四种线性代数模型

合集下载

线性代数模型

线性代数模型

(1,1,0,0) (0,0,1,1) (1,0,1,0) (0,1,0,1) (1,1,1,1) (1,0,0,1) (0,1,1,0) (1,0,0,0) (0,1,1,1)
(不可取) (可取) (不可取) (不可取)
(第二次渡河)
性 、投入产出分析、商品销售量预测 、人口问题的差分 方程模型 )
1距离问题
1 .1基因间“距离”的表示 1 .2常见的距离公式(聚类分析,相似性度量)
1 .1基因间“距离”的表示
1 .2常见的距离公式(聚类分析)
绝对值距离 欧式距离 明考斯基距离 兰氏距离 马氏距离

23 .2
例8 农场的植物园中某种植物的基因型 为AA,Aa和 aa。农场计划采用 AA型的植物与每种基因型植物相 结合的方案培育植物后代。那么经过若干年后, 这 结合的方案培育植物后代。那么经过若干年后,这种 植物的任一代的三种基因型分布情况如何? 种植物的任一代的三种基因型分布情况如何?
(a)假设:令n=0,1,2,…。 (i)设an,bn和cn分别表示第n代植物中,基因型 为AA,Aa和aa 的植物占植物总数的百分比 。令x (n)为第n代植物的基因型分 布: a0 a n
问题归结为由状态 (3,3)经奇数次可取运算,即由可取状 态到可取状态的转移,转化 为(0,0)的转移问题。和上题一样, 我们既可以用计算机求解,也可以分析求解,此外,本题还 可用作图方法来求解。 在H~W平面坐标中,以 “·”表示可取状态, 从A(3,3)经奇数 次转移到 达O(0,0)。奇数次转移时向左或下移 动1-2格而落 在一个可取状态上,偶数次转移时向右或上移 动1-2格而落在 一个可取状态上。为了区分起见 ,用红箭线表示奇数次转移, 用蓝箭线表示第偶数 次转移,下图给出了一种可实现的方案 , 故 这三对夫妻是可以过河的 。假如按 W A(3,3) 这样的方案过 河,共需经过十一次摆 渡。 不难看出 ,在上述规则下,4对夫妻就 无法过河了,读者可以自行证明之.类 似可以讨论船每次可载三人的情况, H其结果 是5对夫妻是可以过河的,而 O(0,0) 六对以上时就 无法过河了。

线性代数

线性代数

线性代数时隔一年,总算把特征值特征向量以及二次型部分给大家补上了:)还是那句话,个人水平有限,加上不同人的不同的思维习惯,所以只能说我把自己的思路提供出来给大家作为参考,希望能起到点提纲挈领的作用吧。

说实话,写最后这部分时,还是感觉到有些压力,最主要怕写出来不如前四章那样让大家满意,呵呵,不过无论如何,我已经尽力了,线代的知识框架总结也算是形成了一个完整的篇章,至少有始有终吧。

最近一段时间课题任务比较重,可能要过个把月才有空把高数部分重新修订了。

最后一个小说明,因为这个系列文章的重点是挖掘、梳理各知识点之间的相互联系和脉络,所以内容上并没有全盘覆盖课本,而是有所侧重,打个比方,相当于是勾勒出的一个线性代数的基本框架,那么建议大家在此基础上多开阔思路,通过发散思维把框架之外的剩余部分囊括到自己的脑海中来:)线性代数知识点框架(五)由矩阵乘法的特点可知,计算一个矩阵A的n次方,相对于数乘运算来说要繁琐得多。

我们注意到,如果存在可逆矩阵P和对角矩阵∧,使得A=P*∧*P逆,那么有:A^n=(P*∧*P逆)^n=(P*∧*P逆)(P*∧*P逆)…(P*∧*P逆)=P*∧^n*P 逆由于对角矩阵的乘方容易计算,从而问题得到大幅简化。

