=﹣(﹣2+3),∴x1=﹣2,∴该方程的另一个根为﹣2.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.【解答】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=222.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x(x﹣1)份合同;(Ⅱ)列出方程并完成本题解答.【解答】解:(Ⅰ)每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x(x﹣1)份合同;(Ⅱ)根据题意列方程得:x(x﹣1)=45,解得x1=10,x2=﹣9(舍去),检验:x=﹣9不合题意舍去,所以x=10.答:共有10家公司参加商品交易会.故答案为:(x﹣1);x(x﹣1).23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?【解答】解:(1)由点P的坐标为(3,)知点P与水面的距离为m,故答案为:;(2)设抛物线的解析式为y=ax2+bx,将点A(4,0)、P(3,)代入,得:,解得:,所以抛物线的解析式为y=﹣x2+2x;(3)当y=1时,﹣x2+2x=1,即x2﹣4x+2=0,解得:x=2,则水面的宽为2+﹣(2﹣)=2(m).24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,=BE+DB+DE=AB+DE=4+DE,∴C△DBE由(1)知,△CDE是等边三角形,∴DE=CD,=CD+4,∴C△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;③当6<t<10时,由∠DBE=120°>90°,∴此时不存在;④当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y 轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.【解答】解:(1)由题可得,抛物线y=x2的开口方向向上,对称轴为直线x=0,顶点坐标为(0,0);(2)∵点A(2,4),∴OA解析式为y=2x,∵抛物线y=x2从点O沿OA方向平移,∴可设顶点坐标为(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m,∵抛物线与直线x=2交于点P,∴P(2,m2﹣2m+4),又∵直线x=2与x轴相交于点B,∴B(2,0),∴PB=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,PB最短;(3)设直线DE为y=kx+b,则C(0,b),OC=b,直线DE与抛物线y=x2联立,得x2﹣kx﹣b=0,设D(x1,y1),E(x2,y2),则x1+x2=k,x1x2=﹣b,∴y1+y2=kx1+b+kx2+b=k2+2b,y1y2=(kx1+b)(kx2+b)=b2,如图,分别过D,E作DQ⊥y轴于Q,EP⊥y轴于P,则∠DQC=∠EPC=90°,而∠DCQ=∠ECP,∴△DCQ∽△ECP,∴=,∵∠CFD=∠CFE,∠DQF=∠EPF,∴△DQF∽△EPF,∴=,∴=,设F(0,f),则OF=﹣f,,整理可得,k2(b+f)=0,∵k≠0,∴b+f=0,∴b=﹣f,即OC=OF.。
2019-2020学年天津市和平区九年级上学期期末数学试卷 (解析版)
2019-2020学年天津市和平区九年级(上)期末数学试卷一、选择题1.下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为()A.B.C.D.2.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5.若随机投掷一次小正方体,则朝上一面数字是5的概率为()A.B.C.D.3.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB大小为()A.25°B.30°C.40°D.50°4.如图,利用标杆BE测量建筑物的高度,如果标杆BE=1.2m.测得AB=1.6m.BC=18.4m.则建筑物的高CD=()A.13.8m B.15m C.18.4m D.20m5.抛物线y=x2﹣6x+9与x轴的公共点的坐标是()A.(3,0)B.(3,3)C.(3,0),(,0)D.(0,3)6.下列说法,其中正确的有()①各有一个角是60°的两个等腰三角形相似;②各有一个角是80°的两个等腰三角形相似;③各有一个角是100°的两个等腰三角形相似;④两边成比例的两个等腰三角形相似.A.1个B.2个C.3个D.4个7.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(3,2)B.(﹣2,﹣3)C.(2,3)或(﹣2,﹣3)D.(3,2)或(﹣3,﹣2)8.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF于点H,则∠DHE的大小为()A.90°B.95°C.100°D.105°9.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于()A.B.C.D.10.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m11.已知抛物线y=x2+2mx+m﹣7与x轴的两个交点在(1,0)两旁,则关于x的方程x2+(m+1)x+m2+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有实数根D.无实数根12.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表所示,下列结论,其中正确的个数为()x﹣1013y﹣1353①ac<0;②当x>1时,y的值随x值的增大而减小.③当﹣1<x<3时,ax2+(b﹣1)x+c>0;④对于任意实数m,4m(am+b)﹣6b<9a总成立.A.1个B.2个C.3个D.4个二、镇空区(本大题共6小题,每小题3分,共18分)13.已知正六边形的半径是4,则这个正六边形的周长为.14.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.15.已知,AB是⊙O的直径,C、D是⊙O上的两点,且AC=CD.连接BC,BD.如图,若∠CBD=20°,则∠A的大小为(度).16.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.17.已知抛物线y=x2﹣(t+1)x+c(t,c是常数)与x轴的公共点的坐标为(m,0),(n,0),且0<m<n<1,则m与t的大小关系为.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.(1)∠ACB的大小为(度)(2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,请用无刻度的直尺,画出旋转后的△ABC,并简要说明旋转后点C和点B的对应点点C′和点B′的位置是如何而找到的(不要求证明)三、解谷题(本大题共7小题,共66分,解符应写出文字说明、验算步骤或推理。
2019-2020学年天津市和平区九年级上学期期末考试数学模拟试卷及答案解析
2019-2020学年天津市和平区九年级上学期期末考试数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.天气预报说“中山市明天降水概率是20%”,理解正确的是()A.中山市明天将有20%的地区降水B.中山市明天降水的可能性较小C.中山市明天将有20%的时间降水D.中山市明天降水的可能性较大3.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC是()A.3:2B.2:3C.D..4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣15.在反比例函数y=图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>2B.k>0C.k≥2D.k<26.在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A.B.C.D.7.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤8.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=9.如图,方格纸中,点A、B、C、D、O均为格点,点O是()A.△ABC的内心B.△ABC的外心C.△ACD的内心D.△ACD的外心10.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0B.m>0C.m D.m11.当﹣2≤x≤1时,关于x的二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()。
2019-2020学年九年级上学期期末数学试题及答案解析(天津市)
2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=02.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A y=2(x﹣1)2﹣3 B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+35.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙ ⊙A. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙B. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙C. “⊙⊙⊙0.0001⊙⊙⊙”⊙⊙⊙⊙⊙⊙D. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙10⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙5⊙7.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MNBC等于().A. 5B.C. D.8.下列方程没有实数根的是( )A. x 2﹣x ﹣1=0B. x 2﹣6x +5=0C. x 2﹣+3=0D. x 2+x +1=09.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.1210.边长为2的正六边形的面积为( ) A.B.C. 6D.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( ) A. 2(1)4400x += B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x +=12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.18.如图,在半径为2⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.的21.现有A ,B ,C ,D 四张不透明卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.22.已知AB 是⊙O 的直径,C ,D 是⊙O 上AB 同侧两点,∠BAC =26°. (⊙)如图1,若OD ⊥AB ,求∠ABC 和∠ODC 的大小;(⊙)如图2,过点C 作⊙O 切线,交AB 的延长线于点E ,若OD ∥EC ,求∠ACD 的大小.的23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm . (⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?24.在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 边AC 中点,求证:四边形BFDE 是平行四边形.25.在平面直角坐标系中,已知抛物线y =x 2﹣2ax +4a +2(a 是常数), (⊙)若该抛物线与x 轴的一个交点为(﹣1,0),求a 的值及该抛物线与x 轴另一交点坐标; (⊙)不论a 取何实数,该抛物线都经过定点H . ①求点H 的坐标;②证明点H 是所有抛物线顶点中纵坐标最大的点.是2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=0【答案】D【解析】【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高【答案】A【解析】【分析】根据事件发生可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;的B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A. y=2(x﹣1)2﹣3B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+3【答案】C【解析】【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+3.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx +c ,顶点式:y=a(x -h)2+k ;两根式:y=()12).a x x x x --(5.已知⊙O 中最长弦为8cm ,则⊙O 的半径为( )cm . A. 2 B. 4C. 8D. 16【答案】B 【解析】 【分析】⊙O 最长的弦就是直径从而不难求得半径的长.【详解】⊙⊙O 中最长的弦为8cm ,即直径为8cm⊙ ⊙⊙O 的半径为4cm⊙ 故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键. 6. 下列说法中正确的是( )A. “任意画出一个等边三角形,它是轴对称图形”是随机事件B. “任意画出一个平行四边形,它是中心对称图形”是必然事件C. “概率为0.0001的事件”是不可能事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 【答案】B 【解析】试题分析:A .“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B .“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确; C .“概率为0.0001的事件”是随机事件,选项错误;D .任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误. 故选B .考点:随机事件.7.如图,已知AB 、AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M ,N ,若MNBC 等的于()A. 5B.C.D.【答案】C【解析】【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:⊙OM⊙AB,ON⊙AC,垂足分别为M、N,⊙M、N分别是AB与AC的中点,⊙MN是⊙ABC的中位线,⊙BC=2MN=故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8.下列方程没有实数根的是()A. x2﹣x﹣1=0B. x2﹣6x+5=0C. x2﹣x+3=0D. x2+x+1=0【答案】D【解析】【分析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△= 2b-4ac的值的符号即可.【详解】解:A、⊙⊙=b2﹣4ac=1+4=5>0,⊙方程有两个不相等的实数根,故本选项错误;B、⊙⊙=b2﹣4ac=36﹣20=16>0,⊙方程有两个不相等的实数根,故本选项错误;C 、⊙⊙=b 2﹣4ac =12﹣12=0,⊙方程有两个相等的实数根,故本选项错误;D 、⊙⊙=b 2﹣4ac =1﹣4=﹣3<0,⊙方程没有实数根,故本选项正确. 故选:D .【点睛】本题考查根的判别式.一元二次方程2+00ax bx c a +=≠()的根与⊙= 2b -4ac 有如下关系:(1) ⊙>0⊙方程有两个不相等的实数根;(2) ⊙=0⊙方程有两个相等的实数根;(3) ⊙<0⊙方程没有实数根. 9.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.12【答案】D 【解析】 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:绿球的概率:P =510=12, 故选:D .【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键. 10.边长为2的正六边形的面积为( )A. B.C. 6【答案】A 【解析】 【分析】首先根据题意作出图形,然后可得△OBC 是等边三角形,然后由三角函数的性质,求得OH 的长,继而求得正六边形的面积.【详解】解:如图,连接OB ,OC ,过点O 作OH⊙BC 于H , ⊙六边形ABCDEF 是正六边形, ⊙⊙BOC =16×360°=60°, ⊙OB =0C ,⊙⊙OBC 是等边三角形,⊙BC =OB =OC =2,⊙它的半径为2,边长为2;⊙在Rt⊙OBH 中,OH =OB•sin60°=2×2,⊙⊙S 正六边形ABCDEF =6S ⊙OBC =6×12 故选:A .【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( )A. 2(1)4400x +=B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x += 【答案】B【解析】【分析】直接根据题意得出第三季度投放单车的数量为:(1+x )2=1+0.44,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x ,根据题意可得:(1+x )2=1.44.故选:B .【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】分析】 根据图象可直接判断a 、c 的符号,再结合对称轴的位置可判断b 的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:0a >,0c <,由于对称轴02b a ->,∴0b <,∴0abc >,故①正确; ②∵抛物线过(3,0),∴3x =时,930y a b c =++=,故②正确; ③顶点坐标为:24,24b ac b a a ⎛⎫-- ⎪⎝⎭.由图象可知:2424ac b a -<-,∵0a >,∴248ac b a -<-,即248b ac a ->,故③错误; ④由图象可知:12b a ->,0a >,∴20a b +<, ∵930a b c ++=,∴93c a b =--,∴5593422(2)0a b c a b a b a b a b ++=+--=--=-+>,故④正确; 故选C .【点睛】本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、【灵活运用数形结合的思想方法是解题的关键.二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.【答案】x1=5,x2=7【解析】【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.【答案】1 2【解析】【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=12.故答案为12.【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙【答案】-6【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.【答案】15【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣15)2+25,∵10≤x≤20,∴当x=15时,二次函数有最大值25,故答案是:15.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.【答案】120°【解析】【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:1816··233rππ=,∴r=4,∴2416 3603 nππ=∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.【答案】(1). (2). -1【解析】【分析】①在Rt△AOE中,解直角三角形求出AE即可解决问题.OF≤,由此即可解②取AC的中点H,连接OH,OF,HF,求出OH,FH,根据OF≥FH-OH,即1决问题.【详解】解:⊙如图,连接OA.⊙OA=OC=2,⊙⊙OCA=⊙OAC=30°,⊙⊙AOE=⊙OAC+⊙ACO=60°,⊙AE=OA•sin60°,⊙OE⊙AB,⊙AE=EB⊙AB=2AE=,故答案为⊙取AC的中点H,连接OH,OF,HF,⊙OA=OC,AH=HC,⊙OH⊙AC,⊙⊙AHO=90°,⊙⊙COH=30°,⊙OH=12OC=1,HCAC=⊙CF⊙AP,⊙⊙AFC=90°,⊙HF=12 AC⊙OF≥FH﹣OH,即1,⊙OF﹣1.1.【点睛】本题考查轨迹,圆周角定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.【答案】y=x2-2x-3⊙顶点坐标为(1⊙-4⊙.【解析】【分析】把A、B两点坐标代入抛物线解析式,利用待定系数法可求得其解析式,再化为顶点式即可求得其顶点坐标. 【详解】∵抛物线经过A⊙-1⊙0⊙⊙B⊙3⊙0)两点,∴10 930b cb c-+⎧⎨++⎩==⊙解得b= -2⊙c= -3⊙⊙ 抛物线解析式为y=x2-2x-3 ⊙⊙ y=x2-2x-3=⊙x-1⊙2-4⊙∴抛物线的顶点坐标为(1⊙-4⊙.【点睛】本题考查了待定系数法、二次函数的性质.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【答案】(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).【解析】【分析】(1)利用点A和1A坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1 A2,B1 B2,C1 C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.【详解】解:(1)如图,⊙A1B1C1为所作;(2)如图,⊙A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)⊙A1B1C1与⊙A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.现有A,B,C,D四张不透明的卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.【答案】(⊙)14;(⊙)12【解析】【分析】(⊙)根据题意,直接利用概率公式求解可得;(⊙)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(⊙)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14,故答案为:14;(⊙)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,则两次所抽取的卡片恰好都是轴对称图形的概率为612=12.【点睛】本题考查列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(⊙)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(⊙)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.【答案】(⊙)∠ABC=64°,∠ODC=71°;(⊙)∠ACD=19°.【解析】【分析】(I)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线性质即可得到结论.