纳米材料论文汇总

合集下载

纳米材料论文

纳米材料论文

纳米材料论文纳米材料具有独特的尺度效应和界面效应,具备出色的物理、化学和生物学性能,在材料科学领域引起了广泛的关注和研究。

本文将针对纳米材料的合成、性质及其在各领域的应用进行综述,探讨其在未来的发展方向和前景。

一、纳米材料的合成方法纳米材料的制备方法多种多样,常见的包括溶液法、气相法、固相法和凝聚法等。

其中,溶液法是一种常用且有效的纳米材料合成方法,通过调控反应条件、控制反应物浓度和温度等因素,可以实现纳米颗粒的可控合成。

气相法则适用于制备高纯度和无杂质的纳米材料,通过在适当的温度和压力下使气体反应生成纳米材料。

固相法主要适用于制备纳米线或纳米晶,通过热处理、溶解、沉淀等方法得到纳米尺度的材料颗粒。

凝聚法则是通过凝聚剂的作用使纳米颗粒形成物质的凝聚态,如通过热处理使纳米材料形成块状材料。

二、纳米材料的性质研究纳米材料的性质研究是纳米科学和纳米技术的基础,通过对纳米材料的结构、形貌、成分和性能进行表征和分析,可以深入了解其特殊性质及其产生机制。

常用的表征手段包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和原子力显微镜(AFM)等。

透射电子显微镜可以观察到纳米颗粒的形貌和尺寸,并通过选区电子衍射(SAED)分析纳米材料的晶体结构。

扫描电子显微镜则可以获取纳米颗粒的表面形貌和形状信息。

X射线衍射用于分析纳米材料的晶体结构和晶格常数。

原子力显微镜则可以获得纳米颗粒的表面形貌和力学性质等。

纳米材料的性质主要包括光学性质、电子性质、磁性质和力学性质等。

光学性质是纳米材料研究的重要方向之一,由于其尺寸效应和界面效应的存在,纳米材料在可见光和红外光谱范围内显示出独特的吸收、发射和散射性质。

电子性质方面,纳米材料的载流子输运性质、电学性质和电磁性质都与其尺寸和结构密切相关。

磁性是纳米材料的另一个重要性质,由于表面自旋和量子尺寸效应的存在,纳米材料具有较高的磁响应性能。

力学性质主要研究纳米材料的硬度、断裂强度和弹性模量等力学特性。

[纳米材料与纳米技术论文]纳米技术的应用论文

[纳米材料与纳米技术论文]纳米技术的应用论文

[纳米材料与纳米技术论文]纳米技术的应用论文纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,下面小编给大家分享一些纳米材料与纳米技术论文,大家快来跟小编一起欣赏吧。

纳米材料与纳米技术论文篇一纳米材料的生物安全性摘要:随着纳米科技的迅猛发展,纳米材料得到广泛应用。

本文通过对其生物安全性问题的提出及现今我国面临的问题的分析,希望纳米科技可以得到更好的发展以及纳米材料能更好地应用于生活的各个领域。

关键词:纳米材料;生物安全;应用中图分类号:G301 文献标志码:A 文章编号:1674-932409-0082-02一、什么是纳米材料纳米材料是处于纳米尺度范围或者由该尺度范围的物质为基本结构单元所构成的超精细颗粒材料的总称,根据物理形态划分,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体和纳米相分离液体等五类。

由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应等,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能。

1984年,德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。

1990年7月在美国召开的第一届国际纳米科学技术会议上,正式宣布纳米材料科学为材料科学的一个新分支。

二、纳米材料生物安全性问题的提出进入21世纪以来,纳米科技发展迅猛,大规模生产的各种人造纳米材料已经在生活消费品和工业产品中广泛使用。

据统计,纳米材料已经应用在近千种消费类产品中,来提高原有的功能或获得崭新的新功能,包括化妆品、食品、服装、生活日用品、医药产品等领域。

然而,近年来的研究发现,由于小尺寸效应、量子效应和巨大比表面积等,纳米材料具有很强的“双刃剑”特性,即在提高原有材料功能同时也存在巨大的安全风险。

例如,美国科学家让一组小鼠生活在含20纳米特氟隆颗粒的空气里,结果小鼠在4小时内全部死亡;而另一组生活在含120纳米特氟隆颗粒的空气里的小鼠,却安然无恙。

纳米材料与技术论文

纳米材料与技术论文

纳⽶材料与技术论⽂ 纳⽶技术的开发,纳⽶材料的应⽤,推动了整个⼈类社会的发展,也给市场带来了巨⼤的商业机遇。

下⾯⼩编给⼤家分享⼀些纳⽶材料与技术论⽂,⼤家快来跟⼩编⼀起欣赏吧。

纳⽶材料与技术论⽂篇⼀ 纳⽶技术与纳⽶材料在纤维中的应⽤ 摘要: 本⽂介绍了纳⽶技术在化学纤维中的应⽤⽅式,并阐述了纳⽶技术在功能性纤维和其他特种纤维中的应⽤情况,以及纳⽶材料在应⽤中存在的问题及解决⽅法,最后展望了纳⽶技术的应⽤前景。

关键词:纳⽶技术;纳⽶材料;功能性纤维;特种纤维 近年来,纳⽶技术与纳⽶材料正引起⼈们的极⼤关注。

纳⽶材料凭借其内部所特有的表⾯效应、体积效应、量⼦尺⼨效应、宏观量⼦隧道效应等四⼤效应,从⽽拥有完全不同于常规材料的奇特的⼒学性能、光学性能、热⼒性能、磁学性能、催化性能和⽣物活性等性能。

