积商的变化规律积大小比较

合集下载

四年级。积和商的变化规律

四年级。积和商的变化规律

四年级。

积和商的变化规律第1讲:计算与规律本讲的研究目标是掌握乘法和除法的变化规律,以及快速确定积和商的位数。

一、积的变化规律1.两个数相乘,如果一个因数扩大或缩小若干倍(除非为0),那么积也会扩大或缩小相同的倍数。

2.两个数相乘,如果一个因数乘(或除以)一个数(除非为0),而另一个因数同时乘(或除以)相同的数,它们的积不变。

判断题:1.两个非零因数相乘,一个因数乘2,另一个因数除以2,积不变。

(错误)2.如果让“480×52”的第一因数除以5,第二个因数不变,则积不变。

(正确)3.两个非零数相乘,把这两个数同时扩大到它们原来的10倍,积不变。

(正确)4.在一个乘法算式中,要使积不变,一个乘数扩大10倍,另一个乘数扩大到原来的100倍。

(正确)5.几个数相乘,改变它们原来的运算顺序,它们的积不变。

(正确)6.两个非零数相乘,一个乘数扩大10倍,另一个乘数缩小5倍,积扩大到原来的50倍。

7.两个非零数相乘,一个乘数扩大3倍,另一个乘数缩小12倍,积缩小到原来的1/4.二、商的变化规律1.如果没有余数,则在除法算式中,被除数不变,除数乘以(或除以)几(除非为0),商反而要除以(或乘以)相同的数。

除数不变,被除数乘以(或除以)几(除非为0),商也要乘以(或除以)相同的数。

2.如果有余数,则在有余数的除法中,被除数和除数都缩小(或都扩大)相同的倍数(除非为0),商不变,但余数也随着缩小(或扩大)相同的倍数。

举例:已知A÷B=30,如果A除以6,B不变,则商是5.判断题:1.320÷40的结果与算式(320×5)÷(40×2)的结果相等。

(正确)2.如果a÷b=8······5,如果a和b都乘100,那么商是800,余数是500.(错误)1.两个数相乘,一个因数扩大3倍,另一个因数扩大4倍,那么积会扩大12倍。

四年级 积和商的变化规律

四年级   积和商的变化规律

第1讲计算与规律1. 掌握乘法中积的位数快速确定方法和积的变化规律;2. 掌握除法中商的位数快速确定方法和商的变化规律。

一. 积的变化规律1. 积的变化规律:两个数相乘,一个因数不变,另一个因数扩大或缩小若干倍(0除外),积也扩大或缩小相同的倍数。

2. 积不变的规律:两个数相乘,一个因数乘(或除以)一个数(0除外),另一个因数同时乘(或除以)相同的数,它们的积不变。

判断对错两个因数(均不为0)相乘,一个因数乘2,另一个因数除以2,积不变。

()1.如果让“48052⨯”的第一因数除以5,第二个因数不变,则积()A.不变B.乘以5 C.除以52.两个数相乘(非零数),把这两个数同时扩大到它们原来的10倍,积()A.不变B.扩大到原来的100倍C.不确定D.扩大到原来的10倍3.在一个乘法算式中,要使积不变,一个乘数扩大10倍,另一个乘数()A.扩大10倍B.缩小10倍C.扩大100倍D.不变4.在1508012000⨯=中,其中一个因数扩大到原来的10倍,另一个因数缩小10倍,积不变。

(判断对错)5.几个数相乘,改变它们原来的运算顺序,它们的积不变。

(判断对错)6. 两个数相乘(非零数),一个乘数扩大10倍,另一个乘数缩小5倍,积()7. 两个数相乘(非零数),一个乘数扩大3倍,另一个乘数缩小12倍,积()二.商的变化规律1. 没有余数(1)在除法算式中,被除数不变,除数乘以(或除以)几(0除外),商反而要除以(或乘以)相同的数。