对矩阵A、B来说,如果存在着可逆矩阵P,使得A=P *B*P逆,我们称A与B是相似的。

特别地,如果A与对角矩阵∧相似,则称A可对角化。

由此可见,如果矩阵A可对角化,那么A^n的计算将变得简单许多。

故可把相似的说法理解为一个在寻找矩阵乘方简便运算的过程中提出来的概念。

相似的矩阵有许多共同的性质,如有相同的秩和相同的行列式值,相似的矩阵或者都可逆,或者都不可逆,等等。

设矩阵A相似于对角矩阵∧,那么:A=P*∧*P逆<=>AP=P∧,其中P为可逆矩阵<=> A*(a1, a2, …, an)=(a1, a2, …, an)*∧,其中a1, a2, …, an 分别为可逆矩阵P的列向量,λ1, λ2, …, λn分别为对角矩阵∧的主对角线上元素<=> A*a1=λ1*a1,A*a2=λ2*a2,…,A*an=λn*an也就是说,矩阵A能对角化的关键,在于找到n个常数λ1, λ2, …, λn和n 个线性无关的向量a1, a2, …, an(因为这些向量构成的矩阵可逆,这也决定了零向量不是特征向量),使得A*ai=λi*ai(i=1,2,3,…,n)。

最新四种线性代数模型资料

最新四种线性代数模型资料

线性代数是高等学校理工科和经济类学科相关专业的一门重要基础课,它不仅是其他数学课程的基础,也是物理、力学、电路等专业课程的基础。

作为处理离散问题工具的线性代数,也是从事科学研究和工程设计的科研人员必备的数学工具之一。

实验一 生物遗传模型1.工程背景设一农业研究所植物园中某植物的基因型为AA 、Aa 和aa 。

常染色体遗传的规律是:后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对。

如果考虑的遗传特征是由两个基因A 、a 控制的,那末就有三种基因对,记为AA 、Aa 和aa 。

研究所计划采用Aa(AA)型的植物与每一种基因型植物相结合的方案培育植物后代。

问经过若干年后,这种植物的任意一代的三种基因型分布如何?2.问题分析分析双亲体结合形成后代的基因型概率,如表6-4所示。

表6-4基因型概率矩阵 后代 基因对 父体—母体的基因对AA —AAAA —Aa AA —aa Aa —Aa Aa —aa aa —aa AA 1 1/2 0 1/4 0 0 Aa 0 1/2 1 1/2 1/2 0 aa1/41/213.模型建立与求解设,,n n n a b c 分别表示第n 代植物中基因型AA 、Aa 、aa 型的植物占植物总数的百分率。

则第n 代植物的基因型分布为()n n n n a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,0(0)00a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭表示植物型的初始分布。

依据上述基因型概率矩阵,有1112n n n a a b --=+,1112n n n b b c --=+,0n c =,1n n n a b c ++=,表示为矩阵形式11111/2001/21000n n n n n n a a b b c c ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭记11/2001/21000M ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(1)2(2)3(3)(0)n n n n n x MxM x M x M x ---=====。

数学建模四大模型总结

数学建模四大模型总结

数学建模四大模型总结1优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。

1.5 组合优化经典问题l 多维背包问题(MKP)背包问题:个物品,对物品,体积为,背包容量为。

如何将尽可能多的物品装入背包。

多维背包问题:个物品,对物品,价值为,体积为,背包容量为。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于难问题。

l 二维指派问题(QAP)工作指派问题:个工作可以由个工人分别完成。

工人完成工作的时间为。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):台机器要布置在个地方,机器与之间的物流量为,位置与之间的距离为,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

l 旅行商问题(TSP)旅行商问题:有个城市,城市与之间的距离为,找一条经过个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

l 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP问题是VRP问题的特例。

l 车间作业调度问题(JSP)车间调度问题:存在个工作和台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

