七年级数学三角形复习题

合集下载

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

(完整版)七年级数学三角形测试题(附答案)

(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。

(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( )A. ()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。

(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

初中数学三角形经典测试题及答案解析

初中数学三角形经典测试题及答案解析

一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数( )A .28°B .22°C .32°D .38°【答案】B【解析】【分析】 延长AB 交CF 于E ,求出∠ABC ,根据三角形外角性质求出∠AEC ,根据平行线性质得出∠2=∠AEC ,代入求出即可.【详解】解:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH ∥EF ,∴∠2=∠AEC=22°,故选B .【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6B .8C 5D .5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A =x ,则∠B =2x ,∠C =3x ,由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,解得x =30°,即∠A =30°,∠C =3×30°=90°,此三角形为直角三角形,故AB =2BC =2×4=8cm ,故选B .【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.4.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100ABC ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 根据题意,连接OA ,OB ,OC ,进而求得BOC MOC ∆≅∆,AOB AON ∆≅∆,即∠CBO =∠CMO ,∠OBA =∠ONA ,根据三角形内角和定理即可得到∠MON 的度数.【详解】如图,连接OA ,OB ,OC ,∵点O 是ABC ∆的内心,∴BCO MCO ∠=∠,∵CM =CB ,OC =OC ,∴()BOC MOC SAS ∆≅∆,∴CBO CMO ∠=∠,同理可得:AOB AON ∆≅∆,∴ABO ANO ∠=∠,∵100CBA CBO ABO ∠=∠+∠=︒,∴100CMO ANO ∠+∠=︒,∴180()80MON CMO ANO ∠=︒-∠+∠=︒,故选:C.【点睛】本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.5.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m ,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.6.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .33︒B .56︒C .65︒D .66︒【答案】D【解析】【分析】 由折叠的性质得到∠D=∠B ,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B ,∠3=∠2+∠D ,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D .【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.8.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y =,即∠ADE=13∠ADC . 故答案选D .考点:三角形的内角和定理;四边形内角和定理.9.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.10.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFEAB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.13.如图,90ACB∠=︒,ACCD=,过D作AB的垂线,交AB的延长线于E,若2AB DE=,则BAC∠的度数为()A.45°B.30°C.°D.15°【答案】C【解析】【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,∵∠ACB=90°,AC=CD,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE⊥AB,∴∠DEB=90°=∠ACB=∠DCM,∵∠ABC=∠DBE,∴∠CAB=∠CDM,在△ACB和△DCM中CABCDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.14.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A .BC = EFB .AC 【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】利用垂直的定义得到90DAB EAC∠=∠=︒,则ADC BAE∠=∠,于是可对①进行判断;利用“SAS”可证明DAC BAE∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB∠=∠=︒,于是可对③进行判断.【详解】解:AD AB⊥,AE AC⊥,90DAB∴∠=︒,90EAC∠=︒,DAB BAC EAC BAC∴∠+=∠+∠,即ADC BAE∠=∠,所以①正确;在DAC∆和BAE∆中,DA ABDAC BAEAC AE=⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS∴∆≅∆,所以②正确;ADC ABE∴∠=∠,∵∠AFD=∠MFB,90DMB DAB∴∠=∠=︒,DC BE∴⊥,所以③正确.故选:D.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.17.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B18.一个等腰三角形的顶角为钝角,则底角a的范围是()A.0°<a<9 B.30°<a<90° C.0°<a<45° D.45°<a<90°【答案】C【解析】:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选:C19.如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知CDE△的面积比CDB△的面积小4,则ADE的面积为()A.4B.3C.2D.1【答案】A【解析】【分析】由作图步骤可知直线MN为线段AB的垂直平分线,根据三角形中线的性质可得S △CDA =S △CDB ,根据△CDE 的面积比△CDB 的面积小4即可得答案.【详解】由作图步骤可知直线MN 为线段AB 的垂直平分线,∴CD 为AB 边中线,∴S △CDA =S △CDB ,∵△CDE 的面积比△CDB 的面积小4,∴S △ADE =S △CDA -S △CDE =S △CDB -S △CDE =4.故选:A .【点睛】本题考查尺规作图——垂直平分线的画法及三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;熟练掌握三角形中线的性质是解题关键.20.如图,在ABC 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC 中,∠C =90°,∠CAB =60°,∴∠CBA =30°,∴∠EAB =∠CAE =30°, ∴CE =12AE =4, ∴AE =8.故选D .【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.·。