(2)在除法算式中,除数不变,被除数乘以(或除以)几(0除外),商也要乘以(或除以)相同的数。

简便记法:商与除数的变化方向相反,商与被除数的变化相同。

2. 有余数有余数的除法里,被除数和除数都缩小(或都扩大)相同的倍数(0除外),商不变,但余数也随着缩小(或扩大)相同的倍数。

已知30÷=,如果A除以6,B不变,则商是;如果A不变,B乘6,则A B商是。

1. 32040÷的结果与算式()的结果相等。

商不变和积不变的规律

商不变和积不变的规律

商不变和积不变的规律积的变化规律有三条:1.一个因数不变,另一个因数扩大(或缩小)多少倍,积也扩大(或缩小)相同的倍数。

2.一个因数扩大(或缩小)多少倍,而另一个因数缩小(或扩大)相同的倍数,它们的积不变。

3.一个因数乘以(或除以)a,另一个因数乘以(或除以)b,积就乘以(或除以)ab的积。

积不变的规律在乘法中:一个乘数扩大多少倍,另一个乘数缩小相同的倍数,积不变。

例如:2.3×5=23×0.5商的变化规律有三条:1.被除数和除数同时扩大(或缩小)相同的倍数(0除外),商不变。

2.被除数不变,除数扩大多少倍,商反而缩小相同的倍数。

除数缩小多少倍,商反而扩大相同的倍数。

3.除数不变,被除数扩大多少倍,商扩大相同的倍数。

被除数缩小多少倍,商缩小相同的倍数。

商不变的规律在除法中:被除数和除数同时扩大或者同时缩小相同的倍数(0除外),商不变。

例如:1.8÷0.3=18÷3例题1:根据32×16=512,直接写出下面各式的积。

320×160=()320×1600=()32×160=()1600×160=()16×8=()0.32×16=()答案:320×160=(51200 )解析:两个因数同时扩大10倍,积扩大10×10=100倍。

320×1600=(512000 )解析:积扩大10×100=1000倍。

32×160=( 5120 )解析:积扩大10倍。

1600×160=( 256000 )解析:32扩大50倍,16扩大10倍,积扩大50×10=500倍。

16×8=( 128)解析:32缩小2倍,16缩小2倍,积缩小2×2=4倍。

0.32×16=( 5.12 )解析:32缩小100倍,积缩小100倍。

四年级上册数学《积、商的变化规律+必考题》

四年级上册数学《积、商的变化规律+必考题》

积、商的变化规律+必考题积的变化规律有三条:1、一个因数不变,另一个因数扩大(或缩小)多少倍,积也扩大(或缩小)相同的倍数。

2、一个因数扩大(或缩小)多少倍,而另一个因数缩小(或扩大)相同的倍数,它们的积不变。

3、一个因数乘以(或除以)a,另一个因数乘以(或除以)b,积就乘以(或除以)ab的积。

商的变化规律有三条:1、被除数和除数同时扩大(或缩小)相同的倍数(0除外),商不变。

2、被除数不变,除数扩大多少倍,商反而缩小相同的倍数。

除数缩小多少倍,商反而扩大相同的倍数。

3、除数不变,被除数扩大多少倍,商扩大相同的倍数。

被除数缩小多少倍,商缩小相同的倍数。

必考题:1、三位数除以两位数的算式口73÷58,如果商是两位数,那么口里最小填(6),如果商是一位数,口里可以有(5)种不同的填法。

2、一辆汽车8小时行驶了500千米,照这样计算,这辆汽车40小时能行驶(2500)千米。

积、商的变化规律+必考题3、一个除法算式的被除数和除数都乘3后,商是36,那么原来的商是(36)4、两个数的商是6,如果被除数不变,除数除以6,那么商应是(36)。

5、两个数的积是40,如果一个因数扩大10倍,另一个因数扩大5倍,那么积应该是(2000)。

6、根据32×16=512,直接写出下面各式的积。

320×160=(51200 )320×1600=(512000)32×160=(5120)1600×160=(256000)16×8=(128)0.32×16=( 5.12)7、根据5376÷56=96,直接写出下面各式的商。

537600÷56=(9600)5376÷112=(48 )2688÷28=(96)268800÷56=(4800)5376÷14=(38)5376÷5600=(0.96 )积、商的变化规律+必考题8、判断对错。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

