数理统计(1)

合集下载

概率论与数理统计复习笔记 (1)

概率论与数理统计复习笔记 (1)

概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算⊂(事件B包含事件A )事件A 发生必然导致事件B 发生.∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) . ,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) ~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) ~ b (n,p) (0<p<1) n p n p (1- p) ~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P~ U(a,b) (a+b)/2 (b-a) 2/12 服从参数为?的指数分布 ? ?2 ~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。

概率论与数理统计习题集-(1)

概率论与数理统计习题集-(1)

概率论与数理统计习题集学号_______________姓名_______________班级_______________计算机学院第一章 概率论的基本概念一、填空题1,在一副扑克牌(52张)中任取4张,则4张牌花色全不相同的概率为_________。

2,设A,B,C,D 是四个事件,则四个事件至少发生一个可表示为_______________;四个事件恰好发生两个可表示为_______________。

3,已知5把钥匙中有一把能打开房门,因开门者忘记是哪把能打开门,逐次任取一把试开,则前三次能打开门的概率为 _________。

4,10件产品中有3件次品,从中随机抽取2件,至少抽到一件次品的概率是_________。

5,设两个随机事件A ,B 互不相容,且4.0)(=A P ,3.0)(=B P ,则=)(B A P _____。

二、选择题1,某公司电话号码有五位,若第一位数字必须是5,其余各位可以是0到9中的任意一个,则由完全不同数字组成的电话号码的个数是( )。

A ,126B ,1260C ,3024D ,50402,若B A ⊃,C A ⊃,9.0)(=A P ,8.0)(=⋃C B P ,则=-)(BC A P ( )。

A ,0.4B ,0.6C ,0.8D ,0.73,在书架上任意放置10本不同的书,其中指定的三本书放在一起的概率为( )。

A ,1/15B ,3/15C ,4/5D ,3/54,若5.0)(=A P ,4.0)(=B P ,3.0)(=-B A P ,则=⋃)(B A P ( )。

A ,0.6B ,0.7C ,0.8D ,0.55,设为A ,B 任意两个随机事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是( )。

A ,)|()(B A P A P < B ,)|()(B A P A P ≤C ,)|()(B A P A P >D ,)|()(B A P A P ≥三、计算题1,10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。

生物数学-数理统计习题(一)

生物数学-数理统计习题(一)

生物数学—-数理统计习题(前半部分)一、抽样与抽样分布1.设X 1,X 2,···,X n 为样本,¯X n =1n n i =1X i ,S 2n =1n n i =1(X i −¯X )2,X n +1为第n +1次的观测样本,试证:¯X n +1=¯X n +1n +1(X n +1−¯X n )2.设x 1,x 2,···,x n 及u 1,u 2,···,u n 为两个样本观测值,它们有如下关系:u i =x i −a b,b =0,a 都为常数,求样本平均值¯u 与¯x ,样本方差S 2u 与S 2x 之间的关系。

3.证明如下等式:(1)n i =1(X i −¯X )=0;(2)n i =1(X i −C )2=n i =1(X i −¯X )2+n (¯X −C )2;(3)n i =1(X i −¯X )2=n i =1X 2i −n ¯X,进而有S 2n =¯X 2−¯X 2,其中¯X 2=1n n i =1X 2i 。

4.若从总体中抽取容量为13的一个样本:−2.1,3.2,0,−0.1,1.2,−4,2.22,2.01,1.2,−0.1,3.21,−2.1,0试写出这个样本的次序统计量,中位数和极差。

5.设X ∼N (µ,σ2),求样本均值¯X与总体期望µ的偏差不超过1.96σ2n的概率。

6.在总体N (52,633)中随机抽一容量为36的样本,求样本均值¯X 落在50.8和53.8之间的概率。

7.求总体N (20,3)的容量分别为10,15的两个独立样本均值差的绝对值大于0.3的概率。

8.设X 1,X 2,···,X 10为N (0,0.09)的一个样本,求P (10i =1X 2i >1.44)。

概率论与数理统计(I)期末考试样卷1参考答案

概率论与数理统计(I)期末考试样卷1参考答案

教研室(系)主任签名: 分院(部)领导签名:第 页 (共 页)概率论与数理统计(I )期末考试样卷1参考答案一、填空题( 每小题3分,共24分)1. 在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3个记录其纪念章的号码。

则最小号码为5的概率=235101/12C C =。

2. 设事件,A B 都不发生的概率为0.2,且()()0.6P A P B +=,则,A B 同时发生的概率为_____0.2_____. 3. 已知111(),(),()432P A P B A P A B ===,则()P A B = 1/3 。

4. 设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出次品的只数,则X 的分布律为5. 设连续型随机变量X 的分布函数为0,0,()s i n ,0,21,,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩ 则A =____1______,||6P X π⎛⎫<= ⎪⎝⎭____1/2______方差为0.02的正态分布,设Ф(x)为标准正态分布函落在区间(9.95,10.05)内的概率为 0.9876 。

立同服从(0,1)N ,则21~ni i X X ==∑2()n χ.X 与Y 独立,则(2)Var X Y -=_____13_____ )列结论中肯定正确的是( D ).; (B ),A B 相容;()B ; (D )()()P A B P A -=.()0P B >,则下列选项必然成立的是( A ).); (B )()(|)P A P A B ≤; ); (D )()(|)P A P A B ≥.Y X ,独立,记21Z X Y =-+,则~Z ( C ).1)-; (C )(2,8)N ; (D )(2,9)N . EXEY ,则( B ).; (B )DY DX Y X D +=+)(; (D )X 与Y 不独立.应量为:甲厂家是乙厂家的2倍;乙、丙两厂相等。

