概率论与数理统计(B)卷参考答案
《概率论与数理统计》期末考试试题B卷答案
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
概率论与数理统计 B+参考答案
《概率论与数理统计》试题(B )+参考答案一、填空题:(每题4分,共20分)1、 设,A B 为两事件,()()12,(|)15P A P B P A B ===,求()P AB =2、 已知2(2,),(24)0.3XN P X σ<<=,则(0)P X <=3、 设K 在(2,4)-服从均匀分布,x 的方程22220x Kx K +++=有实根的概率= 4、 若随机变量X 的数学期望2EX =,方差4DX =,则(28)P X -≥≤ 5、若随机变量(1,3),(1,4)XU Y N -,且它们相互独立,则(32)E X Y ++=二、单选题:(在上表对应题号下填入正确选项。
每题3分,共21分)1、在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ) A 、C B C AB 、C AB C 、BC A C B A C ABD 、C B A2、设连续型随机变量X 的分布函数为2,0()00x B Ae x F x x -⎧+>=⎨≤⎩,则,A B 的值为( )A 、1,1AB ==- B 、1,1A B ==C 、1,1A B =-=-D 、1,1A B =-= 3、若(0,1)XN ,其密度函数为()f x ,则下列说法错误的是( )A 、()f x 关于y 轴对称B 、()f x 的最大值是C 、()()()P a X b b a <<=Φ-ΦD 、()0f x >4、已知随机变量X 的密度函数为()X f x ,令2Y X =,则Y 的密度函数()Y f y =( )A 、2()y X f x dx ∞⎰ B 、1()22X y f C 、()y X f x dx ∞⎰ D 、1()2X f y5、对任意随机变量X ,若DX 存在,则()E DX 等于( )A 、0B 、XC 、()E XD 、()D X 6、已知随机变量(,)XB n p ,且()E X =3.6,() 1.44D X =,则其参数,n p 的值为( )A 、6,0.6n p == ;B 、6,0.4n p == ;C 、8,0.3n p == ;D 、24,0.1n p == 7、(,)0Cov X Y =是随机变量,X Y 相互独立的( ) A 、充分非必要条件 B 、必要非充分条件C 、充要条件D 、既不充分也不必要三、计算题:(第1小题10分,第2-4每小题13分,第5小题10分,共59分)1、设某人按如下原则决定某日的活动:如该天下雨则以0.2的概率外出购物,以0.8的概率外出探访朋友;如该天不下雨则以0.9的概率外出购物,以0.1的概率外出探访朋友。
《概率论与数理统计》考试试题B(答案)
广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。
每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。
《概率论与数理统计》考试题(含答案)
《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。
其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。
7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。
则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。
天津科技大学10-11概率论与数理统计(概率论)B卷
① 任意实数; ② 1; ③ 2; ④ 12.3.若随机变量X 的概率密度为(),()xf x aex -=-∞<<+∞,则=a ( 2 ). ① 12-; ②12; ③1; ④ 32.4.若连续型随机变量X 的分布函数为)(x F ,则以下结论错误的是( 3 ).① ()P a X b <≤=)()(a F b F -; ② ()()()P a X b F b F a <<=-; ③ ()()()P a X b F a F b <<≠-; ④ ()0.P X a ==.5.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是( 4 )。
① 8; ② 16; ③ 28; ④ 44. 三、某校入学考试的数学成绩近似服从正态分布(65,100)N .若85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?(8分)解: 设X 表示考生的数学成绩,则 ~ (65,100)X N 近似,于是858565{85}1{85}1{}1010X P X P X P -->=-≤=-≤ (4分)1(2)10.9772 2.28%≈-Φ=-= (8分)即数学成绩“优秀”的考生大致占总人数的2.28%。