一、积的变化规律1、一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。

2、两个数相乘,一个因数乘或除以几(0除外),另一个因数除以或乘相同的数,则它们的乘积不变。

(1)42×5= (2)48×16=76842×15= (48×4)×(16÷4)=420×15= (48÷8)×(16×8)=840×15= (48×5)×(16○□)=768(3)7本作业本摞起来高25毫米,全班56本作业本摞起来有多高?(4)一个宽为9米的长方形菜地,面积是252平方米,如果把这块长方形菜地的宽增加到36米,长不变,扩建后的面积是多少?二、商的变化规律1、除数不变,被除数乘几或除以几(0除外),商也乘几或除以几。

2、被除数不变,除数乘几或除以几(0除外),商反而除以几或乘几。

3、被除数和除数都乘或除以一个相同的数(0除外),商不变。

(1)80÷16=(80○□)÷(16÷4)200÷40=(200÷20)÷(40○□)180÷15=(180×3)÷(15○□)(2)1400÷70,如果除数不变,被除数除以10,那么商应当()。

被除数不变,除数乘3,商应当()。

两个数的商是8,如果被除数不变,除数乘4,商就变成()。

一个除法算式,被除数乘15,要使商不变,除数也要()。

两个数相除的商是6,如果被除数和除数都除以12,商是()。

一个除法算式的被除数、除数都除以3后,商是20,那么原来的商是()。

.《除数是两位数的除法》1、商店里卖衣服,29元/件,49元/2件,王阿姨有185元,最多可以买多少件?还剩多少元?2、小李家距离学校520米,小李每分钟走65米,小红每分钟走60米,从家到学校小红比小李多走5分钟,小红家离学校多少米?3、每条裤子75元,商店推出优惠活动,买4条送一条,900元钱最多可以买几条这样的裤子?4、12箱蜜蜂一年可以酿900千克蜂蜜,林叔叔家养了8箱这样蜜蜂,一年可以酿多少千克蜂蜜?5、学校组织四年级的540名学生去植树,要分成9个植树点,每个植树点分成4个小组,平均每个小组有多少人?6、从山顶到山脚共998米,王林爬了14分钟,距山顶还有260米,他平均每分钟爬多少米?【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既. 往为您服务】。

积与商的变化规律

积与商的变化规律

命题人:葛金韬★观察下列三组算式,你发现了什么?从上面的算式中可以看出:(1)一个因数不变,另一个因数扩大到它的几倍,积也扩大相同的倍数;(2)如果两个因数都扩大,那么积就扩大两个因数扩大的倍数的乘积;(3)如果一个因数扩大,另一个因数缩小,那么积就扩大(或缩小)两个因数扩大或缩小倍数的商。

例题1在乘法算式25×8中,如果一个因数扩大到它的2倍,另一个因数不变,那么积有什么变化?例题2在乘法算式510×360中,如果一个因数扩大到它的2倍,另一个因数扩大到它的3倍,那么积有什么变化?例题3在乘法算式510×360中,如果一个因数扩大到它的6倍,另一个因数缩小到原来的三分之一,那么积有什么变化?例题4在乘法算式510×360中,如果一个因数扩大到它的2倍,另一个因数缩小到原来的六分之一,那么积有什么变化?练习1.填空在乘法算式中,一个因数不变,另一个因数扩大到它的2倍,积( );一个因数不变,另一个因数缩小到原来的三分之一,积( );一个因数扩大到它的4倍,另一个因数扩大到它的3倍,积( );一个因数缩小到原来的二分之一,另一个因数扩大到它的8倍,积( )。

2.先判断,再计算验证(1)在算式12×8中,如果一个因数不变,另一个因数扩大到它的3倍,积有什么变化?(2)在算式12×8中,如果一个因数不变,另一个因数缩小到原来的四分之一,积有什么变化?(3)在算式12×8中,如果一个因数不变,另一个因数缩小到原来的三分之一,积有什么变化?(4)在算式12×8中,如果一个因数缩小到它的三分之一,另一个因数缩小到它的四分之一,积有什么变化?(5)在算式12×8中,如果一个因数扩大到它的3倍,另一个因数扩大到它的4倍,积有什么变化?命题人:葛金韬★观察下列三组算式,你发现了什么?从上面的算式可以看出:(1)除数不变,被除数扩大到它的几倍,商也扩大相同的倍数;(2)被除数不变,除数扩大到它的几倍,商就缩小到原来的几分之一;(2)如果被除数、除数都扩大,那么商就扩大(或缩小)被除数与除数扩大(或缩小)倍数的商倍;(3)如果被除数扩大,除数缩小,那么商就扩大被除数扩大倍数与除数缩小倍数的乘积倍;(4)如果被除数缩小,除数扩大,那么商就缩小被除数缩小与除数扩大倍数的乘积分之一。