概率论与数理统计第1章

概率论与数理统计第1章
记 Ai={第i台机器需要照管}, i=1,2,3;
A1A2 A3 A1 A2 A3 A1A2 A3
A1 A2 A3
例9 三人独立地去破译一份密码,已知各人能 译出的概率分别为1/5,1/3,1/4,问三人中至 少有一人能将密码译出的概率是多少?
P(AB)=P(B)P(A|B) (2)
P(AB)=P(BA)
P(BA)=P(A)P(B|A)
P(AB)=P(A)P(B|A) (3)
(2)和(3)式都称为乘法公式,利用它们可计算 两个事件同时发生的概率。
推广到多个事件的乘法公式:
当P(A1A2…An-1)>0时,有 P (A1A2…An) =P(A1)P(A2|A1) …P(An| A1A2…An-1)
当有了新的信息(知道B发生),人们对诸 事件发生可能性大小P(Ai | B)有了新的估计.
贝叶斯公式从数量上刻划了这种变化。
1.5事件的独立性
一、两事件的独立性 将一颗均匀骰子连掷两次,

A =“第一次掷出6点”, B =“第二次掷出6点”,
显然
P(B|A)=P(B)=1/6
这就是说,已知事件A发生,并不影响事件B发
例如
甲、乙两人向同一目标射击,记 A={甲命中}, B={乙命中},A与B是否独立?
由于“甲命中”并不影响“乙命中”的
概率,故认为A、B独立 .
(即一事件发生与否并不影响另一事件发生 的概率)
又如:一批产品共n件,从中抽取2件,设 Ai={第i件是合格品} i=1,2
若抽取是有放回的, 则A1与A2独立. 因为第二次抽取的结果不受第一次抽取的影响.
P( A | B) P( AB) , P(B)
P(B)>0

考研数学一-概率论与数理统计(一)

考研数学一-概率论与数理统计(一)