四、某灯泡厂有甲、乙两条流水线,它们所出产的灯泡中,寿命大于2500小时的分别占80%和90%,从它们生产的灯泡中各自随机地抽取一个,求下列事件的概率:(1)两个灯泡寿命均大于2500小时;(2)两灯泡中至少有一个寿命大于2500小时;(3)两个灯泡中至多有一个寿命大于2500小时.(12分)解:用B A ,分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于2500小时,则它们相互独立.(1) 72.09.08.0)()()(=⨯==B P A P AB P , (4分)22,()0,0x e x f x x -⎧>=⎨≤⎩,33,0()0,y e y f y y -⎧>=⎨≤⎩,写出二维随机变量(), X Y 的联合密度函数(), f x y ,并求概率(2,1)P X Y <>. (10分) 解:由随机变量X 与Y 相互独立,得(23)0,0,6,(,)()().0,x y X Y x y e f x y f x f y else -+>>⎧==⎨⎩(5分) 2(23)1(2,1)6x y P X Y dx edy +∞-+<>=⎰⎰(8分) 2234316()()(1)0.0489xyedx edy e e+∞----==-≈⎰⎰(10分)八、 某保险公司多年的资料表明,在索赔户中被盗索赔户占20%,用X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率函数;(2)利用棣莫佛-拉普拉斯中心极限定理,求索赔户中被盗索赔户不少于10户且不多于26户的概率的近似值。
2020-2021大学《概率论与数理统计》期末课程考试试卷B2(含答案)
2020-2021《概率统与数理统计》课程考试试卷B2适用专业 ,考试日期. 答题时间2小时,闭卷,总分100分附表:0.025 1.96z = 0.975 1.96z =- 0.05 1.65z = 0.95 1.65z =-一、 填空题(每空2分,共28分)1、设C B A ,,是三事件,用C B A ,,的运算关系表示下列各事件. (1)C B A ,,至少有两个发生 (2)A 发生且B 与C 至少有一个发生 (3)C B A ,,只有一个发生2、若()()41,31==B P A P .则(1)若B A ,相互独立,则()=⋃B A P (2)若B A ,互斥,则()=⋃B A P3、设X 在(0,6)服从均匀分布,则方程22540x Xx X ++-=有实根的概 率为4、将n 只球(n ~1号)随机地放进n 个盒子(n ~1号)中去,一个盒子装一 只球,若一只球放入与球同号的盒子中,称为一个配对.设为总的配对数为X , 则()=X E5、设总体()p B X ,1~,n X X X ,,,21 是来自总体X 的样本.则),,,(21n X X X 的 分布为 ,()=X E ,()=X D ,()=2S E 6、设n X X X ,,,21 是来自分布()2,σμN 的样本,μ已知,2σ未知.则()~122∑=-ni i X σμ7、从一批零件中,抽取9个零件,测得其直径(mm )为:19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3,设零件的直径服从正态分布()2,σμN ,且21.0=σ(mm ).则这批零件的均值μ的置信水平为0.95的置信区间为8、设n X X X ,,,21 是来自总体X 的样本,且()()2,σμ==X D X E ,若()22cSX -是2μ的无偏估计,则=c二、选择题(共4题,每题3分,共12分)9.设B A ,是任意两个概率不为0的互斥事件,则下列结论肯定正确的是( ) A )B A 与互斥 B )B A 与相容 C )()()()B P A P AB P = D )()()A P B A P =-10.设()2,1,412141101=⎪⎪⎭⎫⎝⎛-=i X i 且()1021==X X P ,则()==21X X P ( )A )0B )1C )21D )4111.设随机变量Y X 与的联合概率密度函数为()⎪⎩⎪⎨⎧≤+=,01,1,22其他y x y x f π,则( )A )Y X 与相关,但不独立B )Y X 与不相关,但不独立C )Y X 与不相关,但独立D )Y X 与既相关,又独立12.设()12,1,0~+=X Y U X ,则 ( ) A )()1,0~U Y B )()110=≤≤Y P C )()3,1~U Y D )()010=≤≤Y P 三、解答题(共5题,每题12分,共60分)13、试卷中有一道题,共有四个答案,其中只有一个答案正确.任一考生如果会解这道题,则一定能选出答案.如果他不会这道题,则不妨任选一答案.设考生会解这道题的概率为0.8,试求考生选出正确答案的概率.14.设随机变量ξ的概率密度函数为()()()0 ,010,>⎩⎨⎧<<=k x kx x f ,,其他αα且95.0=ξE ,试求α,k .15.设随机变量(,)X Y 的联合概率密度函数为212, 01(,)0, y y x f x y ⎧≤≤≤=⎨⎩其他试求边际密度函数()X f x 和()E XY .16.设总体X 具有分布律其中()10<<θθ为未知参数.已知取得了样本值1,2,1321===x x x ,试求θ的 矩估计值和最大似然估计值.17.假定考生成绩服从正态分布()2,σμN ,1.5分,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,问在显著性水平0.05下,是否可以人为这次考试全体考生的平均成绩为70分.2020-2021《概率统与数理统计》课程考试试卷B2答案一、填空题(每空2分,共28分)1、BC AC AB ⋃⋃,()C B A ⋃,C B A C B A C B A ⋃⋃;2、127,125;3、21;4、1;5、())1(,)1(,,1)(11p p np p p p pni i ni ix n x --∑-∑==-; 6、2)(n χ; 7、20.111; 8、n1. 