这些都为纳⽶材料在纺织⼯业的应⽤奠定了基础。

可以说,纳⽶材料是21 世纪最有前途的材料,在功能性纺织品和⾼分⼦科学领域有着⼴阔的应⽤前景。

[1] 1 纳⽶技术在化学纤维中的应⽤⽅式 纳⽶粒⼦的奇特性质为纳⽶技术的⼴泛应⽤奠定了基础,应⽤纳⽶技术开发功能性化学纤维主要有两个途径[2]。

1.1 纤维超细化 使纤维达到纳⽶级,以满⾜特殊⽤途领域的需要。

1.2 共混纺丝法 共混纺丝法是指在化纤聚合、熔融阶段或纺丝阶段加⼊功能性纳⽶材料粉体,以使⽣产出的化学纤维具有某些特殊的性能。

此法是⽣产功能性化纤的主要⽅法。

由于纳⽶粉体的表⾯效应,其化学活性⾼,经过分散处理后,容易与⾼分⼦材料相结合,较普通微粉体更容易共熔混纺;⽽且纳⽶粉体粒径⼩,能较好地满⾜纺丝设备对添加物粒径的要求,在化纤⽣产过程中能较好地避免对设备的磨损、堵塞及纤维可纺性差、易断丝等问题;对化纤的染⾊、后整理加⼯及服⽤性能等也不会造成很⼤的影响。

该法的优点在于纳⽶粉体均匀地分散在纤维内部,因⽽耐久性好,其赋予织物的功能具有稳定性。

⽬前化纤产品中复合型纤维的⽐例不断扩⼤,如果在不同的原液中添加不同的纳⽶粉体,可开发出具有多种功能的纺织品。

纳米技术的论文(精选五篇)

纳米技术的论文(精选五篇)

纳米技术的论文(精选五篇)第一篇:纳米技术的论文纳米技术在新型建筑材料中的应用纳米技术作为一门新兴的技术,在多个范畴具有十分重要的应用,特别是极大地推进了新型建材的开展,引见了纳米技术在新型建筑涂料、复合水泥、自洁玻璃、陶瓷、防护资料等方面的应用,经过阐述可知,纳米资料在新型建材范畴具有很好的开展应用前景。

纳米技术;新型建材;应用;前景 1 纳米涂料的应用通常传统的涂料都存在悬浮稳定性差,耐老化、耐洗刷性差,光亮度不够等缺陷。

而纳米涂料则能较好的处理这一问题,纳米涂料具有下述优越的性能:(1)具有很好的伸缩性,可以弥盖墙体细小裂痕,具有对微裂痕的自修复作用。

(2)具有很好的防水性,抗异物粘附、沾污性能,抗碱、耐冲刷性。

(3)具有除臭、杀菌、防尘以及隔热保温性能。

(4)纳米涂料的色泽鲜艳温和,手感温和,漆膜平整,改善建筑的外观等。

固然国内外对纳米涂料的研讨还处在初步阶段,但是已在工程上得到了较普遍的应用,如北京纳美公司消费的纳米系列涂料已大量应用于北京建欣苑、建东苑等住宅区的外墙粉刷,效果良好。

在首体改造工程中,运用纳米涂料1700吨,涂刷6万平方米。

复旦大学教育部先进涂料工程研讨中心的专家已研发出了“透明隔热玻璃涂料”。

2 纳米水泥的应用普通水泥混凝土因其刚性较大而柔性较小,同时其本身也存在一些固有的缺陷,使其在运用过程中不可防止地产生开裂并毁坏。

为理解决这一问题就必需加速对具有特殊性能混凝土的研发,而纳米混凝土就能有效的处理这样问题,纳米混凝土,与普通混凝土相比,纳米混凝土的强度、硬度、抗老化性、耐久性等性能均有显着进步,同时还具有防水、吸声、吸收电磁波等性能,因此可用于一些特殊的建筑设备中(如国防设备)。

通常在普通混凝土中参加纳米矿粉(纳米级SiO2、纳米级CaCO3)或者纳米金属粉末已到达纳米混凝土的性能,而且经过改动纳米资料的掺量还能配置出防水砂浆等。

目前开发研制的纳米水泥资料包括纳米防水复合水泥,纳米敏感水泥、纳米环保复合水泥以及纳米隐身复合水泥。

纳米材料论文

纳米材料论文

纳米材料的特性与应用摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。

80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。

它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。

纳米材料的应用前景十分广阔。

近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。

关键词:纳米材料特性应用1. 纳米发展简史1959年,着名物理学家、诺贝尔奖获得者理查德。

费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。

1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。

1999年,纳米产品的年营业额达到500亿美元。

2.什么是纳米材料纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。

一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

3. 纳米材料的特性广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。

3.1表面与界面效应这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。

例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。

纳米材料论文

纳米材料论文

纳米材料论文篇一:纳米材料的论文纳米材料论文题目:纳米科技及纳米材料学院:专业:学号: 学生姓名:指导教师:日期: 材料与冶金学院无机非金属材料工程 202202128064 周鸣赵惠忠2022 .11.2【摘要】纳米技术是当今世界最有前途的决定性技术。

文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。

【关键词】纳米技术;纳米材料;结构;性能;应用;前景【Abstract】Nanotechnology is the world's most promising decisive technology. The article briefly outlines the nanometer technology, the structure and nano-materials and nano-materials special nature of the performance of various aspects of the application in practice, and the prospect of nano-materials applications.【Key words】 nanotechnology; Nano materials; Structure; Performance; Application; Prospects1.纳米科学和技术1.1 纳米科技的定义纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。