考研数学⼀-概率论与数理统计(⼀)考研数学⼀-概率论与数理统计(⼀)(总分:100.00,做题时间:90分钟)⼀、选择题(总题数:10,分数:40.00)1.设随机变量X服从正态分布N(1,σ2 ),其分布函数为F(x),则对任意实数x,有______(分数:4.00)A.F(x)+F(-x)=1.B.F(1+x)+F(1-x)=1.√C.F(x+1)+F(x-1)=1.D.F(1-x)+F(x-1)=1.解析:[解析] 由于X~N(1,σ2 ),所以X的密度函数f(x)的图形是关于x=1对称的,⽽可知正确答案是B.2.设X~P(λ),P 1,P 2分别为随机变量X取偶数和奇数的概率,则______(分数:4.00)A.P1=P2.B.P1<P2.C.P1>P2.√D.P1,P2⼤⼩关系不定.解析:[解析] 若X~P(λ),则,其中X取偶数的概率为X取奇数的概率为于是应选C.3.设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对于任意实数a,有______ A.B.C.F(-a)=F(a).D.F(-a)=2F(a)-1.(分数:4.00)A.B. √C.D.解析:[解析] 概率密度f(x)为偶函数,于是对于任意实数a,有F(-a)=1-F(a)成⽴;利⽤区间可加性得结合上⾯的等式,于是得应选B.4.设⼆维随机变量(X,Y)在区域D:x 2 +y 2≤9a 2 (a>0)上服从均匀分布,p=P{X 2 +9Y 2≤9a 2 },则A.p的值与a⽆关,且B.p的值与a⽆关,且C.p的值随a值的增⼤⽽增⼤.D.p的值随a值的增⼤⽽减⼩.(分数:4.00)A.B. √C.D.解析:[解析] 因为(X,Y)在区域D:x 2 +y 2≤9a 2上服从均匀分布,所以(X,Y)的联合密度函数为故选B.5.设随机变量X与Y服从正态分布N(-1,2)与N(1,2),并且X与Y不相关,aX+Y与X+by亦不相关,则______(分数:4.00)A.a-b=1.B.a-b=0.C.a+b=1.D.a+b=0.√解析:[解析] X~N(-1,2),Y~N(1,2),于是D(X)=2,D(Y)=2.⼜Cov(X,Y)=0,Cov(aX+Y,X+bY)=0,由协⽅差的性质有故选D.6.已知总体X的期望E(X)=0,⽅差D(X)=σ2.X 1,…,X n是来⾃总体X的简单随机样本,其均值为,则下⾯可以作为σ2⽆偏估计量的是______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析] 由于E(X)=0,D(X)=E(X 2 )=σ2,则所以选择C.对于A,B选项,由E(S 2 )=σ2,知均不是σ2的⽆偏估计量.7.设随机变量序列X 1,…,X n,…相互独⽴,则根据⾟钦⼤数定律,当n→∞时,于其数学期望,只要{X n,n≥1}满⾜______(分数:4.00)A.有相同的数学期望.B.服从同⼀离散型分布.C.服从同⼀泊松分布.√D.服从同⼀连续型分布.解析:[解析] ⾟钦⼤数定律的应⽤条件为:“独⽴同分布且数学期望存在”,选项A缺少同分布条件,选项B、D虽然服从同⼀分布但不能保证期望存在,只有C符合该条件.故选C.8.设X 1,X 2,…,X n是来⾃总体X的简单随机样本,是样本均值,C为任意常数,则______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析故选C.9.设总体X服从正态分布N(0,σ2 ),X 1,X 2,…,X 10是来⾃X的简单随机样本,统计量从F分布,则i等于______(分数:4.00)A.4.B.2.√C.3.D.5.解析:[解析] 因为X 1,X 2,…,X 10是来⾃X的简单随机样本,故独⽴同分布于N(0,σ2 )因此,则有⼜与相互独⽴,故故选B.10.在假设检验中,如果待检验的原假设为H 0,那么犯第⼆类错误是指______(分数:4.00)A.H0成⽴,接受H0.B.H0不成⽴,接受H0.√C.H0成⽴,拒绝H0.D.H0不成⽴,拒绝H0.解析:[解析] 直接应⽤“犯第⼆类错误”=“取伪”=“H 0不成⽴,接受H 0”的定义,选择B.⼆、解答题(总题数:10,分数:60.00)11.每次从1,2,3,4,5中任取⼀个数,且取后放回,⽤b i表⽰第i次取出的数(i=1,2,3),三维列向量b=(b 1 ,b 2 ,b 3 ) T,三阶⽅阵,求线性⽅程组Ax=b有解的概率.(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:对增⼴矩阵作初等⾏变换有于是Ax=b有解的充要条件是,即b 3 -2b 2 +b 1 =0,其中b 1,b 2,b 3相互独⽴,且分布律相同:,k=1,2,3,4,5,i=1,2,3.所以Ax=b有解的概率为甲、⼄两个⼈投球,甲先投,当有任⼀⼈投进之后便获胜,⽐赛结束.设甲、⼄命中率分别为p 1,p 2,0<p 1,p 2<1.求:(分数:6.00)(1).甲、⼄投球次数X 1与X 2的分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:每次投篮是相互独⽴的与其他⼏次⽆关.事件X 1 =n表⽰“甲投了n次”,即“甲、⼄各⾃在前n-1次没有投进,在第n次时甲投进或⼄投进”,所以P{X 1 -n}=(q 1 q 2 ) n-1 (p 1 +q 1 p 2 ),n=1,2,…其中:q i =1-p i,i=1,2.事件“X 2=m”表⽰“⼄投了m次”,即“甲、⼄前m-1次均没有投进,甲在第m次也没有投进,⼄在第m 次投进”,或“甲、⼄前m次均没有投进,甲在第m+1次投进”.特殊地,当m=0时,表⽰甲第⼀次就投中,所以P{X 2 =m}=(q 1 q 2 ) m-1 (q 1 p 2 +q 1 q 2 p 1 )=q 1 (p 2 +q 2 p 1 )(q 1 q 2 ) m-1,m=1,2,…(2).若使甲、⼄两⼈赢得⽐赛的概率相同,则p 1,p 2满⾜什么条件?(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:设事件A表⽰“甲获胜”,则总投篮次数为奇数.当X 1 +X 2 =2n-1时,意味着甲、⼄前n-1次都未投进,甲在第n次投进,于是有P{X 1 +X 2 =2n-1}=p 1 (q 1 q 2 ) n-1,则若甲、⼄两⼈赢得⽐赛的概率相同,则12.设随机变量X在区间(0,1)上服从均匀分布,⼜求Y的概率密度f Y (y)与分布函数F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:解法⼀:应⽤单调函数公式法先求Y的概率密度f Y (y).由于X在(0,1)内取值所以的值域为(0,+∞),且y=g(x)在(0,1)单调.因此其反函数在(0,+∞)内单调可导,其导数h"(y)=2e -2y,在其定义域(0,+∞)内恒不为零.⼜因为X的概率密度所以Y的概率密度因此可见Y服从参数为2的指数分布,其分布函数为解法⼆:⽤分布函数法先求出Y的分布函数F Y (y).当y≤0时,F Y (y)=0;当y>0时,0<x=1-e -2y<1,最后⼀步是由于X服从(0,1)上的均匀分布.故所求Y的分布函数为将F Y (y)对y求导,得设随机变量(X,Y)的概率密度为试求:(分数:6.00)(1).(X,Y)的分布函数;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:①当x≤0或y≤0时,f(x,y)=0,故F(x,y)=0.②当0<x≤1,0<y≤2时,③当0<x≤1,y>2时,④当x>1,0<Y≤2时,⑤当x>1,y>2时,综上所述,分布函数为(2).(X,Y)的边缘分布密度;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,当0≤y≤2时,(3).概率P{X+Y>1},P{Y>X} 2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,如下图所⽰,所以设(X,Y)服从D={(x,y)|y≥0,x 2 +y 2≤1}上的均匀分布,定义(分数:6.00)(1).求(U,V)的联合分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由题设可知,故(U,V)的可能值为(0,0),(0,-1),(0,1),(1,-1),(1,0),(1,1).则(U.V)的联合分布律为(2).求关于V的边缘分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由(U,V)的联合分布律得V的边缘分布律为(3).求在U=1的条件下V的分布律.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:,所以所以所求V的分布律为13.设随机变量X的概率密度为,求随机变量 F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:记如下图所⽰,φ(x)在[0,+∞)内最⼩值为-1,⽆最⼤值,在[0,+∞)左端点处的值为0.y=-1,0将y轴分成(-∞,-1),[-1,0),[0,+∞)三个区间.当y∈(-∞,-1)时,F Y (y)=0.当y∈[-1,0)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴上的投影与[0,+∞)的交集为F Y (y)=f X (x)在上的积分为当y∈[0,+∞)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴的投影与[0,+∞)的交集为,此时F Y (y)=f X (x)在上的积分为综上所述,y的分布函数为设随机变量X在区间(0,2)上随机取值,在X=x(1<x<2)条件下,随机变量Y在区间(1,x)上服从均匀分布.(分数:6.00)(1).求(X,Y)的联合概率密度,并问X与Y是否独⽴;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:根据题设X在(0,2)上服从均匀分布,其密度函数为⽽变量Y,在X=x(1<-x<2)的条件下,在区间(1,x)上服从均匀分布,所以其条件概率密度为再根据条件概率密度的定义,可得联合概率密度⼜所以由于f X (x)f Y(y)≠f(x,y),所以X与Y不独⽴.(2).求P{3Y≤2X};(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,(3).记Z=X-Y,求Z的概率密度f Z (z).(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:已知(x,y)~f(x,y),则Z=X-Y的取值范围为0<Z<1.当0<z<1时,Z=X-Y的分布函数为则故设随机变量X与Y相互独⽴,X的概率分布为,Y的概率密度函数为Z=X+Y.求:(分数:6.00)3.00)__________________________________________________________________________________________ 正确答案:()(2).Z的概率密度函数.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:F Z(z)=P{Z≤z}=P{X+Y≤z}=P{X=-1,Y≤z+1}+P{X=0,Y≤z}+P{X=1,Y≤z-1}.因为X与Y相互独⽴,故①当z+1<0(z-1<-2),即z<-1时,f Y (y)=0,从⽽F Z (z)=0;②当0≤z+1<1(-2≤z-1<-1),即-1≤z<0时,③当-1≤z-1<0(1≤z+1<2),即0≤z<1时,④当0≤z-1<1(2≤z+1<3),即1≤z<2时,⑤当1≤z-1(3≤z+1),即z≥2时,综上故设⼆维连续型随机变量(X,Y)的联合概率密度为U=X+Y,V=X-Y.求:(分数:6.00)(1).U的分布函数F 1 (u);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当u<0时,F 1 (u)=0;当u≥0时,故U的分布函数F 1 (u)为(2).V的分布函数F 2 (v);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当v<0时,F 2 (v)=0;当v≥0时,故V的分布函数F 2 (v)为(3).P{U≤u,V≥v}(u>v>0),并判断U与V是否独⽴.(分数:2.00)__________________________________________________________________________________________ 正确答案:()当u>0,v>0时,P{U≤u}P{V≥v}=F 1(u)·[1-F 2 (v)]=e -2v (1-e -u ) 2≠P{U≤u,V≥v},从⽽可知,U与V不独⽴.设⼆维随机变量(X,Y)在矩形区域D={(x,y)|0≤x≤2,0≤y≤2}上服从⼆维均匀分布,随机变量求:(分数:6.00)(1).U和V的联合概率分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:(U,V)的可能取值为(-1,-1),(-1,1),(1,-1,),(1,1),如下图.依题意知,X与Y的联合概率密度为则有同理类似地可以计算出其他P ij的值:(2).讨论U和V的相关性和独⽴性.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:从(U,V)的联合分布与边缘分布可以计算出所以E(UV)=E(U)·E(V),U与V不相关;⼜因为P{U=u,V=v}=P{U=u}·P{V=v},所以U与V相互独⽴.。