线性代数的RMI模型理论——向量空间直和分解理论的RMI模型理论

线性代数的RMI模型理论——向量空间直和分解理论的RMI模型理论

学专业线性代数 向量空 间直和分 解理 B 8 = .- p= . p p , ’p 一 t 0p O即 : - B= , 一 . 论 的教学思路。
关键 词 : 性 代 数 向量 空 间 线 和 分 解 理 论 R I模 型 M 直 R I方 法 M R I M 方法 的框 图表 示 如 下 :
】兰州商学院学报 ,9 0 2 : 19 ( ) 证明 设 w, w 的任 意一个余子 学思路 Ⅱ. 是
6 -7 6 0.
空间 ,那 么 w 也 是 w。 的一个 余子 空 空 间 。 取 w 的 一 个 基 {【 l… , 和 0,: } . , 0
W。 一 个 基 { B , , s. 为 V= 的 B ,: … B 1因
可 以唯 一 地 表 成
.4 存在 V中 n r 的形 式 , 里 0 EW.= , , , 且 , 4 — 这 【 ; , l… n 并 i 的 R 模型理论 ,并 且应用关系 映射 的一个基 。由定理 6 ., MI
反演思想方 法论述非 数学专业 线性代 个 向量 { , , … 0l 【使得{ 一,【0 当 V是有 限维 向量空间时, 0,【 ,
关 1分 系 解
V= w①Wl

关 于 直 和 的概 念 可 以 推 广 到 多 于 两 个 子 空 间 的情 形 。 W 。 , W 设 , …, 是 向量 空 间 v 的子 空 间 。 如果
() W 1W2+… + ; iV= + , W
教 学思路 向量空 间直和分 解理论是 线性代
学 术 纵 横
线牲 代数 的 MI R 模型理论
— —
向量空间直和分解理论的 R 模型理论 MI
口 窦 永 平

常见的数学模型

常见的数学模型
定义:线性代数方程是包含一 个或多个未知数的方程,其系 数是常数且最高次幂为一次
解法:通过矩阵运算或迭代法 求解线性代数方程
形式:Ax=b,其中A是矩阵,x 是未知数向量,b是常数向量
应用:在物理、工程、经济等 领域有广泛应用
多项式方程
定义:多项式方程 是数学中常见的方 程形式,一般形如 ax^n + bx^(n1) + ... + z = 0
积分公式:常见 的积分公式包括 牛顿-莱布尼茨公 式、换元积分公 式、分部积分公 式等。
01
0 2
03
04
级数与无穷级数
定义:级数是无穷多个数相加的结果,无穷级数是级数的极限状态。 类型:有正项级数、交错级数、幂级数等。
应用:在数学、物理、工程等领域有广泛应用,如计算曲线的长度、求解微分方程等。 收敛与发散:级数收敛时,所有项的和是有限的;发散时,所有项的和是无穷大。
值。
特征值与特征向量 的应用:在解决实 际问题时,特征值 和特征向量可以用 于分析系统的稳定
性和动态行为。
计算方法:通过求 解矩阵的特征方程, 可以得到矩阵的特 征值和特征向量。
添加标题
添加标题
添加标题
添加标题
线性变换与矩阵运算
矩阵运算:基本的矩阵加法、 减法、乘法等运算规则
线性变换:通过矩阵表示几 何变换的过程
微分方程
定义:微分方程是 描述数学模型中变 量之间变化关系的 方程
类型:常微分方程、 偏微分方程等
解法:常用的解法 包括分离变量法、 常数变异法等
应用:在物理学、 工程学、经济学等 领域有广泛应用
线性代数模型
向量与矩阵
向量:由一组有序 数构成的数学对象, 可以表示空间中的 点或方向

解线性方程组的迭代法

解线性方程组的迭代法

解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。

系数矩阵H 为Hilbert 矩阵,是著名的病态问题。

因而决定求解Hx b =此线性方程组来验证上述问题。

详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。

关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。

理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。

考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。

四种线性代数模型

四种线性代数模型

线性代数是高等学校理工科和经济类学科相关专业的一门重要基础课,它不仅是其他数学课程的基础,也是物理、力学、电路等专业课程的基础。

作为处理离散问题工具的线性代数,也是从事科学研究和工程设计的科研人员必备的数学工具之一。

实验一 生物遗传模型1.工程背景设一农业研究所植物园中某植物的基因型为AA 、Aa 和aa 。

常染色体遗传的规律是:后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对。

如果考虑的遗传特征是由两个基因A 、a 控制的,那末就有三种基因对,记为AA 、Aa 和aa 。

研究所计划采用Aa(AA)型的植物与每一种基因型植物相结合的方案培育植物后代。

问经过若干年后,这种植物的任意一代的三种基因型分布如何2.问题分析分析双亲体结合形成后代的基因型概率,如表6-4所示。

表6-4基因型概率矩阵 后代 基因对 父体—母体的基因对AA —AA AA —Aa AA —aa Aa —Aa Aa —aa aa —aa AA 1 1/2 0 1/4 0 0 Aa 0 1/2 1 1/2 1/2 0 aa1/41/213.模型建立与求解设,,n n n a b c 分别表示第n 代植物中基因型AA 、Aa 、aa 型的植物占植物总数的百分率。