其涵义是人类在纳米尺寸〔10-9--10-7m〕范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。

纳米科技是现代物理学与先进工程技术相结合的根底上诞生的,是一门根底研究与应用研究紧密联系的新兴科学技术。

纳米材料技术论文(2)

纳米材料技术论文(2)

纳米材料技术论文(2)纳米材料技术论文篇二探析纳米技术及纳米材料的应用摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。

关键词:纳米材料;应用;前景展望中图分类号:S219.04 文献标识号:A 文章编号:2306-1499(2013)03-(页码)-页数1.纳米技术引起纳米材料的兴起1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。

80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。

由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。

1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。

1999年,纳米产品的年营业额达到500亿美元。

2.纳米材料及其性质表现2.1纳米材料纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。

一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

纳米材料技术论文

纳米材料技术论文

纳米材料技术论文纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,下面小编给大家分享一些纳米材料技术论文,大家快来跟小编一起欣赏吧。

纳米材料技术论文篇一纳米材料综述【摘要】本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】纳米、纳米技术、纳米材料、纳米结构1 引言著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。

他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。

”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。

”[1]1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。

1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。

1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。

[2]2 纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。

其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料3.1纳米材料的概念纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。

因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料的应用研究论文

纳米材料的应用研究论文

纳米材料的应用研究论文随着纳米科学技术的发展,纳米材料作为其中的重要成果,已经得到了广泛的应用。

本文将探讨纳米材料的应用研究,并对其未来发展进行展望。

一、纳米材料的应用1. 电子行业纳米材料可用于制造微型电子器件,如纳米晶体管、纳米传感器等。

其优势在于体积小、性能高、功耗低,适合于生产高性能电子产品。

例如,石墨烯就是一种高性能电子材料,其导电性高,可以应用于电子芯片、显示屏等领域。

2. 医疗行业纳米材料在医疗领域中的应用也十分广泛。

纳米材料可以用作生物传感器、基因治疗和癌症治疗等。

例如,纳米金颗粒可以被注射到肿瘤细胞中,通过激活T细胞,使其攻击癌细胞,达到治疗癌症的目的。

3. 环保领域纳米材料也可以在环境清洁方面发挥重要作用。

例如,纳米纤维可以用于制造空气过滤器和水过滤器,能够有效降低空气和水中的污染物含量。

二、纳米材料的研究方向1. 合成方法纳米材料的大规模制备是一项需要重点研究的技术。

目前,人们已经开发出了许多纳米合成方法,如物理法、化学法、生物法等。

未来,需要进一步开发更可控、更高效且成本更低的合成方法。

2. 表面修饰纳米材料的表面往往具有独特的物理化学特性,使得其在不同应用领域中的性能和功能千差万别。

因此,对纳米材料表面的修饰和控制十分关键,可以通过化学修饰、生物修饰、物理修饰等手段实现。

3. 应用研究纳米材料的应用研究是发展纳米材料的关键。

需要进行更多的基础研究和交叉研究,寻找更多的应用领域并推广应用。

三、纳米材料的未来发展纳米材料具有广泛的应用前景和良好的经济效益,因此未来发展前景十分广阔。

未来,纳米材料的发展方向可能包括以下几个方面:1. 功能多样化随着纳米材料的研究深入,人们逐渐意识到不同类型的纳米材料在各个方面都具有不同的性质和应用,因此纳米材料的未来发展可能朝着功能多样化的方向发展,满足各种不同的应用需求。

2. 大规模生产随着纳米材料的应用需求不断增加,纳米材料的大规模生产也成为未来发展中的一个热点。

纳米材料综述功能材料与应用论文(已处理)

纳米材料综述功能材料与应用论文(已处理)

纳米材料综述功能材料与应用论文(已处理)纳米材料综述功能材料与应用论文(已处理)纳米材料综述摘要概述了纳米材料的基本概念、分类方法及结构特征, 重点介绍了纳米材料的光谱、催化、光电化学及反应性等化学特性及应用.1、纳米材料的基本概念纳米材料是指颗粒尺寸为纳米量级 0.11 nm, 100nm 的超微粒子纳米微粒及由其聚集而构成的纳米固体材料。

纳米固体材料分为纳米晶体材料、纳米非晶态材料及纳米准晶态材料。

其中纳米晶体材料按其结构形态又可分为四类:1 零维纳米晶体, 即纳米尺寸超微粒子;2 一维纳米晶体, 即在一维方向上晶粒尺寸为纳米量级, 如一维纤维, 一维碳纳米管;3 二维纳米晶体, 即在二维方向上晶粒尺寸为纳米量级, 如纳米薄膜、涂层;4 三维纳米晶体, 指晶粒在三维方向上均为纳米尺度, 如纳米体相材料, 纳米陶瓷材料。

另外, 还有纳米复合材料, 以复合方式不同分为0-0、0-2、0-3 型复合, 即零维纳米粒子分别与纳米粒子、二维及三维材料复合而成的固体材料。

纳米材料科学是现代化学、物理学、材料学、生物学等多门学科相互交叉、相互渗透的新兴学科, 其研究内容主要包括两个方面:1 系统地研究纳米材料的性能、微结构和谱学特性,通过和常规材料对比, 找出纳米材料的特殊规律, 建立描述和表征纳米材料的新概念和新理论, 发展完善纳米材料科学体系;2 探索新的制备方法, 发展新型的纳米材料, 研究制备工艺与材料结构、性能之间的关系规律, 并拓宽其应用领域。

