生物医用高分子材料

合集下载

生物医用高分子材料[精选]

生物医用高分子材料[精选]
高分子材料在植入体内之前 ,都要经过严格的灭 菌消毒 。 目前灭菌处理一般有三种方法; 蒸汽灭菌;
化学灭菌 ,γ射线灭菌 。国内大多采用前两种方法 。
因此在选择材料时 ,要考虑能否耐受得了。
(7) 易于加工成需要的复杂形状
人工脏器往往具有很复杂的形状 , 因此 ,用于人 工脏器的高分子材料应具有优良的成型性能 。否则 , 即使各项性能都满足医用高分子的要求 ,却无法加 工成所需的形状 ,则仍然是无法应用的。
★骨水泥是一类传统的骨用粘合剂 , 1940年就已用
于脑外科手术中 , 几十年来 ,一直受到医学界和化学 界的重视。
骨水泥是由单体 、聚合物微粒(150--200μm) 、阻聚
剂 ,促进负等组成 。为了便于x射线造影 ,有还加入 造影剂BaSO4 。下表是常用骨水泥的基本组成和配方。
(4) 人造皮肤材料
(5) 医用粘合剂
粘合剂作为高分子材料中的一大类别 ,近年来, 它的应用领域已扩展到医疗卫生部门 。 目前 , 医用粘 合剂在医学临床中有十分重要的作用 。在外科手术中, 医用粘合剂用于某些器官和组织的局部粘合和修补; 手术后缝合处微血管渗血的制止; 骨科手术小骨骼、 关节的结合与定位; 齿科手术中用于牙齿的修补 。在 计划生育领域中 ,用粘合剂粘堵输精管或输卵管 , 既 简便 ,无痛苦感 ,又无副作用 ,必要时还可方便地重 新疏通。
由此可见 , 当向人体植入高分子材料时 , 除考虑 材料的物理 、化学性质外 ,还应充分考虑其形状因 素。

(4)具有抗血栓性 ,不会在材料表面凝血 (5)长期植入体内 ,不会减小机械强度
表6-3是一些高分子以纤维形式植入狗的动脉 后其机械强度的损失情况。
(6)能经受必要的清洁消毒措施而不产生变性

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一类应用于生物医学领域的高分子材料,具有优良的生物相容性、生物降解性和生物活性等特点。

这类材料旨在解决生物医学领域中的各种问题,如组织工程、药物缓释、生物传感等。

以下将介绍几种常见的生物医用高分子材料及其应用。

首先是生物可降解高分子材料,如聚乳酸(PLA)和聚乳酸-羟基磷灰石(PLGA)。

这类材料能够在体内逐渐降解,并最终被代谢排出体外,具有较好的生物相容性。

它们主要应用于组织修复与再生领域,如制作支架用于骨骼修复、软组织修复和脑部损伤修复等。

其次是生物活性高分子材料,如天然高分子材料胶原蛋白和壳聚糖。

这些材料本身具有一定的生物活性,能够促进细胞黏附、分化和增殖。

它们常用于组织工程中的细胞载体和生物传感器的制备,如用胶原蛋白包裹干细胞用于皮肤再生、用壳聚糖包裹药物用于药物缓释等。

另外一类是生物仿生高分子材料,如聚乙二醇(PEG)。

这类材料模拟生物体内的液体环境,具有良好的生物相容性和抗生物粘附能力。

它们主要应用于制备人工器官、药物控释系统和生物分离材料等,如用PEG涂层改善人工心脏瓣膜的生物相容性、用PEG修饰纳米材料用于靶向药物传递等。

此外,还有一种重要的生物医用高分子材料是羟基磷灰石(HA)。

羟基磷灰石具有良好的生物相容性和生物活性,能够与骨组织有很好的结合性。

它常用于骨修复和牙科领域,如制备骨替代材料、牙齿填充材料和人工牙齿的固定材料等。

总之,生物医用高分子材料在生物医学领域中具有广泛的应用前景。

它们的出现为治疗和修复各种组织和器官提供了新的手段,将对人类健康产生深远影响。

然而,随着研究的深入,还需要克服一些挑战,如材料的稳定性、生物相容性和生物降解速度等问题,以进一步提高材料的应用性能和安全性。

生物医用高分子材料及应用Polymericbio-materialsandits-

生物医用高分子材料及应用Polymericbio-materialsandits-

( 2 ) 低分子药物的高分子化。
低分子药物在体内新陈代谢速度快, 半 衰期短, 体内浓度降低快, 从而影响疗效, 故需 大剂量频繁进药, 而过高的药剂浓度又会加重 副作用, 此外, 低分子药物也缺乏进入人体部 位的选择性 。将低分子药物与高分子结合的 方法有吸附 、共聚 、嵌段和接枝等 。第一个 实现高分子化的药物是青霉素
总结
生物技术将是21 世纪最有前途的技术, 生物 医用高分子材料将在其中扮演重要角色, 其性能将 不断提高, 应用领域也将进一步拓宽 。今后的发展 趋势将主要体现在以下几个方面 : ( 1 ) 医用可生物降解高分子材料因其具有良好 的生物降解性和生物相容性而受到高度重视, 论是作为缓释药物还是作为促进组织生长的骨架材 料, 都将得到巨大的发展。
氨酯等。
◆ 人工心脏 材料多用聚醚氨酯和硅橡胶等。
◆ 人工肺 多用聚四氟乙烯、硅橡胶等材料
◆ 人工肾 材料除要求具备良好的血液相容性外, 还要求材
料具有足够的湿态强度、有适宜的超滤渗透性等, 可充当这一使命的材料有乙酸纤维素、铜氨再生纤 维素、尼龙、聚砜及聚醚砜等。
为提高人造器官的血液相容性, 现阶段的 研究重点是对现有生物材料的表面进行改性 和修饰, 其方法有 :
( 2 ) 复制具有人体各部天然组织的物理力学性 质和生物学性质的生物医用材料, 达到高分子 的生物功能化和生物智能化, 是医用高分子材 料发展的重要方向 。此外, 用生物技术合成高 分子的反应条件更温和 、产物的生物降解性 能更好, 因而具有诱人的前景。
( 3 ) 人工代用器官在材料本体及表面结构的有 序化 、复合化方面将取得长足进步, 以达到与 生物体相似的结构和功能, 其生物相容性将大 大提高。
5 眼科用高分子材料