则第n 代植物的基因型分布为()n n n n a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,0(0)00a x b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭表示植物型的初始分布。

依据上述基因型概率矩阵,有1112n n n a a b --=+,1112n n n b b c --=+,0n c =,1n n n a b c ++=,表示为矩阵形式11111/2001/21000n n n n n n a a b b c c ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭记11/2001/21000M ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(1)2(2)3(3)(0)n n n n n x MxM x M x M x ---=====。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

02我的线性代数模型介绍

02我的线性代数模型介绍

2 x1 x2 6 x3 10 x1 4 x1 5 x2 x3 10 x1 4 x 4 x 3 x 10 x 2 3 1 1
线性代数模型(8/59)
求解
计算
>>A=[-8 1 6;4 -5 1;4 4 -7] >>rref(A)
ans = 1 0 0
线性代数模型介绍
线性代数的思想已经渗透到数学的每个分 支。当我们研究多变量函数及其微分时,矩 阵便成为不可缺少的工具,计算机更为线性 代数的应用开拓了广泛的天地。 有些复杂问题,往往给人以变幻莫测的感 觉,难以掌握其中的奥妙。当我们把思维扩 展到线性空间,利用线性代数的基本知识建 立模型,就可以掌握事物的内在规律,预测 其发展趋势。
线性代数模型(10/59)
构建模型
设P表示番茄的收获的价格, 2表示玉米的收获 P 1 价格,3表示茄子的收获价格,据题意,得收入— P 支出矩阵(或称交换矩阵)为
1 2 1 E 3 1 6
1 3 1 3 1 3
1 4 1 4 1 2
E0
线性代数模型(11/59)
线性代数模型(24/59)
排名 132456 合理吗
循环比赛的结果——竞赛图
每对顶点间都有边相连的有向图
2 2
3个顶点 的竞赛图 名次
4个顶点 的竞赛图
4 1
1
(1)
3
1
(2)
3
{1,2,3}
1 1
{(1,2,3)}并列
1
2
3
(1)
2
4
(2)
2
3 4
(3)
2
3 4 3
(4)
名次

数学建模_四大模型总结

数学建模_四大模型总结

数学建模_四大模型总结四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

§2.8 线性代数法建模

§2.8 线性代数法建模

二、投入产出模型
背 景 介 绍
投入产出分析是线性代数理论与方法在经济分析与 管理中的一个重要应用,它从数量上考虑经济系统 内部各部门间生产和分配的线性关系.投入产出分析 方法也称为投入产出法或投入产出技术,这一方法 是美国经济学家、哈佛大学行政管理学院列昂节夫 教授于20世纪30年代首先提出的.列昂节夫也因提出 此方法获得了1973年的诺贝尔经济学奖.
an , bn , cn )T M n x(0) PDn P1x(0) (
1 0 0 1 1 n 1 ( ) 0 2 2 a 0 1 n ( ) 0 b0 2 1 1 n 1 c0 ( ) 1 2 2
得属于1 0的特征向量为 1 2,1 T (, )
0 0 x1 1 / 2 1 对于2 ,对应的方程组为: 1 0 0 x2 0 2 0 1 / 2 1 / 2 x3
得属于2的特征向量 (0,1,1)T
物相结合的方案培育植物后代,求经过若干 年后,这种植物任一后代的三种基因型AA, Aa,aa的概率分布.
模型假设
①记an , bn , cn分别表示第n代的植物中基因型为AA, Aa, aa 的植物所占的百分率( 概率),且记x ( n )为第n代植物的 基因型分布:x ( n ) (an , bn , cn )T , n 0,1,2, 这里x ( 0) (a0 , b0 , c0 )T 表示植物的初始分布, 且满足 : a0 b0 c0 1
0 0 1 n 1 1 n ( ) ( ) 2 2 1 ( 1 ) n 1 1 ( 1 ) n 2 2 0 a0 0 b0 c 0 1