2、纳米材料的性质2.1、纳米微粒的结构和特性纳米粒子处于原子簇和宏观物体交界的过渡区域,是由数目很少的原子或分子组成的聚集体。

由于纳米粒子具有壳层结构。

粒子的表面原子占很大比例,并且是无序的类气状结构, 而在粒子内部则存在有序-无序结构,这与体相样品的完全长程有序结构不同。

纳米粒子的结构特征使其产生了小尺寸效应、表面界面效应、量子尺寸效应及宏观量子隧道效应,并由此派生出传统固体材料所不具备的许多特殊性质。

纳米复合材料与技术论文3000字

纳米复合材料与技术论文3000字

纳米复合材料与技术论文3000字纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。

下面小编给大家分享一些纳米材料与技术3000字论文,希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》[摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。

纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。

纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。

[关键词]高聚物纳米复合材料一、纳米材料的特性当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:1、尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。

如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。

若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。

2、表面效应一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。

纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。

由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与其它原子结合。

若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。

纳米材料论文优秀9篇

纳米材料论文优秀9篇

纳米材料论文优秀9篇摘要:本文主要研究了污染物的光催化降解原理,进一步分析了光催化纳米材料在环境保护工作中的应用,同时对于光催化纳米材料的应用趋势和方向也进行了必要的研究,希望对这一工作的开展提供一定的指导作用。

关键词:光催化;纳米材料;环境保护;工业废水和废气中都含有较多的毒害物质,比如有机磷农药或是二氯乙烯等,这些物质对于人体的影响都是十分明显的。

传统的水处理方式,比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难,效果并不理想,所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式,实现对传统方法处理后水中的残留物质进行更有效的降解。

1976年,科学家在对紫外线光照射下对纳米TiO2进行了研究,发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。

当前,已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解,尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候,这项技术更是能发挥出前所未有的技术优势。

一、光催化纳米材料光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料,是一种特殊的电子结构。

和金属相比,这种半导体存在明显的不连续性,在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带,所以当二者产生的能量大于光照射的时候,在价带上的电子就会被转移到导带上,最终在半导体表面形成具备高活性的电子[1]。

二、光催化降解原理在光催化反应中,获取光激发所出现的空穴,和对给体或是受体产生的作用也是有效的。

所以在实际工作中为了确保光催化反应能更有效的进行,就应该适当降低电子和空穴之间的简单复合。

三、光催化纳米材料在环保中的应用(一)光催化纳米技术在污水处理中的应用传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除,但是对于浓度较低的可溶性物质却很难进行有效的处理,并且由于这项工作的工作效率比较低,花费的经济成本比较高,所以很多时候并不能进行有效的处理。

纳米材料在生物医学上的应用论文(共5则)

纳米材料在生物医学上的应用论文(共5则)

纳米材料在生物医学上的应用论文(共5则)第一篇:纳米材料在生物医学上的应用论文纳米材料在生物医学上的应用论文纳米材料在癌症治疗方面的应用现状及展望纳米材料在癌症治疗方面的应用现状及展望前言:尽管我们现在生活在高科技时代,科技很发达,人类的平均寿命比七、八十年代高了很多,但是癌症仍然是人类健康的头号杀手。

即使在发达国家,也是如此。

目前癌症在临床上可以进行手术、放疗、化疗等方法,但是大多只能杀死或转移癌细胞,但不能完全清除癌细胞,随时有可能复发。

归根到底,癌症还是因发现晚、治愈难而成为致死的重要原因。

到目前为止,癌症的有效治疗和诊断仍然是现代医学面临的严峻考验。

纳米材料的出现为癌症的及早诊断、治疗带来了希望。

一、纳米材料在癌症早期检测和诊断方面的应用(1)纳米粒子作为一种多功能的击靶对照反差试剂的候选物作为所有的临床成像。

例如,Emory大学聂书明教授的研究小组首次用聚合物纳米颗粒层和聚乙二醇包裹的量子点在活体内同时对肿瘤进行定位和成像。

还有,中国医科大学陈丽英教授将超顺磁性氧化铁纳米粒子进行相应的包裹或与靶特异性分子联结后作为造影剂使用,可以发现直径3毫米以下的肝肿瘤,结果清晰可靠。

【1】(2)哈佛大学查尔斯.利伯尔领导的研究小组阐述了采用硅纳米导线陈列装置来检测血浆中癌细胞内过度表达的微量标记蛋白质。

【2】(3)血管栓塞术可用于晚期肝、肾恶性肿瘤的治疗。

磁性纳米微球可以做得更小,且易于进入末梢血管,在磁场作用下具有磁控导向、靶位栓塞等优点。

例如,多柔比星纳米微粒—碘油乳剂肝动脉栓塞治疗肝癌。

【3】(4)美国弗拉迪米尔.托洛伊林为首的研究小组,把含有纳米微粒的化疗剂和称为2c5的抗体连接,在轰击人体癌细胞,通过这种方法可以减缓不同肿瘤的生长速度。

【4】二、纳米材料在癌症临床上的应用(1)加拿大多伦多大学马格瑞特公主医院的科学家们研制了一种无毒、可生物降解和具有高灵敏度的有机纳米颗粒。

可广泛适用于癌症治疗和药物传递通过它将装载的药物导入到肿瘤中进行靶向性治疗。

《纳米材料》评述论文:纳米ZnO的制备

《纳米材料》评述论文:纳米ZnO的制备

纳米ZnO的制备【1】张永康,刘建本,易保华等.常温固相反应合成纳米氧化锌[J].精细化工,2000,17(6):343-344.摘要:以ZnSO4·7H2O和Na2CO3为原料,用室温固相化学反应首先合成出粒径为12.7nm的前驱体碳酸锌,然后在200℃热分解,经纯化后得到纳米氧化锌。