积和商的“变与不变”规律与练习

积和商的“变与不变”规律与练习

积和商的“变与不变”规律㈠、积的变化规律:⑴、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。

字母表示:如果a×b=c,则(a×3)×b=c×3举例:a×b=12 如果(a×3)则积就是12×3=36.⑵、一个数乘一个比1大的数,积比原数大;⑶、一个数乘一个比1小的数,积比原数小。

㈡、积不变规律:一个因数乘(或除以)几,另一个因数相应的除以(或乘)几,积不变。

字母表示:如果a×b=c 则(a×5)×(b÷5)=c㈢、商的变化规律:⑴被除数不变,除数乘或除以几,商就相应的除以或乘几。

字母表示:如果a÷b=c,则a÷(b×3)=c÷3举例:a÷b=12 如果(b×3)则商就是12÷3=4⑵除数不变,被除数乘或除以几,商就相应的乘或除以几。

字母表示:如果a÷b=c ,则(a×3)÷b=c×3举例:a÷b=12 如果(a×3)则商就是12×3=36.被除数大于除数,商就大于1;被除数小于除数,商就小于1.一个数除以一个比1大的数,商比被除数要小;一个数除以一个比1小的数,商比被除数要大。

㈣、商不变规律:被除数和除数同时乘或除以几,商不变。

[问题一]两数相乘,如果一个因数乘3,另一个因数除以12,积将有什么变化?想:如果一个因数扩大3倍,另一个因数不变,积将扩大3倍;如果一个因数不变,另一个因数缩小12倍,积将缩小12倍。

积扩大3倍又缩小12倍,因此,积缩小了12÷3=4倍。

解:12÷3=4答:积缩小了4倍。

[试一试]1、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积是否起变化?2、两数相乘,积是36,如果一个因数扩大2倍,另一个因数缩小3倍,那么积是多少?3、两数相乘,积是72如果一个因数扩大4倍,另一个因数缩小3倍,那么积是多少?[问题二]两个数相除,被除数扩大30倍,除数缩小6倍,商将怎样变化?想:如果被除数扩大30倍,除数不变,商将扩大30倍;如果被除数不变,除数缩小6倍,商将扩大6倍;商先扩大30倍,又扩大6倍,商将扩大30×6=180倍。

积商的变化规律图文稿

积商的变化规律图文稿

积商的变化规律集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)五年级上积商的变化规律一、积的变化规律1、两个因数,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)相同的倍数。

(0除外)。

2、两个因数同时扩大(或缩小)几倍(0除外)积就扩大(或缩小)它们的乘积倍。

3、两个因数,一个扩大几倍,另一个缩小相同的倍数,(0除外)积不变。

4、两个因数,一个扩大,另一个缩小,(倍数不相同,0除外),积扩大(或缩小它们的商倍)例1:给出乘法算式:1.3×4.8=6.24 根据算式写出得数方法:10.13 × 4.8 = 0.642缩小10倍不变缩小10倍方法:2根据预算定律1.3×4.8=6.24可知13×48=624;所以0.13×4.8的积里面应有3位小数,因此是0.624二、商的变化规律1、被除数不变,除数扩大(或缩小几倍),商就缩小(或扩大)几倍。

(注意商和除数的变化是相反的。

)(0除外)2、除数不变,被除数扩大(或缩小)几倍,商就扩大(或缩小)相同的倍数)(注意商和被除数的变化是相同的。

)(0除外)3、被除数和除数同时扩大扩缩小相同的倍数(0除外)商不变。

4、被除数扩大,除数缩小,商就扩大乘积倍。

5、被除数缩小,除数扩大,商就缩小乘积倍。

6、被除数、除数同时扩大或缩小不相同的倍数(0除外),商就变化它们的商倍注意:4---6的规律不用硬背,只是前两个规律的分步应用。

例2:给出除法算式:6.24÷4.8=1.3 根据算式写出得数方法:1624 ÷ 0.48 = 1300扩大100倍缩小10倍商扩大100倍商扩大10倍×10倍方法2:可利用除法算式,130048 )624 48)62400变成将商的最高位写上,其余数字同上面的商相同,数位不足的用0占位。