【详解】解:(⊙)连接OC,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙⊙BAC=26°,⊙⊙ABC=64°,⊙OD⊙AB,⊙⊙AOD=90°,⊙⊙ACD=12⊙AOD=12×90°=45°,⊙OA=OC,⊙⊙OAC=⊙OCA=26°,⊙⊙OCD=⊙OCA+⊙ACD=71°,⊙OD=OC,⊙⊙ODC=⊙OCD=71°;(⊙)如图2,连接OC,⊙⊙BAC=26°,⊙⊙EOC=2⊙A=52°,⊙CE是⊙O的切线,⊙⊙OCE=90°,⊙⊙E=38°,⊙OD⊙CE,⊙⊙AOD=⊙E=38°,⊙⊙ACD=12AOD=19°.【点睛】本题考查切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm .(⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?【答案】(⊙)13m 或19m ;(⊙)当AB =16时,S 最大,最大值为:256.【解析】【分析】(⊙)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(⊙)设花园的面积为S ,根据矩形的面积公式得到S=x (28-x)=- 2x +28x=–()214x -+196,于是得到结果.【详解】解:(⊙)⊙AB =xm ,则BC =(32﹣x )m ,⊙x (32﹣x )=252,解得:x 1=13,x 2=19,答:x 的值为13m 或19m ;(⊙)设花园的面积为S ,由题意得:S =x (32﹣x )=﹣x 2+32x =﹣(x ﹣16)2+256,⊙a =﹣1<0,⊙当x=16时,S最大,最大值为:256.【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.24.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.【答案】(1)15°;(2)证明见解析.【解析】【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=12AC,利用含30度的直角三角形三边的关系得到BC=12AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=12(180°−30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°−60°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=12 AC,∵∠BAC=30°,∴BC=12 AC,∴BF=BC,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE为等边三角形,∴BE=AB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.25.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(⊙)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(⊙)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.【答案】(⊙)a=﹣12,抛物线与x轴另一交点坐标是(0,0);(⊙)①点H的坐标为(2,6);②证明见解析.【解析】【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(⊙)⊙抛物线y=x2﹣2ax+4a+2与x轴一个交点为(﹣1,0),⊙0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,⊙y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(⊙)⊙⊙抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),⊙不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);⊙证明:⊙抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,⊙该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.的。
辽宁省沈阳市和平区2019-2020学年九年级(上)期末数学试卷 含解析
2019-2020学年九年级(上)期末数学试卷一.选择题(共10小题)1.如果==(b+d≠0),则=()A.B.C.D.或﹣12.二次函数y=2(x﹣6)2+9图象的顶点坐标是()A.(﹣6,9)B.(6,9)C.(6,﹣9)D.(﹣6,﹣9)3.如图所示几何体的左视图正确的是()A.B.C.D.4.某商品经过连续两次降价,销售单价由原来1000元降到640元,设平均每次降价的百分率为x,根据题意可列方程为()A.1000(1+x)2=640 B.640(1+x)2=1000C.640(1﹣x)2=1000 D.1000(1﹣x)2=6405.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③6.将抛物线y=x2向左平移5个单位长度,再向上平移6个单位长度,所得抛物线相应的函数表达式是()A.y=(x+5)2+6 B.y=(x+5)2﹣6 C.y=(x﹣5)2+6 D.y=(x﹣5)2﹣6 7.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.68.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=cx在同一坐标系内的大致图象是()A.B.C.D.9.根据所给的表格,估计一元二次方程x2+12x﹣15=0的近似解x,则x的整数部分是()A.1 B.2 C.3 D.410.如图,平面直角坐标系xOy中,点A、B的坐标分别为(9,0)、(6,﹣9),△AB'O'是△ABO关于点A的位似图形,且O'的坐标为(﹣3,0),则点B'的坐标为()A.(8,﹣12)B.(﹣8,12)C.(8,﹣12)或(﹣8,12)D.(5,﹣12)二.填空题(共6小题)11.小明在同一时刻测量位于同一地点的旗杆和建筑物在太阳光下的影长,测得旗杆的影长为3m,建筑物的影长为30m,已知旗杆的高为4m,则这个建筑物高为m.12.若关于x的方程x2﹣ax+a﹣1=0有两个相等的实数根,则a的值是.13.如图,一张矩形纸片沿它的长边对折(EF为折痕),得到两个全等的小矩形,如果小矩形与原来的矩形相似,那么小矩形的长边与短边的比是.14.如图,将△ABC沿着BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=6,则EC的长为.15.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.16.如图,在矩形ABCD中,AB=15,AD=20,P是AD边上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F,则PE•PF的最大值为.三.解答题(共9小题)17.解一元二次方程:(x+1)(3﹣x)=1.18.计算:|1﹣2cos30°|+﹣(﹣)﹣1﹣(5﹣π)019.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是红球的概率为.(1)布袋里红球有个;(2)先从布袋中摸出个球后不放回,再摸出1个球,请用列表或画树状图的方法求出两次摸到的球都是白球的概率.20.如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.21.如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M,N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,AC=16,△ADC的周长为36时,直接写出四边形ADCE的面积为.22.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,OA=8,点D为对角线OB的中点,若反比例函数y=在第一象限内的图象与矩形的边BC交于点F,与矩形边AB 交于点E,反比例函数图象经过点D,且tan∠BOA=,设直线EF的表达式为y=k2x+b.(1)求反比例函数表达式;(2)直接写出直线EF的函数表达式;(3)当x>0时,直接写出不等式k2x+b>的解集;(4)将矩形折叠,使点O与点F重合,折痕与x轴正半轴交于点H,与y轴正半轴交于点G,直接写出线段OG的长.23.如图,在△ABC中,AB=AC=5,BC=6,在△ABC中截出一个矩形DEFG,使得点D在AB边上,EF在BC边上,点G在AC边上,设EF=x,矩形DEFG的面积为y.(1)求出y与x之间的函数关系式;(2)直接写出自变量x的取值范围;(3)若DG=2DE,则矩形DEFG的面积为.24.在正方形ABCD中,AB=8,AC与BD相交于点O.(1)如图,作射线OM与边BC相交于点E,将射线OM绕点O顺时针旋转90°,得到射线ON,射线ON与边AB相交于点F,连接EF交BO于点G.①直接写出四边形OEBF的面积是;②求证:△OEF是等腰直角三角形;③若OG=,求OE的长;(2)点P在射线CA上一点,若BP=2,射线PM与直线BC相交于点E,当CE=2时,将射线PM绕点P顺时针旋转45°,得到射线PN,射线PN与直线BC相交于点F,请直接写出BF的长.25.在平面直角坐标系中,抛物线y=ax2+bx﹣4经过点A(﹣8,0),对称轴是直线x=﹣3,点B是抛物线与y轴交点,点M、N同时从原点O出发,以每秒1个单位长度的速度分别沿x轴的负半轴、y的负半轴方向匀速运动,(当点N到达点B时,点M、N同时停止运动).过点M作x轴的垂线,交直线AB于点C,连接CN、MN,并作△CMN关于直线MC的对称图形,得到△CMD.设点N运动的时间为t秒,△CMD与△AOB重叠部分的面积为S.(1)求抛物线的函数表达式;(2)当0<t<2时,①求S与t的函数关系式;②直接写出当t=时,四边形CDMN为正方形;(3)当点D落在边AB上时,过点C作直线EF交抛物线于点E,交x轴于点F,连接EB,当S△CBE:S△ACF=1:3时,直接写出点E的坐标为.参考答案与试题解析一.选择题(共10小题)1.如果==(b+d≠0),则=()A.B.C.D.或﹣1【分析】根据和比的性质即可求解.【解答】解:∵==(b+d≠0),∴=.故选:A.2.二次函数y=2(x﹣6)2+9图象的顶点坐标是()A.(﹣6,9)B.(6,9)C.(6,﹣9)D.(﹣6,﹣9)【分析】因为y=2(x﹣6)2+9是二次函数的顶点式,根据顶点式可直接写出顶点坐标.【解答】解:∵抛物线解析式为y=2(x﹣6)2+9,∴二次函数图象的顶点坐标是(6,9).故选:B.3.如图所示几何体的左视图正确的是()A.B.C.D.【分析】直接利用左视图的观察角度,进而得出视图.【解答】解:该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选:A.4.某商品经过连续两次降价,销售单价由原来1000元降到640元,设平均每次降价的百分率为x,根据题意可列方程为()A.1000(1+x)2=640 B.640(1+x)2=1000C.640(1﹣x)2=1000 D.1000(1﹣x)2=640【分析】设平均每次降价的百分率为x,根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均每次降价的百分率为x,依题意,得:1000(1﹣x)2=640.故选:D.5.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.6.将抛物线y=x2向左平移5个单位长度,再向上平移6个单位长度,所得抛物线相应的函数表达式是()A.y=(x+5)2+6 B.y=(x+5)2﹣6 C.y=(x﹣5)2+6 D.y=(x﹣5)2﹣6 【分析】直接利用二次函数平移的性质得到平移后的解析式.【解答】解:将抛物线y=x2向左平移5个单位长度,得到的解析式为:y=(x+5)2,再向上平移6个单位长度,得到的解析式为:y=(x+5)2+6,故所得抛物线相应的函数表达式是:y=(x+5)2+6.故选:A.7.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.6【分析】当四边形ABPQ为矩形时,AQ=BP,据此列出方程并解答.【解答】解:设动点的运动时间为t秒,由题意,得15﹣t=2t.解得t=5.故选:C.8.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=与正比例函数y=cx在同一坐标系内的大致图象是()A.B.C.D.【分析】利用抛物线开口方向得到a<0,利用抛物线与y轴的交点位置得到c>0,然后根据反比例函数的性质和正比例函数的性质对各选项进行判断.【解答】解:由二次函数的图象得a<0,c>0,所以反比例函数y=分布在第二、四象限,正比例函数y=cx经过第一、三象限,所以C选项正确.故选:C.9.根据所给的表格,估计一元二次方程x2+12x﹣15=0的近似解x,则x的整数部分是()A.1 B.2 C.3 D.4【分析】根据表格中的数据,可以发现:x=1时,x2+12x﹣15=﹣2;x=2时,x2+12x ﹣15=13,故一元二次方程x2+12x﹣15=0的其中一个解x的范围是1<x<2,进而求解.【解答】解:根据表格中的数据,知:方程的一个解x的范围是:1<x<2,所以方程的其中一个解的整数部分是1.故选:A.10.如图,平面直角坐标系xOy中,点A、B的坐标分别为(9,0)、(6,﹣9),△AB'O'是△ABO关于点A的位似图形,且O'的坐标为(﹣3,0),则点B'的坐标为()A.(8,﹣12)B.(﹣8,12)C.(8,﹣12)或(﹣8,12)D.(5,﹣12)【分析】利用位似图形的性质结合一次函数解析式求法以及一次函数图象上点的坐标特征进而得出答案.【解答】解:过点B作BC⊥OA于点C,过点B′作B′D⊥AO于点D,∵△AB′O′是△ABO关于点A的位似图形,∴=,∴=,解得:DB′=12,设直线AB的解析式为:y=kx+b,则,解得:,故直线AB的解析式为:y=3x﹣27,当y=﹣12时,﹣12=3x﹣27,解得:x=5,故B′点坐标为:(5,﹣12).故选:D.二.填空题(共6小题)11.小明在同一时刻测量位于同一地点的旗杆和建筑物在太阳光下的影长,测得旗杆的影长为3m,建筑物的影长为30m,已知旗杆的高为4m,则这个建筑物高为40 m.【分析】根据同一时刻同一地点的物高与影长成正比即可求得答案.【解答】解:设建筑物的高为x米,根据题意得:=,解得:x=40,故答案为:40.12.若关于x的方程x2﹣ax+a﹣1=0有两个相等的实数根,则a的值是 2 .【分析】根据判别式的意义得到△=(﹣a)2﹣4(a﹣1)=0,然后解方程即可求解.【解答】解:根据题意得△=(﹣a)2﹣4(a﹣1)=0,解得a=2.故答案为:2.13.如图,一张矩形纸片沿它的长边对折(EF为折痕),得到两个全等的小矩形,如果小矩形与原来的矩形相似,那么小矩形的长边与短边的比是:1 .【分析】先表示出对折后的矩形的长和宽,再根据相似矩形对应边成比例列出比例式,然后求解.【解答】解:设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y=:1.故答案为::1.14.如图,将△ABC沿着BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=6,则EC的长为3.【分析】证出△GEC∽△ABC,由相似三角形的性质得出=()2=,得出==,即可得出答案.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△GEC∽△ABC,∴=()2=,∴==,∵BC=6,∴EC=3,故答案为:3.15.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价 4元.【分析】关系式为:每件商品的盈利×(原来的销售量+增加的销售量)=2400,计算得到降价多的数量即可.【解答】解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=36,∵在降价幅度不超过10元的情况下,∴x=36不合题意舍去,答:每件服装应降价4元.故答案是:4.16.如图,在矩形ABCD中,AB=15,AD=20,P是AD边上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F,则PE•PF的最大值为36 .【分析】设AP=x,则PD=20﹣x,通过证△APE∽△ACD,△DPF∽△DBA,分别用含x 的代数式将PE,PF表示出来,并算出其乘积,然后用二次函数的性质求出其最大值.【解答】解:在Rt△ABD中,BD===25,∵PE⊥AC,PF⊥BD,∴∠PEA=∠CDA=∠PFD=90°,又∵∠PAE=∠CAD,∠PDF=∠BDA,∴△APE∽△ACD,△DPF∽△DBA,∴==,==,设AP=x,则PD=20﹣x,∴PE=x,PF=(20﹣x)=12﹣x,∴PE•PF=x×(12﹣x)=﹣x2+x=﹣(x﹣10)2+36,根据二次函数的图象及性质可知,当x=10时,PE•PF有最大值,最大值为36,故答案为:36.三.解答题(共9小题)17.解一元二次方程:(x+1)(3﹣x)=1.【分析】先将方程整理为一般式,再利用公式法求解可得.【解答】解:将方程整理为一般式,得:x2﹣2x﹣2=0,∵a=1,b=﹣2,c=﹣2,∴△=(﹣2)2﹣4×1×(﹣2)=12>0,则x==1.18.计算:|1﹣2cos30°|+﹣(﹣)﹣1﹣(5﹣π)0【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=2×﹣1+2﹣(﹣2)﹣1=3.19.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是红球的概率为.(1)布袋里红球有 1 个;(2)先从布袋中摸出个球后不放回,再摸出1个球,请用列表或画树状图的方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x个,根据概率公式得到=,然后解方程即可;(2)先画树状图展示所有12种等可能结果,再找出两次摸到的球都是白球的结果数,然后根据概率公式计算.【解答】解:(1)设红球的个数为x个,根据题意得=,解得x=1(检验合适),所以布袋里红球有1个,故答案为:1;(2)画树状图如下:共有12种等可能结果,其中两次摸到的球都是白球结果数为2种,所以两次摸到的球都是白球的概率==.20.如图,已知△ABC中,AB=,AC=,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.【分析】作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠ANM=∠B,利用相似可得MN的长.【解答】解:①图1,作MN∥BC交AC于点N,则△AMN∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,∴MN=3;②图2,作∠ANM=∠B,则△ANM∽△ABC,有,∵M为AB中点,AB=,∴AM=,∵BC=6,AC=,∴MN=,∴MN的长为3或.21.如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M,N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,AC=16,△ADC的周长为36时,直接写出四边形ADCE的面积为96 .【分析】(1)根据作图的过程可得AE=EC,再证明四边形AECD是平行四边形即可;(2)根据(1)证得的菱形,可知AD=10,AO=8,根据勾股定理得OD=6,进而求解.【解答】解:(1)根据作图过程可知:MN是线段AC的垂直平分线,∴AE=EC,AD=CD,AO=CO,MN⊥AC,∴∠EAC=∠ECA,∵CE∥AB,∴∠ECA=∠CAD,∴∠CAD=∠EAC,AO=AO,∠AOD=∠AOE=90°,∴△ADO≌△AEO(ASA),∴AD=AE.∴AD=EC,又AD∥EC,∴四边形ADCE是平行四边形,AE=EC,∴▱ADCE是菱形.(2)∠ACB=90°,∠AOD=90°,∴OD∥BC,∵AO=CO,∴AD=BD,∵AD=DC,∴BD=DC,AC=16,△ADC的周长为36,∴AB=20,∴AD=10,AO=8,根据勾股定理,得OD=6,∴菱形ADCE的面积为:DE•AC=6×16=96.故答案为96.22.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,OA=8,点D为对角线OB的中点,若反比例函数y=在第一象限内的图象与矩形的边BC交于点F,与矩形边AB 交于点E,反比例函数图象经过点D,且tan∠BOA=,设直线EF的表达式为y=k2x+b.(1)求反比例函数表达式;(2)直接写出直线EF的函数表达式y=﹣x+5 ;(3)当x>0时,直接写出不等式k2x+b>的解集2<x<8 ;(4)将矩形折叠,使点O与点F重合,折痕与x轴正半轴交于点H,与y轴正半轴交于点G,直接写出线段OG的长.【分析】(1)利用正切的定义计算出AB得到B点坐标为(8,4),则可得到D(4,2),然后利用待定系数法确定反比例函数表达式;(2)利用反比例函数图象上点的坐标特征确定E(8,1),F(2,4),然后利用待定系数法求直线EF的解析式;(3)在第一象限内,写出一次函数图象在反比例函数图象上上方所对应的自变量的范围即可;(4)连接GF,如图,设OG=t,则CG=4﹣t,利用折叠的性质得到GF=OG=t,则利用勾股定理得到22+(4﹣t)2=t2,然后解方程求出t得到OG的长.【解答】解:(1)在Rt△AOB中,∵tan∠BOA==,∴AB=OA=×8=4,∴B点坐标为(8,4),∵点D为对角线OB的中点,∴D(4,2),把D(4,2)代入y=得k1=4×2=8,∴反比例函数表达式为y=;(2)当x=8时,y==1,则E(8,1),当y=4时,=4,解得x=2,则F(2,4),把E(8,1),F(2,4)代入y=k2x+b得,解得,所以直线EF的解析式为y=﹣x+5;(3)不等式k2x+b>的解集为2<x<8;(4)连接GF,如图,设OG=t,则CG=4﹣t,∵将矩形折叠,使点O与点F重合,∴GF=OG=t,在Rt△CGF中,22+(4﹣t)2=t2,解得t=,即OG的长为.故答案为y=﹣x+5;2<x<8;.23.如图,在△ABC中,AB=AC=5,BC=6,在△ABC中截出一个矩形DEFG,使得点D在AB边上,EF在BC边上,点G在AC边上,设EF=x,矩形DEFG的面积为y.(1)求出y与x之间的函数关系式;(2)直接写出自变量x的取值范围0<x<6 ;(3)若DG=2DE,则矩形DEFG的面积为.【分析】(1)利用勾股定理和等腰三角形的三线合一求得BN、AN,再证明△ADG∽△ABC,得出比例线段,利用x表示出MN,利用矩形的面积求出函数解析式;(2)由题意即可得出答案;(3)由题意得出x=2(4﹣x),解得x=,代入函数关系式即可得出答案.【解答】解:(1)如图,过点A作AN⊥BC于点N,交DG于点M,∵AB=AC=5,BC=6,AN⊥BC,∴BN=CN=3,AN===4,∵DG∥BC,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,即=,∴MN=4﹣x.∴y=EF•MN=x(4﹣x)=﹣x2+4x,即y=﹣x2+4x:(2)0<x<6;故答案为:0<x<6;(3)若DG=2DE,则EF=2MN,∴x=2(4﹣x),解得:x=,当x=时,y=﹣×()2+4×=;故答案为:.24.在正方形ABCD中,AB=8,AC与BD相交于点O.(1)如图,作射线OM与边BC相交于点E,将射线OM绕点O顺时针旋转90°,得到射线ON,射线ON与边AB相交于点F,连接EF交BO于点G.①直接写出四边形OEBF的面积是16 ;②求证:△OEF是等腰直角三角形;③若OG=,求OE的长;(2)点P在射线CA上一点,若BP=2,射线PM与直线BC相交于点E,当CE=2时,将射线PM绕点P顺时针旋转45°,得到射线PN,射线PN与直线BC相交于点F,请直接写出BF的长或.【分析】(1)①由“SAS”可证△BOF≌△COE,可得S△BFO=S△CEO,即可求解;②由全等三角形的性质可得OE=OF,即可得结论;③由面积关系可求S△EFO=×S四边形OEBF=,即可求OE的长;(2)过点P作PH⊥BC于H,过点E作EG⊥AC于点G,分两种情况讨论,由正方形的性质和勾股定理可求PH=10,通过证明△PFH∽△PEG,可得,即可求解.