第1章三角形期末复习训练2022-2023七年级上学期鲁教版数学

第1章三角形期末复习训练2022-2023七年级上学期鲁教版数学

2022-2023七年级上学期鲁教版数学(第1章三角形)期末复习训练一、选择题1.如图,在△ABC中,画出AC边上的高,正确的图形是( )A. B.C. D.2.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A. AB=DEB. ∠A=∠DC. AC=DFD. AC//FD3.现有以下说法:①等边三角形是等腰三角形;②三角形的两边之差大于第三边;③三角形按边分类可分为不等边三角形、等腰三角形、等边三角形;④三角形按角分类可分为锐角三角形、直角三角形和钝角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个4.下列说法:(1)周长相等的两个三角形是全等三角形;(2)周长相等的两个圆是全等图形;(3)如果两个三角形是全等三角形,那么这两个三角形的面积相等;(4)所有的正方形是全等图形;(5)在△ABC中,当∠A=12∠C,∠B=13∠C时,这个三角形是直角三角形.正确的有( )A. 1个B. 2个C. 3个D. 4个5.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A. ∠ABC=∠DCBB. AB=DCC. AC=DBD. ∠A=∠D6.如图,AD是△ABC的中线,点E是AD的中点,若△ABC的面积为24cm2,则△CDE的面积为( )A. 8cm2B. 6cm2C. 4cm2D. 3cm27.下列叙述中,正确的是.( )A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连接三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线,这条垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部8.根据下列条件,不能画出唯一△ABC的是( )A. AB=5,BC=3,AC=6B. AB=4,BC=3,∠A=50°C. ∠A=50°,∠B=60°,AB=4D. AB=10,BC=20,∠B=80°9.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是( )①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A. ①②③④B. ①②③C. ②④D. ①③10.为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB 的长.那么△ABC≌△ADC的理由是( )A. SASB. AASC. ASAD. SSS二、填空题11.如图,Rt△ABC和Rt△EDF中,BC//DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于3平方厘米,则△ABC的面积为_________平方厘米13.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.14.如图,在锐角三角形ABC中,AB=4,△ABC的面积为10,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为______.15.如图,已知线段a,b,c,求作△ABC,使BC=a,AC=b,AB=c,下面作法中: ①分别以B,C为圆心,c,b为半径作弧,两弧交于点A; ②作线段BC=a; ③连接AB,AC,△ABC 为所求作的三角形.正确顺序应为(填序号).16.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是.三、解答题17.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,∠α,直线l及l上两点A,B.求作:△ABC,使点C在直线l的上方,且∠ABC=90∘,∠BAC=∠α.18.如图,在△ABC中,D是边BC上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:∠AEB=∠DEB;(2)若∠A=100∘,∠C=50∘,求∠AEB的度数.19.如图,在△ABC中,∠A=60°,角平分线BD,CE交于点O.(1)求∠BOC的度数;(2)点F在BC上,BF=BE,试说明:△COD≌△COF;(3)BE,CD,BC三条线段之间有怎样的数量关系?请直接写出结果.20.如图,在△ABC中,∠BAD=∠CAD.(1)如图,若DE⊥AB,DF⊥AC,垂足分别为E,F,请你说明DE=DF;(2)如图 ②,若G是AD上一点(A、D除外),GE⊥AB,GF⊥AC,垂足分别为E,F,请问:GE=GF成立吗?并说明理由;(3)如图 ③,若(2)中GE,GF不垂直于AB,AC,要使GE=GF,需添加什么条件?并在你添加的条件下说明GE=GF.21.如图,BD、CE分别是△ABC的边AC、AB上的高,P在BD的延长线上,且BP=AC,点Q 在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.22.在△ABC中,AB=AC,点D是BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,若∠BAC=90°,①试说明:△ABD≌△ACE;②求∠BCE的度数;(2)设∠BAC=α,∠BCE=β.如图2,则α,β之间有怎样的数量关系?请直接写出你的结论.答案D C B B B B D B B A11. AB=ED(答案不唯一)12. 1213. 414. 515. ② ① ③16. 5017.略18.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE.在△ABE和△DBE中,{AB=DB,∠ABE=∠DBE, BE=BE,∴△ABE≌△DBE(SAS),∴∠AEB=∠DEB.(2)∵BE平分∠ABC,∴∠ABE=∠DBE,∵∠A=100∘,∠C=50∘,∴∠ABC=30∘,∴∠ABE=15∘,∴∠AEB=180∘−∠A−∠ABE=180∘−100∘−15∘=65∘.19.解:(1)在△ABC中,∠A=60°,BD和CE分别平分∠ABC和∠ACB,所以∠OBC+∠OCB=12(∠ABC+∠ACB)=12×(180∘−60∘)=60∘.所以∠BOC=180°−60°=120°.(2)因为BD平分∠ABC,所以∠EBO=∠FBO.在△OBE和△OBF中,{OB=OB,∠OBE=∠OBF, BE=BF,所以△OBE≌△OBF(SAS).所以∠BOE=∠BOF.因为∠BOC=120°,所以∠BOE=60°.所以∠BOF=∠COF=∠COD=60°.在△COD和△COF中,{∠COD=∠COF, OC=OC,∠OCD=∠OCF,所以△COD≌△COF(ASA).(3)BC=BE+CD.20.(1)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD,在△AED和△AFD中,{∠DAE=∠DAF,∠AED=∠AFD, AD=AD,∴△AED≌△AFD,∴DE=DF.(2)GE=GF成立.理由如下:∵GE⊥AB,GF⊥AC,∴∠AEG=∠AFG,在△AEG和△AFG中,{∠EAG=∠FAG,∠AEG=∠AFG, AG=AG,∴△AEG≌△AFG,∴GE=GF.(3)(答案不唯一)添加AE=AF,理由如下:在△AEG和△AFG中,{AE=AF,∠EAG=∠FAG, AG=AG,∴△AEG≌△AFG,∴GE=GF.21.证明:(1)∵BD、CE分别是△ABC的边AC、AB上的高,∴BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∴∠ABD+∠BAC=90°,∠ACE+∠BAC=90°,∴∠ABD=∠ACE,在△ABP和△QCA中,{BP=AC,∠ABP=∠ACQ, AB=CQ,∴△ABP≌△QCA(SAS),∴AP=AQ.(2)由(1)知△ABP≌△QCA,∴∠P=∠CAQ,∵BD⊥AC,∴∠P+∠CAP=90°,∴∠CAQ+∠CAP=90°,即∠QAP=90°,∴AP⊥AQ.22.解:(1)①因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).②由①可得△ABD≌△ACE,所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠BCE=∠B+∠ACB.因为∠B+∠ACB=180°−∠BAC=90°,所以∠BCE=90°.(2)α+β=180°,理由:因为∠BAC=∠DAE,所以∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC,∠BAD=∠CAE, AD=AE,所以△ABD≌△ACE(SAS).所以∠B=∠ACE.所以∠B+∠ACB=∠ACE+∠ACB.所以∠B+∠ACB=β.因为α+∠B+∠ACB=180°,所以α+β=180°.。