相应的练习1、根据35×49=1715,在下面的()填上合适的数。

四年级上册数学 《积和商的变化规律》必考考点

四年级上册数学 《积和商的变化规律》必考考点

《积和商的变化规律》必考考点积的变化规律有三条:1、一个因数不变,另一个因数扩大(或缩小)多少倍,积也扩大(或缩小)相同的倍数。

2、一个因数扩大(或缩小)多少倍,而另一个因数缩小(或扩大)相同的倍数,它们的积不变。

3、一个因数乘以(或除以)a,另一个因数乘以(或除以)b,积就乘以(或除以)ab的积。

商的变化规律有三条:1、被除数和除数同时扩大(或缩小)相同的倍数(0除外),商不变。

2、被除数不变,除数扩大多少倍,商反而缩小相同的倍数。

除数缩小多少倍,商反而扩大相同的倍数。

3、除数不变,被除数扩大多少倍,商扩大相同的倍数。

被除数缩小多少倍,商缩小相同的倍数。

必考题:1、三位数除以两位数的算式口73÷58,如果商是两位数,那么口里最小填(6),如果商是一位数,口里可以有(5)种不同的填法。

2、一辆汽车8小时行驶了500千米,照这样计算,这辆汽车40小时能行驶(2500)千米。

《积和商的变化规律》必考考点3、一个除法算式的被除数和除数都乘3后,商是36,那么原来的商是(36)4、两个数的商是6,如果被除数不变,除数除以6,那么商应是(36)。

5、两个数的积是40,如果一个因数扩大10倍,另一个因数扩大5倍,那么积应该是(2000)。

6、根据32×16=512,直接写出下面各式的积。

320×160=( 51200 )320×1600=( 512000 )32×160=(5120 )1600×160=(256000 )16×8=(128 )0.32×16=(5.12 )7、根据5376÷56=96,直接写出下面各式的商。

537600÷56=( 9600 )5376÷112=( 48 )2688÷28=( 96 )268800÷56=( 4800 )5376÷14=( 38 )5376÷5600=( 0.96 )。

专题:积和商的变化规律

专题:积和商的变化规律

专题:积和商的变化规律一、积的变化规律:因数×因数=积因数与积之间存在什么样的变化规律呢?请看下表:积的变化规律:一个因数不变,另一个因数乘或除以几(0除外)积也要乘或除以相同的数。

(一个因数不变,另一个因数扩大到原来的几倍或者缩小到原来的几分之一,积也要扩大到原来的几倍或者缩小到原来的几分之一。

)入门题:1、两个数相乘(积不为0),一个因数不变,另一个因数扩大到原来的3倍,积应该怎样变化?2、两个数相乘(积不为0),一个因数除以3,另一个因数不变,积应该怎样变化?3、两个数相乘(积不为0),一个因数扩大到原来的6倍,另一个因数扩大到原来的3倍,积应该怎样变化?4、两个数相乘(积不为0),一个因数乘6,另一个因数除以3,积应该怎样变化?二、商的变化规律:被除数÷除数=商被除数、除数与商之间又存在什么样的变化规律呢?请看下表:商的变化规律:除数不变,被除数乘或除以一个数(0除外),商也要乘或除以相同的数;被除数不变,除数乘或除以一个数(0除外),商反而要除以或乘相同的数。

注意:在有余数的除法里,如果被除数和除数同时扩大和缩小相同的倍数(0除外),商不变,余数也随着扩大和缩小相同的倍数。

入门题:1、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数不变,商应该怎样变化?2、两个数相除(商不为0),如果被除数不变,除数扩大到原来的2倍,商应该怎样变化?3、两个数相除(商不为0),如果被除数除以6,除数不变,商应该怎样变化?4、两个数相除(商不为0),如果被除数扩大到原来的6倍,除数扩大到原来的2倍,商应该怎样变化?5、两个数相除(商不为0),如果被除数扩大到原来的3倍,除数缩小到原来的十分之一,商应该怎样变化?6、两个数相除(商不为0),如果除数扩大到原来的9倍,要使商缩小到原来的三分之一,被除数应该怎样变化?随堂检测:1、发现规律直接写得数。