线性代数模型

线性代数模型

B

d2 d3

1 2
1 1
问题二 机床订购模型
兴兴机械厂生产甲乙丙三种规格的机床,其价格和 成本见下表:



单价(万元/台)
7
6
5
成本(万元/台)
6
4.5
4
1月份,工厂收到北京、上海与广东的订购数量见下表。
请帮兴兴机械厂算一算各地订购三种机床的总价值、总 成本和总利润各是多少?
S公司占的市场份额 69% 69%
使得每年市场份额不变的初始市场份额分配为R公 司31%,S公司69%
问题7 T恤销售量模型
小明百货商店销售四种型号的T衫:小号、中号、 大号和加大号。各种型号的T衫的销售价格分别为:22 元/件、24元/件、26元/件、30元/件。某日盘点时,小 明把各种型号的T衫销售数量弄混了,但他知道共售出 了13件T衫,收入为320元,且大号的销售量为小号与加 大号销售之和,大号的销售收入也为小号与加大号销售 收入之和。问小明当日销售了各种型号的T衫各多少件 ?
三 模型的建立
• 将以上两表转化为矩阵A,B为:
甲乙 丙
A


7 6
6 4.5
54
单价 成本
北京 上海 广东
4 B 5
5 6
7 8

甲 乙
3 4 9 丙
• 北京订购三种机床的数量分别乘以相应的单价7*4+6*5+5 *3为北京订购三种机床的总价值......以此类推,利用矩阵 的乘法运算,得
1 0 1
A 0 1 1

1
1 1
问原信号B是什么?
一 模型的假设
• 假设信号在传输过程中使用相同的密钥

中考数学常见模型

中考数学常见模型

中考数学常见模型中考数学常见模型是中等难度的数学问题,涵盖了数学的各个方面,包括代数、几何、概率等等。

下面将列举一些常见的数学模型,以帮助同学们更好地准备中考数学。

一、代数模型:1.一次函数模型:y=kx+b,其中k和b为常数,表示一条直线的方程。

常用于描述速度、距离等线性关系。

2.二次函数模型:y=ax²+bx+c,其中a、b、c为常数。

常用于描述抛物线的形状,如物体自由落体的高度和时间关系。

3.百分比模型:常用于计算百分比,如增长率、折扣率等。

4.平均数模型:用于求平均数,如求一组数的算术平均数、几何平均数等。

5.方程与不等式模型:常用于解决方程和不等式问题,如线性方程、二次方程、绝对值和分数方程等。

二、几何模型:1.面积和体积模型:常用于求解平面图形和立体图形的面积和体积,如矩形、三角形、圆形、圆柱体、球体等。

2.相似模型:用于表示两个形状相似的几何图形之间的比例关系。

3.三角模型:用于解决三角形相关问题,如正弦定理、余弦定理、面积公式等。

4.坐标模型:用于求解平面上的坐标问题,如平面直角坐标系和极坐标系等。

三、概率模型:1.事件模型:用于描述事件的概率,如事件的可能性、互斥事件、相对频率等概念。

2.随机模型:用于分析随机事件的发生概率和期望值,如抛硬币、掷骰子等。

3.条件概率模型:用于计算在已知某些条件下的事件发生概率,如加法原理、乘法原理等。

四、函数模型:1.函数关系模型:用于描述函数之间的关系,如函数的定义域、值域、奇偶性、单调性等。

2.复合函数模型:用于把多个函数组合成一个新函数,如复合函数的求导、求导法则等。

3.反函数模型:求一个函数的反函数,如对数函数和指数函数的互为反函数等。

以上只是一部分常见的数学模型,同学们在备考中还需根据自己的实际情况进行重点复习和应用。

在解题过程中,要善于分析题意,理解问题,找到合适的数学模型进行求解。

并且要注意解题的思路和方法,培养逻辑思维能力,灵活运用各种数学知识和模型,提高解题的准确性和效率。

6线性代数应用模型

6线性代数应用模型
下表是一个简化的价值型投入产出表,其
中 x表ij 示第j部门消耗第i部门的产品数量,
也就是第i部门供给第j部门的数量。
产出 投入
部门1 物 部门2