数理统计练习题(1)

数理统计练习题(1)

数理统计练习题一、填空题1、θθθ是常数21ˆ ,ˆ的两个 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。

2、已知总体X ~ N (0, 1),设X 1,X 2,…,X n 是来自总体X 的简单随机样本,则∑=ni iX12~ 。

3、设n X X X ,,,21 是来自总体X ~ N (0, 1)的简单随机样本,则∑=-ni iX X12)(服从的分布为 。

4、X 1,X 2,…,X n 是取自总体()2,σμN 的样本,则212)(σ∑=-ni i X X ~ 。

5、设)(~),1,0(~2n x Y N X ,且X ,Y 相互独立,则~n YX 。

6、已知总体n X X X N X ,,,),,(~212 σμ是来自总体X 的样本,要检验202σσ=:o H ,则采用的统计量是 。

7、设随机变量T 服从自由度为n 的t 分布,若{}αλ=>T P ,则{}=<λT P 。

8、若n X X X N X ,,,),,(~2121 σμ是来自总体X 的样本,2,S X 分别为样本均值和样本方差,则SnX )(μ-~ 。

9、设总体),(~2σμN X ,X 是样本均值,则)(X D ________ . 10、假设子样1621,,,X X X 来自正态母体),(2σμN ,令∑∑==-=161110143i ii i X X Y ,则Y 的分布为 .二、选择题1、设12, X X 是来自总体X 的一个简单随机样本,则最有效的无偏估计是( )。

A. 121122X X μ=+ B. 121233X X μ=+ C. 121344X X μ=+ D. 122355X X μ=+2、设),,,(21n X X X 为总体)2,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是( )。

A.)(~/21n t nX -; B. )1,(~)1(4112n F X ni i ∑=-; C.)1,0(~/21N nX -; D. )(~)1(41212n X ni i χ∑=-; 3、设总体)2,(~2μN X ,其中μ未知,n X X X ,,,21 为来自总体的样本,样本均值为X ,样本方差为2s , 则下列各式中不是统计量的是( )。