2022-2023学年北师大版数学七年级下册+第四章+三角形++期末复习题(2)

2022-2023学年北师大版数学七年级下册+第四章+三角形++期末复习题(2)

第四章三角形期末复习(二)一.选择题1.现有两根长度分别3cm和7cm的木棒,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.4cm B.7cm C.10cm D.13cm2.如图,沿笔直小路DE的一侧栽植两棵小树B,C,小明在A处测得AB=5米,AC=7米,则点A到DE的距离可能为()A.4米B.5米C.6米D.7米3.如图,在△ABC中,AC=BC,∠ACB=90°,点D为AC边上一点,过点A作AH⊥BD交BD延长线于点H,交BC延长线于点M,若满足BD=2AH,那么∠CBD的度数为()A.30°B.25°C.22.5°D.20°4.如图,D、E分别是AC、BD的中点,△ABC的面积为12cm2,则△BCE的面积是()A.6cm2B.3cm2C.4cm2D.5cm25.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④6.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,S△DEF=2,则S△ABC=()A.16B.14C.12D.107.如图,在△ABC和△DEF中,∠A=∠D,AC=DF,要使得△ABC≌△DEF,还需要补充一个条件,则下列错误的条件是()A.BF=CE B.AC∥DF C.∠B=∠E D.AB=DE8.下列长度的三条线段,能组成三角形的是()A.2,3,4B.2,3,5C.2,2,4D.2,2,59.如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为()A.12B.14C.16D.1810.若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm二、填空题36.如图,在△ABC中,AD平分∠BAC,∠BAC=80°,∠B=35°,则∠ADC的度数为°.13.如图,在△ABC中,AB=AC,BF=CD,BD=CE.若∠A=40°,则∠FDE=°.14.如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B =40°,DE交线段AC于点E.下列结论:①∠CDE=∠BAD;②BD=CE;③当D为BC中点时,DE⊥AC;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的是(填序号).三、解答题15.已知:如图,AB∥CD,AB=CD,BF=CE.(1)求证:△ABF≌△DCE.(2)已知∠AFC=80°,求∠DEC的度数.16.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.17.如图,已知∠A=∠EDF,AD=BE,AC=DF.求证:BC∥EF.18.如图,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB.求证:AC=AE.19.如图,在△ABC中,AB=AC,点D,E在BC上(BD<BE),BD=CE.(1)求证:△ABD≌△ACE.(2)若∠ADE=2∠B,BD=2,求AE的长.20.本学期,我们学习了三角形相关知识,而四边形的学习,我们一般通过辅助线把四边形转化为三角形,通过三角形的基本性质和全等来解决一些问题.(1)如图1,在四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①小明发现,此时AC平分∠BCD.他通过观察、实验,提出以下想法:延长CB到点E,使得BE=CD,连接AE,证明△ABE≌△ADC,从而利用全等和等腰三角形的性质可以证明AC平分∠BCD.请你参考小明的想法,写出完整的证明过程.②如图2,当∠BAD=90°时,请你判断线段AC,BC,CD之间的数量关系,并证明.(2)如图3,等腰△CDE、等腰△ABD的顶点分别为A、C,点B在线段CE上,且∠ABC+∠ADC=180°.请你判断∠DAE与∠DBE的数量关系,并证明.21.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.22.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD.以AD为一边且在AD的右侧作等腰直角三角形ADE,AD=AE,∠DAE=90°.解答下列问题.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,求证:BD=CE,BD⊥CE.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,请说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外).先画出相应图形,再说明理由.4 5 5。