消 ... 耗 部门n
折旧

创 劳动报酬 造 纯收入

值 小计
总 价值
价值型投入产出表
中 间 产品
部门1 部门2 部门n 小计
x11
x12
x21
x22
j 1
总产品
X1 X2 ... Xn
◆按水平行建立数学模型:反映各部门产品的
生产与分配使用情况,描述了最终产品与总产品之间的
平衡关系,称为分配平衡方程组。
x11 x12 x21 x22 .......
x1n y1 X1 x2n y2 X 2
xn1 xn2 xnn yn X n
0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,1,1;0,0,0,0,0,0,0,0,0,1;0,0,
1,0,0,1,0,1,0,0];
% 矩阵A
b=[300;500,200;800;800;100;400;200;600,100];
B=[A,b]
% 增广矩阵B
Rank(A)
% 计算矩阵A的秩
◆动态投入产出模型:针对若干时期,研究再
生产过程中各个生产部门之间的相互联系问题;
静态投入产出模型与动态投入产出模型基本原理相同。 本节以静态价值型投入产出模型为例,介绍投入产出分析 的基本原理。
二、价值型投入产出模型
1、模型假设: (1)、将研究对象划分为n个部门,每个部门生产一
种或一类产品;
建立模型
设ak和bk分别表示A城公司和B城公司第k 月末的可支付基金数,k=1,2,3......

初中代数中的几种常见数学模型

初中代数中的几种常见数学模型

( 1) 求y与x的函数关系式。
( 2) 若该班每年需要纯净水380
桶 , 且a为120时 , 请 你 根 据 提 供 的 信 息分析一下; 该班学生集体改饮桶装 纯净水与个人买饮料, 哪一种花钱更 少?
( 3) 当a至少为多少时, 该班学生 集体改饮桶装纯净水一定合算? 从计 算结果看, 你有什么感想?
x=4.2( 元)
作者单位
该班学生集体饮用桶装纯净水
泸西县中枢镇中枢小学
的每年总费用为:
◇责任编辑 高 戈 李 酋◇
28 云南教育·中学教师 2007·6
就 能 通 过 运 用 函 数 的 知 识 、方 法 来 解
决有关的问题。
例4“ 龟兔赛跑”讲述了这样的
故事: 领先的兔子看着缓慢爬行的乌
龟, 骄傲起来, 睡了一觉, 当它醒来
时, 发现乌龟快到终点了, 于是急忙
追赶, 但为时已晚, 乌龟还是先到达
了 终 点 … … 。用 S1、S2分 别 表 示 乌 龟 和 兔子所行路程, t为时间, 则下列图象
模型, 如: 方程模型、不等式( 组) 模型 们可以建立数学模型为:
购买备选奖品中应用, 则可以选择两种
等, 那么建模的方法和步骤是怎样的 呢? 我认为应该分为以下几个步骤: ①调研; ②简化假设; ③建立模型; ④ 模型求解; ⑤模型的分析、检验、预 测; ⑥修正; ⑦运用。
第一种模型: 方程模型, 方程是从 小学到中学的一个过渡, 然而在中学 教学中它是一个重要的数学模型, 如 用方程的思想解决生活中的存贷问 题、盈亏问题、工程问题、平均增长率问 题、人员调配等问题。方程模型是把我 们生活实际中的简单问题联系起来的 一种基本模型, 它也是中考必考和常 考模型。我们往往给予学生的是把模 型建立起来, 让学生去解它, 而对于如 何建立是学生的一个难点, 也是一个 重点。如: S=v(t s表示路程、v表示速度、t 表示行驶时间) , 这是一个从物体的匀 速运动中建立起来的数学模型。学生 到现在建立S=vt模型是比较容易, 但对 于一些存贷、增长率等问题的模型就 是他们最大的难点和重点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数是高等学校理工科和经济类学科相关专业的一门重要基础课,它不仅是其他数学课程的基础,也是物理、力学、电路等专业课程的基础。