经XRD 和TEM检测,粒径为6.0~12.7nm。

【2】朱卫兵,陈剑松,廖静等.超声波直接沉淀法制备纳米氧化锌及改性研究[J].无机盐工业,2008,40(3):20-29.摘要:以硝酸锌和无水碳酸钠为原料,把超声波引入到直接沉淀法中,同时用溴化十六烷基三甲基铵(CTAB)作为表面活性剂,合成出粒径小、分布均匀且团聚现象明显减弱的纳米氧化锌,并用TG-DTA,XRD,SEM等分析手段对制得的产物进行表征,找出合成的最佳条件。

同时,还以油酸作为改性剂对所制得的纳米氧化锌进行表面改性,以FT-IR等测试手段对其改性原理进行简单探讨,并通过测定活化指数对改性效果进行分析。

【3】刘家祥,丁德玲,王震等.均匀沉淀法制备纳米氧化锌[J].有色金属,2006,58(1):49-52.摘要:研究均匀沉淀法制备纳米氧化锌影响因素和最佳工艺条件。

结果表明,均匀沉淀法可制备出六方晶系纳米氧化锌。

随Zn2+浓度增加纳米氧化锌颗粒由棒状向球形转化,平均粒径49nm。

对纳米氧化锌产率影响因素的显著性水平依次为反应温度、尿素与Zn2+物质的量之比、反应时间和Zn2+的浓度。

最优工艺参数为:反应温度95℃、反应时间3.5h、Zn2+浓度0.6mol/L 、尿素与Zn2+物质的量之比为2.5 。

以硝酸锌为原料可得到纯度较高的纳米氧化锌。

【4】周富荣,郭晓洁,匡亚琴.反胶束微乳液法制备纳米ZnO[J].应用化工,2005,34(11):690-694.摘要:以十六烷基三甲基溴化铵(CTAB)/煤油/正辛醇/氨水反胶束微乳体系,采用双微乳液混合法制备了纳米ZnO,考察了CTAB和反应物浓度对ZnO粒径的影响,利用TEM、XRD等手段对产品进行了表征。

纳米材料论文

纳米材料论文

纳米材料论文1. 引言纳米材料是指颗粒尺寸在1到100纳米之间的材料。

由于其独特的物理、化学和生物特性,在生物医学、电子学、光学、催化、能源和环境等领域都有广泛的应用。

本文主要讨论纳米材料在生物医学中的应用,包括纳米药物、纳米传感器和纳米影像等。

2. 纳米药物纳米药物是利用纳米技术制备的药物。

由于其比传统药物具有更好的溶解度、更高的生物利用度和更好的组织靶向性,所以在临床上具有广泛的应用。

2.1 纳米粒子药物纳米粒子药物是指将药物包裹在纳米粒子中制成的药物。

通过调整纳米粒子的大小、表面性质和结构等,可以控制纳米粒子的药物释放和药效增强效应。

纳米粒子药物可以通过口服、皮肤贴片、吸入等多种给药途径实现治疗效果。

2.2 纳米胶束药物纳米胶束药物是指将药物包裹在由表面活性剂构成的胶束中的药物。

由于纳米胶束具有良好的亲水性,所以可以在药物分子表面形成保护层,有效提高药物的稳定性和生物利用度。

2.3 纳米酶学药物纳米酶学药物是指将纳米颗粒与酶催化剂结合制成的药物。

由于纳米颗粒具有高比表面积和体积效应,所以可以大幅提高酶的活性和稳定性,从而提高治疗效果。

3. 纳米传感器纳米传感器是利用纳米技术制备的传感器。

由于其基于纳米粒子、纳米线等纳米材料的特殊物理和化学特性,所以可以对化学、生物等环境参数进行高灵敏度、高分辨率、实时性、选择性的检测。

3.1 纳米材料传感器纳米材料传感器是指利用纳米颗粒、纳米线等纳米材料作为传感元件的传感器。

由于纳米材料具有高比表面积和特殊结构,所以可以大幅提高传感器的灵敏度和选择性,实现高精度的检测。

3.2 生物传感器生物传感器是指利用生物分子(如酶、抗体等)作为传感元件的传感器。

由于纳米材料可以提高生物分子的检测灵敏度和选择性,所以在临床诊断、环境检测等领域有广泛的应用。

4. 纳米影像纳米影像是指利用纳米材料作为影像剂,从而实现对生物组织、细胞、分子等的高分辨率、高敏感度、非损伤性的成像。

纳米材料论文(优秀5篇)

纳米材料论文(优秀5篇)

纳米材料论文(优秀5篇)摘要:目前世界上上转换纳米荧光材料正处在发展阶段,材料的选择和合成有待于深入细致的研究。

本文对上转换发光纳米晶的选择和合成做了系统的讨论。

关键词:纳米材料发光材料上转换发光荧光材料双光子吸收纳米晶1.引言近年来,人们开始对荧光标记材料产生了浓厚的兴趣,特别是随着纳米技术的发展,能够进行生物标记的无机纳米晶成为人们追逐的热点,但是由于生物背底同样会产生荧光从而对荧光检测形成干扰,于是不会产生背底干扰的稀土上转换纳米发光标记材料引起了人们的注意。