(必考题)初中数学七年级数学下册第四单元《三角形》测试题(答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试题(答案解析)

一、选择题1.下列长度的三条线段,能组成三角形的是( )A .5,6,11B .3,4,8C .5,6,10D .6,6,13 2.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 3.下面四个图形中,线段AD 是ABC ∆的高的是( )A .B .C .D .4.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,9 5.如图△ABC ≌△ADE ,若∠B=80°,∠C=30°,∠DAC=25°,则∠EAC 的度数为( )A .45°B .40°C .35°D .25° 6.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF = 7.根据下列条件能唯一画出ABC 的是( )A .AB =5,BC =6,AC =11B .AB =5,BC =6,∠C =45° C .AB =5,AC =4,∠C =90°D .AB =5,AC =4,∠C =45°8.下列四个图形中,线段BE 表示△ABC 的高的是( )A .B .C .D .9.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°10.如图,给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ;②AB=DE ,∠B=∠E ,BC=EF ;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.下列条件不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一锐角对应相等C .斜边和一直角边对应相等D .两个锐角对应相等二、填空题13.如图,ACE DBF ≌,//AE DF ,8AD =,2BC =,则AB =______.14.如图,已知AD 、AE 分别为ABC 的角平分线、高线,若40B ∠=︒,60C ∠=°,则DAE ∠的度数为__________.15.2016年2月6日凌晨,宝岛高雄发生6.7级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的,A B 两处,用仪器探测生命迹象C ,已知探测线与地面的夹角分别是30︒和60︒(如图),则C ∠的度数是_________.16.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.17.如图,点B 、F 、C 、E 在一条直线上(点F ,C 之间不能直接测量),点A ,D 在BE 的异侧,如果测得AB =DE ,AB ∥DE ,AC ∥DF .若BE =14m ,BF =5m ,则FC 的长度为_____m .18.如图,OA ⊥OB ,∠BOC =30°,OD 平分∠AOC ,则∠BOD =_____度.19.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.20.如图,在长方形网格中,每个小长方形的长为2,宽为1,A ,B 两点在网格格点上,若点C 也在网格格点上,以A ,B ,C 为顶点的三角形的面积为2,则满足条件的点C 有______个.三、解答题21.如图,已知:AD =AB ,AE =AC ,AD ⊥AB ,AE ⊥AC .猜想线段CD 与BE 之间的数量关系与位置关系,并证明你的猜想.22.在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,AD 是ABC ∆的中线,7,5,AB AC ==求AD 的取值范围.我们可以延长AD 到点M ,使DM AD =,连接BM ,易证ADC MDB ∆≅∆,所以BM AC =.接下来,在ABM ∆中利用三角形的三边关系可求得AM 的取值范围,从而得到中线AD 的取值范围是 ;(2)如图2,AD 是ABC 的中线,点E 在边AC 上,BE 交AD 于点,F 且AE EF =,求证:AC BF =;(3)如图3,在四边形ABCD 中,//AD BC ,点E 是AB 的中点,连接CE ,ED 且CE DE ⊥,试猜想线段,,BC CD AD 之间满足的数量关系,并予以证明.23.已知,ABC 的三边长为4,9,x .(1)求ABC 的周长的取值范围;(2)当ABC 的周长为偶数时,求x .24.如图1,ABC 是等边三角形,,D E 为AC 上两点,且AD CE =,延长BC 至点F ,使CF CD =,连结BD EF ,.(1)如图2,当,D E 两点重合时,求证:BD DF =.(2)如图3,延长FE 交线段BD 于点G .①求证:BD EF =.②求DGE ∠的度数.25.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A画线段BC的垂线,垂足为E;(2)过点A画线段AB的垂线,交线段CB的延长线于点F;(3)线段BE的长度是点到直线的距离;(4)线段AE、BF、AF的大小关系是.(用“<”连接)26.如图,BC⊥AD于C,EF⊥AD于F,AB∥DE,分别交BC于B,交EF于E,且BC=EF.