二、选择题(共4小题,每题3分,共12分).12 11 10 9C B A D 、,、,、,、三、解答题13、0.8⨯1+0.25⨯0.2=0.80514、解 由110160.95f x dx xf x dx分;得191218k分;15、解 ()()230124,015分xX f x y dy x x ==≤≤⎰;()130011(,)1212.2分xy x E XY xyf x y dxdy dx xy dy ≤≤≤===⎰⎰⎰⎰16、解 22122131322E X 分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 18L分;令ln 0d L d,得5106分θ=,所以的最大似然估计为5126=分θ17、解 本题是关于正态总体均值的假设检验问题,由于总体方差未知,故用t 检验法,欲检验的一对假设为:01:70 vs :70H H μμ=≠拒绝域{}1/2z z α->,当显著性水平为0.05时,0.975 1.96z =-.由已知条件,66.5, 1.5,x σ==故检验统计量的值为()666.570141.5z ⨯-==-因为14 1.96z =>,故拒绝原假设,可以认为这次考试全体考生的平均成绩不为70分.。
《概率论与数理统计 B》习题四答案
E Y 2 02 0.7 12 0.3 0.3,D Y 0.3 0.3 0.21
2
E X 2Y E X 2 E Y 0.5 2 0.3 0.1 E 3 XY 3E XY 3 0 0 0.3 0 1 0.2 1 0 0.4 11 0.1 3 0.1 0.3 cov X , Y E XY E X E Y 0.1 0.5 0.3 0.05 cov X , Y D X D Y 0.05 21 21 0.25 0.21
E ( XY ) , E ( X 2 Y 2 ) , D( X ) , D(Y ) 。
4
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
1 4 3 x 4 x3dx , E Y y 12 y 2 1 y dy , 0 0 5 5 1 X 1 E XY xy 12 y 2 dydx , 0 0 2
Y Pr
0.5
0.5
0 0.7
1 0.3
E X 0 0.5 1 0.5 0.5,E X 2 02 0.5 12 0.5 0.5 ,
D X 0.5 0.5 0.。
1 1 1 2 2 (2) E X x 2(1 x)dx , x 2(1 x)dx ; 0 0 3 6 1 1 2 1 2 2 故 D( X ) E ( X ) ( E ( X )) ( ) 。 6 3 18
解: (1) E X
西南交通大学 2017—2018 学年第(一)学期《概率论与数理统计 B》课程习题答案
概率统计考试试卷B(答案)
概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
《概率论与数理统计》期末考试(B)卷答案与评分标准
海南师范大学物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(B )卷答案与评分标准注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上3.考试形式:闭卷4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。
在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分)1、将3个不同的球随机地放入4个不同的杯中, 有一个杯子放入2个球的概率是( B ).. A :324234C C ⋅; B :324234P C ⋅ ; C :424233P C ⋅; D :424233C C ⋅.2、下列函数中,可看作某一随机变量X 的概率分布密度函数的是( C ) A :;,1)(2+∞<<-∞+=x x x f B :;,11)(2+∞<<-∞+=x xx fC :;,)1(1)(2+∞<<-∞+=x x x f π; D :.,)1(2)(2+∞<<-∞+=x x x f π3、己知随机变量Y X ,相互独立且都服从正态分布)4 ,2(N , 则( B ) . A :)4 ,4(~N Y X +; B :)8 ,4(~N Y X + ; C :)4 ,0(~N Y X -; D :Y X -不服从正态分布.4、己知随机变量X 服从二项分布)2.0 ,10(B , 则方差=)(X D ( D ). A :1; B :0.5; C :0.8; D :1.6.5、己知随机变量X 的期望5)(=X E , 方差4)(=X D , 则( A ). A :98}65-X {≥<P ; B :98}65-X {≤<P ; C :98}65-X {≥≥P ; D :98}65-X {≤≥P .6、设4321,,,X X X X 是来自正态总体) ,(2σμN 的简单随机样本,下列四个μ的无偏估计量中,最有效的是( D ). A :)(313211X X X ++=μ; B :)2(413214X X X ++=μ; C :)32(613213X X X ++=μ; D :)(4143212X X X X +++=μ.二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分)1、设B A 与为随机事件,3.0)(,5.0)(==AB P A P ,则条件概率=)(A B P ( 0.6 )2、已知随机变量X 服从区间,10]2[内的均匀分布,X 的概率分布函数为),(x F 则=)4(F ( 0.25 )。