医用高分子材料概述及分类

医用高分子材料概述及分类

Drug controlled release
Tissue engineering
Gene therapy
医用高分子材料概述和分类
此后,一大批人工器官在50年代试用于临床。 如人工尿道(1950年)、人工血管(1951年)、 人工食道(1951年)、人工心脏瓣膜(1952)、 人工心肺(1953年)、人工关节(1954年)、人 工肝(1958年)等。进入60年代,医用高分子材 料开始进入一个崭新的发展时期。
医用高分子材料概述和分类
❖ 1960s 可生物降解聚合物,如: Polylactide(PLA)
❖ 1970-80s 隐形眼镜(Contact lens),药物 控制释放(drug controlled release)
❖ 1990s- 聚合物在生物医用材料中的占有率 超过一半
医用高分子材料概述和分类
医用高分子材料概述和分类
4. 医用高分子材料的要求
(Requirements for biomedical polymers)
❖ Basic requirements ❖ 安全性Biocompatibility/Biostability / Biodegradability ❖ 灭菌性Sterilizability
医用高分子材料概述和分类
聚四氟乙烯
医用高分子材料概述和分类
人工关节
例如: 德国产品 UHMWPE材料
•ISO5834-2
•ASTM F648
•可用为人工关节、 人工骨骼植入人体
•极低的能耗
•……
医用高分子材料概述和分类
人工心脏瓣膜
医用高分子材料概述和分类
组织工程人工骨缺损修复示意图
医用高分子材料概述和分类

生物医学高分子材料课件

生物医学高分子材料课件

化学法
利用化学反应将药物与高 分子材料结合,如接枝共 聚法、药物嵌入聚合物网 络法等。
生物法
利用生物分子和生物过程 将药物与高分子材料结合 ,如抗体偶联法、基因载 体法等。
高分子药物载体的性能评价
安全性评价
主要包括急性毒性试验、长期毒 性试验、致畸致癌性试验等,以 确保药物载体对人体的安全性。
有效性评价
生物医学高分子 材料课件
汇报人: 日期:
目录
• 生物医学高分子材料概述 • 生物相容性高分子材料 • 生物降解性高分子材料 • 高分子药物载体 • 高分子组织工程支架材料 • 研究展望与挑战
01
生物医学高分子材料概述
定义与分类
生物医学高分子材料
指用于诊断、治疗、修复或替换人体组织或器官的材料。
分类
根据应用部位和功能,可分为生物惰性、生物活性、生物降 解和生物相容性高分子材料。
生物医学高分子材料的特性
生物惰性
指在体内稳定,不发生化学反应,无毒无害 。
生物降解
在体内可被分解为小分子,无害化排出体外 。
生物活性
具有诱发机体免疫反应的能力。
生物相容性
与人体组织相容,无排异反应。
生物医学高分子材料的应用
生物活性评价
检测支架材料是否具有促进 细胞生长和分化的生物活性 。
安全性评价
对支架材料进行安全性评估 ,包括急性毒性、慢性毒性 、致敏性等。
06
研究展望与挑战
新材料设计及制备技术展望
发展新的聚合反应
01
研究新的聚合反应,如活性聚合、基团转移聚合等,以实现高
分子材料的精确控制合成。
纳米技术和3D打印
骨骼系统
用于制作人工关节、骨板、骨 钉等。

第四章-生物医用高分子材料(1)

第四章-生物医用高分子材料(1)

血浆蛋白吸附
红血球粘附
血小板粘附 血小板放出凝血因子 血小板血栓 纤维蛋白朊沉积 血栓形成 溶血
凝血酶原活化
血栓形成过程示意图
(二)血液相容性高分于材料的制取 (1)使材料表面带上负电荷的基团 例如将芝加哥酸(1-氨基-8-萘酚-2, 4- 二磺酸萘)(见下式)引入聚合物表面后,可减少 血小板在聚合物表面上的粘附量,抗疑血性提高。
OH NH2 NH SO2 N N SO3H SO3H
(2)高分子材料的表面接枝改性 采用化学法(如偶联法、臭氧化法等)和物理 法(等离子体法、高能辐射法、紫外光法等)将具 有抗凝血性的天然和化学合成的化合物,如肝素、 聚氧化乙烯接枝到高分子材料表面上。研究表明, 血小板不能粘附于用聚氧化乙烯处理过的玻璃上。
(1)材料中渗出的化学成分对生物反应的影响 材料中逐渐渗出的各种化学成分(如添加剂、 杂质、单体、低聚物以及降解产物等)会导致不同 类型的组织反应,例如炎症反应。 组织反应的严重程度与渗出物的毒性、浓度、 总量、渗出速率和持续期限等密切相关。一般而言, 渗出物毒性越大、渗出量越多,则引起的炎症反应 越强。
二、医用高分子的分类:
(1)按材料的来源分类 1)天然医用高分子材料 如胶原、明胶、丝蛋白、角质蛋白、纤维素、多 糖、甲壳素及其衍生物等。 2)人工合成医用高分子材料 如聚氨酯、硅橡胶、聚酯等。
3)天然生物组织与器官 ① 取自患者自体的组织,例如采用自身隐静脉 作为冠状动脉搭桥术的血管替代物; ② 取自其他人的同种异体组织,例如利用他 人角膜治疗患者的角膜疾病; ③ 来自其他动物的异种同类组织,例如采用 猪的心脏瓣膜代替人的心脏瓣膜,治疗心脏病等。
医用高分子材料研发过程中遇到的一个巨大 难 题是材料的抗血栓问题。当材料用于人工器官 植入 体内时,必然要与血液接触。由于人体的自然 保护 性反应将产生排异现象,其中之一即为在材料 与肌 体接触表面产生凝血,即血栓,结果将造成手 术失 败,严重的还会引起生命危险。 对高分子材料的抗血栓性研制是医用高