1.1纳米材料简介纳术概念是1959年木,诺贝尔奖获得着理查德。

费曼在一次讲演中提出的。

他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。

他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。

20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。

其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。

纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。

关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。

在这里就不一一介绍了。

1.2上转换纳米材料介绍稀土上转换发光材料通过多光子机制把长波辐射转换成短波辐射称为上转换。

所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。

纳米材料综述 论文

纳米材料综述   论文

纳米材料综述1 引言纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。

它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。

前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。

1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。

Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。

1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。

从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。

在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构.在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。

纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。

纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。

其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。

一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。

2 纳米材料特性一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。

当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。

这种现象称为“纳米效应”。

纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。

纳米材料论文

纳米材料论文

纳米材料论文纳米材料在近年来被广泛研究和应用,其独特的物理和化学特性为材料科学和工程领域带来了新的机遇和挑战。

本文将介绍纳米材料的定义、制备方法和应用领域,并分析其优势和潜在的风险。

纳米材料是指至少有一维尺寸在1-100纳米范围内的材料。

与宏观材料相比,纳米材料具有更大的比表面积和更高的比例效应,使得其在光、电、热、力学等方面具有独特的性能。

纳米材料可以从底层合成成单一纳米颗粒,也可以通过将大尺寸材料加工或处理来获得纳米尺寸。

纳米材料的制备方法包括溶剂热法、气相沉积法、电化学法等。

纳米材料在许多领域中都有广泛的应用。

在电子和光电领域,纳米材料可以用于制造更小、更快的电子器件,如纳米晶体管、纳米电池和光电探测器。

在材料科学和工程中,纳米材料可以用于制造更强、更轻的复合材料,如碳纳米管增强复合材料。

在医学和生物学领域,纳米材料可以用于制造更精确的治疗和诊断工具,如纳米药物载体和纳米生物传感器。

纳米材料具有许多优势,如更高的比表面积、更强的力学性能和更高的化学反应活性。

通过调控纳米材料的尺寸、形状和组成,可以实现更精确的物性控制和性能优化。

然而,纳米材料也存在一些潜在的风险。

由于其小尺寸和高比例效应,纳米材料对环境和健康的影响可能与宏观材料不同。

因此,对纳米材料的生物相容性和安全性需要进行深入研究和评估。

综上所述,纳米材料是一种具有独特性能和广泛应用前景的材料。

通过研究纳米材料的制备方法和特性,可以开发出更高效、更精确的材料。

然而,纳米材料的风险也需要引起足够的重视,确保其安全应用。

因此,对纳米材料的研究和应用需要跨学科的合作和深入的探索。

界面化学小论文纳米材料

界面化学小论文纳米材料

界面化学小论文纳米材料第一篇:界面化学小论文纳米材料有机纳米材料的应用及发展姓名:张玉根学号:0804034140 综述:纳米材料是组成相或晶粒在任一维上尺寸小于10nm的材料,或者说由它们作为基本单元构成的材料。

由于纳米材料的这种构成方式,纳米材料显示出优良独特的性能。

随着纳米技术的发展,有机纳米材料因其新颖的性能得到越来越多的关注和研究。

但是由于有机物区别于无机物的特点,有机小分子材料的熔沸点较低且易升华。

多数无机纳米材料的制备方法并不适用于有机纳米材料。

因此有机纳米材料的制备受到限制。

制备有机纳米材料的方法主要包括:再沉淀法、微乳液法等。

l再沉淀法再沉淀法是快速地将含有目标物的溶液注入到另外一种溶解性较差的溶剂中,由于环境的突变使有机分子产生沉淀生成有机纳米颗粒。

该方法的优点在于:操作简便、灵活、周期短,受到广大研究者的青睐。

2微乳液法微乳液是两种互不相容的液体形成的热力学稳定、各相同性、外观透明或不透明的分散体系,通常是由水溶液、有机溶剂、表面活性剂以及助表面活性剂构成,一般有水包油型和油包水型以及近年来发展的连续双包型。

参考文献:胡仲禹,赵维峰,范丛斌.有机纳米材料的研究进展.化工新型材料第39卷第2期·16·马志云,郭百凯,赵建社.有机/无机纳米复合材料的研究进展.科学博览2010(3)·119·第二篇:小论文纳米材料碳纳米管在有机太阳能电池中的应用摘要:碳纳米管是一种重要的纳米材料,讨论了碳纳米管在有机太阳能电池的光活性层及透明电极两方面的应用,综述了碳纳米管独特结构、性质对其在电池器件性能的影响,并在此基础上,提出了碳纳米管研制工艺的改良方法,展望了碳纳米管基有机太阳能电池今后的发展趋势。

关键词:碳纳米管;太阳能电池;应用Application of Carbon Nanotube in Organic Solar Cells Abstract:Carbon nanotube(CNT)is an important nano2 material.Discusses the application of CNT in the photoactive layer and the trans parent electrode of organic solar cells.The relationship be ween its special structure, properties and the performance of organic photovoltaic devices is summarized.On the basis of this discussion, The improved methods of Carbon nanotube technology to develop and the research trends of CNT based organic solar cells are proposed.Key words:Carbon nanotube;solar cells;application太阳能电池的核心部件是光电转化器,如果某类太阳能电池的光电转化器由有机材料构成,则此类太阳能电池通常被称为有机太阳能电池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料技术介绍专业:机械设计制造及其自动化学生姓名:***学号:**********班级:D机制131引言:纳米概念是1959年木,诺贝尔奖获得着理查德.费曼在一次讲演中提出的。