数理统计课后题答案完整版

数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。

_download_数理统计_统计实验参考_数理统计实验案例(1)

_download_数理统计_统计实验参考_数理统计实验案例(1)

《数理统计》实验案例问题:一、要求应用SPSS软件对实验数据(六个变量,500个数据)进行如下统计分析:1、对每一变量数据作直方图与QQ图,选出直方图近似正态分布且QQ图近似直线的变量,视这些变量是随机变量(至少两个),其近似服从正态分布;2、对近似服从正态分布的随机变量的分布函数进行假设检验(K-S方法);3、对x1与y1 的独立性进行假设检验;4、对x1(自变量)与y1(因变量)进行一元线性回归分析,建立回归方程,并进行线性性检验;5、对x1(自变量)、x2(自变量)、x3(自变量)与y1(因变量)进行多元线性回归分析,建立回归方程,并进行线性性检验;6、分别对来自三个总体(水平)x1、x2、x3的试验数据关于均值相等的假设进行方差分析,同理对来自三个总体(水平)y1、y2、y3的试验数据进行方差分析;7、分别按六个变量进行变量聚类,以变量的相关系数作为距离度量,分析聚类结果;8、对六个变量进行主成份分析,研究试图用二个综合变量表示六个变量的可行性。

问题一:对每一变量数据作直方图与QQ图,选出直方图近似正态分布且QQ图近似直线的变量,视这些变量是随机变量(至少两个),其近似服从正态分布。

一、解决问题理论方法的概述应用SPSS软件对各变量分别作直方图与QQ图,通过图形辨认选出符合要求的变量。

(1)直方图:用条形的长短来表示连续的绝对数(或称频数)资料的多少。

(2)QQ概率图:生成的是变量分布的分位数与一个制定检验分布的分位数之间的差异,通常用于检测样本的观测值是否来自于某个指定概率分布的总体。

二、具体步骤1、首先使用SPSS 软件对六组变量的观测值分别做出直方图与QQ图,图1-1和图1-2分别为使用软件进行直方图作图和QQ图作图操作过程的截图。

图1-1 直方图对话框图1-2 QQ图对话框三、检验结果与分析下面是各变量的直方图和QQ图的对照,其中左边是直方图,右边是同一变量的QQ图。

因此,最终确定x1,y2和y3是符合题目要求的变量。

数理统计法1

数理统计法1
以标准正态变量为基石而构造的三个著名统计量在实 际中有着广泛的应用。这是因为这三个统计量不仅有 明确背景,而且其抽样分布的密度函数有明显表达式, 它们被称为统计中的“三大抽样分布”
1、 2 分布(卡方分布)
若随机变量 X1,X2,… Xn 相互独立,都服 从标准正态分布 N(0,1) ,则随机变量 2 2 Y= X 12 X 2 X n 服从自由度为 n 的 2 分布,记为 Y~ 2 (n). Y 的均值为 n,方差为 2n.
样本标准差
s s 2 133.9368 11.5731ቤተ መጻሕፍቲ ባይዱ
3.
表示分布形状的统计量—偏度和峰度 1 n 1 3 偏度: g1 3 ( X i X ) 峰度: g 2 4 s i 1 s
4 ( X X ) i i 1
n
偏度反映分布的对称性:g1 >0 称为右偏态,此时数据位 于均值右边的比位于左边的多;g1 <0 称为左偏态,情况相反; 而 g1 接近 0 则可认为分布是对称的. 峰度是分布形状的另一种度量,正态分布的峰度为 3,若 g2 比 3 大很多,表示分布有沉重的尾巴,说明样本中含有较多 远离均值的数据,因而峰度可用作衡量偏离正态分布的尺度之一.
一些常用的统计量
2、表示变异程度的统计量—标准差、方差和极差 样本方差: 设 x1 , x2 ,..., xn 为取自总体的样本,则 n 1 2 称为样本方差 s2 ( X X ) i n 1 i 1 它是各个数据与均值偏离程度的度量。
样本标准差:样本方差的算术平方根 s 称为样本标准关。 . 极差:样本中最大值与最小值之差.
(x1,x2,…,xn)具有联合密度函数:
f n ( x1 , x2 ,, xn ) f ( x1 ) f ( x2 ) f ( xn ) f ( xi )

概率论与数理统计习题课1

概率论与数理统计习题课1
(1)有机床需要工人照管的概率;
(2)机床因无人照管而停工的概率.
解:设 A 机床甲不需要工人照顾, B 机床乙不需要工人照顾, C 机床丙不需要工人照顾,
依题意,A、B、C 相互独立。
2019/7/17
16
第1章 习 题 课
(1) P( A B C ) P( ABC )
)

1

29 90

61 90
.
3
P(B1B2 ) P( Ai )P(B1B2 | Ai )
i 1
1 ( 3 7 7 8 5 20) 2 . 3 10 9 15 14 25 24 9
2019/7/17
21
第1章 习 题 课
从而
P ( B1
|
B2 )

P(B1B2 ) P(B2 )
于是 P( A) p 0.25(1 p) p [0.25(1 p)]2 p .
这是一个几何级数求和问题。由于公比
0 0.25(1 p) 1,该级数收敛。
P( A)
p
.
1 0.25(1 p)
若甲乙胜率相同,则
p
0.5 p 3 .
1 0.25(1 p)
i 1,2,3,.
A 甲获胜,
B 乙获胜,
2019/7/17
18
第1章 习 题 课
则 A A1 A1B2B3 A4 A1B2B3 A4B5B6 A7 ;
P( A1 ) p ; P( A1B2B3 A4 ) 0.25(1 p) p ; P( A1B2B3 A4B5B6 A7 ) [0.25(1 p)]2 p ;