生物医用高分子材料的研究与应用

生物医用高分子材料的研究与应用

生物医用高分子材料的研究与应用随着现代医学的不断发展,越来越多的疾病得以得到有效的治疗。

而在治疗过程中,材料的选择也起着至关重要的作用。

生物医用高分子材料是一类在医学领域中应用广泛的材料,它们具有良好的生物相容性、可调性、可加工性和可重复性等优点。

近年来,生物医用高分子材料在医疗、药物输送和组织工程等领域中的应用越来越广泛。

高分子材料是由高分子化合物制成的,它们通常是由单体通过聚合反应而形成的长链分子。

这些分子因其复杂的结构和可塑性,在医学领域中可以用来制造很多种不同的材料,例如人工关节、人造器官、药物传递系统、缝合线和接骨板等。

这些材料可以与人体组织相容,并被认为是一种极为有前途的材料类型。

1. 生物医用高分子材料的类型及其特点生物医用高分子材料的类型十分多样,下面简单介绍几种比较常见的类型。

(1) 人工关节的材料人工关节是治疗关节疾病的最有效方法之一。

目前,最流行的人工关节材料是聚乙烯、聚乙烯醇、尼龙、PTFE等。

这些材料均具备良好的生物相容性和机械性能。

(2) 缝合线缝合线是医生修复切口、牙龈和组织损伤时经常使用的一种材料。

常见的缝合线包括各种生物降解材料,例如聚乳酸、聚乙酸乙烯酯、聚己内酯等。

(3) 药物传递系统药物传递系统是一种在人体内释放药物的材料。

借助生物医用高分子材料可以制备出上述类型的药物释放系统。

例如聚乳酸-羟基乙酸共聚物、聚酸酯基等,这些材料因其生物降解性、可控释放性和生物相容性等优点,被广泛用于制备药物传递系统。

2. 生物医用高分子材料的应用随着现代医学的需求,生物医用高分子材料在医学领域的应用正在不断扩大。

以下列举几个例子。

(1) 肺癌有限化疗局部治疗系统该系统利用高分子材料包覆的药物,选择性地释放到病灶部位,并实现 sustained release (持续释放)。

这种方法具有显著的临床效果,能够提高癌细胞的转录和翻译内在抵抗力,抑制癌细胞的增殖,创造更好的治疗结果。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一种具有广泛应用前景的新型材料,它在医学领域中发挥着越来越重要的作用。

生物医用高分子材料是指能够与生物体相容并在生物体内具有一定功能的高分子材料,其应用范围涉及医疗器械、医用材料、组织工程、药物传递系统等多个方面。

本文将从生物医用高分子材料的特点、应用领域、发展趋势等方面进行介绍。

首先,生物医用高分子材料具有良好的生物相容性和生物降解性。

这意味着这类材料可以与生物体组织相容,不会引起排斥反应或过敏反应,并且在一定条件下可以被生物体降解或代谢,不会对生物体造成长期的不良影响。

这一特点使得生物医用高分子材料在医学领域中得到广泛应用,例如可用于制备生物可降解的缝合线、修复骨折的支架材料等。

其次,生物医用高分子材料在医疗器械和医用材料领域有着重要的应用。

例如,生物医用高分子材料可以用于制备人工关节、心脏起搏器、血管支架等医疗器械,同时也可以用于制备医用敷料、人工皮肤、植入式医用材料等。

这些应用为医学诊疗和治疗提供了重要的支持,推动了医学技术的不断进步。

此外,生物医用高分子材料在组织工程和药物传递系统中也有着广泛的应用。

在组织工程领域,生物医用高分子材料可以被用于制备人工器官、组织修复材料等,为组织修复和再生提供了新的途径。

在药物传递系统方面,生物医用高分子材料可以被用于制备缓释药物载体、靶向输送系统等,提高了药物的疗效和降低了药物的副作用。

未来,随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔。

例如,生物医用高分子材料的功能化设计和智能化材料的开发将会为医学诊疗提供更多的选择,同时生物医用高分子材料与生物学、医学、材料学等学科的交叉融合也将会带来更多的创新成果。

总之,生物医用高分子材料具有良好的生物相容性和生物降解性,其在医疗器械、医用材料、组织工程、药物传递系统等领域有着重要的应用。

随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔,为医学技术的不断进步和医学治疗的不断改善提供重要支持。

生物医用仿生高分子材料

生物医用仿生高分子材料

生物医用仿生高分子材料是指通过模仿生物体结构和功能特点而设计和制造的高分子材料,用于医学领域的应用。

这些材料具有良好的生物相容性、生物活性和可控可调的特性,可以在医学上模拟和替代生物组织的功能,实现诊断、治疗和修复等应用。

以下是一些常见的生物医用仿生高分子材料及其应用:
1. 生物降解聚合物:如聚乳酸(Poly Lactic Acid, PLA)和聚乙二醇(Polyethylene Glycol, PEG),常用于制备可降解的植入型材料,如缝合线、支架和修复材料。

2. 水凝胶:如明胶、海藻酸钠(Sodium Alginate)和聚乙二醇二甲基丙烯酸酯(Polyethylene Glycol Diacrylate, PEGDA)等,可用于制备组织工程支架、脏器修复和药物传递等。

3. 多肽材料:如胶原蛋白和凝血蛋白,可用于修复软骨、皮肤和血管等组织。

4. 生物活性控释材料:如聚乳酸-羟基磷灰石(Poly Lactic Acid-Hydroxyapatite, PLA-HA)复合材料,可用于药物和生长因子的控释,促进组织修复和再生。