【解答】解:(1)①∵四边形ABCD是正方形,∴AO=BO=CO,AB=BC=8,∠ABO=∠ACB=∠DBC=45°,BO⊥AC,∴AC=8,∴AO=OC=BO=4∵将射线OM绕点O顺时针旋转90°,得到射线ON,∴∠FOE=90°=∠BOC,∴∠BOF=∠COE,且BO=CO,∠ABO=∠BCO,∴△BOF≌△COE(SAS)∴S△BFO=S△CEO,∴四边形OEBF的面积=S△OBC=×4×4=16,故答案为16;②∵△BOF≌△COE,∴OE=OF,且∠EOF=90°,∴△OEF是等腰直角三角形;③∵OG=,OB=4,∴BG=,∵S△BFG:S△FGO=BG:GO=7:25,S△BEG:S△EGO=BG:GO=7:25,∴S△BEF:S△EFO=7:25,∴S△EFO=×S四边形OEBF=,∴OE2=,∴OE=5;(2)如图2,当点E在线段BC上时,过点P作PH⊥BC于H,过点E作EG⊥AC于点G,∵∠ACB=45°,PH⊥BC,∴∠HPC=∠PCH=45°,∴PH=HC,∵PB2=PH2+BH2,∴4×26=PH2+(PH﹣8)2,∴PH=10,PH=﹣2(舍去),∴PH=CH=10,∴HB=2,PC=10,∵EC=2,EG⊥AC,∠ACB=45°,∴GC==GE,∴PG=9,∵∠FPE=45°=∠HPC,∴∠FPH=∠EPG,且∠PHF=∠PGE,∴△PFH∽△PEG,∴,∴,∴HF=,∴BF=2+=;当点E在BC延长线上时,过点P作PH⊥BC于H,过点E作EG⊥AC于点G,同理可得:PH=10,EG=CG=,△PFH∽△PEG,∴,∴,∴FH=,∴BF=2﹣=,综上所述:BF的长为:或,故答案为:或.25.在平面直角坐标系中,抛物线y=ax2+bx﹣4经过点A(﹣8,0),对称轴是直线x=﹣3,点B是抛物线与y轴交点,点M、N同时从原点O出发,以每秒1个单位长度的速度分别沿x轴的负半轴、y的负半轴方向匀速运动,(当点N到达点B时,点M、N同时停止运动).过点M作x轴的垂线,交直线AB于点C,连接CN、MN,并作△CMN关于直线MC的对称图形,得到△CMD.设点N运动的时间为t秒,△CMD与△AOB重叠部分的面积为S.(1)求抛物线的函数表达式;(2)当0<t<2时,①求S与t的函数关系式;②直接写出当t=时,四边形CDMN为正方形;(3)当点D落在边AB上时,过点C作直线EF交抛物线于点E,交x轴于点F,连接EB,当S△CBE:S△ACF=1:3时,直接写出点E的坐标为(﹣4,﹣6)或(﹣2,﹣6).【分析】(1)抛物线y=ax2+bx﹣4经过点A(﹣8,0),对称轴是直线x=﹣3,则抛物线与x轴另外一个交点坐标为:(2,0),则抛物线的表达式为:y=a(x+8)(x﹣2)=a (x2+6x﹣16),故﹣16a=﹣4,解得:a=,即可求解;(2)①OM=ON=t,则AM=8﹣t,∵MC∥y轴,则,即,解得:MC=(8﹣t),S=S△MCN=MC×t=﹣t2+2t;②MC=ND=2t,即可求解;(3)DM=MN=t,即(3t﹣8)2+t2=2t2,解得:t=2或4,故点C(﹣2,﹣3);S△:S△ACF=1:3,EM=FN,故点C是MN的中点,即可求解.CBE【解答】解:(1)抛物线y=ax2+bx﹣4经过点A(﹣8,0),对称轴是直线x=﹣3,则抛物线与x轴另外一个交点坐标为:(2,0),则抛物线的表达式为:y=a(x+8)(x﹣2)=a(x2+6x﹣16),故﹣16a=﹣4,解得:a=,故抛物线的表达式为:y=x2+x﹣4;(2)①抛物线的对称轴为:x=﹣3,OM=ON=t,则AM=8﹣t,∵MC∥y轴,则,即,解得:MC=(8﹣t),S=S△MCN=MC×t=﹣t2+2t;②四边形CDMN为正方形时,MC=ND=2t,即MC=(8﹣t)=2t,解得:t=,故答案为;(3)由点A、B的坐标可得:直线AB的表达式为:y=﹣x﹣4,当点D在AB上时,在CD在直线AB上,设点M(﹣t,0),则点M(2t﹣8,﹣t),由题意得:DM=MN=t,即(3t﹣8)2+t2=2t2,解得:t=2或4,当t=4时,S△CBE:S△ACF=1:3不成立,故t=2,故点C(﹣2,﹣3);则AC=3=3CB,过点E、F分别作AB的垂线交于点M、N,∵S△CBE:S△ACF=1:3,∴EM=FN,故点C是MN的中点,设点F(m,0),点C(﹣2,﹣3),由中点公式得:点E(﹣4﹣m,﹣6),将点E的坐标代入抛物线表达式并解得:m=0或﹣2,故点E的坐标为:(﹣4,﹣6)或(﹣2,﹣6),故答案为:(﹣4,﹣6)或(﹣2,﹣6).。
天津市和平区2019-2020学年九年级上学期数学期末试题(解析版)
2019年天津市和平区九年级上册数学期末试卷一、选择题1. sin45°的值等于()A. 12B.22C.32D. 1【答案】B 【解析】试题解析:sin45°=22.故选B.考点:特殊角的三角函数值.2.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.【答案】A【解析】【分析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有三列,从左往右分别有1,2,1个正方形,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形,从上往下分别有1,2个正方形;俯视图有三列,从左往右分别有1,2,1个正方形,从上往下分别有3,1个正方形;故选A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.n n3.图中所示几何体的俯视图是()A. B.C. D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看到的图形为,故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.如图把一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为( )A. 25B. 15C. 35D. 110【答案】B【解析】【分析】首先确定在图中B 区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向B 区域的概率.【详解】解:∵一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,∴圆被等分成10份,其中B 区域占2份,∴落在B 区域的概率=210=15; 故选B . 【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率. 5.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为() A. 1(1)282x x -= B. 1(1)282x x += C. (1)28x x -= D. (1)28x x +=【答案】A【解析】【分析】 根据应用题的题目条件建立方程即可. 【详解】解:由题可得:1(1)472x x -=⨯即:1(1)282x x -= 故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.【此处有视频,请去附件查看】6.在 ABC V 和 DEF V 中,AB 2DE =,AC 2DF =,A D ∠∠=,如果 ABC V的周长是 16,面积是 12,那么 DEF V 的周长、面积依次为 ()n nA. 8,3B. 8,6C. 4,3D. 4,6【答案】A【解析】【分析】根据已知可证△ABC ∽△DEF ,且△ABC 和△DEF 的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求△DEF 的周长、面积.【详解】解:Q 在 ABC V 和 DEF V 中,AB 2DE =,AC 2DF =, AB AC 2DE DF∴==, 又 A D ∠=∠Q ,ABC DEF ∴V V ∽,且 ABC V 和 DEF V 的相似比为 2:1,Q 相似三角形的周长比等于相似比,面积比等于相似比的平方,且 ABC V 的周长是 16,面积是 12, DEF ∴V 的周长为 1628÷=,面积为 1243÷=.故选A.【点睛】本题难度中等,考查相似三角形的判定和性质,相似三角形周长的比等于相似比,面积的比等于相似比的平方.7.如图,在平行四边形 ABCD 中,点 E 是边 AD 的中点,EC 交对角线 BD 于点 F ,则 EF:FC 等于 ()n nA. 3:2B. 3:1C. 1:1D. 1:2【答案】D【解析】【分析】 根据题意得出△DEF ∽△BCF ,进而得出DE EF BC CF=,利用点E 是边AD 的中点得出答案即可. 【详解】AD BC Q P 解:, DEF ECB ∠∠∴=,EDB FBC ∠∠=,DEF BCF ∴V V ∽,DE EF BC CF∴=, Q 点 E 是边 AD 的中点, 11AE DE AD BC 22∴===, EF 1FC 2∴=. 故选D.【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF ∽△BCF 是解题关键.8.若一个正六边形的边心距为3 ) A. 243 B. 24 C. 123 D. 4【答案】B【解析】【分析】首先设正六边形的中心是O ,一边是AB ,过O 作OG ⊥AB 与G ,在直角△OAG 中,根据三角函数即可求得边长AB ,从而求出周长. 【详解】解:如图,过O 作OG ⊥AB 与G ,∵OA=OG, ∴AB=2AG在Rt △AOG 中,OG=23,∠AOG=30°,∴AG=OGtan30°=32323⨯=. ∴AB=2AG=4 这个正六边形的周长=24.故选B .【点睛】本题考查了正多边形和圆,锐角三角函数以及等腰三角形的性质,掌握∠AOG=30°是解本题的关键.9.如图,O e 中,AC 为直径,MA ,MB 分别切O e 于点A ,B .BAC 25∠=o ,则AMB ∠的大小为( )A. 25oB. 30oC. 45oD. 50o【答案】D【解析】【分析】 由AM 与圆O 相切,根据切线的性质得到AM 垂直于AC ,可得出∠MAC 为直角,再由∠BAC 的度数,用∠MAC-∠BAC 求出∠MAB 的度数,又MA ,MB 为圆O 的切线,根据切线长定理得到MA=MB ,利用等边对等角可得出∠MAB=∠MBA ,由底角的度数,利用三角形的内角和定理即可求出∠AMB 的度数;【详解】解:(Ⅰ)∵MA 切⊙O 于点A ,∴∠MAC=90°,又∠BAC=25°,∴∠MAB=∠MAC-∠BAC=65°,∵MA 、MB 分别切⊙O 于点A 、B ,∴MA=MB ,∴∠MAB=∠MBA ,∴∠M=180°-(∠MAB+∠MBA )=50°;【点睛】此题考查了切线的性质,等腰三角形的判定与性质,切线长定理,熟练掌握性质及定理是解本题的关键.10.如图,正比例函数y 1=k 1x 和反比例函数22k y =x的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是【 】A. x <﹣1或x >1B. x <﹣1或0<x <1C. ﹣1<x <0或0<x <1D. ﹣1<x <0或x >1【答案】D【解析】 反比例函数与一次函数的交点问题.根据图象找出直线在双曲线下方的x 的取值范围:由图象可得,﹣1<x <0或x >1时,y 1<y 2.故选D .11.在等边 ABC V中,D 是边 AC 上一点,连接 BD ,将 BCD V 绕点 B 逆时针旋转 60o ,得到 BAE V ,连接 ED ,若 BC 5=,BD 4=,有下列结论:① AE BC P ;② ADE BDC ∠∠=;③ BDE V 是等边三角形;④ ADE V 的周长是 9.其中,正确结论的个数是 ()n nA. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据等边三角形的性质得∠ABC=∠C=60°,AC=BC=5,再利用旋转的性质得∠BAE=∠C=60°,AE =CD,则∠BAE=∠ABC,于是根据平行线的判定可对①进行判断;由△BCD绕点B逆时针旋转60°,得到△BAE得到∠DBE=60°,BD=BE=4,则根据边三角形的判定方法得到△BDE为等边三角形,于是可对③进行判断;根据等边三角形的性质得∠BDE=60°,DE=DB=4,然后说明∠BDC>60°,则∠ADE <60°,于是可对②进行判断;最后利用AE=CD,DE=BD=4和三角形周长定义可对④进行判断.【详解】∵△ABC为等边三角形,∴∠ABC=∠C=60°,AC=BC=5,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠C=60°,AE=CD,∴∠BAE=∠ABC,∴AE∥BC,所以①正确;∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠DBE=60°,BD=BE=4,∴△BDE为等边三角形,所以③正确,∴∠BDE=60°,DE=DB=4,在△BDC中,∵BC>BD,∴∠BDC>∠C,即∠BDC>60°,∴∠ADE<60°,所以②错误;∵AE =CD ,DE =BD =4,∴△ADE 的周长=AD +AE +DE =AD +CD +DB =AC +BD =5+4=9,所以④正确.故选:C .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.12.已知抛物线2(0)y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在(3,0)-和(2,0)-之间,其部分图像如图所示,则下列结论:①点17(,)2y -,23(,)2y -,35(,)4y 是该抛物线上的点,则123y y y <<;②320b c +<;③()t at b a b +≤-(t 为任意实数).其中正确结论的个数是( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】 逐一分析3条结论是否正确:①根据抛物线的对称性找出点(-134,y 3)在抛物线上,再结合抛物线对称轴左边的单调性即可得出①错误;②由x=-3时,y <0,即可得出9a-3b+c <0,根据抛物线的对称轴为x=-1,即可得出b=2a ,即可得出②正确;③∵抛物线开口向下,对称轴为x=-1,有最大值a b c -+,再根据x=t 时的函数值为at 2+bt+c ,由此即可得出③正确.综上即可得出结论.【详解】解:①∵抛物线的对称轴为x=-1,点(54,y 3)在抛物线上, ∴(-134,y 3)在抛物线上. ∵-72<-134<-32,且抛物线对称轴左边图象y 值随x 的增大而增大, ∴y 1<y 3<y 2.∴①错误;②∵抛物线y=ax 2+bx+c (a≠0)的对称轴为x=-1,∴-b 2a =-1,∴2a=b ,∴a=1b 2∵当x=-3时,y=9a-3b+c <0, ∴91b 2⨯-3b+c=3b c 2+<0, ∴3b+2c <0,∴②正确;③∵抛物线y=ax 2+bx+c (a≠0)的对称轴为x=-1,开口向下∴当x=-1,y a b c =-+最大∵当x=t 时,y= at 2+bt+c∵t 为任意实数∴at 2+bt+c≤a b c -+∴at 2+bt≤a -b .∴③正确.故选C .【点睛】本题考查了二次函数图象与系数的关系、二次函数与不等式以及二次函数的最值,熟练掌握二次函数的图象和性质是解题关键,本题属于中档题,有些难度.二、填空题13.已知反比例函数的图像经过点,A B ,点A 的坐标为(1,3),点B 的纵坐标为1,则点B 的横坐标为__________.【答案】3【解析】【分析】先设反比例函数的解析式为y=k x(k≠0),把点A 的坐标代入解析式,求出k 的值,从而确定反比例函数的解析式,再把y=1代入即可求出. 【详解】解:设反比例函数的解析式为y=k x (k≠0), ∵反比例函数的图像经过点()A 1,3,∴k=133⨯=,∴反比例函数的解析式为y=3x当y=1时,x=3;∴点B的横坐标为:3故答案为3【点睛】本题考查用待定系数法确定反比例函数的解析式以及反比例函数图象上点的特征,熟练掌握相关知识是解题的关键,是基础题.14.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠BAD′=70°,则α=__(度).【答案】20【解析】【分析】根据旋转的定义,找到旋转角,利用角的和差关系即可求解.【详解】解:根据旋转的定义可知,∠DAD′=α,在矩形ABCD中, ∠BAD=90°,∴∠DAD′+∠BAD′=90°,∴α=90°﹣70°=20°.故答案为20.【点睛】本题主要考查旋转的定义及性质、矩形的性质,解题的关键是找准旋转角.15.如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P=▲ .【答案】1 3【解析】画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P=1316.与直线2y x =平行的直线可以是__________(写出一个即可). 【答案】y=-2x+5(答案不唯一)【解析】【分析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.17.如图,点,,D E F 分别在正三角形ABC 的三边上,且DEF ∆也是正三角形.若ABC ∆的边长为a ,DEF ∆的边长为b ,则AEF ∆的内切圆半径为__________.【答案】3()6a b - 【解析】【分析】根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=12(AE+AF-EF)=12(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.【详解】解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,∴AD=AE=12[(AB+AC)-(BD+CE)]=12[(AB+AC)-(BF+CF)]=12(AB+AC-BC),如图2,∵△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,13BAC CEF FD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,过点M作MH⊥AE于H,则根据图1的结论得:AH=12(AE+AF-EF)=12(a-b);∵MA平分∠BAC,∴∠HAM=30°;∴HM=AH•tan30°=12(a-b )•3=()3a b - 故答案为()3a b 6-. 【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH 的长是解题关键.18.如图,在△ABC 中,BA =BC =4,∠A =30°,D 是AC 上一动点,(Ⅰ)AC 的长=_____; (Ⅱ)BD +12DC 的最小值是_____.【答案】 (1). (Ⅰ)AC =3 (2). (Ⅱ)33【解析】【分析】(Ⅰ)如图,过B 作BE ⊥AC 于E ,根据等腰三角形的性质和解直角三角形即可得到结论;(Ⅱ)如图,作BC 的垂直平分线交AC 于D ,则BD =CD ,此时BD+12DC 的值最小,解直角三角形即可得到结论.【详解】解:(Ⅰ)如图,过B 作BE ⊥AC 于E ,∵BA =BC =4,∴AE =CE ,∵∠A =30°,∴AE 3=3 ∴AC =2AE =3(Ⅱ)如图,作BC 的垂直平分线交AC 于D ,则BD =CD ,此时BD+12DC 的值最小, ∵BF =CF =2,∴BD =CD =230COS ︒ =433, ∴BD+12DC 的最小值=23, 故答案为43,23.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,解直角三角形,正确的作出辅助线是解题的关键.三、解答题19.(Ⅰ)解方程:x (2x ﹣5)=4x ﹣10;(Ⅱ)已知关于x 的一元二次方程x 2+2x +2k ﹣4=0有两个不相等的实数根,求k 的取值范围.【答案】(1)152x =,22x =.(2)52k <. 【解析】【分析】 (1)由于方程左右两边都含有(2x-5),可将(2x-5)看作一个整体,然后移项,再分解因式求解. (2)根据方程为一元二次方程,且有两个不相等的实数根,所以△>0,据此求出k 的取值范围即可.【详解】解:(1)()()x 2x 522x 5-=-∴()()x 2x 522x 50---=∴()() 2x 5x 20--=.∴2x 50-=或x 20-=.∴15x 2=,2x 2=. (2)()Δ442k 4208k =--=-. ∵方程有两个不相等的实数根,∴Δ0>,即208k 0->. ∴5k 2<. 【点睛】本题考查了一元二次方程的解法和一元二次方程根的判别式,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.解答本题要掌握△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.20.已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.【答案】y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标. 试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.21.已知,AB 为O e 的直径,弦CD AB ⊥于点E ,在CD 的延长线上取一点P ,PG 与O e 相切于点G ,连接AG 交CD 于点F .(1)如图①,若20A ∠=o ,求GFP ∠和AGP ∠的大小;(2)如图②,若E 为半径OA 的中点,DG AB ∥,且23=OA PF 的长.【答案】(1)70GFP ∠=o ,70AGP ∠=o ;(2)4PF =.【解析】【分析】(1)连接OG ,根据直角三角形的两个锐角互余,求得EFA 70∠=o ,从而求得GFP ∠的度数,再根据等边对等角和切线的性质求出AGP ∠;(2)连接CG ,根据CD AB ⊥和DG AB P 证出GDC 90∠=o ,再根据90o 的圆周角所对的弦是直径得出CG 为直径,再根据E 为半径OA 的中点,利用三角函数确定C 30∠=o ,从而求出GP 的长,再根据等角的余角相等证出PGF PFG ∠∠=,从而得出PF PG?=即可.【详解】解:(1)连接OG ,∵ CD AB ⊥于点E ,∴ AEF 90∠=o .∵ A 20∠=o ,∴ EFA 90A 902070∠∠=-=-=o o o o .∴ GFP EFA 70∠∠==o .∵ OA OG =,∴ OGA A 20∠∠==o .∵ PG 与O e 相切于点G ,∴ OGP 90∠=o .∴ AGP OGP OGA 902070∠∠∠=-=-=o o o .(2)连接CG ,∵ CD AB ⊥于点E ,∴ BEC 90∠=o .∵DG AB P , ∴ GDC BEC 90∠∠==o .∴ CG 为O e 的直径.∵ E 为半径OA 的中点, ∴11OE OA OC 22==. 在Rt ΔOCE 中,OE 1sinC OC 2==. ∴ C 30∠=o .∵ PG 与O e 相切于点G ,CG 为O e 的直径,∴ CGP 90o ∠=.在Rt ΔCGP 中,PG tanC CG=,∴ PG CG tanC 2OA tan30243=⋅=⋅=⨯=o . ∵ CGP 90o ∠=,∴ CGA PGF 90∠∠+=o .∵ AEF 90∠=o ,∴ A AFE 90∠∠+=o .∵ OA OG =,∴ A CGA ∠∠=.∴ PGF AFE ∠∠=.∵ PFG AFE ∠∠=,∴ PGF PFG ∠∠=.∴ PF PG 4==.【点睛】本题考查了切线的性质,90o 的圆周角所对的弦是直径,锐角三角函数,等腰三角形的判定和性质,熟练灵活的运用相关知识是解题的关键.22.如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中,无人机飞行高度AH 为米,桥的长度为1255米.①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度AB .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.【解析】【分析】①在Rt△AHP 中,由tan∠APH=tanα=AH HP,即可解决问题; ②设BC⊥HQ 于C .在Rt△BCQ 中,求出CQ=tan 30BC ︒=1500米,由PQ=1255米,可得CP=245米,再根据AB=HC=PH ﹣PC 计算即可;【详解】①在Rt△AHP 中, 3,由tan∠APH=tanα=3AH HP PH=3PH=250米. ∴点H 到桥左端点P 的距离为250米.②设BC⊥HQ 于C .在Rt△BCQ 中, 3,∠BQC=30°, ∴CQ=tan 30BC ︒=1500米, ∵PQ=1255米,∴CP=245米,∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB为5米.考点:解直角三角形的应用﹣仰角俯角问题.23.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?【答案】(1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解析】【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.24.如图,四边形AOBC是正方形,点C的坐标是(42,0).(Ⅰ)正方形AOBC的边长为,点A的坐标是.(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O 出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).t=. 