16×17=272 32×17= 32×34=16×34= 48×17= 8×34=16×51= 64×17= 4×68=2、发现规律直接写得数:2000÷25=80(2000×2)÷(25×2)= (2000×15)÷(25×15)=(2000÷5)÷(25÷5)= (2000÷18)÷(25÷18)=(2000÷5)÷25= (2000×20)÷25=2000÷(25÷5)= 2000÷(25×5)=(2000÷5)÷(25×2)= (2000×5)÷(25÷2)=(2000÷2)÷(25÷4)= (2000×2)÷(25×8)=3、两个因数的积是360,如果一个因数除以3,另一个因数不变,积变为()。

积商的变化规律

积商的变化规律

积商的变化规律 Prepared on 22 November 2020五年级上积商的变化规律一、积的变化规律1、两个因数,一个因数不变,另一个因数扩大(或缩小)几倍,积就扩大(或缩小)相同的倍数。

(0除外)。

2、两个因数同时扩大(或缩小)几倍(0除外)积就扩大(或缩小)它们的乘积倍。

3、两个因数,一个扩大几倍,另一个缩小相同的倍数,(0除外)积不变。

4、两个因数,一个扩大,另一个缩小,(倍数不相同,0除外),积扩大(或缩小它们的商倍)例1:给出乘法算式:×= 根据算式写出得数方法:1× =缩小10倍不变缩小10倍方法:2根据预算定律×=可知13×48=624;所以×的积里面应有3位小数,因此是二、商的变化规律1、被除数不变,除数扩大(或缩小几倍),商就缩小(或扩大)几倍。

(注意商和除数的变化是相反的。

)(0除外)2、除数不变,被除数扩大(或缩小)几倍,商就扩大(或缩小)相同的倍数)(注意商和被除数的变化是相同的。

)(0除外)3、被除数和除数同时扩大扩缩小相同的倍数(0除外)商不变。

4、被除数扩大,除数缩小,商就扩大乘积倍。

5、被除数缩小,除数扩大,商就缩小乘积倍。

6、被除数、除数同时扩大或缩小不相同的倍数(0除外),商就变化它们的商倍注意:4---6的规律不用硬背,只是前两个规律的分步应用。

例2:给出除法算式:÷= 根据算式写出得数方法:1624 ÷ = 1300扩大100倍缩小10倍商扩大100倍商扩大10倍扩大100×10倍方法2:可利用除法算式,13000 . 48 )624 48)62400移动小数点变成将商的最高位写上,其余数字同上面的商相同,数位不足的用0占位。

相应的练习1、根据35×49=1715,在下面的()填上合适的数。

=()×()=()×()=()×()=()×()2、两数相乘,如果一个因数缩小5倍,另一个因数扩大5倍,积是否起变化3、两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积会有什么变化4、两数相除,如果被除数扩大4倍,除数缩小2倍,商怎样变化5、两数相除,被除数缩小12倍,除数缩小2倍,商会怎样变化6、小科在计算除法时,把除数末尾的0漏写了,结果得到的商是70,正确的商应该是多少7、芳芳在计算乘法时,把一个因数末尾多写了1个0,结果得到800,正确的积是应该是多少8、两数相除,商是8,余数是10,如果被除数和除数同时扩大10倍,商是多少余数是多少9、两数相除,商是19,如果被除数扩大20倍,除数缩小4倍,那么商是多少一、 填表二、根据第一题的答案填空1、160×40=64002、 160÷32=53、如果A ÷B=500 ( )×40=640 ( )÷8=5 (A ×2)÷B=( ) 160×( )=64000 80÷( )=5 A ÷(B ×5)=( ) 80×( )=1600 ( )÷96=5 (A ÷10)÷B=( ) ( )×80=6400 320÷( )=5 A ÷(B ÷2)=( ) ( )×200=64000 ( )÷3200=53、如果甲数乘以乙数是240,4、如果A ×B=800,(1)甲数不变,乙数乘以4,积是 。