5. 智能材料:如形状记忆聚合物和响应性水凝胶,可根据环境条件(如温度、pH值、电场等)的变化实现形状转变、药物控释和传感应用。

这些生物医用仿真高分子材料在医学领域有着广泛的应用潜力,可以用于组织工程、细胞培养、药物传递、疾病诊断和治疗等方面。

通过不断的研究和创新,这些材料将有助于促进生物医学领域的发展和进步。

第九章-医用高分子材料课件

第九章-医用高分子材料课件

第九章 医用高分子材料
(2)高分子材料生物降解对生物反应的影响 高分子材料生物降解对人体组织反应的
影响取 决于降解速度、产物的毒性、降解的持续期
限等因 素。
降解速度慢而降解产物毒性小, 不引起 明显的 组织反应。
但若降解速度快而降解产物毒性大, 导
第九章 医用高分子材料
(3)材料物理形态等因素对组织反应的影响 高分子材料的物理形态如大小、形状、孔度、
癌的原因是由 于正常细胞发生了变异, 当这些变异细
胞以极其迅 速的速度增长并扩散时, 就形成了癌。
而引起细胞 变异的因素是多方面的, 有化学因素、
第九章 医用高分子材料
(4)具有良好的血液相容性 当高分子材料用于人工脏器植入人体
后, 必然 要长时间与体内的血液接触。因此, 医用高
分子对 血液的相容性是所有性能中最重要的。
第九章 医用高分子材料
血栓的形成机理是十分复杂的。一般认为, 异 物与血液接触时, 首先将吸附血浆内蛋白质, 然后 粘附血小板, 继而血小板崩坏, 放出血小板因子, 在异物表面凝血, 产生血栓。此外, 红血球粘附引 起溶血;凝血致活酶的活化, 也都是形成血栓的原 因。(见图9—1)
第九章 医用高分子材料
1.3 医用高分子材料的概念及其发展简史
1.3.1 基本概念
医用高分子材料 —— 可以用于诊断、治疗 或者替换生物体病患器官或者改善其功能 的高分子材料。 高分子材料最有可能用作医用材料!
第九章 医用高分子材料
高分子材料最有可能用作医用材料? ? ?
有机高分子是生命的基础。动物体与植物体 组成中最重要的物质——蛋白质、肌肉、纤 维素、淀粉、生物酶和果胶等都是高分子化 合物。
会引起生命