概率论与数理统计 期末试卷及答案 B
第 1 页 共 6 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设()0.4,()0.3,()0.6==+=P A P B P A B ,则()P A B -=( )A .0.3B .0.2C .0.1D .0.42.已知()0.5,()0.4,()0.6,P A P B P A B ==⋃=则(|)P A B =( )A .0.75B .0.6C .0.45D .0.23.连续型随机变量X 的分布函数)(x F 一定是( )A .连续函数B .周期函数C .奇函数D .偶函数4.设)()(x X P x F ≤=是连续型随机变量X 的分布函数,则下列结论中不正确的是( )A .()F x 是不减函数B .()F x 不是不减函数C .()0,F -∞=()1F +∞=D .)(x F 是右连续的5.若随机变量2(,)XN μσ,()3,()1E X D X ==,则(11)P X -≤≤=( ) A .2(1)1Φ-B .(4)(2)Φ-ΦC .(4)(2)Φ--Φ-D .(2)(4)Φ-Φ6.设随机变量事件X 的分布函数为()F x ,则13XY =-的分布函数为 ( )A .(31)F y +B .(33)F y +C .3()1F y +D .()13F y - 7.设当事件A 和B 同时发生时,事件C 必发生,则下列选项正确的是( ) A .()()P C P AB = B .()()P C P A B =C .()()()1P C P A P B ≤+-D .()()()1P C P A P B ≥+-8.将3个人以相同的概率分配到4个房间的每一间中,恰有3个房间各有一人的概率为( )A .34B .38C .316D .189.事件,,A B C 中任意两个事件相互独立是事件,,A B C 相互独立的 ( )A .充要条件B .必要条件B 卷第 2 页 共 6 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥C .充分条件D .既不充分也不必要条件10.设~[0,1],21X U Y X =+,则下面各式中正确的是( ) A .~[0,1]Y U B .~[1,3]Y UC .{01}1P Y ≤≤=D .{02}0P Y ≤≤=11.设,A B 是两个事件,且111(),(),()3412P A P B P AB ===,则( ) A .事件A 包含事件B B .事件B 包含事件AC .事件,A B 相互对立D .事件,A B 相互独立12.设总体~(3,6)X N ,126,,,X X X 是来自总体的容量为n 的样本,则()D X =( )A .1B .2C .3D .413.设事件B A ,互不相容,且0)(,0)(>>B P A P ,则有( ) A .)()()(B P A P B A P +=⋃ B .)()()(B P A P AB P =C .B A =D .)()(A P B A P =14.设总体2(,)X N μσ,2,μσ未知,且0σ>,12,,,nX X X是来自总体的容量为n 的样本,则2σ的矩法估计量为( )A .211()1ni i X X n =--∑ B .211()n i i X X n =-∑C .2211()1n i i X X X n =-+-∑D .2211()n i i X X X n =-+∑15.设随机变量X 服从参数为λ的泊松分布,且(1)(2)P X P X ===,则()D X =( )A .1B .2C .3D .4二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
安徽工业大学2010-2011学年第一学期《概率统计B》乙卷及答案
8 12 16
21.(8 分)设 X1 , X2 ,⋯, Xn 是取自总体 X 的一个样本,由
X ∼ π ( k;λ ) = λ k e−λ (k = 0,1, 2,⋯)
18. (8 分)解:设事件 A = { 老人活到 80 岁 }; B = { 老人活到 85 岁 } 则由题意有 B ⊆ A , p( A) = 0.5 , p(B) = 0.3 , -------(4 分)
故所求概率为
p(B | A) = p( AB) = p(B) = 0.3 = 3 ≈ 0.6 p( A) p( A) 0.5 5
= 0. DZ
------------- --(8 分)
20 (8 分)解:因 X1 , X2 ,…, X9 相互独立且同分布,均服从 N (0, 22 ) ,故 X1 + X 2 ∼ N (0, 22 + 22 ) = N (0, 8) ; X 3 + X4 + X5 ∼ N (0, 22 + 22 + 22 ) = N (0,12) ; X6 + X7 + X8 + X9 ∼ N (0, 22 + 22 + 22 + 22 ) = N (0,16) ----(- 3 分)
X 3
+
Y 2
⎫ ⎬ ⎭
=
1 3
EX
+
1 2
EY
=
1 3
.