作为处理离散问题工具的线性代数,也是从事科学研究和工程设计的科研人员必备的数学工具之一。

实验一 生物遗传模型1.工程背景设一农业研究所植物园中某植物的基因型为AA 、Aa 和aa 。

常染色体遗传的规律是:后代是从每个亲体的基因对中个继承一个基因,形成自己的基因对。

如果考虑的遗传特征是由两个基因A 、a 控制的,那末就有三种基因对,记为AA 、Aa 和aa 。

研究所计划采用Aa(AA)型的植物与每一种基因型植物相结合的方案培育植物后代。

问经过若干年后,这种植物的任意一代的三种基因型分布如何2.问题分析分析双亲体结合形成后代的基因型概率,如表6-4所示。

表6-4基因型概率矩阵 后代 基因对 父体—母体的基因对 AA —AA AA —Aa AA —aa Aa —Aa Aa —aa aa —aa AA 1 1/2 0 1/4 0 0 Aa 0 1/2 1 1/2 1/2 0 aa1/41/213.模型建立与求解设,,n n n a b c 分别表示第n 代植物中基因型AA 、Aa 、aa 型的植物占植物总数的百分率。

则第n 代植物的基因型分布为()n n n n a xb c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,0(0)00a x b c ⎛⎫⎪= ⎪ ⎪⎝⎭表示植物型的初始分布。

依据上述基因型概率矩阵,有1112n n n a a b --=+,1112n n n b b c --=+,0n c =,1n n n a b c ++=,表示为矩阵形式11111/2001/21000n n n n n n a a b b c c ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭记11/2001/21000M ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(1)2(2)3(3)(0)n n n n n x MxM x M x M x ---=====。

于是问题归结为如何计算n M ,可将M 对角化。

易于计算M 的特征值为1、1/2、0,其相应的特征向量为(1,0,0)T,(0,1,0)T-,(1,2,1)T-。

令101012001P ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,则111/2001/21000M P P -⎛⎫ ⎪= ⎪ ⎪⎝⎭。

于是()(0)1(0)11/2001/21000nn n xM x P P x -⎛⎫⎪== ⎪ ⎪⎝⎭1(0)1011001010120(1/2)0012001000001nn x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11000001(0)10011(1/2)1(1/2)(1/2)(1/2)01/21/2(1/2)(1/2)0000n n n n n n n n a b c b c x b c ----⎛⎫⎛⎫--++-- ⎪ ⎪==+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1001001(1/2)(1/2)(1/2)(1/2)0n n n n b c b c --⎛⎫-- ⎪=+ ⎪ ⎪⎝⎭。

当n →∞,1,0n n a b →→,因此,可以认为经过若干年后,培育出的植物基本上呈现AA 型。

实验二 员工培训问题 1.工程背景某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将1/6熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。

新、老非熟练工经培训及实践至年终考核有2/5成为熟练工。

若记第n 年一月份统计的熟练工与非熟练工所占比例分别为n n x y ⎛⎫⎪⎝⎭。

2.问题问题1:第n+1年熟练工与非熟练工所占比例11n n x y ++⎛⎫⎪⎝⎭与第n 年熟练工与非熟练工所占比例n n x y ⎛⎫⎪⎝⎭的关系。

问题2:若第1年熟练工与非熟练工所占比例为111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求11n n x y ++⎛⎫ ⎪⎝⎭。

3.模型建立与求解 依据题意,有1521()656n n n n x x x y +=++,131()56n n n y x y +=+。

整理化简得119210513105n n n n n n x x y y x y ++⎧=+⎪⎪⎨⎪=+⎪⎩,即119210513105n n n n x x y y ++⎛⎫ ⎪⎛⎫⎛⎫=⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭,记9210513105A ⎛⎫⎪= ⎪ ⎪ ⎪⎝⎭,亦有11n n n n x x A y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭。

由问题1结果,有112111212n n n n n n n x x x A A A y y y +-+-⎛⎫ ⎪⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭。