生物医用高分子材料的合成与应用

生物医用高分子材料的合成与应用

生物医用高分子材料的合成与应用近年来,随着生物医学技术的快速发展,生物医用高分子材料已经成为最具发展潜力的材料之一。

生物医用高分子材料是指具有良好生物相容性和生物可降解性的高分子化合物,它们可以广泛应用于生物医学领域,如医用生态材料、生物医学成像、药物传递和生物传感器等。

本文将介绍几种常见的生物医用高分子材料的合成与应用。

一、聚乳酸(PLA)聚乳酸是一种崭新的生物医用高分子材料,具有可降解性和良好的生物相容性。

它可以被分解为CO2和H2O,不会对环境造成污染,具有广泛的应用前景。

PLA可以制备成各种形状的材料,如纤维、薄膜、泡沫等,可以广泛应用于医疗器械、生物支架、药物传递等。

二、聚己内酯(PCL)聚己内酯是一种生物降解型的高分子材料,具有良好的生物相容性和可加工性。

它可以被多种酶类和水解作用降解为健康无害的产物,是理想的生物医用高分子材料。

PCL可以制备成各种形状的材料,如支架、膜、微球等,可以广泛应用于组织工程、骨修复、神经修复和皮肤再生等领域。

三、聚乳酸-聚己内酯共聚物(PLGA)聚乳酸-聚己内酯共聚物是一种创新型的生物医用高分子材料,它是由聚乳酸和聚己内酯两种单体共聚而成的高分子化合物。

PLGA具有优于单体的降解性能和生物相容性,还可以通过改变单体的比例来调节其降解速率和物理性质。

PLGA可以制备成各种形状的材料,如支架、微粒、微胶囊等,可以广泛应用于药物控释和组织工程等领域。

四、聚(甲基丙烯酸甲酯)(PMMA)聚(甲基丙烯酸甲酯)是一种非可降解型的高分子材料,具有良好的生物相容性和可加工性。

它可以制备成各种形状的材料,如支架、薄膜、微球等,可以广泛应用于组织修复、药物传递和生物成像等领域。

五、羟基磷灰石(HAP)羟基磷灰石是一种无机骨修复材料,具有良好的生物相容性和生物可降解性。

它可以为体内的骨细胞提供生长所需的矿物质和微量元素,具有促进骨组织再生的作用。

HAP可以制备成支架、微球、薄膜等形状,可以广泛应用于口腔、骨科等领域。

生物医用高分子材料的研究及应用

生物医用高分子材料的研究及应用

生物医用高分子材料的研究及应用生物医用材料是医学界的热门研究方向之一,而高分子材料则是其中应用最广泛的一种。

高分子材料具有化学惰性、生物相容性、可塑性等优良特性,因此被广泛应用于生物医学领域。

本文将介绍生物医用高分子材料的研究进展和应用情况。

一、生物医用高分子材料的类型生物医用高分子材料可以分为两大类:纯高分子材料和复合高分子材料。

纯高分子材料是指单一物质构成的材料,如聚乙烯醇、聚丙烯酸等,这些材料具有较好的生物相容性,可作为医用敷料、缝线等医疗器械使用。

而复合高分子材料则是由两种或两种以上的高分子材料和其他生物活性物质构成的复合材料,如生物可降解聚合物和医用金属等组合而成的复合材料,其应用范围更为广泛。

二、生物医用高分子材料的应用领域1.医用敷料高分子材料具有良好的渗透性、吸附性和保湿性,因此被广泛应用于医用敷料制造中。

一些高分子材料如聚乙烯醇、聚氨酯等,能够保护创面、减少感染,促进伤口愈合。

2.人工组织与器官高分子材料可以用于制造人工组织和器官。

例如,使用聚乙二醇或聚乳酸等生物可降解聚合物和其他细胞因子和生物大分子通过三维打印技术组装成人工骨骼组织、软组织等。

3.控释药物高分子材料作为控释药物的载体,能够控制药物的释放速度和剂量,理想地实现药物治疗的个性化。

例如脑膜瘤治疗方面,生物可降解聚合物材料多聚乳酸酯可用作持续释放抗肿瘤药物的载体,有效改善治疗效果。

4.口腔修复材料高分子材料在口腔修复领域应用广泛,例如人工牙齿、种植体、美容修复等。

其中,聚酯类难降解高分子材料常常用于制造种植体和口腔修复材料。

三、高分子材料在生物医学领域的研究进展高分子材料在生物医学领域的研究进展非常快速,近年来,国内外学者们对其性质和应用进行了广泛研究。

1.提高高分子材料的生物相容性目前,高分子材料的生物相容性不完全符合医疗器械标准,因此研究人员正在努力寻找能够提高其生物相容性的方法。

如改变高分子材料表面化学组成,修饰其表面的羟基、胺基等官能团,优化其形态等,都是提高高分子材料生物相容性的常用方法。

医用高分子材料

医用高分子材料

5.3.1 分类
❖ 根据不同的分类方法人工器官可以分为如下几类:
❖ 1)按功能分:
(1)支持运动功能的人工器官,如人工关节、人工脊椎、人工骨、人工肌腱、肌电控制 人工假肢等。
(2)血液循环功能的人工器官,如人工心脏及其辅助循环装置、人工心脏瓣膜、人工血 管、人工血液等。
(3)呼吸功能的人工器官,如人工肺(人工心肺机)、人工气管、人工喉等。 (4)血液净化功能的人工器官,如人工肾(血液透析机)、人工肺等。 (5)消化功能的人工器官,如人工食管、人工胆管、人工肠等。 (6)排尿功能的人工器官,如人工膀胱、人工输尿管、人工尿道等。 (7)内分泌功能的人工器官,如人工胰、人工胰岛细胞。 (8)生殖功能的人工器官,如人工子宫、人工输卵管、人工睾丸等。 (9)神经传导功能的人工器官,如心脏起搏器、膈起搏器等。 (10)感觉功能的人工器官,如人工视觉、人工听觉(人工耳蜗)、人工晶体、人工角
5.2 高分子材料的特性
❖ 高分子材料:一类相对分子质量比一般有机化合物高得多的化 合物。
❖ 一般有机化合物的相对分子质量只有几十到几百,高分子化合 物是通过小分子单体聚合而成的相对分子质量高达上万甚至上 百万的聚合物。
❖ 通常高分子材料可以压延成膜;可以纺制成纤维;可以挤铸或 模压成各种形状的构件;可以产生强大的粘结能力;可以产生 巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、 自润滑等许多独特的性能。
❖ 旋光异构:有机物能构成互为镜影的两种异构体,表现出不同的旋光性。
❖ 例如饱和氢化物中的碳构成一个四面体,碳原子位于四面体中心,4个基团位 于四面体的顶点,当4个基团都不相同时,位于四面体中心的碳原子称为不对 称原子,用C*表示,其特点是C*两端的链节不完全相同。有一个C*存在,每一 个链节就有两个旋光异构体。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料
生物医用高分子材料是指可以用于生物医学领域的高分子材料,它们具有生物相容性、生物降解性和生物活性等特点,广泛应用于医疗器械、组织工程、药物传递系统等领域。

生物医用高分子材料的研究和开发,对于提高医疗水平、改善生活质量具有重要意义。

首先,生物医用高分子材料在医疗器械领域具有重要应用。

例如,生物相容性良好的聚乳酸和聚己内酯等高分子材料,可以用于制备缝合线、支架等医疗器械,其生物降解性可以避免二次手术,减轻患者痛苦,加快伤口愈合。

另外,生物医用高分子材料还可以用于制备人工关节、人工血管等医疗器械,为患者提供更好的治疗方案。

其次,生物医用高分子材料在组织工程领域具有广阔前景。

通过生物医用高分子材料的设计和制备,可以构建人工骨骼、软骨、皮肤等组织工程产品,用于修复受损组织、替代器官,为患者提供更好的治疗选择。

例如,具有生物活性的生物医用高分子材料可以促进细胞黏附、增殖和分化,有助于组织再生和修复。

此外,生物医用高分子材料在药物传递系统领域也发挥着重要作用。

通过将药物载体与生物医用高分子材料结合,可以实现药物的缓释、靶向释放等功能,提高药物的疗效,减少药物的副作用。

例如,利用生物医用高分子材料制备的纳米载体可以有效提高药物的生物利用度,延长药物在体内的半衰期,为药物的治疗效果提供更好的保障。

综上所述,生物医用高分子材料在医疗器械、组织工程、药物传递系统等领域具有重要应用前景,对于提高医疗水平、改善生活质量具有重要意义。

随着生物医学技术的不断进步和生物医用高分子材料研究的深入,相信生物医用高分子材料将会在医疗领域发挥越来越重要的作用,为人类健康事业作出更大的贡献。

生物医学高分子材料汇总

生物医学高分子材料汇总


[( CH2 CO O CH2 CO O )P ...( CH CO CH 3
聚-对-二氧杂环已酮(PDS)
O
CH CO O )]P CH3
[CH2 CH2 O CH2 CO O ]P
有几种已工业化生产的聚合物,虽不是专 门为生物医学应用而生产,但通过用专门的技 术进行加工后也可以制成供生物医学方面应用 的纤维、细丝、微孔材料和管状材料。
我国的甲壳质资源极其丰富,而且曾是研究 开发甲壳质制品较早的国家之一。早在1958年, 就对甲壳质的性能及生产进行过研究,并用于 纺织染整上作上浆剂。进入20世纪80年代后期, 甲壳质资源的开发利用引起了一些科研院所的 重视,并开始了在医疗和保健等领域的研究与 开发。
3.甲壳质及壳聚糖的生物活性

(3) 农业领域

-----作植物种子处理剂
6.甲壳素类纤维的制备技术
1) 甲壳素类纤维纺丝原液的制备
以壳聚糖为原料时,多选用5%以下的醋酸水溶液 作为溶剂。
甲壳素纺丝原液的制备多采用溶解性能优异的有 机溶剂,加适当的氯化锂助溶。
2) 甲壳素类纤维的成型
制备甲壳素类纤维可采用干法纺丝、湿法纺丝和 干-湿法纺丝等不同的成型工艺 。
3.生物降解吸收性
指材料在活体环境中可发生速度能控 制的降解,并能被活体在一定时间内自 行吸收代谢或排泄。
按照在生物体内降解方式可分为水 解型和酶解型两种。
(三)具备效果显示功能
具有显示其医用效果的功能,即生物功 能性。
1.可检查、诊断疾病
2.可辅助治疗疾病如注射器、缝合线和 手套等手术用品材料
1.严格控制用于合成医用高分子材料的原料 的纯度,不能代入有害杂质,重金属含量不 能超标。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料简介生物医用高分子材料是一类应用于医疗领域的材料,由具有生物相容性和生物可降解性的高分子化合物制成。