-----------(2 分)
DZ
=
D
⎛ ⎜⎝
X 3
+
Y 2
⎞ ⎟⎠
=
D
⎛ ⎜⎝
X 3
⎞ ⎟⎠
+
概率论与数理统计B试题及答案
一.单项选择题(每小题3分,共15分)1.设事件A和B的概率为则可能为(D)(A) 0; (B) 1;(C) 0.6; (D) 1/62。
从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为(D)(A) ; (B); (C); (D)都不对3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( A)(A) ; (B) ;(C);(D)都不对4.某一随机变量的分布函数为,(a=0,b=1)则F(0)的值为( C)(A) 0.1; (B) 0。
5; (C) 0.25;(D)都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为(C )(A) 2.5; (B) 3.5; (C) 3。
8;(D)以上都不对二.填空题(每小题3分,共15分)1.设A、B是相互独立的随机事件,P(A)=0.5,P(B)=0。
7, 则= 0。
85 。
2.设随机变量,则n=__5____.3.随机变量ξ的期望为,标准差为,则=___29____.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0。
7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为____0.94_____.5.设连续型随机变量ξ的概率分布密度为,a为常数,则P(ξ≥0)=___3/4____.三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率(1) 4个球全在一个盒子里;(2)恰有一个盒子有2个球。
把4个球随机放入5个盒子中共有54=625种等可能结果-—--——---—-———3分(1)A={4个球全在一个盒子里}共有5种等可能结果,故P(A)=5/625=1/125-————-—-——-—---—---————-—-————----—--—————--———-—-————5分(2) 5个盒子中选一个放两个球,再选两个各放一球有种方法-—---—--——--—————---—-—-—----—-—-———-——-——----—----—7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果。
第二学期期末考试概率论与数理统计试卷(B)及答案
| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年第二学期期末考试概率论与数理统计试卷(A)使用班级本科各班适用答题时间120分钟一填空题(每题3分,共30分)1、已知事件A,B有概率4.0)(=AP,5.0)(=BP,条件概率3.0)|(=ABP,则=⋃)(BAP0.78 ;2、已知某同学投篮球时的命中概率为)10(<<pp,设X表示他首次投中时累计已投篮的次数,则X的概率分布律为ppkXP k1)1(}{--==,.,2,1=k;3、尽管一再强调考试不要作弊,但每次考试往往总有一些人作弊。
假设某校以往每学期期末考试中作弊同学人数X服从参数为10的泊松分布,则本次期末考试中无同学作弊的概率为10-e;4、随机变量X的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1,1,,0,0)(2xxxxxF,则随机变量X的概率密度函数为⎩⎨⎧<<=.,0,1,2)(其他xxxf;5、设随机变量X与Y相互独立且均服从区间),(30上的均匀分布,则)1},(max{≤YXP为____1/9____ ___;6、若)(~),1,0(~2nYNXχ且X与Y相互独立,则~/nYXt(n) ;7、随机变量K在)5,0(内服从均匀分布,则关于x的方程02442=+++KKxx有实根的概率为_____3/5(或0.6)__;8、已知)4,2(~NX,)2,1(~-NY,则~2YX+)12,0(N;9、设随机变量X的概率密度为⎪⎩⎪⎨⎧<≥=.1,0,1,1)(2xxxxf,令⎩⎨⎧≥<=.4,2,4,1XXY,则Y的分布律10、已知一批零件的长度X(单位cm)服从正态分布)1,(μN,今从中随机地抽取16零件,得到长度的平均值为40cm,则μ的置信度为95%的置信区间是(39.51,40.49) (96.1025.0=z)。
概率论与数理统计(B卷)
(3)0.5000 (4)0.954511、设随机变量)50.0,19(~b X ,那么X 最可能取到的数值为【 】。
(1)9.5 (2)10.9 (3)10 (4)912、n X X X ,,,21 是总体X~N(2,σμ)的一个样本,)1/()(212--=∑=n X X S ni i 。
那么统计量2χ= (n-1)2S /2σ~【 】.(1))n (2χ (2))1,0(N (3))1n (2-χ (4))1n (t -13、参数θ的置信区间为【1ˆθ,2ˆθ】,且P {1ˆθ〈θ〈2ˆθ}=0.99,那么置信度为【 】. (1)0。
99 (2)99 (3)0.01 (4)不能确定14、设 X 1, X 2 …,X n 是总体X ~)(λP 的样本,则 X 1, X 2 …,X n 相互独立,且【 】 。
(1)),(~2i σμN X (2)i X ~)(λP(3))(~e i λG X (4)),0(~i λU X15、下列分布中,具备“无后效性”的分布是【 】。