【答案】(1)4,(22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216;(3)83【解析】【分析】(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC 的面积;(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t .【详解】解:(1)连接AB ,与OC 交于点D ,四边形AOBC 是正方形,∴△OCA 为等腰Rt △,∴AD=OD=12OC=22, ∴点A 的坐标为()22,22.4,(22,22.(2)如图∵ 四边形AOBC 是正方形,∴ AOB 90∠=o ,AOC 45∠=o .∵ 将正方形AOBC 绕点O 顺时针旋转45o ,∴ 点A '落在x 轴上.∴OA OA 4'==.∴ 点A '的坐标为()4,0.∵ OC 42=∴ A C OC OA 424=-=''.∵ 四边形OACB ,OA C B '''是正方形,∴ OA C 90∠''=o ,ACB 90∠=o .∴ CA E 90∠'=o ,OCB 45∠=o .∴ A EC OCB 45o ∠∠=='. ∴ A E A C 424=='-'. ∵2ΔOBC AOBC 11S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 4242416222'=⋅=-=-'', ∴ΔOBC ΔA EC OA EBS S S ''=-=四边形 ()82416216216--=-. ∴旋转后的正方形与原正方形的重叠部分的面积为16216-.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时,∵POQ 90∠=o ,OP=t ,OQ=2t ∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP ,QM 为OP 的垂直平分线,OP=2OM=2BQ ,OP=t ,BQ=2t-4,t=2(2t-4),解得:t=83. ③当点P 、Q 在AC 上时,ΔOPQ 不能为等腰三角形综上所述,当8t 3=时ΔOPQ 是等腰三角形 【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.25.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2,P 的坐标为(3,0)-,②t 的取值范围为3t ?或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标; (3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a -=-=, ∴2y ax ax 3=-+对称轴为x 1=. ∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++. C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===.∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-.∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.(2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点.所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. 综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.。
2019-2020学年天津市和平区九年级上册期末数学试卷(有答案)-优质资料
2019-2020学年天津市和平区九年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2 B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)23.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对B.3对 C.2对 D.1对5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A .①②B .②③C .③④D .①④9.(3分)已知反比例函数y=的图象经过点A (2,2)、B (x ,y ),当﹣3<x <﹣1时,y 的取值范围是( ) A .﹣4<y <﹣B .﹣<y <﹣4C .<y <4D .﹣1<y <﹣10.(3分)已知点A (4,y 1)、B (,y 2)、C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1,y 2,y 3的大小关系( ) A .y 1>y 3>y 2 B .y 1>y 2>y 3C .y 3>y 2>y 1D .y 3>y 1>y 211.(3分)已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表:x … ﹣1 0 1 2 3 … y…105212…则当y <5时,x 的取值范围为( )A .0<x <4 B .﹣4<x <4 C .x <﹣4或x >4 D .x >412.(3分)如图是抛物线y=ax 2+bx+c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a ﹣b+c >0; ②3a+b=0; ③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c=n ﹣1有两个不相等的实数根. 其中正确结论的个数是( )A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转度,才能和原图形重合.14.(3分)面积等于6cm2的正六边形的周长是.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F= .16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S= .△AOB17.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长= .18.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小= (度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小= (度),点D的坐标为.三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.22.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了份合同;(Ⅱ)列出方程并完成本题解答.23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA 所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.2019-2020学年天津市和平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2 B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.3.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B 选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对B.3对 C.2对 D.1对【解答】解:(1)∵∠E=∠E,∠FCE=∠D,∴△CEF∽△ADF.(2)∵∠E是公共角,∠B=∠FCE,∴△ABE∽△CEF,(3)∴△ABE∽△ADF.故有3对.故选:B.5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)【解答】解:由坐标系可知,点A、点B、点C的坐标分别为(4,3),(3,1),(1,2),∵以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为(4×2,3×2),(3×2,1×2),(1×2,2×2)或(﹣4×2,﹣3×2),(﹣3×2,﹣1×2),(﹣1×2,﹣2×2),即(8,6),(6,2),(2,4)或(﹣8,﹣6),(﹣6,﹣2),(﹣2,﹣4),故选:C.6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.【解答】解:∵DE∥BC,∴△ADP∽△ABQ,△APE∽△AQC,∴=,=,∴==.故选:A.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.【解答】解:画树状图如下:一共有8种情况,有两只雄鸟的情况有3种,所以,P(恰有两只雄鸟)=.故选:B.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.9.(3分)已知反比例函数y=的图象经过点A(2,2)、B(x,y),当﹣3<x<﹣1时,y的取值范围是()A.﹣4<y<﹣B.﹣<y<﹣4 C.<y<4 D.﹣1<y<﹣【解答】解:∵反比例函数关系式为y=(k≠0)图象经过点A(2,2),∴k=2×2=4,∴y=,当x=﹣3时,y=﹣,当x=﹣1时,y=﹣4,∴当﹣3<x <﹣1时,﹣4<y <﹣.故选:A .10.(3分)已知点A (4,y 1)、B (,y 2)、C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1,y 2,y 3的大小关系( )A .y 1>y 3>y 2B .y 1>y 2>y 3C .y 3>y 2>y 1D .y 3>y 1>y 2【解答】解:∵y=(x ﹣2)2﹣1,∴图象的开口向上,对称轴是直线x=2,A (4,y 1)关于直线x=2的对称点是(0,y 1),∵﹣2<0<,∴y 3>y 1>y 2,故选:D .11.(3分)已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表: x… ﹣1 0 1 2 3 … y … 10 5 2 1 2 …则当y <5时,x 的取值范围为( )A .0<x <4 B .﹣4<x <4 C .x <﹣4或x >4 D .x >4【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y <5时,x 的取值范围为0<x <4.故选:A .12.(3分)如图是抛物线y=ax 2+bx+c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转120 度,才能和原图形重合.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.(3分)面积等于6cm2的正六边形的周长是12cm .【解答】解:如图,设正六边形外接圆的半径为a,∵正六边形的面积为6cm2,∴S=×6=cm2,△AOF即a•a•sin∠OFA=a2•=.∴a=2cm,∴正六边形的周长是12cm,故答案为:12cm.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F= 40°.【解答】解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接= 2 .AO,则S△AOB【解答】解:根据题意得:S==2,△AOB故答案为:217.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长= 10 .【解答】解:如图连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.∵△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F∴可以假设设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,∵AC2+BC2=AB2,∴(a+2)2+(b+2)2=(a+b)2,∴4a+4b+8=2ab,∴4(a+b)=48﹣8∴a+b=10,∴AB=10.故答案为1018.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小= 30 (度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小= 90 (度),点D的坐标为(3,﹣3).【解答】解:(1)∵线段OC,OD由OB旋转而成,∴OB=OC=OD.∴点B、C、D在以O为圆心,AB为半径的圆上.∴∠BDC=∠BOC=30°.(2)如图2,过点O作OM⊥CD于点M,连接EM,过点D作BF⊥BO的延长线于点F.∵∠OMD=90°,∴∠OMC=90°.在△OEB与△OMC中,,∴△OEB≌△OMC(AAS).∴OE=OM,∠BOE=∠COM.∴∠EOM=∠EOC+∠COM=∠EOC+∠BOE=∠BOC=60°.∴△OEM是等边三角形.∴EM=OM=OE.∵OC=OD,OM⊥CD,∴CM=DM.又∵∠DEC=90°,∴EM=CM=DM.∴OM=CM=DM.∴点O、C、D、E在以M为圆心,MC为半径的圆上.∴α=∠COD=90°,∴∠FOD=30°,∴OF=3,DF=3,∴点D的坐标为(3,﹣3).故答案为:(1)30;(2)90,(3,﹣3).三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.【解答】解:将x=1代入原方程,得:1+k+3+k=0,解得:k=﹣2.,设方程的另一个根为x1=﹣(﹣2+3),根据题意得:1+x1∴x=﹣2,1∴该方程的另一个根为﹣2.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.【解答】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=222.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x (x ﹣1)份合同;(Ⅱ)列出方程并完成本题解答. 【解答】解:(Ⅰ)每家公司与其他(x ﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x (x ﹣1)份合同;(Ⅱ)根据题意列方程得: x (x ﹣1)=45,解得x 1=10,x 2=﹣9(舍去),检验:x=﹣9不合题意舍去,所以x=10.答:共有10家公司参加商品交易会.故答案为:(x ﹣1); x (x ﹣1).23.(10分)图中是抛物线拱桥,点P 处有一照明灯,水面OA 宽4m ,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,已知点P 的坐标为(3,).(1)点P 与水面的距离是 m ;(2)求这条抛物线的解析式;(3)水面上升1m ,水面宽是多少?【解答】解:(1)由点P 的坐标为(3,)知点P 与水面的距离为m ,故答案为:;(2)设抛物线的解析式为y=ax2+bx,将点A(4,0)、P(3,)代入,得:,解得:,所以抛物线的解析式为y=﹣x2+2x;(3)当y=1时,﹣x2+2x=1,即x2﹣4x+2=0,解得:x=2,则水面的宽为2+﹣(2﹣)=2(m).24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,=BE+DB+DE=AB+DE=4+DE,∴C△DBE由(1)知,△CDE是等边三角形,∴DE=CD,=CD+4,∴C△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;③当6<t<10时,由∠DBE=120°>90°,∴此时不存在;④当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠B CD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.【解答】解:(1)由题可得,抛物线y=x2的开口方向向上,对称轴为直线x=0,顶点坐标为(0,0);(2)∵点A(2,4),∴OA 解析式为y=2x ,∵抛物线y=x 2从点O 沿OA 方向平移,∴可设顶点坐标为(m , 2m ),∴抛物线的解析式为y=(x ﹣m )2+2m ,∵抛物线与直线x=2交于点P ,∴P (2,m 2﹣2m+4),又∵直线x=2与x 轴相交于点B ,∴B (2,0),∴PB=m 2﹣2m+4=(m ﹣1)2+3,∴当m=1时,PB 最短;(3)设直线DE 为y=kx+b ,则C (0,b ),OC=b ,直线DE 与抛物线y=x 2联立,得x 2﹣kx ﹣b=0,设D (x 1,y 1),E (x 2,y 2),则x 1+x 2=k ,x 1x 2=﹣b ,∴y 1+y 2=kx 1+b+kx 2+b=k 2+2b ,y 1y 2=(kx 1+b )(kx 2+b )=b 2,如图,分别过D ,E 作DQ ⊥y 轴于Q ,EP ⊥y 轴于P ,则∠DQC=∠EPC=90°,而∠DCQ=∠ECP ,∴△DCQ ∽△ECP , ∴=,∵∠CFD=∠CFE ,∠DQF=∠EPF ,∴△DQF ∽△EPF ,∴=,∴=,设F(0,f),则OF=﹣f,,整理可得,k2(b+f)=0,∵k≠0,∴b+f=0,∴b=﹣f,即OC=OF.。
天津市和平区2019-2020学年九年级上期末数学检测试卷(含答案)
2019-2020学年天津市和平区九年级(上)期末测试数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A.1:1000000 B.1:100000 C.1:2000 D.1:10003.如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°4.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣15.将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4) D.(4,3)6.一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是( )A .B .C .D .7.若一个正六边形的周长为24,则该正六边形的边心距为( ) A .2B .4C .3D .128.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则点B 的对应点D 的坐标为( )A .(3,3)B .(1,4)C .(3,1)D .(4,1)9.如图,△ABC 内接于⊙O ,AD 是∠BAC 的平分线,交BC 于点M ,交⊙O 于点D .则图中相似三角形共有( )A .2对B .4对C .6对D .8对10.如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为,CD=4,则弦AC 的长为( )A .2B .3C .4D .211.如图,点A 1、A 2、B 1、B 2、C 1、C 2分别为△ABC 的边BC 、CA 、AB 的三等分点,若△ABC的周长为I ,则六边形A 1A 2B 1B 2C 1C 2的周长为( )A .2IB . IC . ID . I12.如图,抛物线y=ax 2+bx+c (a ≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c ,则P 的取值范围是( )A .﹣3<P <﹣1B .﹣6<P <0C .﹣3<P <0D .﹣6<P <﹣3二、填空题:本大题共6小题,每小题3分,共18分.13.抛物线y=ax 2+bx+3经过点(2,4),则代数式4a+2b 的值为 .14.如图,在△ABC 中,∠C=90°,BC=6,D ,E 分别在AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A′处,若A′为CE 的中点,则折痕DE 的长为 .15.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P=50°,则∠BAC= .16.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是.17.如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC 的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.18.已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF的中点.(Ⅰ)如图①,这两个等边三角形的高为;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.(1)解方程(x﹣2)(x﹣3)=0;(2)已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,求m的值取值范围.20.已知四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OC、OA、AC.(1)如图①,求∠OCA的度数;(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2,求BC的长和阴影部分的面积.21.已知,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P.(1)如图①,若∠COB=2∠PCB,求证:直线PC是⊙O的切线;(2)如图②,若点M是AB的中点,CM交AB于点N,MN•MC=36,求BM的值.22.如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.23.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED 的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)根据题意,填空:①顶点C的坐标为;②B点的坐标为;(2)求抛物线的解析式;(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.在△ABC 中,∠ACB=30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线时,求∠CC 1A 1的度数; (2)已知AB=6,BC=8,①如图2,连接AA 1,CC 1,若△CBC 1的面积为16,求△ABA 1的面积;②如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应是点P 1,直接写出线段EP 1长度的最大值.25.将直角边长为6的等腰直角△AOC 放在平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 轴,y 轴的正半轴上,一条抛物线经过点A 、C 及点B (﹣3,0). (1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;(3)若点P (t ,t )在抛物线上,则称点P 为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x ﹣上,求此时抛物线的解析式.2019-2020学年天津市和平区九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大【考点】可能性的大小;随机事件.【分析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.【解答】解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.2.两地的实际距离是2000m,在地图上量得这两地的距离为2cm,这幅地图的比例尺是()A.1:1000000 B.1:100000 C.1:2000 D.1:1000【考点】比例线段.【分析】先把2000m化为200000cm,然后根据比例尺的定义求解.【解答】解:2000m=200000cm,所以这幅地图的比例尺为2:200000=1:100000.故选B.3.如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°【考点】旋转的性质.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=10°,∴∠AOB′=∠A′OA﹣∠A′OB=45°﹣10°=35°,故选C.4.