第六章 数理统计的基本概念(1)

第六章 数理统计的基本概念(1)
(k 1, M1就是X )
XK
1 n
n i 1
X
k i
(4)样本k阶中心矩:
1 n
n i 1
(Xi
X )k
(5)顺序统计量: X(1) X(2) X(n) . 其中 X(k) 为将 X1, X2 , , Xn 从小到大排列第 k 位值.
18 September 2020
概率论与数理统计
理学院数学系
2、离散型 设总体X的分布律为 P{ X x} p( x)
则样本X1, X2 ,的, 联Xn合分布律为 P{ X1 x1, X2 x2 ,, Xn xn } p( x1 ) p{ x2 ) p( xn )
18 September 2020
概率论与数理统计
理学院数学系
样本分布
第六章 数理统计的基本概念
(1)样本均值:
X
1 n
n i 1
Xi
(2)样本方差:
Sn2
1 n
n
(Xi
i 1
X )2
修正样本方差:
Sn*2
1 n1
n i 1
(Xi
X )2
nSn2 (n 1)Sn*2
18 September 2020
概率论与数理统计
理学院数学系
第六章 数理统计的基本概念
第22页
(3)样本k阶原点矩:
第13页
1、样本的联合分布函数 设总体 X 的分布函数为 FX (., ), (X1, X2 ,
则样本的联合分布函数为
, Xn ) 为样本.
FX1,X2 , ,Xn ( x1, x2 , , xn ; ) FX ( x1, )FX ( x2 , ) FX ( xn , )

高等数学 概率论与数理统计课件(一)

高等数学 概率论与数理统计课件(一)

高等数学概率论与数理统计课件(一)高等数学概率论与数理统计课件1. 课程简介•高等数学概率论与数理统计是大学数学专业的一门重要课程。

•它是数学学科的基础,也是应用数学的重要工具。

•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。

2. 概率论部分2.1 概率的基本概念•概率的定义和性质•随机事件的概率计算方法•条件概率与独立事件2.2 随机变量和概率分布•随机变量的定义和性质•离散型随机变量和连续型随机变量•常见概率分布:离散型和连续型2.3 随机变量的数字特征•期望、方差、标准差的定义和计算•切比雪夫不等式•大数定律和中心极限定理3. 数理统计部分3.1 统计基础•总体和样本的统计特征•参数估计和区间估计•假设检验的基本思想3.2 参数估计•点估计和区间估计的概念•常见的参数估计方法:极大似然估计、矩估计等•置信区间的计算和解释3.3 假设检验•假设检验的基本原理•假设检验的步骤和流程•常见的假设检验方法:单样本、两样本和多样本检验4. 课程学习方法•注重理论和实践相结合,理论指导实践、实践检验理论。

•多做习题,通过刷题巩固知识点。

•参考相关教材和参考书,拓宽知识广度和深度。

•加强课后讨论和交流,与同学共同解决问题。

•关注概率论与数理统计的应用领域,扩展应用实践。

5. 课程考核方式•平时成绩:课堂参与、作业完成情况等。

•期中考试:对课程前半部分的知识进行考核。

•期末考试:对整个课程的知识进行考核。

•课程项目:根据实际情况进行论文、实验等形式进行综合评估。

6. 学习资源推荐•《高等数学》教材,北京大学出版社。

•《概率论与数理统计教程》教材,清华大学出版社。

•《概率论与数理统计习题集》辅导书,高等教育出版社。

•在线学习资源:Coursera、edX、网易云课堂等平台提供的相关课程。

7. 小结•高等数学概率论与数理统计课程是数学专业学生不可或缺的重要课程。

•本课程旨在帮助学生掌握概率论与数理统计的基本概念、理论和方法。

概率论与数理统计(1)

概率论与数理统计(1)

设事件 A 、B 满足 P (A B ) =o.2 , P ( B ) =o.6 ,贝U P (AB )=(x设随机变量 X 的分布函数为F(x)= — -1 ,2乞x :::4;则E (X )I 21, x —4;1. 、单项选择题 从标号为1, 2,… 5o ioi C .5oioo概率复习题101的ioi 个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( AB .邑ioi D .旦 ioo2. A . C .3. A . C .4.o.12 B . o.4 o.6 D . o.8设随机变量X~N (1 , 4), Y=2X+1 ,则Y 所服从的分布为(CN (3, 4) N (3 , 16) 设每次试验成功的概率为 p(o<p<1),则在B . N (3, 8) D . N (3, 17)3次独立重复试验中至少成功一次的概率为(A1- (1-p ) 3B . p(1-p)2C . 1 2。

3卩(1 一23D . p+p +P5 .设二维随机变量(X , Y )的分布律为o1 oo.i o.2 1o.3o.4设 P j =P{X=i,Y=j}i,j=0,1 的是(DA . p oo <p oi C . p oo <p iiB . p io <p ii D . p io <p oi6.设随机变量X~ x 2(2), Y~ x 2( 3),且 X ,Y 相互独立,则空所服从的分布为(2YC . 7. (2, 2)(3, 2)X , Y 是任意随机变量,C .(X+Y ) =D (X ) +D (Y ) (X-Y ) =D (X ) -D (Y )B . F (2, D . F ( 3,C 为常数,贝U 下列各式中正确的是(B . D (X+C ) =D D . D (X-C ) =D(X) (X)D ) +C0,x ::2; ,则下列各式中错误A.-3 C . 32B.- 2D . 3 9•设随机变量X 与Y 相互独立,且X~B (36, 1),丫~B ( 12,丄),则D(X-Y+1 )=(6 一4 A.- 3 C .空3 B . D . 7 326 3 210.设总体 X~N ( , d ), X 1, X 2,… S 2为样本方差.对假设检验问题:H 。