(1)二项分布 (2)均匀分布 (3)指数分布 (4)泊松分布二、多项选择题(从每题后所备的5个选项中,选择至少2个正确的并将代码填题后的括号内,每题1分,本题满分5分)16、如果事件A 、B 相互独立,且P(A )=0。
40,P(B )=0.30,那么【 】。
(1)P(B A -)=0.72 (2)P (A ⋃B )=0。
58 (3)P (A —B )=0.28 (4)P(AB )=0.12 (5)P (A/B )=0。
4017、设随机变量X ~b (20,0.70),那么以下正确的有【 】.(1)EX =14 (2)X 最可能取到14和13 (3)DX = 4.2 (4))0(=X P =2070.0 (5)X 最可能取到15 18、随机变量)144,10(~N X ,那么【 】。
(1)EX =12 (2)144=DX (3)12=DX (4)12=σ (5)2/1)10()10(=<=>X P X P 19、设)25(~,)15(~22χχY X ,且X 与Y 独立,则【 】。
概率论与数理统计(B)试题及答案
概率论与数理统计(B)试题及答案陕西科技⼤学2010级试题纸课程概率论与数理统计(B )班级学号姓名1、A B C 表⽰随机事件,,A B C ⾄少有⼀个不发⽣. ()2、若()1P A =,则A 是必然事件. ()3、若2~(2,1),~(2,0.5)X N Y N -,则(0)0.5P X Y >=+. ()4、X 为随机变量,当12x x <时,则有12()()P X x P X x >≤>.. ( )5、设(,)X Y 是⼆维正态随机变量,则随机变量X 与Y 独⽴的充要条件是cov(,)0X Y =. ..( )⼆、填空题(每⼩题3分,共15分) 1、设,A B 为随机事件,()0.6P A =,()0.4P B =,()0.8P A B = ,则()P B A = .2、在区间(0,1)上随机取两个数,x y ,则关于t 的⼀元⼆次⽅程220t xt y -+=有实根的概率为 .3、设随机变量~()X P λ,且3(0)P X e -==,21Y X =-,则()D Y = .4、设随机变量~(0,1),~(2,1)X N Y N ,且X ,Y 相互独⽴,设随机变量21Z X Y =-+,则Z ~ _ .5、设随机变量X~U[1,2],由切⽐雪夫不等式可得32P X ?-≥≤??.三、选择题(每⼩题3分,共15分)1、对事件,A B ,下列命题中正确的是()A 、若,AB 互斥,则,A B 也互斥. B 、若,A B 互斥,且()0,()0P A P B >>,则,A B 独⽴.C 、若,A B 不互斥,则,A B 也不互斥D 、若,A B 相互独⽴,则,A B 也相互独⽴. 2、设随机变量X 服从正态分布2(2,)N σ,则随σ的增⼤,概率(22)P X σ-<是() A 、单调增加 B 、单调减⼩ C 、保持不变 D 、⽆法判断 3、设(,)F x y 为(,)X Y 的分布函数,则以下结论不成⽴的是()A 、0(,)1F x y ≤≤B 、 (,)1F -∞+∞=C 、(,)0F -∞+∞=D 、 (,)0F -∞-∞=4、把10本书任意地放在书架上,则其中指定的3本书放在⼀起的概率为() A 、115B 、112C 、110D 、185、若121000,...X X X 是相互独⽴的随机变量,且(1,)(1,2,,1000)i X B p i = 则下列说法中不正确的是()A 、1000111000i i X p =≈∑ B 、10001()()()i i P a X b b a =<<≈Φ-Φ∑ C 、10001~(1000,)i i X B p =∑ D、10001()i i P a X b =<<≈Φ-Φ∑四、(12分)设(,)X Y 的联合概率分布如下,求:①()()E X E Y 、②()E XY 、(,)COV X Y③Z X Y =+的概率分布.五、(10分)甲、⼄、丙三⼈同时独⽴地向某⽬标射击,命中率分别为0.3、0.2、0.5,⽬标被命中⼀发⽽被击毁的概率为0.2,⽬标被命中两发⽽被击毁的概率为0.6,⽬标被被命中三发则⼀定被击毁,求三⼈在⼀次射击中击毁⽬标的概率.六、(16分)设随机变量X 的概率密度为()2,100,10Ax f x x x ?>?=??≤?,求:①A ; ②(15)P x <; ③求X 的分布函数()F x ; ④设2Y X =,求Y 的概率密度.七、(16分)设⼆维随机变量()Y X ,的概率密度为()22,01,0,0,y e x y f x y -?≤≤>=??其它求:① (2)P Y X ≥; ②关于X 与Y 的边缘概率密度; ③X 与Y 是否独⽴?为什么?④(24)E X Y +.⼋、(6分)设X 与Y 相互独⽴,其分布函数分别为()X F x 、()Y F x .证明:随机变量X 与Y 的最⼤值max(,)U X Y =分布函数为()()X Y F u F u ?.2010级概率论与数理统计(B )试题答案⼀、√; ×; ×; ×; √ ⼆、1/3; 1/3; 12;N(-1,5); 1/6 三、D ; C ; B ; A ;B 四·(,)()()()5/144COV X Y E XY E X E Y =-=-…………………………2分五、解:设A :甲击中;B :⼄击中;C :丙击中 i D :击中i 发,(1,2,3)i =;E :击毁⽬标1()()0.47P D P ABC ABC ABC =++= 2()()0.22P D P ABC ABC ABC =+++=3()()0.03P D P ABC ==………………………………………………5分31()()()0.470.20.220.60.0310.256i i i P E P D P E D ===?+?+?