他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。

他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。

20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。

其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。

纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。

关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。

在这里就不一一介绍了。

1纳米材料的特性纳米是一种度量单位,1 nm为百万分之一毫米,即l毫微米,也就是十亿分之一米,一个原子约为0 1 nm。

纳米材料是一种全新的超微固体材料,它是由纳米微粒构成,其中纳米颗粒的尺寸为l~100 nm。

纳米技术就是在100 nm以下的微小结构上对物质和材料进行研究处理,即用单个原子、分子制造物质的科学技术…。

纳米微粒是由数目较少的原子和分子组成的原子群或分子群,其占很大比例的表面原于是既无长程序又无短程序的非晶层:而在粒子内部,存在结晶完好的周期性排布的原子,不过其结构与晶体样品的完全长程序结构不同。

正是纳米微粒的这种特殊结构,导致了纳米微粒奇异的表面效应、小尺寸效应、量子尺寸效应、量子隧道效应,并由此产生许多纳米材料与常规材料不同的物理、化学特性。

1.1表面与界面效应纳米材料的表面效应口即纳米微粒表面原子与总原子数比随纳米微粒尺寸的减小而大幅度增加,粒子的表面能及表面张力也随之增加,从而引起纳米榻料性质的变化。

例如,粒径为5 nm的SiC比表面积高达300 /12/g;而纳米氧化锡的表面积随粒径的变化更为显著,10 lltlfl时比表面积为90.3 m2/g,5 nm时比表面积增加到181 m2/g,而当粒径小于2 nm 时,比表面积猛增到450 m2/g。

这样大的比表面积使处于表面的原子数大大增加.这些袭面原子所处的晶体场环境及结合能与内部原子有所不同,存在着大量的表而缺陷和许多悬挂键,具有高度的不饱和性质,因而使这些原子极易与其他原子相结合而稳定下来,具有很高的化学反应活性。

另外,处于高度活化状态的纳米微粒的表面能也很高,比表面积和裘面能可使纳米微粒具有很强的化学反应活性。

例如,金属纳米微粒在空气中会燃烧.一些氧化物纳米微粒暴露在大气中会吸附气体,并与气体进行反应等。

此外,由于纳米微粒表面原予的畸形也引起表面电子自旋构象和电子能潜的变化,所以纳米材料具有新的光学及电学性能。

例如,一些氧化物、氮化物的纳米微粒对红外线有良好的吸收和发射作用,对紫外线有良好的屏蔽作用。

1.2小尺寸效应当超微粒子的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,周期性的边界条件将被破坏,声、光、电磁、热力学等特性均会呈现新的尺寸效应。

例如,光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态,超导相向正常相的转变;声子谱发生改变。

纳米微粒的这些小尺寸效应为实用技术开拓了新领域。

例如,银的熔点为900'C,而纳米银粉熔点可降低到100,C,此特性为粉末冶金工业提供了新工艺。

利用等离子共振频率颗粒尺寸变化的性质,可以通过改变颗粒尺寸来控制吸收边的位移,制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。

1. 3量子尺寸效应当粒子尺寸下降到一定值时,费米能级附近的电子能级由准连续变为离散能级现象,其关系为:f1E3N ≡⨯£式中£为能级间距;E为费米能级;N为总电子数。

宏观物体包含无限个原子(即所含电子数,N→∞),于是ξ→0,即大粒子或宏观物体的能级间距几乎为零;而纳米微粒包含的原子数有限,N值很小,导致有一定的值,即能级间距发生分裂。

块状金属的电子能谱为准连续能带,而当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导的凝聚态能时,必须考虑量子效应,这就导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性的显著不同,称为量子尺寸效应。

1.4物理特性纳米材料的物理效应包括磁学、光学特性。

纳米材料的直径小,材料以离子键及共价键为主要结合力。

与晶体相比,对光的吸收能力增强,表现出宽频带、强吸收、反射率低的特点。

例如,尽管各种块状金属有不同颜色,但当其细化到纳米级的颗粒时所有金属都有呈现出黑色;有些物体还会出现新的发光现象,如硅本身属不发光的物体,但纳米硅具有发光现象。

由于纳米材料直径小,原子、分子更加裸露,磁性排更加随机,更加无规则,因此,纳米材料具有超顺磁性。

l . 5化学特性纳米材料的化学效应包括吸附及催化等特性。

纳米材料有着较大的比表面积.使得其对其他物质具有更强的吸附特性。

纳米材料可以用作高教催化剂。

由于纳米微粒尺寸小,表面所占的体积百分数大,表面的键态、电子态与颗粒内部不同,表面原子配价不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。

纳米材料作为催化剂的作用主要有3个方面:(1)改变反应速度,提高反应效率;(2)决定反应路径,有优良的选择性,如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;(3)降低反应温度。

例如,以粒径小于0.3 nm的Ni和Cu—mon合金的超细微粒为主要成分制成的催化剂,可使有机物氢化的效率是传统镍催化剂的10倍;超细PL粉、WC粉是高效的氢化催化剂;超细的Feb、Ni与Fe02,混合轻烧结体可以替代贵金属作为汽车尾气净化剂;超细Aug粉可以作为乙炔氧化的催化剂。