对于二次函数y=2(x+1)(x﹣3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【考点】二次函数的性质.【分析】先把二次函数化为顶点式的形式,再根据二次函数的性质进行解答.【解答】解:二次函数y=2(x+1)(x﹣3)可化为y=2(x﹣1)2﹣8的形式,A、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x>1时,y随x的增大而增大,故本选项错误;C、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,故本选项正确;D、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C.5.将抛物线y=x2﹣2x+2先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(﹣2,3)B.(﹣1,4)C.(3,4) D.(4,3)【考点】二次函数图象与几何变换.【分析】利用平移可求得平移后的抛物线的解析式,可求得其顶点坐标.【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴先向右平移3个单位长度,再向上平移2个单位长度后抛物线解析式为y=(x﹣4)2+3,∴顶点坐标为(4,3),故选D.6.一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:=.故选C.7.若一个正六边形的周长为24,则该正六边形的边心距为()A.2B.4 C.3 D.12【考点】正多边形和圆.【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,∵圆内接正六边形ABCDEF的周长为24,∴AB=4,则AM=2,因而OM=OA•cos30°=2.正六边形的边心距是2.故选A.8.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点B的对应点D的坐标为()A.(3,3) B.(1,4) C.(3,1) D.(4,1)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质,结合两图形的位似比,进而得出D点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点D的横坐标和纵坐标都变为B点的一半,∴点D的坐标为:(4,1).故选:D.9.如图,△ABC内接于⊙O,AD是∠BAC的平分线,交BC于点M,交⊙O于点D.则图中相似三角形共有()A.2对B.4对 C.6对 D.8对【考点】相似三角形的判定;圆周角定理.【分析】相似三角形的判定问题,只要两个对应角相等,两个三角形就是相似三角形.【解答】解:∵AD是∠BAC的平分线,∴∠BAD=∠CAD,BD=CD,∴∠BAD=∠CAD=∠DBC=∠DCB,又∵∠BDA=∠MDB,∠CDA=∠MDC∴△ABD∽△BDM;△ADC∽△CDM;∵∠CAD=∠CBD,∠AMC=∠BMD,∴△AMC∽△BMD,∵∠BAD=∠MCD,∠AMB=∠CMD,∴△ABM∽△CDM,∵∠ABC=∠ADC,∠BAD=∠DAC,∴△ABM∽△ADC,∵∠ACB=∠ADB,∠BAD=∠CAD,∴△ACM∽△ADB,∴共有六对相似三角形,故选:C.10.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为,CD=4,则弦AC的长为()A.2B.3 C.4 D.2【考点】切线的性质;垂径定理.【分析】首先连接AO并延长,交CD于点E,连接OC,由直线AB与⊙O相切于点A,根据切线的性质,可得AE⊥AB,又由CD∥AB,可得AE⊥CD,然后由垂径定理与勾股定理,求得OE的长,继而求得AC的长.【解答】解:连接AO并延长,交CD于点E,连接OC,∵直线AB与⊙O相切于点A,∴EA⊥AB,∵CD∥AB,∠CEA=90°,∴AE⊥CD,∴CE=CD=×4=2,∵在Rt△OCE中,OE==,∴AE=OA+OE=4,∴在Rt△ACE中,AC==2.故选A.11.如图,点A 1、A 2、B 1、B 2、C 1、C 2分别为△ABC 的边BC 、CA 、AB 的三等分点,若△ABC 的周长为I ,则六边形A 1A 2B 1B 2C 1C 2的周长为( )A .2IB . IC . ID . I【考点】相似三角形的判定与性质.【分析】根据题意可知△ABC ∽△AC 1B 2,△ABC ∽△C 2BA 1,△ABC ∽△B 1A 2C ,推出C 1B 2:BC=1:3,C 2A 1:AC=1:3,B 1A 2:AB=1:3,推出六边形的周长为△ABC 的周长L 的. 【解答】解:∵点A 1、A 2,B 1、B 2,C 1、C 2分别是△ABC 的边BC 、CA 、AB 的三等分点, ∴△ABC ∽△AC 1B 2,△ABC ∽△C 2BA 1,△ABC ∽△B 1A 2C , ∴C 1B 2:BC=1:3,C 2A 1:AC=1:3,B 1A 2:AB=1:3,∴六边形A 1A 2B 1B 2C 1C 2的周长=(AB+BC+CA ), ∵△ABC 的周长为I ,∴六边形A 1A 2B 1B 2C 1C 2的周长=I . 故选:B .12.如图,抛物线y=ax 2+bx+c (a ≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c ,则P 的取值范围是( )A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.【解答】解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.13.抛物线y=ax2+bx+3经过点(2,4),则代数式4a+2b的值为 1 .【考点】二次函数图象上点的坐标特征.【分析】把点(2,4)代入函数解析式即可求出4a+2b的值.【解答】解:∵抛物线y=ax2+bx+3经过点(2,4),∴4a+2b+3=4,∴4a+2b=1,故答案为1.14.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为 2 .【考点】翻折变换(折叠问题).【分析】△ABC沿DE折叠,使点A落在点A′处,可得∠DEA=∠DEA′=90°,AE=A′E,所以,△ACB∽△AED,A′为CE的中点,所以,可运用相似三角形的性质求得.【解答】解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E,∴△ACB∽△AED,又A′为CE的中点,∴=,即=,∴ED=2.故答案为:2.15.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC= 25°.【考点】切线的性质.【分析】连接OB,根据切线的性质定理以及四边形的内角和定理得到∠AOB=180°﹣∠P=130°,再根据等边对等角以及三角形的内角和定理求得∠BAC的度数.【解答】解:连接OB,∵PA、PB是⊙O的切线,A、B为切点,∴∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠P﹣∠PAO﹣∠PBO=130°,∵OA=OB,∴∠BAC=25°.16.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个,已知从袋中摸出一个球是红球的概率是,则从袋中摸出一个球是白球的概率是.【考点】概率公式.【分析】根据红、黄、白三种颜色球共有的个数乘以红球的概率可得红球的个数,再设白球有x个,得出黄球有(2x﹣5)个,根据题意列出方程,求出白球的个数,再除以总的球数即可.【解答】解:根据题意得:红球的个数为:100×=30,设白球有x个,则黄球有(2x﹣5)个,根据题意得x+2x﹣5=100﹣30,解得x=25.所以摸出一个球是白球的概率P==,故答案为:.17.如图,点D、E、F分别在正三角形ABC的三边上,且△DEF也是正三角形,若△ABC的边长为a,△DEF的边长为b.则△AEF的内切圆半径为.【考点】三角形的内切圆与内心;等边三角形的性质.【分析】欲求△AEF的内切圆半径,可以画出图形,然后利用题中已知条件,挖掘隐含条件求解.【解答】解:如图,由于△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,∴∠1+∠2=∠2+∠3=120°,∠1=∠3;在△AEF和△CFD中,,∴△AEF≌△CFD(AAS);同理可证:△AEF≌△CFD≌△BDE;∴BE=AF,即AE+AF=AE+BE=a.设M是△AEF的内心,MH⊥AE于H,则AH=(AE+AF﹣EF)=(a﹣b);∵MA平分∠BAC,∴∠HAM=30°;∴HM=AH•tan30°=(a﹣b)•=(a﹣b).故答案为:(a﹣b).18.已知△ABC,△EFG均是边长为4的等边三角形,点D是边BC、EF的中点.(Ⅰ)如图①,这两个等边三角形的高为2;(Ⅱ)如图②,直线AG,FC相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是2﹣2 .【考点】旋转的性质;等边三角形的性质.【分析】(Ⅰ)如图①中,连接AD,在Rt△ABD中,利用勾股定理即可解决问题.(Ⅱ)如图①中,连接AE、EC、CG.首先证明∠AMF=90°,在如图②中,当点M运动到BM⊥AC时,BM最短,由此即可解决问题.【解答】解:(Ⅰ)如图①中,连接AD,∵△ABC是等边三角形,BD=CD,∴AD⊥BC,在Rt△ABD中,∵AB=4,BD=2,∴AD===2,故答案为2.(Ⅱ)如图①中,连接AE、EC、CG.∵DE=DF=DC,∴△EFC是直角三角形,∴∠ECF=90°,∵∠ADC=∠EDG=90°,∴∠ADE=∠GDC,在△ADE和△GDC中,,∴△ADE≌△GDC,∴AE=CG,∠DAE=∠DGC,∵DA=DG,∴∠DAG=∠DGA,∴∠GAE=∠AGC,∵AG=GA,∴△AGE≌△GAC,∴∠GAK=∠AGK,∴KA=KG,∵AC=EG,∴EK=KC,∴∠KEC=∠KCE,∵∠AKG=∠EKC,∴∠KAG=∠KCE,∴EC∥AG,∴∠AMF=∠ECF=90°,∴点M在以AC为直径的圆上运动,如图②中,当点M运动到BM⊥AC时,BM最短,∵OB=2,AO=OM=OC=2,∴BM 的最小值为2﹣2.故答案为2﹣2.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程. 19.(1)解方程(x ﹣2)(x ﹣3)=0;(2)已知关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,求m 的值取值范围. 【考点】根的判别式;解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解一元二次方程,即可得出x 1=2,x 2=3;(2)根据方程有两个不相等的实数根结合根的判别式即可得出关于m 的一元一次不等式,解之即可得出结论.【解答】解:(1)∵(x ﹣2)(x ﹣3)=0 ∴x ﹣2=0或x ﹣3=0, 解得:x 1=2,x 2=3.(2)∵关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根, ∴△=(﹣2)2﹣4m=4﹣4m >0, 解得:m <1.∴m 的值取值范围为m <1.20.已知四边形ABCD 是⊙O 的内接四边形,∠ABC=2∠D ,连接OC 、OA 、AC .(1)如图①,求∠OCA的度数;(2)如图②,连接OB、OB与AC相交于点E,若∠COB=90°,OC=2,求BC的长和阴影部分的面积.【考点】圆内接四边形的性质;扇形面积的计算.【分析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)由∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC =OE•OC=×2×2=2,∴S 扇形OBC ==3π,∴S阴影=S 扇形OBC ﹣S △OEC =3π﹣2.21.已知,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P . (1)如图①,若∠COB=2∠PCB ,求证:直线PC 是⊙O 的切线;(2)如图②,若点M 是AB 的中点,CM 交AB 于点N ,MN•MC=36,求BM 的值.【考点】切线的判定;圆周角定理.【分析】(1)利用半径OA=OC 可得∠COB=2∠A ,然后利用∠COB=2∠PCB 即可证得结论,再根据圆周角定理,易得∠PCB+∠OCB=90°,即OC ⊥CP ;故PC 是⊙O 的切线;(2)连接MA ,MB ,由圆周角定理可得∠ACM=∠BAM ,进而可得△AMC ∽△NMA ,故AM 2=MC•MN;等量代换可得MN•MC=BM 2=AM 2,代入数据即可得到结论. 【解答】(1)证明:∵OA=OC , ∴∠A=∠ACO . ∴∠COB=2∠ACO . 又∵∠COB=2∠PCB , ∴∠ACO=∠PCB . ∵AB 是⊙O 的直径, ∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°,即OC ⊥CP . ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线.(2)解:连接MA、MB.(如图)∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM.∵∠AMC=∠AMN,∴△AMC∽△NMA.∴.∴AM2=MC•MN.∵MC•MN=36,∴AM=6,∴BM=AM=6.22.如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的宽各为多少米,设与墙平行的一边长为x米.(1)填空:(用含x的代数式表示)另一边长为米;(2)列出方程,并求出问题的解.【考点】一元二次方程的应用.【分析】首先设平行于墙的一边为x 米,则另一边长为米,然后根据矩形的面积=长×宽,用未知数表示出鸡场的面积,根据面积为180m 2,可得方程,解方程即可.【解答】解:(1)设与墙平行的一边长为x 米,另一边长为米,故答案是:;(2)设平行于墙的一边为x 米,则另一边长为米,根据题意得:x•=180,整理得出: x 2﹣40x+360=0, 解得:x1=20+2,x 2=20﹣2,由于墙长25米,而20+2>25,∴x1=20+2,不合题意舍去, ∵0<20﹣2<25,∴x2=20﹣2,符合题意,此时=10+,答:此时鸡场靠墙的一边长(20﹣2)米,宽是(10+)米.23.如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE 、ED 、DB 组成,已知河底ED 是水平的,ED=16米,AE=8米,抛物线的顶点C 到ED 的距离是11米,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系. (1)根据题意,填空:①顶点C 的坐标为 (0,11) ; ②B 点的坐标为 (8,8) ; (2)求抛物线的解析式;(3)已知从某时刻开始的40小时内,水面与河底ED 的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h=﹣(t ﹣19)2+8(0≤t ≤40),且当点C 到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【考点】二次函数的应用.【分析】(1)求出OC 、OD 、BD 的长即可解决问题.(2)根据抛物线特点设出二次函数解析式,把B 坐标代入即可求解;(3)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 至多为6,把6代入所给二次函数关系式,求得t 的值,相减即可得到禁止船只通行的时间. 【解答】解:(1)由题意OC=11,OD=8,BD=AE=8, ∴C (0,11),B (8,8), 故答案为(0,11)和(8,8).(2)∵点C 到ED 的距离是11米, ∴OC=11,设抛物线的解析式为y=ax 2+11,由题意得B (8,8), ∴64a+11=8,解得a=﹣,∴y=﹣x 2+11;(3)水面到顶点C 的距离不大于5米时,即水面与河底ED 的距离h 至多为11﹣5=6(米),∴6=﹣(t ﹣19)2+8,∴(t ﹣19)2=256, ∴t ﹣19=±16, 解得t 1=35,t 2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.24.在△ABC 中,∠ACB=30°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1. (1)如图1,当点C 1在线段CA 的延长线时,求∠CC 1A 1的度数; (2)已知AB=6,BC=8,①如图2,连接AA 1,CC 1,若△CBC 1的面积为16,求△ABA 1的面积;②如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转的过程中,点P 的对应是点P 1,直接写出线段EP 1长度的最大值.【考点】三角形综合题.【分析】(1)由旋转的性质可得:∠A 1C 1B=∠ACB=30°,BC=BC 1,又由等腰三角形的性质,即可求得∠CC 1A 1的度数;(2)①由△ABC ≌△A 1BC 1,易证得△ABA 1∽△CBC 1,然后利用相似三角形的面积比等于相似比的平方,即可求得△ABA 1的面积;②当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,即可求得线段EP 1长度的最大值. 【解答】解:(1)依题意得:△A 1C 1B ≌△ACB , ∴BC 1=BC ,∠A 1C 1B=∠C=30°, ∴∠BC 1C=∠C=30°, ∴∠CC 1A 1=60°; (2)如图2所示:由(1)知:△A 1C 1B ≌△ACB ,∴A 1B=AB ,BC 1=BC ,∠A 1BC 1=∠ABC ,∴∠1=∠2,==,∴△A 1BA ∽△C 1BC ,∴=()2,∵△CBC 1的面积为16, ∴△ABA 1的面积=9(3)线段EP 1长度的最大值为11,理由如下:如图3所示:当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,最大值为:EP 1=BC+BE=8+3=11. 即线段EP 1长度的最大值为11.25.将直角边长为6的等腰直角△AOC 放在平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 轴,y 轴的正半轴上,一条抛物线经过点A 、C 及点B (﹣3,0). (1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE的面积最大时,求点P的坐标;(3)若点P(t,t)在抛物线上,则称点P为抛物线的不动点,将(1)中的抛物线进行平移,平移后,该抛物线只有一个不动点,且顶点在直线y=2x﹣上,求此时抛物线的解析式.【考点】二次函数综合题.【分析】(1)已知抛物线与x轴的两个交点坐标,所以设抛物线方程为两点式:y=a(x+3)(x ﹣6),然后把点A的坐标代入该函数解析式即可求得系数a的值;=,进而求出△APE的面积S,即可得出点P坐(2)利用相似三角形的性质得出S△PCE标;(3)利用抛物线上不动点的定义以及不动点的个数得出方程h﹣k=①,再用平移后的抛物线的顶点在直线y=2x﹣上,得出方程k=2k﹣②,联立解方程组即可.【解答】解:(1)∵B(﹣3,0),C(6,0),设抛物线为y=a(x+3)(x﹣6),过A(0,6)∴6=a(0+3)(0﹣6),解得a=﹣,∴y=﹣(x+3)(x﹣6),即y=﹣x2+x+6;(2)设P(m,0),如图,∵PE ∥AB , ∴△PCE ∽△BCA ,∴,,∴S △PCE =,∴S=S △APC ﹣S △PCE =﹣m 2+m+6,=﹣(m ﹣)2+,∴当m=时,S 有最大值为;∴P (,0);(3)设平移后的抛物线的顶点为G (h ,k ),∴抛物线解析式为y=﹣(x ﹣h )2+k ,由抛物线的不动点的定义,得,t=﹣(t ﹣h )2+k , 即:t 2+(3﹣2h )t+h 2﹣3k=0, ∵平移后,抛物线只有一个不动点, ∴此方程有两个相等的实数根, ∴△=(3﹣2h )2﹣4(h 2﹣3k )=0,∴h ﹣k=①,∵顶点在直线y=2x﹣上,∴k=2k﹣②,∴联立①②得,h=1,k=,∴抛物线的解析式为y=﹣(x﹣1)2+=﹣x2+x﹣,2017年3月6日。
2019-2020学年辽宁省沈阳市和平区九年级(上)期末数学试卷
2019-2020学年辽宁省沈阳市和平区九年级(上)期末数学试卷一、选择题(下列各题备选答案中,只有一个答案是正确的每小题2分,共20分)1.(2分)如果(b+d≠0),则()A.B.C.D.或﹣12.(2分)二次函数y=2(x﹣6)2+9图象的顶点坐标是()A.(﹣6,9)B.(6,9)C.(6,﹣9)D.(﹣6,﹣9)3.(2分)如图所示几何体的左视图正确的是()A.B.C.D.4.(2分)某商品经过连续两次降价,销售单价由原来1000元降到640元,设平均每次降价的百分率为x,根据题意可列方程为()A.1000(1+x)2=640B.640(1+x)2=1000C.640(1﹣x)2=1000D.1000(1﹣x)2=6405.(2分)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③6.(2分)将抛物线y=x2向左平移5个单位长度,再向上平移6个单位长度,所得抛物线相应的函数表达式是()A.y=(x+5)2+6B.y=(x+5)2﹣6C.y=(x﹣5)2+6D.y=(x﹣5)2﹣6 7.(2分)如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3B.4C.5D.68.(2分)二次函数y=ax2+bx+c的图象如图所示,反比例函数y与正比例函数y=cx在同一坐标系内的大致图象是()A.B.C.D.9.(2分)根据所给的表格,估计一元二次方程x2+12x﹣15=0的近似解x,则x的整数部分是()A.1B.2C.3D.410.(2分)如图,平面直角坐标系xOy中,点A、B的坐标分别为(9,0)、(6,﹣9),△AB'O'是△ABO关于点A的位似图形,且O'的坐标为(﹣3,0),则点B'的坐标为()A.(8,﹣12)B.(﹣8,12)C.(8,﹣12)或(﹣8,12)D.(5,﹣12)二、填空题(每小题3分,共18分)11.(3分)小明在同一时刻测量位于同一地点的旗杆和建筑物在太阳光下的影长,测得旗杆的影长为3m,建筑物的影长为30m,已知旗杆的高为4m,则这个建筑物高为m.12.(3分)若关于x的方程x2﹣ax+a﹣1=0有两个相等的实数根,则a的值是.13.(3分)如图,一张矩形纸片沿它的长边对折(EF为折痕),得到两个全等的小矩形,如果小矩形与原来的矩形相似,那么小矩形的长边与短边的比是.14.(3分)如图,将△ABC沿着BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=6,则EC的长为.15.(3分)某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.16.(3分)如图,在矩形ABCD中,AB=15,AD=20,P是AD边上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F,则PE•PF的最大值为.三、解答题(第17题6分,第18、19题各8分,共22分)17.(6分)解一元二次方程:(x+1)(3﹣x)=1.18.(8分)计算:|1﹣2cos30°|()﹣1﹣(5﹣π)019.(8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是红球的概率为.(1)布袋里红球有个;(2)先从布袋中摸出个球后不放回,再摸出1个球,请用列表或画树状图的方法求出两次摸到的球都是白球的概率.四、(每小题8分,共16分)20.(8分)如图,已知△ABC中,AB,AC,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.21.(8分)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M,N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,AC=16,△ADC的周长为36时,直接写出四边形ADCE的面积为.。
2019-2020学年天津市和平区九年级上学期期末考试数学试卷及答案解析
第 1 页 共 22 页
2019-2020学年天津市和平区九年级上学期期末考试数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选1只有一项是符合题目要求的)
1.(3分)下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )
A .
B .
C .
D .