=∑…………………………5分5/12EX =…………………………2分1/12EY =…………………………2分②()0E XY =…………………………2分③……………………………4分六、①2101Adx x +∞=?,则A =10 ……………………………………………4分②1521010(15)1/3P x dx x <==?……………………………………………4分③ 10,()0x F x <=210101010,()()1xxx F x f x dx dx x x -∞≥===-?…………………………4分④20,()0Y y F y <=22101020,()()()2yY y y F y P Y y P X dxx ≥=≤=≤=?20,20()[()]20/,20Y Y y f y F y y y ≤?'==?>? ………………………………… 4分七、①412021(2)24yxe P Y x dx edy -+∞--≥==………………………………… 4分②1,01()(,)0,X x f x f x y dy +∞-∞≤≤?==?其它22,0()(,)0,0y Y e y f y f x y dx y -+∞-∞>==≤??…………………………… 4分③ X 与Y 独⽴. 因为(,)()()X Y f x y f x f y = …………………………… 4分④ 11(24)2424322E X Y EX EY +=+=?+?= ……………………… 4分⼋、证明:()()(max(,))(,)U F u P U u P X Y u P X u Y u =≤=≤=≤≤………… 3分()()()()X Y P X U P Y U F u F u =≤≤= ……………………… 3 分陕西科技⼤学2011级试题纸课程概率论与数理统计(B )班级学号姓名1.设()1P AB =,则事件A 必然发⽣且事件B 必然不发⽣。
概率论与数理统计期末试卷及答案B
A.0.3B.0.2C.0.1D.0.4
2.已知P(A) =0.5, P(B) =0.4, P(A- B) =0.6,则P(A| B)=()
A.0.75B.0.6C.0.45D.0.2
3.连续型随机变量X的分布函数F(x)—定是()
得分
评卷人
三、填空题(本大题共5小题,每小题2分, 共10分)
请在每小题的空格中填上正确答案,错填、不填均无分。…
21.设P(A)=0.4, P(B)=0.5,且A, B互不相容,则P(A^ B)=线
22.设随机变量X服从区间[0, 3]上的均匀分布,「
贝y p(1:::x::: 2)=「
2x0兰x兰1
题号
——一
二
三
四
总分
合分人
得分
(满分:100分 时间:120分钟)
C.
6.设随机变量事件X的分布函数为F(x),则丫 =仝-1的分布函数为
3
( )
A.F(3y1)
B.F(3y3)C.3F(y) 1
得分
评卷人
一Байду номын сангаас单项选择题(本大题共
2分,共30分)
15小题,每小题
在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相 应的位置,错涂、多涂或未涂均无分。
A.连续函数B.周期函数C.奇函数D.偶函数
4.设F(x)二P(X ^x)是连续型随机变量X的分布函数,则下列结论中
7.设当事件A和B同时发生时,事件C必发生,则下列选项正确的是
A.P(C)=P(AB)
B. P(C)=P(A B)
概率论与数理统计B+答案
第 1 页 共 4 页2013 - 2014学年度第一学期试卷 B (闭卷)课程 概率论与数理统计 院系 专业 年级、班级 学号 姓名题号 一 二 三 四 总分 阅卷人 得分一、填空题:(每空3分,共18分)1.设A , B 为随机事件, P (A )=0.6, P (B |A )=0.3, 则P (AB )=__________.2.设随机事件A 与B 互不相容, P (A )=0.6, P (A ∪B )=0.8, 则P (B )=__________. 3.设A , B 互为对立事件, 且P (A )=0.4, 则P (A B )=__________.4.设随机变量X 服从参数为3的泊松分布, 则P {X =2}=__________.5.设随机变量X ~N (0,42), 且P {X >1}=0.4013, Φ (x )为标准正态分布函数, 则Φ(0.25)=__________.6.设X 为随机变量, E (X +3)=5, D (2X )=4, 则E (X 2)=__________二、选择题:(每题3分,共18分)1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为(A )C B A (B )C B A(C )C B A (D )C B A ( ) 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )(A )253 (B )2517(C )54 (D )2523( ) 3.设随机变量X ~B (3, 0.4), 则P {X ≥1} (A )0.352 (B )0.432(C )0.784 (D )0.936 ( )4.设随机变量X 的概率密度为,4)2(2e 2π21)(+-=x x f 则E (X ), D (X )分别为(A )2,2- (B )-2, 2(C )2,2(D )2, 2 ( )5.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,10,),(其他y x c y x f 则常数c =(A )41(B )21 (C )2 (D )4 ( )6.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ= (A )321 (B )161 (C )81(D )41( )三、问答题(5小题,共50分)1.(本题10分)在1500个产品中有400个次品,1100个正品,任意取200个。