这些材料具有优异的物理、化学和生物学性能,可以用于制备医疗器械、药物递送系统和组织工程材料等。

特点生物医用高分子材料具有以下特点:1.生物相容性:材料与生物体组织之间有良好的相容性,不引起排异反应和毒性反应;2.生物可降解性:材料在体内可逐渐分解和吸收,降低二次手术的风险;3.可塑性:材料具有良好的加工性能,可以通过热处理、注塑、拉伸等方式制备成各种形状;4.调控性:材料的组分和结构可以通过化学修饰进行调控,以实现特定的功能和效果;5.故障警示功能:材料可以通过改变颜色、形状等方式表达材料出现故障的信息。

应用生物医用高分子材料在医疗领域有广泛的应用,包括但不限于以下几个方面:医疗器械生物医用高分子材料可以用于制备各种医疗器械,包括人体植入物、支架和修复材料等。

例如,可降解聚合物可以用于制备骨修复材料,用于治疗骨折和骨缺损。

此外,生物医用高分子材料还可以制备耐高温和耐化学腐蚀的医用管道、接头和阀门等。

药物递送系统生物医用高分子材料可以用于制备药物递送系统,通过控制材料的解理速率和药物的释放速率,实现药物在体内定点释放和长效治疗。

例如,聚乳酸-羟基乙酸共聚物可以用于制备微球,用于缓释抗癌药物。

此外,生物医用高分子材料还可以制备胶囊、片剂和注射剂等药物剂型。

组织工程材料生物医用高分子材料可以用于制备组织工程材料,用于修复受损组织和器官。

例如,聚丙烯酸甲酯可用于制备人工表皮,用于治疗烧伤和创面愈合。

此外,生物医用高分子材料还可以制备人工骨髓和人工心脏瓣膜等组织工程产品。

发展趋势随着生物医学技术和材料科学的不断发展,生物医用高分子材料的应用前景越来越广阔。

未来,我们可以预见以下几个发展趋势:1.新型材料的研发:研究人员将继续开发新型的生物医用高分子材料,以满足不断增长的临床需求。

2.功能化材料的应用:利用纳米技术和生物传感技术,将进一步开发具有特定功能的生物医用高分子材料,例如智能控释材料和组织修复材料等。

高分子材料在生物医用成像中的应用有哪些

高分子材料在生物医用成像中的应用有哪些

高分子材料在生物医用成像中的应用有哪些在现代医学领域,生物医用成像技术的不断发展为疾病的诊断、治疗和监测提供了强大的支持。

而高分子材料由于其独特的性质,在生物医用成像中发挥着越来越重要的作用。

高分子材料具有良好的生物相容性和可调节的物理化学性质,这使得它们能够被设计和制备成各种用于成像的载体和探针。

其中,常见的高分子材料包括聚乙烯醇(PVA)、聚乳酸(PLA)、聚乙醇酸(PGA)以及各种共聚物等。

在磁共振成像(MRI)中,高分子材料可以作为造影剂的载体。

例如,将顺磁性金属离子如钆(Gd)与高分子材料结合,形成大分子造影剂。

与传统的小分子造影剂相比,高分子造影剂具有更长的血液循环时间和更好的成像效果。

这是因为高分子材料能够有效地减少造影剂在体内的快速排泄,使其在病变部位有更多的积累,从而提高成像的对比度和准确性。

在光学成像中,高分子材料也有着广泛的应用。

量子点是一种具有优异光学性能的纳米材料,但由于其毒性和稳定性问题,限制了其在生物医学中的直接应用。

通过将量子点包裹在高分子材料中,可以有效地解决这些问题。

高分子材料能够提供一个稳定的环境,防止量子点的聚集和泄漏,同时降低其毒性。

此外,一些具有荧光特性的高分子材料本身也可以直接作为光学成像的探针,用于细胞标记和体内成像。

在超声成像中,高分子材料可以被制成微泡造影剂。

这些微泡通常由高分子外壳和内部的气体核心组成。

当超声波作用于微泡时,会产生强烈的回波信号,从而增强组织和血管的成像效果。

通过对高分子材料的表面进行修饰,可以实现微泡对特定组织或细胞的靶向作用,提高成像的特异性。

在正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)等核素成像技术中,高分子材料同样能够发挥重要作用。