数理统计第一章

数理统计第一章

n
例1.4 总体X~B(1,p),0<p<1,写出其样本的联合概率函数
总体
样品
X ~ P ( X x ) p ( 1 p ) ( x 0 ,1 )
x 1 x
X ~ P ( X x ) p ( 1 p ) , ( x 0 ,1. i 1,2 , , n )
xi 1 x i i i i
全部信息。 一个好的统计方法,是使由局部推断出的有关整体的信 息尽可能地准确。
第一章
数理统计的基本概念
第一节 随机样本
一.总体与个体
1.总体 在一个统计问题中,把所研究对象的全体称为总体。
构成总体的每个成员称为个体。
如:例一中的一大批灯泡叫总体。而每个灯泡叫做个体。 把含有有限个个体的总体称为有限总体 把含有无限个个体的总体称为无限总体
在数理统计学中,我们总是对随机现象进行有限 次的观察或试验,以获取数据。通过对数据的分析与 推断去寻找隐藏在数据中的统计规律性。 由于是对随机现象进行观察或试验,因此,观察或 试验数据是带有随机性的。为此需要我们从中尽可能地 排除随机性的干扰,以作出合理的推断。 数理统计是研究怎样以有效的方式收集、 整理和分 析带有随机性的数据,在此基础上,对所研究的问题作 出统计推断,直至对可能作出的决策提供依据和建议。
则其简单随机样本的联合分布函数为
F ( x )F ( x )F ( x ) F ( x )
1 2 n
n
(2)若总体X为连续随机变量,概率密度函数为f(x), 样品X i 的概率密度函数为 f ( xi ), (i 1,2,, n)
i 1
i
则样本 ( X1, X 2 , X n ) 的联合概率密度函数为