2.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5.若随机投掷
一次小正方体,则朝上一面数字是5的概率为( )
A .16
B .15
C .14
D .13 3.(3分)如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为( )
A .25°
B .30°
C .40°
D .50°
4.(3分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE =1.2m .测得AB =1.6m .BC
=18.4m .则建筑物的高CD =( )
A .13.8m
B .15m
C .18.4m
D .20m
5.(3分)抛物线y =x 2﹣6x +9与x 轴的公共点的坐标是( )
A .(3,0)
B .(3,3)。
天津市和平区2019-2020学年中考数学最后模拟卷含解析
天津市和平区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.152.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.3.若31x与4x互为相反数,则x的值是()A.1 B.2 C.3 D.44.一组数据:6,3,4,5,7的平均数和中位数分别是( )A.5,5 B.5,6 C.6,5 D.6,65.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④6.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.7.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S 随着时间t变化的函数图象大致是()A.B.C.D.8.小明解方程121xx x--=的过程如下,他的解答过程中从第()步开始出现错误.解:去分母,得1﹣(x﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x=﹣2④系数化为1,得x=2⑤A.①B.②C.③D.④9.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.1010.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=22.其中正确的结论有()A.4个B.3个C.2个D.1个11.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.212.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,AB=AC,BE、AD分别是边AC、BC上的高,CD=2,AC=6,那么CE=________.14.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.15.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.16.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,(3,0)A-,(4,0)B,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D¢),相应地,点C的对应点C'的坐标为_______.17.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=kx的图象没有公共点,那么k的取值范围是______.18.如图,已知OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC 是该抛物线的内接格点三角形,AB=32,且点A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7 B.8 C.14 D.1620.(6分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.21.(6分)关于x的一元二次方程ax2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.22.(8分)先化简,再求值:222(2)()y x yy x y x yx y x y⎛⎫--÷--+⎪+-⎝⎭,其中1x=-,2y=.23.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.24.(10分)在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C .求k 的值;横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.25.(10分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.26.(12分)某公司10名销售员,去年完成的销售额情况如表: 销售额(单位:万元) 3 4 5 6 7 8 10 销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?27.(12分)如图1,在等腰Rt △ABC 中,∠BAC=90°,点E 在AC 上(且不与点A 、C 重合),在△ABC的外部作等腰Rt △CED ,使∠CED=90°,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)求证:△AEF 是等腰直角三角形;(2)如图2,将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,连接AE ,求证:AF=2AE ; (3)如图3,将△CED 绕点C 继续逆时针旋转,当平行四边形ABFD 为菱形,且△CED 在△ABC 的下方时,若AB=25,CE=2,求线段AE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】直接利用概率的意义分析得出答案. 【详解】解:因为一枚质地均匀的硬币只有正反两面, 所以不管抛多少次,硬币正面朝上的概率都是12, 故选B . 【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键. 2.B 【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误;B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关. 3.D 【解析】 由题意得31x -+4x=0, 去分母3x+4(1-x)=0, 解得x=4.故选D. 4.A 【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答. 平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1. 故选A .考点:中位数;算术平均数. 5.A 【解析】分析:只要证明△DAB ≌△EAC ,利用全等三角形的性质即可一一判断; 详解:∵∠DAE=∠BAC=90°, ∴∠DAB=∠EAC ∵AD=AE ,AB=AC , ∴△DAB ≌△EAC ,∴BD=CE ,∠ABD=∠ECA ,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确, ∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°, ∴∠CEB=90°,即CE ⊥BD ,故③正确,∴BE 1=BC 1-EC 1=1AB 1-(CD 1-DE 1)=1AB 1-CD 1+1AD 1=1(AD 1+AB 1)-CD 1.故④正确, 故选A .点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题. 6.B 【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小. 考点:三视图. 7.B 【解析】解:当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大; 当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变;当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小而减小; 故选B . 8.A 【解析】 【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题. 【详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误, 故选A . 【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法. 9.A 【解析】 ∵9<11<16,<<,即34<<,∵a,b为两个连续的整数,且11a b<<,∴a=3,b=4,∴a+b=7,故选A.10.A【解析】【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正确.由AD∥BC,推出△AEF∽△CBF,推出AEBC=AFCF,由AE=12AD=12BC,推出AFCF=12,即CF=2AF;③正确.只要证明DM垂直平分CF,即可证明;④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,可得tan∠CAD=CDAD=2ba=22.【详解】如图,过D作DM∥BE交AC于N.∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AEBC=AFCF.∵AE=12AD=12BC,∴AFCF=12,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF.∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有ba=2ab,即b=2a,∴tan∠CAD=CDAD=2ba=2.故④正确.故选A.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例. 11.A 【解析】试题解析:由于点A 、B 在反比例函数图象上关于原点对称, 则△ABC 的面积=2|k|=2×4=1. 故选A .考点:反比例函数系数k 的几何意义. 12.D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.43【解析】∵AB=AC ,AD ⊥BC , ∴BD=CD=2,∵BE 、AD 分别是边AC 、BC 上的高, ∴∠ADC=∠BEC=90°, ∵∠C=∠C , ∴△ACD ∽△BCE ,∴AC CDBC CE =, ∴624CE=,∴CE=43, 故答案为43.14.1 【解析】 试题解析:如图,∵菱形ABCD 中,BD=8,AB=5, ∴AC ⊥BD ,OB=12BD=4, ∴OA=22AB OB -=3,∴AC=2OA=6, ∴这个菱形的面积为:12AC•BD=12×6×8=1. 15.150 【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.16.()7,4 【解析】分析:根据勾股定理,可得OD ' ,根据平行四边形的性质,可得答案. 详解:由勾股定理得:OD '224D A AO '-= ,即D ¢(0,4). 矩形ABCD 的边AB 在x 轴上,∴四边形ABC D ''是平行四边形,A D ¢=BC ', C 'D ¢=AB=4-(-3)=7, C '与D ¢的纵坐标相等,∴C '(7,4),故答案为(7,4). 点睛:本题考查了多边形,利用平行四边形的性质得出A D ¢=B C ',C 'D ¢=AB=4-(-3)=7是解题的关键. 17.02k << 【解析】 【分析】先根据正比例函数y=(k-1)x 的函数值y 随x 的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=kx的图象没有公共点,说明反比例函数y=kx的图象经过一、三象限,k>0,从而可以求出k的取值范围.【详解】∵y=(k-1)x的函数值y随x的增大而减小,∴k-1<0∴k<1而y=(k-1)x的图象与反比例函数y=k x的图象没有公共点,∴k>0综合以上可知:0<k<1.故答案为0<k<1.【点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.18【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∵OP 平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴112CE CP==,∴223,PE CP CE=-=∴223OP PE==,∵PD⊥OA,点M是OP的中点,∴13.2DM OP==故答案为: 3.【点睛】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出OP 的长是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.C【解析】【分析】根据在OB上的两个交点之间的距离为32,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.【详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.故选C.【点睛】本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.20.(1)13;(2)13.【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案. 【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同, ∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA 1的概率是=13; (2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况, 则甲、乙两位嘉宾能分为同队的概率是3193=. 21.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2. 【解析】 【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可. 详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根. 22.1分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.详解:原式()()()()222,x y x y y xy y x y x y x y x y x y -+⎛⎫+=-⋅--+ ⎪++-⎝⎭()()()222,x y x y xy x xy y x y x y-+-=⋅---+-222,xy x xy y =--++222x y =-+, 当x=-1、y=2时, 原式=-(-1)2+2×22 =-1+8 =1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 23. (1)证明见解析;(2) △APQ 是等边三角形. 【解析】 【分析】(1)根据等边三角形的性质可得AB =AC ,再根据SAS 证明△ABP ≌△ACQ;(2)根据全等三角形的性质得到AP =AQ ,再证∠PAQ = 60°,从而得出△APQ 是等边三角形. 【详解】证明:(1)∵△ABC 为等边三角形, ∴AB=AC ,∠BAC=60°,在△ABP 和△ACQ 中,AB ACABP ACQ BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△ACQ(SAS),(2)∵△ABP ≌△ACQ , ∴∠BAP=∠CAQ ,AP=AQ , ∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°, ∴△APQ 是等边三角形. 【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP ≌△ACQ 是解题的关键.24.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤. 【解析】分析:(1)根据点A (4,1)在ky x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可. 详解:(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0). ② a .当直线过(4,0)时:1404b ⨯+=,解得1b =- b.当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤. 点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.25.(1)①点C 坐标为()1,5C 或()3,5C ';②y =x +2或y =-x +3;(2)217r ≤≤517r ≤≤【解析】 【分析】(1)①根据“和谐点”的定义即可解决问题;②首先求出点C坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);②如图2.由图可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,357k bk b+=⎧⎨+=⎩,∴12kb=⎧⎨=⎩,∴y=x+2,当C2(5,﹣1)时,351k bk b+=⎧⎨+=-⎩,∴14kb=-⎧⎨=⎩,∴y=﹣x+3.综上所述:直线AC的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F在点E左侧时:连接OD .则OD=221417+=,∴217r ≤≤. ②当点F 在点E 右侧时:连接OE ,OD .∵E (1,2),D (1,3),∴OE=22125+=,OD=221417+=,∴517r ≤≤. 综上所述:217r ≤≤或517r ≤≤. 【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题. 26.(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元. 【解析】 【分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答. 【详解】 解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元); 因为第五,第六个数均是5万元,所以中位数是5(万元). (2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理. 【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数. 27.(1)证明见解析;(2)证明见解析;(3)2. 【解析】试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论; (3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得2,Rt △ACH 中,2,即可得到2.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴2AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴2,Rt △ACH 中,22252()()+2,∴2点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.。
【精选】2019-2020学年天津市和平区九年级上册期末数学试卷(有答案)
2019-2020学年天津市和平区九年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)23.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对 C.2对 D.1对5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④9.(3分)已知反比例函数y=的图象经过点A(2,2)、B(x,y),当﹣3<x<﹣1时,y的取值范围是()A.﹣4<y<﹣B.﹣<y<﹣4 C.<y<4 D.﹣1<y<﹣10.(3分)已知点A(4,y1)、B(,y2)、C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1,y2,y3的大小关系()A.y1>y3>y2B.y1>y2>y3C.y3>y2>y1D.y3>y1>y211.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:A.0<x<4 B.﹣4<x<4 C.x<﹣4或x>4 D.x>412.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转度,才能和原图形重合.14.(3分)面积等于6cm2的正六边形的周长是.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△AOB=.17.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长=.18.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小=(度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=(度),点D的坐标为.三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD 的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.22.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了份合同;(Ⅱ)列出方程并完成本题解答.23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D 是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.2019-2020学年天津市和平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.3.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B 选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D 选项错误.故选:B.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对 C.2对 D.1对【解答】解:(1)∵∠E=∠E,∠FCE=∠D,∴△CEF∽△ADF.(2)∵∠E是公共角,∠B=∠FCE,∴△ABE∽△CEF,(3)∴△ABE∽△ADF.故有3对.故选:B.5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)【解答】解:由坐标系可知,点A、点B、点C的坐标分别为(4,3),(3,1),(1,2),∵以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为(4×2,3×2),(3×2,1×2),(1×2,2×2)或(﹣4×2,﹣3×2),(﹣3×2,﹣1×2),(﹣1×2,﹣2×2),即(8,6),(6,2),(2,4)或(﹣8,﹣6),(﹣6,﹣2),(﹣2,﹣4),故选:C.6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.【解答】解:∵DE∥BC,∴△ADP∽△ABQ,△APE∽△AQC,∴=,=,∴==.故选:A.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.【解答】解:画树状图如下:一共有8种情况,有两只雄鸟的情况有3种,所以,P(恰有两只雄鸟)=.故选:B.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.9.(3分)已知反比例函数y=的图象经过点A(2,2)、B(x,y),当﹣3<x<﹣1时,y的取值范围是()A.﹣4<y<﹣B.﹣<y<﹣4 C.<y<4 D.﹣1<y<﹣【解答】解:∵反比例函数关系式为y=(k≠0)图象经过点A(2,2),∴k=2×2=4,∴y=,当x=﹣3时,y=﹣,当x=﹣1时,y=﹣4,∴当﹣3<x<﹣1时,﹣4<y<﹣.故选:A.10.(3分)已知点A(4,y1)、B(,y2)、C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1,y2,y3的大小关系()A.y1>y3>y2B.y1>y2>y3C.y3>y2>y1D.y3>y1>y2【解答】解:∵y=(x﹣2)2﹣1,∴图象的开口向上,对称轴是直线x=2,A(4,y1)关于直线x=2的对称点是(0,y1),∵﹣2<0<,∴y3>y1>y2,故选:D.11.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:A.0<x<4 B.﹣4<x<4 C.x<﹣4或x>4 D.x>4【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故选:A.12.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转120度,才能和原图形重合.