问题归结为求nA ,可将A 对角化。

易于计算1、1/2是矩阵A 的两个特征值,且相应的特征向量为()()4,1,1,1TT-。

记4111P -⎛⎫= ⎪⎝⎭,则1921010511302105P P -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭11104()44()411111221111411550()1()14()222n n n n n n A ⎛⎫+-⎛⎫ ⎪-⎛⎫⎛⎫ ⎪==⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪-+ ⎪⎝⎭⎝⎭。

因此111183()122111023()22n n n n n x A y ++⎛⎫⎛⎫- ⎪ ⎪⎛⎫== ⎪⎪ ⎪ ⎪ ⎪⎝⎭+ ⎪ ⎪⎝⎭⎝⎭。

实验三 多金属分选流程计算1. 工程背景设,j γγ—原矿产率及第j 种产品产率,%,100%γ=;i α—原矿中第i 种金属品位,%;ij β—第j 种产品中第i 种金属品位,%;ijβε—第j 种产品中第i 种金属的理论回收率,%;按照金属平衡和产率平衡进行计算。

为了计算方便,尾矿视为产品。

金属平衡, 1,1,2,,ni jij j i m γαγβ===∑产品平衡,1100%njj γ==∑其中,尾矿产率及金属品位为,n i in θγγθβ== 解次多元线性方程组求出产品产率。

各产品任一金属回收率1100%ijj ijnjijj βγβγβε=⨯=∑。

2. 问题某铅锌矿选矿厂生产的产品为铅、锌、硫精矿和尾矿,已化验知各产品的金属品位(见下表),试计算各产品产率和回收率。

表6-5各产品的化验品位原矿 铅 锌 硫 尾矿3. 模型建立与求解设铅、锌、硫和尾矿的产率为123,,x x x 和4x ,按照金属平衡与产率平衡,可建立以下线性方程组:123412341234123471.04 1.200.380.34100 3.143.7151.500.350.10100 3.6315.7030.8042.38 1.4010015.41100x x x x x x x x x x x x x x x x +++=⨯⎧⎪+++=⨯⎪⎨+++=⨯⎪⎪+++=⎩ MATLAB 源代码:A=[ ; ; ;1 1 1 1] %创建系数矩阵 b=[314 363 1541 100]’; %常数列矩阵 x=A\b %利用x=inv(A)*b x =又 x0=repmat(x,[1,4]); %创建多维数组B0=repmat(b,[1 4])’;s=x0.*A ’./B0 %计算各产品的理论回收率,最后一列为产率 s=将计算结果填入下表表6-6各产品产率及回收率计算结果实验四交通流量模型1. 问题图6-8.图6-8假设:(1)全部流入网络的流量等于全部流出网络的流量.(2)全部流入一个节点的流量等于全部流出此节点的流量.2. 模型的建立与求解由假设可知,所给问题满足如下线性方程组:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==-==+=+=+=-=+=+-1006002004001008008002005003006381091098751216754432x x x x x x x x x x x x x x x x x x x x 3. Matlab 程序实现A=[0,1,-1,1,0,0,0,0,0,0;0,0,0,1,1,0,0,0,0,0;0,0,0,0,0,-1,1,0,0,0;1,1,0,0,0,0,0,0,0,0;1,0,0,0,1,0,0,0,0,0;0,0,0,0,0,0,1,1,0,0;0,0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,-1,1;0,0,0,0,0,0,0,0,0,1;0,0,1,0,0,1,0,1,0,0] % 矩阵Ab=[300;500,200;800;800;100;400;200;600,100] B=[A,b] % 增广矩阵B Rank(A) % 计算矩阵A 的秩Rank(B) % 计算增广矩阵B 的秩,若秩相等,则有解 rref(B) % 将增广矩阵B 化为最简型4.结果分析 增广矩阵系数矩阵的秩Rank(A)=8增广矩阵的秩Rank(B)=8<10,说明该非齐次线性方程组有无穷多个解. 增广矩阵的最简型为:其对应的齐次同解方程组为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+=+=+==-=+600400100800500200080010987865435251x x x x x x x x x x x x x 以85,x x 做为自由变量,将最简形方程转化为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==+-=+-=+-==+=+-=600400100800500200080010987865435251x x x x x x x x x x x x x 求得其通解为⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛6004000100080005002000800001110000000000110112110987654321C C x x x x x x x x x x。

相关文档
最新文档