概率论与数理统计01 第一节 随机变量及其分布函数

概率论与数理统计01 第一节 随机变量及其分布函数

第二章随机变量及其概率分布在随机试验中,人们除对某些特定事件发生的概率感兴趣外,往往还关心某个与随机试验的结果相联系的变量. 由于这一变量的取值依赖于随机试验结果,因而被称为随机变量. 与普通的变量不同,对于随机变量,人们无法事先预知其确切取值,但可以研究其取值的统计规律性. 本章将介绍两类随机变量及描述随机变量统计规律性的分布.第一节一维随机变量及其分布函数内容分布图示★随机变量概念的引入★随机变量的定义★例1★例2★例3★引入随机变量的意义★课堂练习★习题2-1内容要点:一、随机变量概念的引入为全面研究随机试验的结果, 揭示随机现象的统计规律性, 需将随机试验的结果数量化,即把随机试验的结果与实数对应起来.1. 在有些随机试验中, 试验的结果本身就由数量来表示.2. 在另一些随机试验中, 试验结果看起来与数量无关,但可以指定一个数量来表示之.二、随机变量的定义定义设随机试验的样本空间为S, 称定义在样本空间S上的实值单值函数)XX(e 为随机变量.随机变量与高等数学中函数的比较:(1) 它们都是实值函数,但前者在试验前只知道它可能取值的范围,而不能预先肯定它将取哪个值;(2) 因试验结果的出现具有一定的概率,故前者取每个值和每个确定范围内的值也有一定的概率.三、引入随机变量的意义随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来.由此可见,随机事件这个概念实际上是包容在随机变量这个更广的概念内.也可以说,随机事件是从静态的观点来研究随机现象,而随机变量则以动态的观点来研究之.其关系类似高等数学中常量与变量的关系.随机变量概念的产生是概率论发展史上的重大事件. 引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量因其取值方式不同, 通常分为离散型和非离散型两类. 而非非离散型随机变量中最重要的是连续型随机变量. 今后,我们主要讨论离散型随机变量和连续型随机变量.例题选讲:例1 (讲义例1) 在抛掷一枚硬币进行打赌时, 若规定出现正面时抛掷者赢1元钱, 出现反面时输1元钱, 则其样本空间为=S {正面, 反面},记赢钱数为随机变量X , 则X 作为样本空间S 的实值函数定义为⎩⎨⎧=-==.,1,,1)(反面正面ϖϖϖX 例2 (讲义例2) 在将一枚硬币抛掷三次, 观察正面H 、反面T 出现情况的试验中, 其样本空间};,,,,,,,{TTT TTH THT HTT THH HTH HHT HHH S =记每次试验出现正面H 的总次数为随机变量X , 则X 作为样本空间S 上的函数定义为1112223X TTTTTH THT HTT THH HTH HHT HHH ϖ易见, 使X 取值为})2({2=X 的样本点构成的子集为},,,{THH HTH HHT A = 故 ,8/3)(}2{===A P X P 类似地,有.8/4},,,{}1{==≤TTT TTH THT HTT P X P例3 (讲义例3) 在测试灯泡寿命的试验中, 每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=t t S 上的函数,即t t X X ==)(,是随机变量.课堂练习1. 一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.四. 随机变量的分布函数定义 设X 是一个随机变量, 称)()()(+∞<<-∞≤=x x X P x F 为X 的分布函数.有时记作)(~x F X 或)(x F X .分布函数的性质1. 单调非减. 若21x x <, 则)()(21x F x F ≤;2. ;1)(lim )(,0)(lim )(==+∞==-∞+∞→-∞→x F F x F F x x3. 右连续性. 即).()(lim 00x F x F x x =+→例4 判别下列函数是否为某随机变量的分布函数?⎪⎩⎪⎨⎧≥<≤+<=⎪⎩⎪⎨⎧≥<≤<=⎪⎩⎪⎨⎧≥<≤--<=.2/1,1,2/10,2/1,0,0)()3(;,1,0,sin ,0,0)()2(;0,1,02,2/1,2,0)()1(x x x x x F x x x x x F x x x x F ππ解 (1)由题设, )(x F 在),(+∞-∞上单调不减, 右连续, 并有,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.(2)因)(x F 在),2/(ππ上单调下降, 所以)(x F 不可能是分布函数. (3)因为)(x F 在),(+∞-∞上单调不减, 右连续, 且有 ,0)(lim )(==-∞-∞→x F F x ,1)(lim )(==+∞+∞→x F F x所以)(x F 是某一随机变量X 的分布函数.离散型随机变量的分布函数例5(讲义例2)设随机变量X 的分布律为 ,2/16/13/121i p X求)(x F .解 }{)(x X P x F ≤=当0<x 时,,}{∅=≤x X 故0)(=x F 当10<≤x 时,31}0{}{)(===≤=X P x X P x F 当21<≤x 时, 216131}1{}0{)(=+==+==X P X P x F 当2≥x 时,1}2{}1{}0{)(==+=+==X P X P X P x F 故 ,2,121,2/110,3/10,0)(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=x x x x x F )(x F 的图形是阶梯状的图形, 在2,1,0=x 处有跳跃, 其跃度分别等于},0{=X P },1{=X P }.2{=X P例6 X 具有离散均匀分布, 即,,,2,1,/1)(n i n x X P i ===求X 的分布函数.解将X 所取的n 个值按从小到大的顺序排列为)()2()1(n x x x ≤≤≤则)1(x x <时,,0}{)(=≤=x X P x F )2()1(x x x <≤时,,/1}{)(n x X P x F =≤= )3()2(x x x <≤时,,/2}{)(n x X P x F =≤=……)1()(+<≤k k x x x 时,,/}{)(n k x X P x F =≤=)(n x x ≥时,1}{)(=≤=x X P x F故 )(x F ⎪⎪⎩⎪⎪⎨⎧<=≥<),,max(,1),,2,1(),,min(,/),,min(,0111n j n n x x x x k n j x x x x n k x x x 当个不大于中恰好有且当当例7(讲义例3)设随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.3,1,32,19/15,21,19/9,1,0)(x x x x x F求X 的概率分布.解 由于)(x F 是一个阶梯型函数, 故知X 是一个离散型随机变量, )(x F 的跳跃点分别为1, 2, 3, 对应的跳跃高度分别为 9/19, 6/19, 4/19, 如图.故X 的概率分布为 .19/419/619/9321i p X课堂练习设随机变量X 的概率分布为4/12/14/1321i p X -,求X 的的分布函数,并求{},2/1≤X P {},2/52/3≤<X P {}.32≤≤X P。

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、《数理统计》题目
1. 某车间承担了生产额定抗拉强度为Pa 710105⨯的合金线的任务,从该车间生产出的合金线成品中随机地抽出100根,测得抗拉强度的均值Pa x 7105.104⨯=,标准差为Pa s 7108.1⨯=。

问这批合金线是否符合标准(α=0.05)?
2. 有一批木材小头直径),2.6N(~X 2μ,按规格要求,μ>12cm 才能算一等品,现随机抽测100根,计算得小头直径平均值12.8cm x =,问能否认为木材属一等品(α=0.05)?
3. 设有一批产品,从中任取100件,经检验有正品92件,问能不能说这批产品的正品率高于90%(α=0.05)?
4. 怎样区分所讨论的问题是方差分析还是回归分析?为了研究某一化学反应过程中温度X 对产品得率Y 的影响,测得数据如下:
温度x i /℃ 100,110,120,130,140,150,160,170,180,190
得率y i /% 45, 51, 54, 61, 66, 70, 74, 78, 85, 89
[1] 求产品得率Y 关于温度x 的回归方程。

[2] 检验回归效果是否显著(α=0.05)。

[3] 用F 检验法,检验回归效果(α=0.01)。

[4] 求温度x 0=145℃时产品得率y 0的预报值和预测区间(α=0.05)。

二、《随机过程》题目
1.设马尔可夫链{X n ,n ∈T }的状态空间为 I={0,1,2,…},转移概率为
I i p i ∈===+,2
1,21p ,21p 01i i,00。

(1)写出状态转移概率矩阵P ;
(2)画出状态转移图;
(3)说明状态0的常返性和周期性;
(4)如何确定其他状态的常返性和周期性?
2.一质点在1,2,3点上做随机游动,若在时刻t 质点位于这三个点之一,则在[t , t +h )内,它以概率o(h)h 21+分别转移到其它二点之一,求该质点随机游动的柯尔莫洛夫方程,转移概率P ij (t )及平稳分布。

相关文档
最新文档