高分子材料可以用于包裹放射性核素,形成纳米粒子或微球,提高放射性药物在体内的稳定性和靶向性。

除了作为成像探针和造影剂的载体,高分子材料还可以用于构建成像设备的部件。

专题三生物医用高分子材料

专题三生物医用高分子材料

在医疗保健方面的应用
超强吸水树脂主要用于代替棉花、纱布等材料,用于制备妇女儿童的 卫生用品。还可用于制作床褥、接触性眼镜、缓释药物等医用材料。
超强吸水性树脂在其他方面的应用
超强吸水树脂可用于农业和园林。保持土壤的吸水和保水性,吸收肥
料农药等。也可用于水果和蔬菜的保鲜和森林灭火。
超强吸水剂的原理
制备超强吸水性高分子材料必须 具备两个条件:
1.要含有亲水基团,如羧基、羟
基、酰胺基、氨基等。这些基团 能同水形成氢键。
2.要适度交联或含有结晶结构。
交联就是使线性的聚合物分子用 化学键连接形成三维的网状结构。 吸水时,交联网张开,树脂膨胀, 进一步凝胶化,成为高吸水树脂。
交联度不能太低,否则树脂会溶 解,或形成的水凝胶强度差。吸 水量低。交联度也不能太高,否 则交联网无法张开。
出现钙化合物的表面沉积的现象,是导致高分子材料失效的原因之一。 一般被植个体越年轻,越容易发生钙化;多孔材料比无孔材料钙化严重。
3) 高分子材料的致癌性
固体致癌性(异物致癌性),只要植入的材料是固体材料而且面积大于 1cm2,无论材料种类、形状以及本身性质, 都有致癌的可能性。
耐生物降解性
同人体的特殊环境相关。 人体的不同器官和组织有不同酸碱度:胸腔和肠道是 碱性的,血液是微碱性的,而胃是酸性的。此外,还 有多种生物酶、蛋白质和类固醇等具有生物、化学活 性的物质。这些都会导致材料老化、分解变脆。
软质接触镜是用亲水高分子的水凝胶制成。常用的有聚甲基丙烯酸羟
乙酯、聚乙烯基吡啶、N-乙烯基吡咯烷酮与甲基丙烯酸酯的共聚物。
这类材料的含水率40-70%,比硬质镜片舒适, 但是氧气透过性仍不高,如果含水率超过70%, 就与角膜接近,但是强度变很差。目前有种 硅树脂做的镜片,透氧性高,可以保持水分 在材料中并不流失,非抛弃型隐形眼镜。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二类:在体外使用的较为大型的人工脏器装臵、 主要作用是在手术过程中暂时替代原有器官的功能。 例如人工肾脏、人工心脏、人工肺等。这类装臵 的发展方向是小型化和内植化。最终能植入体内完 全替代原有脏器的功能。据报道,能够内植的人工 心脏已获得相当年份的考验,在不远的将来可正式 投入临床应用。 第三类:功能比较单一,只能部分替代人体脏器 的功能,例如入工肝脏等。这类人工脏器的研究方 向是多功能化,使其能完全替代人体原有的较为复 杂的脏器功能。
★ 聚离子络合物(Polyion Complex)是另一类具有抗血
栓性的高分子材料。它们是由带有相反电荷的两种水 溶性聚电解质制成的。例如美国Amicon公司研制的离
子型水凝胶Ioplix 101是由聚乙烯苄三甲基铵氯化物与
聚苯乙烯磺酸钠,通过离子键结合得到的。这种聚合
物水凝胶的含水量与正常血管相似,并可调节这两种
★医用高分子的研究至今已有40多年的历史。1949 年,美国首先发表了医用高分子的展望性论文。在 文章中,第一次介绍了利用聚甲基丙烯酸甲酯作为 人的头盖骨和关节,利用聚酰胺纤维作为手术缝合 线的临床应用情况。 据不完全统计,截至1990年, 美国、日本、西欧等国发表的有关医用高分子的学 术论文和专利已超过30000篇。 有人预计,到21世纪,医用高分子将进入一个全 新的时代。除了大脑之外,人体的所有部位和脏器 都可用高分子材料来取代。仿生人也将比想象中更 快地来到世上。

(4)具有抗血栓性,不会在材料表面凝血
高分子材料与血液接触时,也会产生血栓。因为 当异物与血液接触时,血液流动状态发生变化,情 况与表面损伤类似。因此也将在材料表面凝血即产 生血栓。
高分子材料的抗血栓问题是一个十分活跃的研究 课题,世界各国有大量科学家在潜心研究,进展也 颇为显著。但至今尚未制得一种能完全抗血栓的高 分子材料。这一问题的彻底解决,还有待于我们的 共同努力。
人们发现,大部分高分子材料的表面容易沉渍 血纤蛋白而凝血。如果有意将某些高分子的表面 制成纤维林立状态,当血液流过这种粗糙的表面 时,迅速形成稳定的凝固血栓膜,但不扩展成血 栓,嗣后诱导出血管内皮细胞。这样就相当于在 材料表面上覆盖了一层光滑的生物层——伪内膜。 这冲伪内膜与人体心脏和血管一样,具有光滑的 表面,从而达到永久性的抗血栓。
(d) 慢性全身性反应。如慢性中毒、血液破坏、脏 器功能障碍、组织畸变等。
因此,高分子材料在植入人体之前,必须通过体内 试片埋植法进行生物体试验,确保万元一失。
(3)不会致癌 当高分子材料植入人体后,高分子材料本身的性 质,如交联度、分子量、构象、高分子材料中所含 的杂质、单体、添加剂都可能与致癌因素有关。但 研究表明,高分子材料与其他材料相比,并没有更 多的致癌可能性。而是植入材料的形状对癌症的产 生影响较大。曾对不同形状的材料植入小白鼠体内 出现肿瘤的情况进行过统计(见表6—2)。 由此可见,当向人体植入高分子材料时,除考虑 材料的物理、化学性质外,还应充分考虑其形状因 素。

人工器官是医用高分子材料的主要发展方向。
目前用高分子材料制成的人工器官己植入人体的有
人工肾、人工血管、人工心脏瓣膜、人工关节、人
工骨骼、整形材料等。应用的高分子材料主要有PVC、
ABS、PP、硅橡胶、含氟聚合物等。正在研究的有人
工心脏、人工肺、人工胰脏、人造血、人工眼球等。
11.2 医用高分子材料的基本特性
Biomer是一种 线型芳香聚醚 氨脂。
★ Pellethane也是一种线型芳香聚醚氨酯。与Biomer
不同的是它以1.4—丁二醇为扩链剂,因此分子链中 无脲基,柔顺性较Biomer更好。 Tecoflex是一种浅型脂环族聚醚氨酯,也用1,4— 丁二醇扩链。性能接近于Pellethane。 Cardiothane是一种网状结构的芳香聚醚氨脂。用 乙酰氧基硅氧烷作交联剂、耐热性、耐水解性和尺寸 稳定性郁比较好。
11.3 高分子材料在医学领域的应用
1)高分子人工脏器及部件的应用现状
高分子材料作为人工脏器、人工血管、人工骨骼、 人工关节等的医用材料,正在越来越广径地得到运用。 根据人工脏器和部件的作用及目前研究进展,可将 它们分成五大类。 第一类:能永久性地植入人体,完全替代原来脏器 或部位的功能,成为人体组织的一部分。属于这一类 的有人工血管、人工心脏瓣膜、人工食道、人工气管、 人工胆道、人工尿道、人工骨骼、人工关节等。
2)医用高分子的血液相容性
(1) 血栓的形成 当人体的表皮受到损伤时,流出的血液会自动凝固, 称为血栓。实际上,血液在受到下列因素影响时,都 可能发生血栓:①血管壁特性与状态发生变化;②血 液的性质发生变化;③血液的流动状态发生变化。 高分子材料植入体内与血液接触时,血液的流动状 态和血管壁状态都将发生变化,因此也会发生血栓。 血栓的形成机理是十分复杂的。一般认为,异物与血 液接触时,首先将吸附血浆内蛋白质,然后粘附血小 板,继而血小板崩坏,放出血小板因子,在异物表面 凝血,产生血般。此外,红血球粘附引起溶血;凝血 致活酶的活化,都是形成血栓的原因。(见图6—1)