四年级寒假班教案第3次课------积、商的变化规律

四年级寒假班教案第3次课------积、商的变化规律

积、商的变化规律知识要点1、积的变化规律(1)一个因数不变,另一个因数扩大(缩小)到原数的a倍,积就扩大(缩小)到原数的a 倍。

(2)一个因数扩大(缩小)到原数的a倍,另一个因数缩小(扩大)到原数的a倍,积不变。

(3)一个因数扩大(缩小)到原数的a倍,另一个因数扩大(缩小)到原数的b倍,积就扩大到原数的a×b倍。

扩展:一个因数扩大到原数的a倍,另一个因数缩小到原数的b倍,当a>b时,积就扩大a ÷b倍;当a<b时,积就缩小到原数的b÷a倍。

2、商的变化规律:(1)被除数和除数同时扩大(缩小)到原数的a倍,商不变。

(2)被除数和商同时扩大(缩小)到原数的a倍,除数不变。

(3)除数扩大(缩小)到原数的a倍,商缩小(扩大)到原数的a倍,被除数不变。

扩展:被除数扩大到原数的a倍,除数缩小到原数的b倍,商就扩大到原数的a×b倍。

被除数缩小到原数的a倍,除数扩大到原数的b倍,商就缩小到原数的a×b倍。

3、周长与面积公式(1)长方形:周长=(长+宽)×2 面积=长×宽(2)正方形:周长=边长×4 面积=边长×边长经典例题【例1】根据已知算式,直接写出下面各题的得数。

105×45=4725 18×24=432(105÷5)×(45×5)= (18×3)×(24×2)=(105×2)×(45÷6)= (18×6)×(24÷2)=【练习1】24×75=1800 36×104=3744(24○6)×(75×6)=1800 (36×4)×(104○4)=3744 (24○3)×(75○□)=1800 (36○□)×(104○□)=374415×24=36015×72=()60×12=()5×72=()30×6=()15×(24×)=3600 15×(24÷10)=()【例2】(1)18 ÷6=3 (2)4800÷10=480 (18×2)÷(6×2)= (4800 ÷2)÷(10 ÷2)= (18×3)÷(6÷3)= (4800÷10)÷(10×2)=(1)24÷8=(24×2)÷(8×)(2)360÷60=(360÷10)÷(10)(3)96÷6=()÷()【例3】1、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数不变,积是()2、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是()3、两数相除,被除数扩大3倍,除数缩小6倍,商( )4、小明在计算除法时,把除数末尾的0漏写了,结果得到的商是500,正确的商是()5、两个因数的积是100,把其中一个因数扩大到原来的3倍,另一个因数也缩小到原来的3倍,积是()6、一个因数不变,把其中另一个因数扩大到原来的3倍,积是90,原来两个因数的积是()【练习3】1、一个因数扩大到原来的3倍,另一个因数也扩大到原来的3倍,积是90,原来两个因数的积是()2、610×5=3050,把610缩小3倍,把5扩大倍15倍,那么积是()。

积商的变化规律

积商的变化规律

积商的变化规律嘿,朋友们,今儿咱们来聊聊一个既好玩又实用的数学小秘密——积商的变化规律。

别一听数学就头疼,咱用大白话,轻松愉快地把它捋顺了。

首先,咱们得明白啥是积,啥是商。

积啊,就像是你把一堆苹果分给小伙伴,每个人拿走的数量一乘,得到的就是总共分出去的苹果数,那就是积。

而商呢,就像是你有一堆苹果,要均匀地分给每个人,看每个人能分到多少,这就是商。

一、积的变化,就像变魔术1.1 乘法小伙伴手拉手想象一下,你有两个小伙伴,小明和小华,他们各自有5块糖。

现在,如果小明又得到了5块,他的糖变成了10块,而小华没变。

那么,他们俩的糖加起来就是15块了,不再是原来的10块。

看,这就是积的变化——其中一个数变了,它们的乘积也就跟着变了。

1.2 翻倍的快乐再换个玩法,如果你俩小伙伴的糖都翻倍了,小明从5块变成10块,小华也从5块变成10块。

哇塞,现在你们俩的糖加起来就是20块了!这感觉就像是你突然得到了双倍的快乐,积的变化就是这么神奇。

二、商的变化,智慧的小游戏2.1 分蛋糕的艺术说到商,咱们来想象一下分蛋糕。

假设你有一个大蛋糕,要均匀地分给5个朋友。

每个人能分到1/5块蛋糕,对吧?这就是商。

但如果你突然多买了一个同样的蛋糕,还是分给这5个朋友,那他们现在每人能分到多少呢?对啦,是1/2块蛋糕!看,蛋糕多了,每个人分到的就多了,这就是商随着被除数(蛋糕总数)的增大而增大的规律。