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.(3分)面积等于6cm2的正六边形的周长是12cm.【解答】解:如图,设正六边形外接圆的半径为a,∵正六边形的面积为6cm2,=×6=cm2,∴S△AOF即a•a•sin∠OFA=a2•=.∴a=2cm,∴正六边形的周长是12cm,故答案为:12cm.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=40°.【解答】解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,则S△AOB=2.==2,【解答】解:根据题意得:S△AOB故答案为:217.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长=10.【解答】解:如图连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.∵△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F∴可以假设设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,∵AC2+BC2=AB2,∴(a+2)2+(b+2)2=(a+b)2,∴4a+4b+8=2ab,∴4(a+b)=48﹣8∴a+b=10,∴AB=10.故答案为1018.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小=30(度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=90(度),点D的坐标为(3,﹣3).【解答】解:(1)∵线段OC,OD由OB旋转而成,∴OB=OC=OD.∴点B、C、D在以O为圆心,AB为半径的圆上.∴∠BDC=∠BOC=30°.(2)如图2,过点O作OM⊥CD于点M,连接EM,过点D作BF⊥BO的延长线于点F.∵∠OMD=90°,∴∠OMC=90°.在△OEB与△OMC中,,∴△OEB≌△OMC(AAS).∴OE=OM,∠BOE=∠COM.∴∠EOM=∠EOC+∠COM=∠EOC+∠BOE=∠BOC=60°.∴△OEM是等边三角形.∴EM=OM=OE.∵OC=OD,OM⊥CD,∴CM=DM.又∵∠DEC=90°,∴EM=CM=DM.∴OM=CM=DM.∴点O、C、D、E在以M为圆心,MC为半径的圆上.∴α=∠COD=90°,∴∠FOD=30°,∴OF=3,DF=3,∴点D的坐标为(3,﹣3).故答案为:(1)30;(2)90,(3,﹣3).三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.【解答】解:将x=1代入原方程,得:1+k+3+k=0,解得:k=﹣2.设方程的另一个根为x1,根据题意得:1+x1=﹣(﹣2+3),∴x1=﹣2,∴该方程的另一个根为﹣2.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD 的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.【解答】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=222.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x(x﹣1)份合同;(Ⅱ)列出方程并完成本题解答.【解答】解:(Ⅰ)每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x(x﹣1)份合同;(Ⅱ)根据题意列方程得:x(x﹣1)=45,解得x1=10,x2=﹣9(舍去),检验:x=﹣9不合题意舍去,所以x=10.答:共有10家公司参加商品交易会.故答案为:(x﹣1);x(x﹣1).23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?【解答】解:(1)由点P的坐标为(3,)知点P与水面的距离为m,故答案为:;(2)设抛物线的解析式为y=ax2+bx,将点A(4,0)、P(3,)代入,得:,解得:,所以抛物线的解析式为y=﹣x2+2x;(3)当y=1时,﹣x2+2x=1,即x2﹣4x+2=0,解得:x=2,则水面的宽为2+﹣(2﹣)=2(m).24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D 是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,=BE+DB+DE=AB+DE=4+DE,∴C△DBE由(1)知,△CDE是等边三角形,∴DE=CD,=CD+4,∴C△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;③当6<t<10时,由∠DBE=120°>90°,∴此时不存在;④当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.【解答】解:(1)由题可得,抛物线y=x2的开口方向向上,对称轴为直线x=0,顶点坐标为(0,0);(2)∵点A(2,4),∴OA解析式为y=2x,∵抛物线y=x2从点O沿OA方向平移,∴可设顶点坐标为(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m,∵抛物线与直线x=2交于点P,∴P(2,m2﹣2m+4),又∵直线x=2与x轴相交于点B,∴B(2,0),∴PB=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,PB最短;(3)设直线DE为y=kx+b,则C(0,b),OC=b,直线DE与抛物线y=x2联立,得x2﹣kx﹣b=0,设D(x1,y1),E(x2,y2),则x1+x2=k,x1x2=﹣b,∴y1+y2=kx1+b+kx2+b=k2+2b,y1y2=(kx1+b)(kx2+b)=b2,如图,分别过D,E作DQ⊥y轴于Q,EP⊥y轴于P,则∠DQC=∠EPC=90°,而∠DCQ=∠ECP,∴△DCQ∽△ECP,∴=,∵∠CFD=∠CFE,∠DQF=∠EPF,∴△DQF∽△EPF,∴=,∴=,设F(0,f),则OF=﹣f,,整理可得,k2(b+f)=0,∵k≠0,∴b+f=0,∴b=﹣f,即OC=OF.。
2019--2020第一学期九年级数学期末考试及答案
2019-2020学年度第一学期期末调研考试九年级数学试卷注意:本试卷共8页,三道大题,26小题。
总分120分。
时间120分钟。
题号 一 二 20 21 22 23 24 25 26 总分 得分一、 选择题(本题共16小题,总分42分。
1~10小题,每题3分;11~16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A .必然事件 B .随机事件 C .确定事件D .不可能事件2. 如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与自身重合的是( ) A .72° B .108° C .144° D .216° 3.反比例函数ky x=的图象经过点P(-1,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限4.用配方法将方程0142=--x x 变形为m x =-2)2(,则m 的值是( )A. 4B. 5C. 6D. 75. 在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.6. 一元二次方程220200x +=的根的情况是( )A .有两个相等的实根B .有两个不等的实根C .只有一个实根D .无实数根 7. 如图,在正方形网格上有两个相似三角形△ABC 和△EDF ,则∠BAC 的度数为( )得分 评卷人A .105°B .115°C .125°D .135°8. 已知三角形面积一定,则它的底边a 上的高h 与底边a 之间的函数关系图象是( )9. 下列对二次函数2y x x =-图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 10. 参加一次聚会的每两人都握了一次手,所有人共握手10次。
2019-2020学年天津市和平区九年级上册期末数学试卷(有答案)-最新推荐
2019-2020学年天津市和平区九年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)23.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对B.3对C.2对D.1对5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A .①②B .②③C .③④D .①④9.(3分)已知反比例函数y=的图象经过点A (2,2)、B (x ,y ),当﹣3<x <﹣1时,y 的取值范围是( )A .﹣4<y <﹣B .﹣<y <﹣4C .<y <4D .﹣1<y <﹣10.(3分)已知点A (4,y 1)、B (,y 2)、C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1,y 2,y 3的大小关系( )A .y 1>y 3>y 2B .y 1>y 2>y 3C .y 3>y 2>y 1D .y 3>y 1>y 211.(3分)已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表:则当y <5时,x 的取值范围为( )A .0<x <4B .﹣4<x <4C .x <﹣4或x >4D .x >412.(3分)如图是抛物线y=ax 2+bx+c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a ﹣b+c >0; ②3a+b=0; ③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c=n ﹣1有两个不相等的实数根. 其中正确结论的个数是( )A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转度,才能和原图形重合.14.(3分)面积等于6cm2的正六边形的周长是.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F= .16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接= .AO,则S△AOB17.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长= .18.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小= (度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB 为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小= (度),点D的坐标为.三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD 的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.22.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了份合同;(Ⅱ)列出方程并完成本题解答.23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D 是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.2019-2020学年天津市和平区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: =.故选:C.2.(3分)在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.3.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2: =1:2:,A、三角形的三边分别为2, =, =3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4, =2,三边之比为2:4:2=1:2:,故B 选项正确;C、三角形的三边分别为2,3, =,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=, =,4,三边之比为::4,故D 选项错误.故选:B.4.(3分)如图,四边形ABCD是矩形,E是边B超延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对B.3对C.2对D.1对【解答】解:(1)∵∠E=∠E,∠FCE=∠D,∴△CEF∽△ADF.(2)∵∠E是公共角,∠B=∠FCE,∴△ABE∽△CEF,(3)∴△ABE∽△ADF.故有3对.故选:B.5.(3分)如图,在平面直角坐标系中有△ABC,以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为()A.(2,),(),()B.(8,6)(6,2)(2,4)C.(8,6)(6,2)(2,4)或(﹣8,﹣6)(﹣6,﹣2)(﹣2,﹣4)D.(8,﹣6)(6,﹣2)(2,﹣4)或(﹣8,6)(﹣6,2)(﹣2,4)【解答】解:由坐标系可知,点A、点B、点C的坐标分别为(4,3),(3,1),(1,2),∵以点O为位似中心,相似比为2,将△ABC放大,则它的对应顶点的坐标为(4×2,3×2),(3×2,1×2),(1×2,2×2)或(﹣4×2,﹣3×2),(﹣3×2,﹣1×2),(﹣1×2,﹣2×2),即(8,6),(6,2),(2,4)或(﹣8,﹣6),(﹣6,﹣2),(﹣2,﹣4),故选:C.6.(3分)如图,在△ABC中,点D、E、Q分别在边AB、AC、BC上,且DE∥BC,AQ交DE于点P,已知,则=()A.B.C.D.【解答】解:∵DE∥BC,∴△ADP∽△ABQ,△APE∽△AQC,∴=, =,∴==.故选:A.7.(3分)假定鸟卵孵化后,雏鸟为雌与为雄的概率相同,如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是()A.B.C.D.【解答】解:画树状图如下:一共有8种情况,有两只雄鸟的情况有3种,所以,P(恰有两只雄鸟)=.故选:B.8.(3分)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【解答】解:∵反比例函数的图象位于一三象限, ∴m >0 故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A (﹣1,h ),B (2,k )代入y=得到h=﹣m ,2k=m , ∵m >0 ∴h <k 故③正确;将P (x ,y )代入y=得到m=xy ,将P′(﹣x ,﹣y )代入y=得到m=xy , 故P (x ,y )在图象上,则P′(﹣x ,﹣y )也在图象上 故④正确, 故选:C .9.(3分)已知反比例函数y=的图象经过点A (2,2)、B (x ,y ),当﹣3<x <﹣1时,y 的取值范围是( )A .﹣4<y <﹣B .﹣<y <﹣4C .<y <4D .﹣1<y <﹣【解答】解:∵反比例函数关系式为y=(k ≠0)图象经过点A (2,2), ∴k=2×2=4,∴y=,当x=﹣3时,y=﹣, 当x=﹣1时,y=﹣4,∴当﹣3<x <﹣1时,﹣4<y <﹣. 故选:A .10.(3分)已知点A (4,y 1)、B (,y 2)、C (﹣2,y 3)都在二次函数y=(x ﹣2)2﹣1的图象上,则y 1,y 2,y 3的大小关系( )A.y1>y3>y2B.y1>y2>y3C.y3>y2>y1D.y3>y1>y2【解答】解:∵y=(x﹣2)2﹣1,∴图象的开口向上,对称轴是直线x=2,A(4,y1)关于直线x=2的对称点是(0,y1),∵﹣2<0<,∴y3>y1>y2,故选:D.11.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围为()A.0<x<4 B.﹣4<x<4 C.x<﹣4或x>4 D.x>4【解答】解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故选:A.12.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、填空题(每小题3分,共18分)13.(3分)等边三角形绕它的中心至少旋转120 度,才能和原图形重合.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.(3分)面积等于6cm2的正六边形的周长是12cm .【解答】解:如图,设正六边形外接圆的半径为a,∵正六边形的面积为6cm2,∴S=×6=cm2,△AOF即a•a•sin∠OFA=a2•=.∴a=2cm,∴正六边形的周长是12cm,故答案为:12cm.15.(3分)如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F= 40°.【解答】解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.16.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接= 2 .AO,则S△AOB【解答】解:根据题意得:S==2,△AOB故答案为:217.(3分)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD•DB=24,则AB的长= 10 .【解答】解:如图连接OE、OF.则由题意可知四边形ECFO是正方形,边长为2.∵△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F∴可以假设设AD=AF=a,BD=BE=b,则AC=a+2,BC=b+2,AB=a+b,∵AC2+BC2=AB2,∴(a+2)2+(b+2)2=(a+b)2,∴4a+4b+8=2ab,∴4(a+b)=48﹣8∴a+b=10,∴AB=10.故答案为1018.(3分)将线段OB绕点O逆时针旋转60°得到线段OC,继续旋转α(0°<α<120°)得到线段OD,连接CD.(1)如图,连接BD,则∠BDC的大小= 30 (度);(2)将线段OB放在平面直角坐标系中,O是坐标原点,点B的坐标为(﹣6,0),以OB 为斜边作Rt△OBE,使∠OBE=∠OCD,且点E在第三象限,若∠CED=90°,则α的大小=90 (度),点D的坐标为(3,﹣3).【解答】解:(1)∵线段OC,OD由OB旋转而成,∴OB=OC=OD.∴点B、C、D在以O为圆心,AB为半径的圆上.∴∠BDC=∠BOC=30°.(2)如图2,过点O作OM⊥CD于点M,连接EM,过点D作BF⊥BO的延长线于点F.∵∠OMD=90°,∴∠OMC=90°.在△OEB与△OMC中,,∴△OEB≌△OMC(AAS).∴OE=OM,∠BOE=∠COM.∴∠EOM=∠EOC+∠COM=∠EOC+∠BOE=∠BOC=60°.∴△OEM是等边三角形.∴EM=OM=OE.∵OC=OD,OM⊥CD,∴CM=DM.又∵∠DEC=90°,∴EM=CM=DM.∴OM=CM=DM.∴点O、C、D、E在以M为圆心,MC为半径的圆上.∴α=∠COD=90°,∴∠FOD=30°,∴OF=3,DF=3,∴点D的坐标为(3,﹣3).故答案为:(1)30;(2)90,(3,﹣3).三、解答题(本大题共7小题,共66分)19.(8分)已知关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,求该方程的另一个根.【解答】解:将x=1代入原方程,得:1+k+3+k=0,解得:k=﹣2.,设方程的另一个根为x1=﹣(﹣2+3),根据题意得:1+x1=﹣2,∴x1∴该方程的另一个根为﹣2.20.(8分)如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD 的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求的长.【解答】(1)证明:∵AB是⊙O的直径,DE=CE,∴AB⊥CD,∵BF是⊙O的切线,∴AB⊥BF,∴CD∥BF;(2)解:连接OD、OC,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠COD=2∠BOD=140°,∴的长==.21.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=x,则DF=FH=5﹣x,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得x=3,即BF的长为3,∴DF=222.(10分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答,也可以选用其他的解题方案,此时不必填空,只需按解答题的一般要求进行解答.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?设共有x家公司参加商品交易会.(Ⅰ)用含x的代数式表示:每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x(x﹣1)份合同;(Ⅱ)列出方程并完成本题解答.【解答】解:(Ⅰ)每家公司与其他(x﹣1)家公司都签订一份合同,由于甲公司与乙公司签订的合同和乙公司与甲公司签订的合同是同一份合同,所以所有公司共签订了x(x ﹣1)份合同;(Ⅱ)根据题意列方程得: x(x﹣1)=45,解得x1=10,x2=﹣9(舍去),检验:x=﹣9不合题意舍去,所以x=10.答:共有10家公司参加商品交易会.故答案为:(x﹣1); x(x﹣1).23.(10分)图中是抛物线拱桥,点P处有一照明灯,水面OA宽4m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,).(1)点P与水面的距离是m;(2)求这条抛物线的解析式;(3)水面上升1m,水面宽是多少?【解答】解:(1)由点P的坐标为(3,)知点P与水面的距离为m,故答案为:;(2)设抛物线的解析式为y=ax2+bx,将点A(4,0)、P(3,)代入,得:,解得:,所以抛物线的解析式为y=﹣x2+2x;(3)当y=1时,﹣x2+2x=1,即x2﹣4x+2=0,解得:x=2,则水面的宽为2+﹣(2﹣)=2(m).24.(10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D 是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,=BE+DB+DE=AB+DE=4+DE,∴C△DBE由(1)知,△CDE是等边三角形,∴DE=CD,=CD+4,∴C△DBE由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;③当6<t<10时,由∠DBE=120°>90°,∴此时不存在;④当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠B CD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.25.(10分)在平面直角坐标系中,O为坐标原点,已知抛物线y=x2.(1)写出抛物线y=x2的开口方向,对称轴和顶点坐标;(2)已知点A(2,4),直线x=2与x轴相交于点B,将抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动,设抛物线顶点M的横坐标为m,当m为何值时,线段PB最短?(3)如图,点C为y轴正半轴上一点,过点C任作直线交抛物线y=x2于D,E两点,点F为y轴负半轴上一点,且∠CFD=∠CFE,求证:OC=OF.【解答】解:(1)由题可得,抛物线y=x2的开口方向向上,对称轴为直线x=0,顶点坐标为(0,0);(2)∵点A(2,4),∴OA解析式为y=2x,∵抛物线y=x2从点O沿OA方向平移,∴可设顶点坐标为(m, 2m),∴抛物线的解析式为y=(x﹣m)2+2m,∵抛物线与直线x=2交于点P,∴P(2,m2﹣2m+4),又∵直线x=2与x轴相交于点B,∴B(2,0),∴PB=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,PB最短;(3)设直线DE为y=kx+b,则C(0,b),OC=b,直线DE与抛物线y=x2联立,得x2﹣kx﹣b=0,设D(x1,y1),E(x2,y2),则x1+x2=k,x1x2=﹣b,∴y1+y2=kx1+b+kx2+b=k2+2b,y1y2=(kx1+b)(kx2+b)=b2,如图,分别过D,E作DQ⊥y轴于Q,EP⊥y轴于P,则∠DQC=∠EPC=90°,而∠DCQ=∠ECP,∴△DCQ∽△ECP,∴=,∵∠CFD=∠CFE,∠DQF=∠EPF,∴△DQF∽△EPF,∴=,∴=,设F(0,f),则OF=﹣f,,整理可得,k2(b+f)=0,∵k≠0,∴b+f=0,∴b=﹣f,即OC=OF.。
辽宁省沈阳市和平区2019届初三上期末考数学试题