南大2006级概率论与数理统计试题B答案
2006级概率论与数理统计试题B 答案一、填空题()()()()1.0.30.40.5|_____A B P A P B P A B P B A B ==-=⋃=设,为随机事件,已知,,,则14(())()()()()()()()()()()()()()()()0.210.84()()()P B A B P AB BB P AB P A AB P A P AB P B A B P A B P A B P A B P A B P A P B P AB P A P A B P A P B P A B ⋃⋃--⋃=====⋃⋃⋃⋃+---===+--1. 解:。
2.51135一道单项选择题同时列出个答案,一个考生可能真正理解而选对答案,也可能乱猜一个。
假设他知道正确答案的概率为,乱猜选对答案的概率为。
如果已知他选对了,则它确实知道正确答案的概率为____5712171335151155()377A B P A P B P A B P B P A B P B P A B P B A P A =+=⨯+⨯===⨯=2. 解:设事件表示考生选对了,事件表示考生知道正确答案。
由全概率公式,得()()()()()再由贝叶斯公式,得()()()。
(), 013., 12______.0, x x X f x A x x A <<⎧⎪=-<<=⎨⎪⎩设连续型随机变量的密度函数,则其它1213. 2.11()()21222f x dx xdx A x dx A A +∞-∞=+-=+-+==⎰⎰⎰解:利用密度函数的归一性,有所以。
()()23,014.0, 20______.3x x X f x Y X X P Y ⎧<<=⎨⎩⎧⎫≤==⎨⎬⎩⎭设随机变量的密度函数,若随机变量表示对的其它三次独立观察中事件出现的次数,则322233-0003333194..27~328()()33271900(1)()27Y B p p p X f x dx x dx P Y P C p p ∞⎛⎫ ⎪⎝⎭=≤======-=⎰⎰解:由题设可知(,),其中参数,于是所求概率()()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商学院课程考核试卷参考答案与评分标准 (B )卷
课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部各本科专业 考核学期: 一、填空(每小题3分,共30分)
1.0.2;
2. 0.4(2/5);
3. 9
16; 4.(0.5,2); 5.2;
6. 13;
7. 7;
8. 16
; 9. 45; 10.32。
二、单项选择(每小题3分,共15分)
1. C .;
2. A .;
3. B .;
4. A .;
5. D .。
三、计算题(第1题10分,其余5小题每题9分,共55分)
1. 设A A ,分别表示生产情况正常和不正常,B 表示产品为次品。
那么
8.0)(=A P ,2.0)(=A P ;03.0)|(=A B P ,2.0)|(=A B P 2分
(1)由全概率公式
064.02.02.003.08.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P ; 6分
(2)由Bayes 公式
375.0064
.003
.08.0)()|)(()|(=⨯==
B P A B A P B A P 10分
2.(1)由于1)(,0)0(=+∞=F F ,可得1,1-==B A
⎩⎨
⎧≤>-=-0
1)(2x x e x F x
3分 (2)21)1()1(}11{--=--=<<-e F F X P
6分 (3)⎩⎨
⎧≤>='=-0
2)()(2x x e x F x f x
9分 3. (1)14),(==
⎰
⎰
+∞∞-+∞
∞
-c
dxdy y x f ,所以,4=c 3分
(2)3
24)(1
1
2==⎰⎰ydy dx x X E ;3
24)(1
21
==⎰⎰dy y xdx Y E
9
44)(1
021
2=
=⎰
⎰
dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov
9分
4.先求他等车超过10分钟的概率}10{1}10{≤-=>X P X P
25110
051
1--=-
=⎰
e dx e x 3分 所以Y 服从5=n ,2-=e p 的二项分布,),5(~2-e B Y 6分
52)1(1}0{1}1{---==-=≥e Y P Y P
9分
5. 似然函数
∑=--=--==
∏n
i i i x n n n n
i x i
n e
x x x e x x x x L 1
1211
1
21)();,,,(αα
λ
αλα
αλλαλ 3分 ∑∑==--++=n
i i n
i i
x x
n n L 1
1
ln )1(ln ln ln αλ
αλλ
5分 令:0ln 1
=-=∑=n
i i x n
d L d αλ
λ
7分
得λ的极大似然估计为:∑==n
i i x n
1
ˆα
λ
9分
6. 这是正态总体方差未知的条件下,均值的区间估计问题 2分
08.0,5.1,35===s x n
μ的95%置信区间为:
⎪⎪⎭
⎫ ⎝⎛+-n s t x n s t x )34(,)34(025.0025.0 6分 )5275.1,4725.1(3508.00322.25.1,3508.00322.25.1=⎪⎪⎭
⎫
⎝⎛⨯+⨯-= 9分。