2.2 减人不减蛋糕反过来,如果还是那个大蛋糕,但你的朋友走了一个,只剩下4个人分。

嘿,这下子每个人分到的可就不止1/5块了,而是1/4块!这就是除数(人数)变小,商变大的道理。

就像是你手上的资源没变,但分享的人少了,自然每个人得到的就多了。

2.3 精打细算的日子还有啊,如果你还是那个蛋糕,但这次你决定少切一点出来给大家尝鲜,比如说只切出原来的一半。

这时候,不管有多少人分,他们分到的都少了。

这就是被除数变小,商也跟着变小的道理。

就像是钱包瘪了,日子就得精打细算过。

积的变化规律和商的变化规律

积的变化规律和商的变化规律

积的变化规律和商的变化规律以积的变化规律和商的变化规律为标题,本文将从数学的角度讨论积和商的变化规律,并探讨其应用领域。

一、积的变化规律积是指两个或多个数相乘的结果。

在数学中,我们经常遇到各种形式的乘法运算,而积的变化规律是乘法运算的核心。

1.1 正数的乘积当两个正数相乘时,积的结果也是正数。

这是因为正数表示具有一定数量的物体或数值,相乘后得到的仍然是正数的数量。

1.2 负数的乘积当一个正数与一个负数相乘时,积的结果为负数。

这是因为正数表示具有一定数量的物体或数值,而负数表示缺少一定数量的物体或数值,相乘后得到的是缺少的数量,所以结果为负数。

1.3 零的乘积任何数与零相乘,积的结果都为零。

这是因为零表示没有物体或数值,与任何数相乘都得到没有的数量。

1.4 小数的乘积当两个小数相乘时,积的结果为更小的数。

这是因为小数表示比1小的数值,相乘后得到更小的数值。

1.5 科学计数法的乘积科学计数法是一种表示大数或小数的方法,它将一个数表示为一个数值与10的幂的乘积。

当两个科学计数法相乘时,可以将指数相加,乘积的结果也是科学计数法形式的数。

二、商的变化规律商是指一个数除以另一个数的结果。

在数学中,商的变化规律是除法运算的核心。

2.1 正数的商当一个正数被另一个正数除时,商的结果为正数。

这是因为正数表示具有一定数量的物体或数值,被除数表示要将这一定数量的物体或数值平均分给除数,所以商的结果仍然为正数。

2.2 负数的商当一个负数被一个正数除时,商的结果为负数。

这是因为负数表示缺少一定数量的物体或数值,被除数表示要将这缺少的数量的物体或数值平均分给除数,所以商的结果为缺少的数量,即负数。

2.3 零的商任何数除以零是没有意义的,因为零表示没有物体或数值,不能将某一数量平均分给零个单位。

2.4 小数的商当一个小数被一个大于1的数除时,商的结果为更小的数。

这是因为小数表示比1小的数值,被除数表示要将这一小部分的数量平均分给除数,所以商的结果更小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

积的变化规律
两个数相乘,一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

商变化的规律
商变化的规律:除数不变,被除数扩大(或缩小)几倍,商就扩大(或缩小)几倍;被除数不变,除数扩大(或缩小)几倍,商反而缩小(或扩大)几倍。

比较积与第一个因数的大小方法:
1、看第二个因数如果第二个因数大于1,积大于第一个因数;
2、看第二个因数如果第二个因数等于1,积等于第一个因数。

3、看第二个因数如果第二个因数小于1,积小于第一个因数;
商和被除数的大小关系
在小数除法中,(被除数不为0时)
当除数小于1时,被除数小于商
当除数等于1时,被除数=商
当除数大于1时,被除数大于商。

相关文档
最新文档