2)医用高分子材料的应用
(1) 血液相客性材料与人工心脏 许多医用高分子在应用中需长期与肌体接触,必须 有良好的生物相容性,其中血液相容性是最重要的。 人工心脏、人工肾脏、人工肝脏、人工血管等脏器和 部件长期与血液接触,因此要求材料必须具有优良的 抗血栓性能。 近年来,在对高分子材料抗血栓性研究中,发现具 有微相分离结构的聚合物往往有优良的血掖相容性。 例如在聚苯乙烯、聚甲基丙烯酸甲酯结构中接枝上亲 水性的甲基丙烯酸—β —羟乙酯,当接枝共聚物的微 区尺寸在20 —30nm范围内时,有优良的抗血特性。
(c) 调节材料表面分子结构中的亲水基团与疏水 基团的比例,使其达到一个最佳值。
(d) 在材料表面引入动物的肝素。肝素是一种硫酸 多糖类物质,具有优良的抗凝血性。
在高分子材料结构中引入肝素后,在使用过程中, 肝素慢慢地释放,能明显提高抗血栓性。
(e) 材料表面伪内膜化,这是抗血栓性研究的新动 向。
(c)
γ射线灭菌
γ射线灭菌的特点是穿透力强,灭菌效果好,并 可自续化操作,可靠生好。但由于辐射能量大,对 聚合物材料有较大影响,通常使机械强度下降。 (7)易于加工成需要的复杂形状
人工脏器往往具有很复杂的形状,因此,用于人 工脏器的高分子材料应具有优良的成型性能。否则, 即使各项性能都满足医用高分子的要求,却无法加 工成所需的形状,则仍然是无法应用的。
1)对医用高分子材料的基本要求
归纳起来,一个具备了以下七个方面性能的材料, 可以考虑用作医用材料。
(1)在化学上是隋性的,不会因与体液接触而发生 反应; 人体环境对高分子材料的作用.主要有以下一些 形式: (a) 体液引起聚合物的降解、交联和相变化。 (b) 体内的自由基引起高分子材料的氧化降解反应。

(2) 血液相容性高分子材料的制取
普通的高分子材料一般不具备抗血栓性,但可通过 多种途径来改善。目前常用的有以下一些手段。 (a)将材料表面处理得尽可能光滑。 (b)使材料表面带上负电荷的基团。例如将芝加哥酸 (1—氨基— 8—萘酚—2,4—二磺酸萘)引入聚合物表 面后,血小板粘附量减少,抗凝血性提高。
第四类:正在进行探索的人工脏器。这是指那些 功能特别复杂的脏器,如人工胃、人工子宫等。这 类人工脏器的研究成功,将使现代医学水平有一重 大飞跃。 第五类:整容性修复材料,如人工耳朵、人工鼻 子、人工乳房、假肢等。这些部件一般不具备特殊 的生理功能,但能修复人体的残缺部分,使患者重 新获得端正的仪表。从社会学和心理学的角度看, 也是具有重大意义的。
★ 在微相分离高分子材料中,国内外研究得最活跃的
是聚醚型聚氨酯。或称聚醚氨脂。聚醚氨脂是一类线 型多嵌段共聚物,宏为医用高分子材料 的嵌段聚醚氨酯(Segmented Polyether Urethane, SPEU)的一般结构式如下:
★ 美国Ethicon公司推荐的四种医用聚醚氨酪Biomer,
Pellethane,Tecoflex以和cardiothane基本上都属于这 一类聚合物。它们的共同特点是分子结构都是由软链 段和硬链段两部分组成的,在分子间有较强的氢链和 范德华力。聚醚软段聚集形成连续相,而由聚氨酯、 聚脲组成的硬链段聚集而成的分散相微区则分散在连 续相中,因此具有足够的强度和理想的弹性。
(5)
长期植入体内,不会减小机械强度
表6.3是一些高分子以纤维形式植入狗的动脉 后其机械强度的损失情况。
(6)能经受必要的清洁消毒措施而不产生变性
高分子材料在植入体内之前,都要经过严格的灭 菌消毒。目前灭菌处理一般有三种方法;蒸汽灭菌; 化学灭菌,γ射线灭菌。国内大多采用前两种方法。 因此在选择材料时,要考虑能否耐受得了。
(2) 对人体组织不会引起炎症或异物反应 由于外物植入体内引起的组织反应大致有四种情况: (a) 急性局部反应,如局部炎症、坏死、异物排斥 反应形成血栓等。 (b) 慢性局部反应,如局部炎症、肉芽增生、组织 增生、钙沉积、组织粘连、溃疡、致癌、形成血栓等。 (c) 急性全身性反应,如急性毒性感染、发热、神 经麻痹、循环障碍、血液破坏等。
聚电解质的比例,制得中性的、正离子型的或负离子 型的产品。其中负离子型的材料可以排斥带负电荷的 血小板,更有利于抗凝血。类似的产品还有用聚对乙 基苯乙烯三乙基铵溴化物与聚苯乙烯磺酸钠制得的产
(a)蒸汽灭菌
蒸汽灭菌一般是在压力灭菌器小进行的,温度可达 120-140°C。因此软化点较低的聚合物在此温度下 将发生变形,故不能选用。
* (b)化学灭菌
化学灭菌采用灭菌剂灭菌,常用的灭菌剂有环氧 乙烷、烷基(芳基)季胺盐(如新洁尔灭)、碘化合物(如 碘伏)、甲醛、戊二醛等。它们的优点是可以低温消 毒,材料在消毒过程中不存在变形问题。但新产生 的问题是容易与高分子材料发生副反应。除了化学 反应外,还有些高分子材料表面易吸附灭菌剂。被 吸附的灭菌剂在人体内的释放是相当危险的,可引 起溶血、细胞中毒和组织炎症,严重时可引起全身 性反应。例如,实验观察到,聚合物表面吸附上 30ppm环氧乙烷,可造成狗的溶血速度增加—倍。因 此,院床应用时.必须除去一切灭菌剂后才能植入 体内。
相关文档
最新文档