2纳米材料的制备纳米材料的制备方式有多种,根据制备过程中是否有明显的化学反应发生,可分为物理制备方法和化学制备方法。

其中物理制备方法有机械研磨法、干式冲击法、共混法、高温蒸发法;化学制备法有溶胶一凝胶法、沉淀法、溶剂蒸发法。

3纳米材料在纺织领域中的应用正是由于纳米微粒这些奇特的性质,为其广泛应用奠定了基础。

例如,纳米微粒有特殊的抗紫外线、吸收可见光和红外线、抗老化、高的强度和韧性、良好的导电和静电屏蔽效应,强的抗菌消臭功能以及吸附能力等等。

因此,通过把具有这些特殊功能的纳米微粒与纺织原料进行复合,可以制造纺织新原料、纳米浆料以及改善织物功能。

3.1抗紫外、耐日晒和抗老化纤维所谓抗紫外纤维,即是指对紫外线有较强的吸收和反射性能的纤维,其制备和加工原理通常是对纤维添加能屏蔽紫外线物质,进行混合和处理,以提高纤维对紫外线的吸收和反射能力。

这里的能屏蔽紫外线的物质指的是两类、即:起反射紫外线作用的物质、习惯上称为紫外线屏蔽剂;而对紫外线有强烈选择吸收,并能进行能量转换而减少它的透过量的物质,习惯上称为紫外线吸收剂。

紫外线屏蔽剂通常选用一些金属氧化物的粉体,国内外紫外线吸收剂品种较多,常用的有水杨酸酯类化合物,金属离子螯合物,二苯甲酮类以及苯并三唑类等。

利用纳米微粒优异的光吸收特性,将少量纳米Ti02加入合成纤维中。

由于它能屏蔽大量紫外线,用它做成的服装和用品具有阻隔紫外线功效,对防治皮肤病及由紫外线吸收造成的皮肤病等也有辅助疗效。

3.2抗菌纤维某些金属粒子(如纳米银粒子、纳米铜粒子)具有一定的杀菌性能,其与化纤复合纺丝,制造出抗茵的纤维比一般的抗菌织物具有更强的抗菌效果和更多的耐洗次数。

例如国家超细粉末工程中心研制的超细抗菌粉体,它可赋予树脂制品以抗菌能力,对各种细菌、真菌和霉菌起到抑制作用。

这种抗菌粉体的核可以是硫酸钡、氧化锌的纳米颗粒,外包覆银以抗菌,外包氧化铜、硅酸锌以抗真菌。

在台成纤维中加1%这种粉体就能得到具有良好可纺性的抗菌纤维。

3.3远红外纤维将某些纳米级陶瓷粉体(如氧化锆单晶体、远红外负氧离子陶瓷粉体)分散到熔融纺丝溶液中,再纺成纤维。

这种纤维能有效吸收外界能量,并辐射与人体生物波波谱相同的远红外线。

这种远红外辐射波不仅极易被人体吸收,而且还具有很强的渗透力,能深入皮下,使皮肤深部组织发热而产生共振效应,有活化生物细胞、促进血液循环、加强新陈代谢、增强组织再生等保健作用。

3.4高强耐磨的新材料纳米材料本身就具有超强、高硬、高韧的特性,将其与化学纤维融为一体后,化学纤维将具有高强、高硬、高韧性。

例如,纳米碳管用作复合添加剂,在航空航天的纺织材料、汽车轮胎帘子线等工程纺织材料方面有很大的发展前途。

3.5隐身纺织材料某些纳米材料(如纳米碳管等)具有良好的吸波性能,将其加人纺织纤维利用纳米材料对光波的宽频带、强吸收、反射率低的特点,可使纤维不反射光.用于制作特殊用途的吸渡防反射织物(如军事隐形织物)等。

3. 6抗静电纤维在化纤纺丝过程中加人金属纳米材料或碳纳米材料,可使纺出的长丝本身具有抗静电、防微波的特性。

如纳米碳管是一种非常优异的导电体,经测定其导电性优于铜,将其作为功能添加剂,使之稳定地分散于化纤纺丝液中,在不同的摩尔浓度下可以制成具有良好导电性能或抗静电的纤维和织物。

3.7抗电磁波纤维在合成纤维中加入纳米Si02可以制得高介电绝缘纤维。

近年来,随着通讯、家用电器业的不断发展,手机、电视机、电脑、微波炉等的使用越来越普遍,电磁场存在于所有的电设备和电线周围,电磁波对人体的心脏、神经、孕妇、胎儿的影响已有明确的结论。

据报道,美国、日本、韩国等已有抗电磁波的服装上市,国内采用纳米材料制备抗电磁波纤维的研究也在进行中。

3.8其他功能纤堆纳米级或超微细材料的不同特性在各具特色的功能纤维中得到应用。

利用碳化钨等高比重材料开发超悬垂纤维,如13本东丽公司的“XY—E”、旭化成公司的“July”和东洋纺公司的“Pyramidal”等;利用Ti02的折光性开发不透明纤维,日本尤尼吉卡公司采用皮芯复合纺丝方法,皮层和芯层含有不同禽量的Ti02,制得具有良好不透明性的聚酯纤维;利用铝酸锶、铝酸钙的蓄光性开发荧光纤维,日本根本特殊化学公司开发了以铝酸锶、铝酸钙为主要成分的蓄光材料,其余辉时间可达10 h以上;某些金属复盐,过渡金属化合物由于随温度变化而发生晶型转变或配位体几何体型改变或结晶水“得水”而发生颜色改变,可利用其可逆热致变色的特征开发变色纤维;三菱人造丝公司利用在聚酯中添加胶体状的碳酸钙制得中空纤维,经碱减量处理,在纤维上形成微孔,纤维具有良好的吸湿性能。

相关文档
最新文档