第1页,总9页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………辽宁省沈阳市和平区2019届初三上期末考数学试题考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 一元二次方程x 2-4x+4=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定2. 如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )A .B .C .D .3. 已知△ABC △△DEF ,且AB △DE =1△2,则△ABC 的面积与△DEF 的面积之比为( )A .1△2B .1△4C .2△1D .4△14. 市一小数学课外兴趣小组的同学每人制作一个面积为的矩形学具进行展示设矩形的宽为xcm ,长为ycm ,那么这些同学所制作的矩形长与宽之间的函数关系的图象大致是A .B .C .D .5. 某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x ,则可列方程为( ) A .25(1+x )2=64答案第2页,总9页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………B .25(1﹣x )2=64C .64(1+x )2=25D .64(1﹣x )2=256. 如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a ;如果投掷一枚硬币,正面向上的概率为b .关于a ,b 大小的正确判断是()A .a >bB .a=bC .a <bD .不能判断7. 下列命题是真命题的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线互相垂直的平行四边形是矩形C .正方形是轴对称图形,但不是中心对称图形D .四条边相等的四边形是萎形8. 在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的表达式为( ) A .B .C .D .9. 如图,矩形的两条对角线相交于点,,,则矩形的对角线的长是()A .2B .4C .2D .410. 图(1)是一个横断面为抛物线形状的拱桥,当水面在图(1)位置时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .y=-2B .y=2C .y= -D .y=第Ⅱ卷 主观题第Ⅱ卷的注释。
天津和平区2019年初三上年末数学重点试卷含解析解析
天津和平区2019年初三上年末数学重点试卷含解析解析【一】选择题〔本大题共12小题,每题3分,共36分、在每题给出旳四个选项中,只有一个选项是符合题目要求旳〕1、以下关于x旳方程:①ax2+bx+c=0;②3〔x﹣9〕2﹣〔x+1〕2=1;③x+3=;④〔a2+a+1〕x2﹣a=0;⑤=x﹣1,其中一元二次方程旳个数是〔〕A、1B、2C、3D、42、在﹣2、﹣1、0、1、2、3这六个数中,任取两个数,恰好互为相反数旳概率为〔〕A、B、C、D、3、以下关于x旳方程有实数根旳是〔〕A、x2﹣x+1=0B、x2+x+1=0C、〔x﹣1〕〔x+2〕=0D、〔x﹣1〕2+1=04、如图,在长为8cm、宽为4cm旳矩形中,截去一个矩形,使得留下旳矩形〔图中阴影部分〕与原矩形相似,那么留下矩形旳面积是〔〕A、2cm2B、4cm2C、8cm2D、16cm25、某型号旳手机连续两次降价,每个售价由原来旳1185元降到了580元,设平均每次降价旳百分率为x,列出方程正确旳选项是〔〕A、580〔1+x〕2=1185B、1185〔1+x〕2=580C、580〔1﹣x〕2=1185D、1185〔1﹣x〕2=5806、数学老师将全班分成7个小组开展小组合作学习,采纳随机抽签确定一个小组进行展示活动,那么第3个小组被抽到旳概率是〔〕A、B、C、D、7、如图,一扇形纸扇完全打开后,外侧两竹条AB和AC旳夹角为120°,AB长为25cm,贴纸部分旳宽BD为15cm,假设纸扇两面贴纸,那么贴纸旳面积为〔〕A、175πcm2B、350πcm2C、πcm2D、150πcm28、以下说法正确旳选项是〔〕A、三点确定一个圆B、一个三角形只有一个外接圆C、和半径垂直旳直线是圆旳切线D、三角形旳内心到三角形三个顶点距离相等9、同一坐标系中,一次函数y=ax+1与二次函数y=x2+a旳图象可能是〔〕A、B、C、D、10、抛物线y=x2﹣x,它与x轴旳两个交点间旳距离为〔〕A、0B、1C、2D、411、二次函数y=kx2﹣7x﹣7旳图象与x轴没有交点,那么k旳取值范围为〔〕A、k>﹣B、k≥﹣且k≠0C、k<﹣D、k>﹣且k≠012、如图,矩形AEHC是由三个全等矩形拼成旳,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N、设△BPQ,△DKM,△CNH旳面积依次为S1,S2,S3、假设S1+S3=20,那么S2旳值为〔〕A、6B、8C、10D、12【二】填空题〔本大题共6小题,每题3分,共18分〕13、在平面直角坐标系中,假设将抛物线y=﹣〔x+3〕2+1先向左平移2个单位长度,再向下平移3个单位长度,那么通过这两次平移后所得抛物线旳顶点坐标是、14、中心角为45°旳正多边形旳边数是、15、如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得旳图形,那么旋转中心P旳坐标是、16、在学校组织旳义务植树活动中,甲、乙两组各四名同学旳植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,那么这两名同学旳植树总棵数为19旳概率、17、如图,光源P在横杆AB旳上方,AB在灯光下旳影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD旳距离是2.7m,那么AB与CD间旳距离是、18、如图,正方形ABCD 旳边长为2,AE=EB ,MN=1,线段MN 旳两端在CB ,CD 上滑动,当CM=时,△AED 与以M ,N ,C 为顶点旳三角形相似、【三】解答题〔本大题共7小题,共56分〕19、如图,一次函数y 1=﹣x+2旳图象与反比例函数y 2=旳图象交于点A 〔﹣1,3〕、B 〔n ,﹣1〕、〔1〕求反比例函数旳【解析】式;〔2〕当y 1>y 2时,直截了当写出x 旳取值范围、20、〔1〕2x 2+8x ﹣1=0〔公式法〕〔2〕x 2+4x ﹣5=0〔配方法〕21、如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径旳圆通过点C ,过点C 作直线MN ,使∠BCM=2∠A 、〔1〕推断直线MN 与⊙O 旳位置关系,并说明理由;〔2〕假设OA=4,∠BCM=60°,求图中阴影部分旳面积、22、一天晚上,李明和张龙利用灯光下旳影子长来测量一路灯D 旳高度、如图,当李明走到点A 处时,张龙测得李明直立时身高AM 与影子长AE 正好相等;接着李明沿AC 方向接着向前走,走到点B处时,李明直立时身高BN旳影子恰好是线段AB,并测得AB=1.25m,李明直立时旳身高为1.75m,求路灯旳高CD旳长、〔结果精确到0.1m〕、23、在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”旳活动,他们购进一批单价为20元旳“孝文化衫”在课余时刻进行义卖,并将所得利润捐给贫困母亲、经试验发觉,假设每件按24元旳价格销售时,每天能卖出36件;假设每件按29元旳价格销售时,每天能卖出21件、假定每天销售件数y〔件〕与销售价格x〔元/件〕满足一个以x为自变量旳一次函数、〔1〕求y与x满足旳函数关系式〔不要求写出x旳取值范围〕;〔2〕在不积压且不考虑其他因素旳情况下,销售价格定为多少元时,才能使每天获得旳利润P最大?24、,等腰Rt△ABC中,点O是斜边旳中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且PE⊥AB,PF⊥BC,垂足分别为E、F、〔1〕如图1,当点P与点O重合时,OE、OF旳数量和位置关系分别是、〔2〕当△MPN移动到图2旳位置时,〔1〕中旳结论还成立吗?请说明理由、〔3〕如图3,等腰Rt△ABC旳腰长为6,点P在AC旳延长线上时,Rt△MPN旳边PM与AB 旳延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且EH:HO=2:5,那么BE 旳长是多少?25、:如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,D是斜边AB旳中点、点P从点B动身沿BC方向匀速运动,速度为1cm/s;同时,点Q从点A动身,沿AC方向匀速运动,速度为2cm/s、当点Q停止运动时,点P也停止运动、连接PQ、PD、QD、设运动时刻为t〔s〕〔0<t<4〕、〔1〕当t为何值时,△PQC是等腰直角三角形?〔2〕设△PQD旳面积为y〔cm2〕,求y与t之间旳函数关系式;是否存在某一时刻t,使△PQD旳面积是Rt△ABC旳面积旳?假设存在,求出t旳值;假设不存在,请说明理由;〔3〕是否存在某一时刻t,使QD⊥PD?假设存在,求出t旳值;假设不存在,请说明理由、2016-2017学年天津市和平区九年级〔上〕期末数学模拟试卷参考【答案】与试题【解析】【一】选择题〔本大题共12小题,每题3分,共36分、在每题给出旳四个选项中,只有一个选项是符合题目要求旳〕1、以下关于x旳方程:①ax2+bx+c=0;②3〔x﹣9〕2﹣〔x+1〕2=1;③x+3=;④〔a2+a+1〕x2﹣a=0;⑤=x﹣1,其中一元二次方程旳个数是〔〕A、1B、2C、3D、4【考点】一元二次方程旳定义、【分析】依照一元二次方程旳定义:未知数旳最高次数是2;二次项系数不为0;是整式方程;含有一个未知数、【解答】解:①当a=0时,ax2+bx+c=0是一元一次方程;②3〔x﹣9〕2﹣〔x+1〕2=1是一元二次方程;③x+3=是分式方程;④〔a2+a+1〕x2﹣a=0是一元二次方程;⑤=x﹣1是无理方程,应选:B、2、在﹣2、﹣1、0、1、2、3这六个数中,任取两个数,恰好互为相反数旳概率为〔〕A、B、C、D、【考点】列表法与树状图法、【分析】依照题意画出树状图,进而利用概率公式求出【答案】、【解答】解:由题意画树状图得:,一共有30种可能,符合题意旳有4种,故恰好互为相反数旳概率为:、应选:A、3、以下关于x旳方程有实数根旳是〔〕A、x2﹣x+1=0B、x2+x+1=0C、〔x﹣1〕〔x+2〕=0D、〔x﹣1〕2+1=0【考点】根旳判别式、【分析】分别计算A、B中旳判别式旳值;依照判别式旳意义进行推断;利用因式分解法对C进行推断;依照非负数旳性质对D进行推断、【解答】解:A、△=〔﹣1〕2﹣4×1×1=﹣3<0,方程没有实数根,因此A选项错误;B、△=12﹣4×1×1=﹣3<0,方程没有实数根,因此B选项错误;C、x﹣1=0或x+2=0,那么x1=1,x2=﹣2,因此C选项正确;D、〔x﹣1〕2=﹣1,方程左边为非负数,方程右边为0,因此方程没有实数根,因此D选项错误、应选:C、4、如图,在长为8cm、宽为4cm旳矩形中,截去一个矩形,使得留下旳矩形〔图中阴影部分〕与原矩形相似,那么留下矩形旳面积是〔〕A、2cm2B、4cm2C、8cm2D、16cm2【考点】相似多边形旳性质、【分析】利用相似多边形旳对应边旳比相等,对应角相等分析、【解答】解:长为8cm、宽为4cm旳矩形旳面积是32cm2,留下旳矩形〔图中阴影部分〕与原矩形相似,相似比是4:8=1:2,因而面积旳比是1:4,因而留下矩形旳面积是32×=8cm2、应选:C、5、某型号旳手机连续两次降价,每个售价由原来旳1185元降到了580元,设平均每次降价旳百分率为x,列出方程正确旳选项是〔〕A、580〔1+x〕2=1185B、1185〔1+x〕2=580C、580〔1﹣x〕2=1185D、1185〔1﹣x〕2=580 【考点】由实际问题抽象出一元二次方程、【分析】依照降价后旳价格=原价〔1﹣降低旳百分率〕,此题可先用x表示第一次降价后商品旳售价,再依照题意表示第二次降价后旳售价,即可列出方程、【解答】解:设平均每次降价旳百分率为x,由题意得出方程为:1185〔1﹣x〕2=580、应选:D、6、数学老师将全班分成7个小组开展小组合作学习,采纳随机抽签确定一个小组进行展示活动,那么第3个小组被抽到旳概率是〔〕A、B、C、D、【考点】概率公式、【分析】依照概率是所求情况数与总情况数之比,可得【答案】、【解答】解:第3个小组被抽到旳概率是,应选:A、7、如图,一扇形纸扇完全打开后,外侧两竹条AB和AC旳夹角为120°,AB长为25cm,贴纸部分旳宽BD为15cm,假设纸扇两面贴纸,那么贴纸旳面积为〔〕A、175πcm2B、350πcm2C、πcm2D、150πcm2【考点】扇形面积旳计算、【分析】贴纸部分旳面积等于扇形ABC减去小扇形旳面积,圆心角旳度数为120°,扇形旳半径为25cm和10cm,可依照扇形旳面积公式求出贴纸部分旳面积、【解答】解:∵AB=25,BD=15,∴AD=10,=2×〔﹣〕∴S贴纸=2×175π=350πcm2,应选B、8、以下说法正确旳选项是〔〕A、三点确定一个圆B、一个三角形只有一个外接圆C、和半径垂直旳直线是圆旳切线D、三角形旳内心到三角形三个顶点距离相等【考点】圆旳认识、【分析】依照确定圆旳条件对A、B进行推断;依照切线旳判定定理对C进行推断;依照三角形内心旳性质对D进行推断、【解答】解:A、不共线旳三点确定一个圆,因此A选项错误;B、一个三角形只有一个外接圆,因此B选项正确;C、过半径旳外端与半径垂直旳直线是圆旳切线,因此C选项错误;D、三角形旳内心到三角形三边旳距离相等,因此D选项错误、应选B、9、同一坐标系中,一次函数y=ax+1与二次函数y=x2+a旳图象可能是〔〕A 、B 、C 、D 、【考点】二次函数旳图象;一次函数旳图象、【分析】依照一次函数和二次函数旳【解析】式可得一次函数与y 轴旳交点为〔0,1〕,二次函数旳开口向上,据此推断二次函数旳图象、【解答】解:当a <0时,二次函数顶点在y 轴负半轴,一次函数通过【一】【二】四象限; 当a >0时,二次函数顶点在y 轴正半轴,一次函数通过【一】【二】三象限、应选C 、10、抛物线y=x 2﹣x ,它与x 轴旳两个交点间旳距离为〔〕A 、0B 、1C 、2D 、4【考点】抛物线与x 轴旳交点、【分析】依照解方程x 2﹣x=0抛物线与x 轴旳两交点坐标,然后利用两点间旳距离公式求出两交点间旳距离、【解答】解:当y=0时,x 2﹣x=0,解得x 1=0,x 2=2,那么抛物线与x 轴旳两交点坐标为〔0,0〕,〔2,0〕,因此抛物线与x 轴旳两个交点间旳距离为2、应选C 、11、二次函数y=kx 2﹣7x ﹣7旳图象与x 轴没有交点,那么k 旳取值范围为〔〕A 、k >﹣B 、k ≥﹣且k ≠0C 、k <﹣D 、k >﹣且k ≠0 【考点】抛物线与x 轴旳交点、【分析】y=kx 2﹣7x ﹣7旳图象与x 轴无交点,当图象在x 轴上方时,,当图象在x轴下方时,,由此能够求出k 旳取值范围、【解答】解:∵y=kx 2﹣7x ﹣7旳图象与x 轴无交点,∴当图象在x 轴上方时,,∴,解为空集、当图象在x 轴下方时,,∴,∴k<﹣、∴k旳取值范围是{k|k<﹣},应选C、12、如图,矩形AEHC是由三个全等矩形拼成旳,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N、设△BPQ,△DKM,△CNH旳面积依次为S1,S2,S3、假设S1+S3=20,那么S2旳值为〔〕A、6B、8C、10D、12【考点】相似三角形旳判定与性质、【分析】由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再依照相似三角形旳面积比等于相似比旳平方,结合条件可求得S2、【解答】解:∵矩形AEHC是由三个全等矩形拼成旳,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴==,==,∴△BPQ∽△DKM∽△CNH,∴=,∴=,=,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8、应选B、【二】填空题〔本大题共6小题,每题3分,共18分〕13、在平面直角坐标系中,假设将抛物线y=﹣〔x+3〕2+1先向左平移2个单位长度,再向下平移3个单位长度,那么通过这两次平移后所得抛物线旳顶点坐标是〔﹣5,﹣2〕、【考点】二次函数图象与几何变换;二次函数旳性质、【分析】直截了当利用抛物线平移规律:上加下减,左加右减进而得出平移后旳【解析】式,即可得出顶点坐标、【解答】解:∵将抛物线y=﹣〔x+3〕2+1先向左平移2个单位长度,再向下平移3个单位长度,∴平移后旳抛物线旳【解析】式为:y=﹣〔x+3+2〕2+1﹣3、即:y=﹣〔x+5〕2﹣2,那么平移后旳抛物线旳顶点坐标为:〔﹣5,﹣2〕、故【答案】为:〔﹣5,﹣2〕、14、中心角为45°旳正多边形旳边数是8、【考点】正多边形和圆、【分析】依照n边形旳中心角旳度数是即可求解、【解答】解:正多边形旳边数是:=8、故【答案】是:8、15、如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得旳图形,那么旋转中心P旳坐标是〔0,1〕、【考点】旋转旳性质、【分析】依照旋转旳性质确定出点P旳位置,再写出坐标即可、【解答】解:旋转中心P旳位置如下图,∴点P旳坐标为〔0,1〕、故【答案】为:〔0,1〕、16、在学校组织旳义务植树活动中,甲、乙两组各四名同学旳植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,那么这两名同学旳植树总棵数为19旳概率、【考点】列表法与树状图法、【分析】首先依照题意画出树状图,然后由树状图求得所有等可能旳结果与两名同学旳植树总棵数为19旳情况,再利用概率公式即可求得【答案】、【解答】解:画树状图如图:∵共有16种等可能结果,两名同学旳植树总棵数为19旳结果有5种结果,∴这两名同学旳植树总棵数为19旳概率为,故【答案】为:、17、如图,光源P在横杆AB旳上方,AB在灯光下旳影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD旳距离是2.7m,那么AB与CD间旳距离是1.8m、【考点】相似三角形旳应用;中心投影、【分析】依照AB∥CD,易得,△PAB∽△PCD,依照相似三角形对应高之比等于对应边之比,列出方程求解即可、【解答】解:∵AB∥CD,∴△PAB∽△PCD,假设CD到AB距离为x,那么,又∵AB=2,CD=6,∴∴x=1.8、故【答案】为:1.8m18、如图,正方形ABCD旳边长为2,AE=EB,MN=1,线段MN旳两端在CB,CD上滑动,当CM=或时,△AED与以M,N,C为顶点旳三角形相似、【考点】相似三角形旳判定与性质;正方形旳性质、【分析】依照题意不难确定Rt△AED旳两直角边AD=2AE、再依照相似旳性质及变化,可考虑Rt△MCN旳两直角边MC、NC间旳关系满足是或2倍、求得CM旳长、【解答】解:设CM旳长为x、在Rt△MNC中∵MN=1,∴NC=,①当Rt△AED∽Rt△CMN时,那么,即,解得x=或x=〔不合题意,舍去〕,②当Rt△AED∽Rt△CNM时,那么,即,解得x=或〔不合题意,舍去〕,综上所述,当CM=或时,△AED 与以M ,N ,C 为顶点旳三角形相似、故【答案】为:或、【三】解答题〔本大题共7小题,共56分〕19、如图,一次函数y 1=﹣x+2旳图象与反比例函数y 2=旳图象交于点A 〔﹣1,3〕、B 〔n ,﹣1〕、〔1〕求反比例函数旳【解析】式;〔2〕当y 1>y 2时,直截了当写出x 旳取值范围、【考点】反比例函数与一次函数旳交点问题、【分析】〔1〕把A 点坐标代入可求出m 旳值,从而得到反比例函数【解析】式; 〔2〕利用反比例函数【解析】式确定B 点坐标,然后观看函数图象,写出一次函数图象在反比例函数图象上方所对应旳自变量旳取值范围即可、【解答】解:〔1〕把A 〔﹣1,3〕代入可得m=﹣1×3=﹣3,因此反比例函数【解析】式为y=﹣;〔2〕把B 〔n ,﹣1〕代入y=﹣得﹣n=﹣3,解得n=3,那么B 〔3,﹣1〕,因此当x <﹣1或0<x <3,y 1>y 2、20、〔1〕2x 2+8x ﹣1=0〔公式法〕〔2〕x 2+4x ﹣5=0〔配方法〕【考点】解一元二次方程-公式法;解一元二次方程-配方法、【分析】〔1〕公式法求解可得;〔2〕配方法求解可得、【解答】解:〔1〕∵a=2,b=8,c=﹣1,∴△=64﹣4×2×〔﹣1〕=72>0,那么x==;〔2〕∵x 2+4x ﹣5=0,∴x 2+4x+4=9,∴〔x+2〕2=9,∴x+2=±3,∴x 1=﹣5,x 2=1;21、如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径旳圆通过点C ,过点C 作直线MN ,使∠BCM=2∠A 、〔1〕推断直线MN 与⊙O 旳位置关系,并说明理由;〔2〕假设OA=4,∠BCM=60°,求图中阴影部分旳面积、【考点】直线与圆旳位置关系;扇形面积旳计算、【分析】〔1〕MN 是⊙O 切线,只要证明∠OCM=90°即可、〔2〕求出∠AOC 以及BC ,依照S 阴=S 扇形OAC ﹣S △OAC 计算即可、【解答】解:〔1〕MN 是⊙O 切线、理由:连接OC 、∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 切线、〔2〕由〔1〕可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S 阴=S 扇形OAC ﹣S △OAC =﹣=﹣4、22、一天晚上,李明和张龙利用灯光下旳影子长来测量一路灯D旳高度、如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向接着向前走,走到点B处时,李明直立时身高BN旳影子恰好是线段AB,并测得AB=1.25m,李明直立时旳身高为1.75m,求路灯旳高CD旳长、〔结果精确到0.1m〕、【考点】相似三角形旳应用;中心投影、【分析】依照AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边旳比相等列出比例式求解即可、【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1、经检验,x=6.125是原方程旳解,∴路灯高CD约为6.1米23、在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”旳活动,他们购进一批单价为20元旳“孝文化衫”在课余时刻进行义卖,并将所得利润捐给贫困母亲、经试验发觉,假设每件按24元旳价格销售时,每天能卖出36件;假设每件按29元旳价格销售时,每天能卖出21件、假定每天销售件数y〔件〕与销售价格x〔元/件〕满足一个以x为自变量旳一次函数、〔1〕求y与x满足旳函数关系式〔不要求写出x旳取值范围〕;〔2〕在不积压且不考虑其他因素旳情况下,销售价格定为多少元时,才能使每天获得旳利润P最大?【考点】二次函数旳应用;一次函数旳应用、【分析】〔1〕设y与x满足旳函数关系式为:y=kx+B、,由题意可列出k和b旳二元一次方程组,解出k和b旳值即可;〔2〕依照题意:每天获得旳利润为:P=〔﹣3x+108〕〔x﹣20〕,转换为P=﹣3〔x﹣28〕2+192,因此求出每天获得旳利润P最大时旳销售价格、【解答】解:〔1〕设y与x满足旳函数关系式为:y=kx+B、由题意可得:解得答:y与x旳函数关系式为:y=﹣3x+108、〔2〕每天获得旳利润为:P=〔﹣3x+108〕〔x﹣20〕=﹣3x2+168x﹣2160=﹣3〔x﹣28〕2+192、∵a=﹣3<0,∴当x=28时,利润最大,答:当销售价定为28元时,每天获得旳利润最大、24、,等腰Rt△ABC中,点O是斜边旳中点,△MPN是直角三角形,固定△ABC,滑动△MPN,在滑动过程中始终保持点P在AC上,且PE⊥AB,PF⊥BC,垂足分别为E、F、〔1〕如图1,当点P与点O重合时,OE、OF旳数量和位置关系分别是相等且垂直、〔2〕当△MPN移动到图2旳位置时,〔1〕中旳结论还成立吗?请说明理由、〔3〕如图3,等腰Rt△ABC旳腰长为6,点P在AC旳延长线上时,Rt△MPN旳边PM与AB 旳延长线交于点E,直线BC与直线NP交于点F,OE交BC于点H,且EH:HO=2:5,那么BE 旳长是多少?【考点】等腰直角三角形;全等三角形旳判定与性质、【分析】〔1〕依照题意及图示即可得出OE、OF旳数量关系:相等,位置关系:垂直;〔2〕依照题意及图示可证明△OEB≌△OFC,故成立;〔3〕依照题意及图示,还有所给比例关系即可得出【答案】、【解答】解:〔1〕数量关系:相等,位置关系:垂直故【答案】为相等且垂直、〔2〕成立,理由如下:∵△MPN是直角三角形,∴∠MPN=90°、连接OB,∴∠OBE=∠C=45°,∵△ABC,△MPN是直角三角形,PE⊥AB,PF⊥BC,∴∠ABC=∠MPN=∠BEP=∠BFP=90°,∴四边形EBFP是矩形,∴BE=PF∵PF=CF,∴BE=CF,∵OB=OC=AC,∴在△OEB和△OFC中,∴△OEB≌△OFC〔SAS〕,故成立,〔3〕如图,找BC旳中点G,连接OG,∵O是AC中点,∴OG∥AB,OG=AB,∵AB=6,∴OG=3,∵OG∥AB,∴△BHE∽△GOH,∵EH:HO=2:5,∴BE:OG=2:5,而OG=AB=3,∴BE=、25、:如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,D是斜边AB旳中点、点P从点B动身沿BC方向匀速运动,速度为1cm/s;同时,点Q从点A动身,沿AC方向匀速运动,速度为2cm/s、当点Q停止运动时,点P也停止运动、连接PQ、PD、QD、设运动时刻为t〔s〕〔0<t<4〕、〔1〕当t为何值时,△PQC是等腰直角三角形?〔2〕设△PQD旳面积为y〔cm2〕,求y与t之间旳函数关系式;是否存在某一时刻t,使△PQD旳面积是Rt△ABC旳面积旳?假设存在,求出t旳值;假设不存在,请说明理由;〔3〕是否存在某一时刻t,使QD⊥PD?假设存在,求出t旳值;假设不存在,请说明理由、【考点】相似形综合题、【分析】〔1〕由等腰直角三角形旳性质可知CQ=CP,解得结果;〔2〕过Q作QF⊥AB,交AB于,过点P作PE⊥AB,易得Rt△AQF∽Rt△ABC,由相似三角形旳性质可得==,可得QF,BE,同理可得PE,BE,利用三角形旳面积公式可得y与t之间旳函数关系式,由△PQD旳面积是Rt△ABC旳面积旳,可解得t;〔3〕由勾股定理可得QD2,PD2,PQ2,因为PD⊥QD,利用勾股定理可得PQ2=QD2+PD2,解得t、【解答】解:〔1〕∵△PQC是等腰直角三角形,∴CQ=CP,∴8﹣2t=6﹣tt=2〔秒〕;〔2〕过Q作QF⊥AB,交AB于,过点P作PE⊥AB,∵∠A=∠A,∠AFQ=∠ACB=90°,∴Rt△AQF∽Rt△ABC,∴==,∵BC=6,AC=8,AB=10,AQ=2t,∴QF=,AF=t同理可得:PE=,BE=,∴y=﹣×〔8﹣2t〕﹣=﹣t2+5t;∵△PQD旳面积是Rt△ABC旳面积旳,∴﹣t2+5t=6,解得:t1=3,t2=2,答:当t=3秒或t=2秒时,△PQD旳面积是Rt△ABC旳面积旳;〔3〕∵,同理可得:,PQ2=〔8﹣2t〕2+〔6﹣t〕2,当PD⊥QD时,PQ2=QD2+PD2,现在,t=〔秒〕,答:当t=时,PD⊥QD、2017年1月10日。