求证:AF=CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的两边和大于第三边解答.【详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【点睛】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.2.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.3.D解析:D【分析】根据三角形高的定义进行判断.【详解】解:线段AD是△ABC的高,则过点A作对边BC的垂线,则垂线段AD为△ABC的高.选项A、B、C错误,故选:D.【点睛】本题考查了三角形的高:三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.D解析:D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可.【详解】A、∵4+4=8,∴构不成三角形;B、29−17=12>8,∴构不成三角形;C、∵12−3=9>8,∴构不成三角形;D、9−2=7<8,9+2=11>8,∴能够构成三角形,故选:D.【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.5.A解析:A【解析】∵△ABC≌△ADE,∴∠D=∠B=80°,∠E=∠C=30°,∴∠DAE=180°−∠D−∠E=70°,∴∠EAC=∠EAD−∠DAC=45°,故选A.点睛:本题主要考查全等三角形的性质,掌握全等三角形的对应角相等、对应边相等是解题的关键.6.C解析:C【分析】直接根据三角形证明全等的条件进行判断即可;【详解】A、∵AB∥DE,∴∠ABC=∠DEC,∴根据ASA即可判定三角形全等,故此选项不符合题意;B、∵AC∥DF,∴∠DFE=∠ACB,∴根据AAS即可判定三角形全等,故此选项不符合题意;C、AC⊥DE,不符合三角形全等的证明条件,故此选项符合题意;D、∵AC=DF,∴根据SAS即可判定三角形全等,故此选项不符合题意;故选:C.【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;7.C解析:C【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【详解】解:A:AC 与 BC两边之和不大于第三边,所以不能作出三角形;B:∠C 不是 AB,BC 的夹角,故不能唯一画出△ABC ;C:AB=5,AC=4,∠C=90°,所以BC=3,故能唯一画出△ABC ;D:∠C 并不是 AB,AC 的夹角,故可画出多个三角形;故选: C .【点睛】本题考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.8.C解析:C【分析】根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.【详解】解:线段BE是△ABC的高的图是选项C.故选:C.【点睛】本题考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.9.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.10.C解析:C【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【详解】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A、可以利用边角边判定两三角形全等,故本选项不合题意;B、可以利用角角边判定两三角形全等,故本选项不合题意;C、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D.【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.二、填空题13.3【分析】根据全等三角形对应边相等可得AC=BD再求出AB=CD然后代入数据进行计算即可得解【详解】解:∵△ACE≌△DBF∴AC=DB∴AC-BC=BD-BC 即AB=CD∵AD=8BC=2∴AB=解析:3【分析】根据全等三角形对应边相等可得AC=BD,再求出AB=CD,然后代入数据进行计算即可得解.【详解】解:∵△ACE≌△DBF,∴AC=DB,∴AC-BC=BD-BC,即AB=CD,∵AD=8,BC=2,∴AB=12(AD-BC)=12×(8-2)=3.故答案为:3.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB=CD是解题的关键.14.【分析】先求出∠BAC的度数再根据角平分线和高求出∠BAE和∠BAD即可【详解】解:∵∴∠BAC=180°-40°-60°=80°∵AD 平分∠BAC ∴∠BAD=∠BAC=40°∵AE ⊥BC ∴∠AEB解析:10︒【分析】先求出∠BAC 的度数,再根据角平分线和高求出∠BAE 和∠BAD 即可.【详解】解:∵40B ∠=︒,60C ∠=°,∴∠BAC=180°-40°-60°=80°,∵AD 平分∠BAC ,∴∠BAD=12∠BAC=40°, ∵AE ⊥BC ,∴∠AEB=90°,∴∠BAE=90°-∠B=50°,∠DAE=∠BAE-∠BAD=10°,故答案为:10°.【点睛】本题考查了三角形内角和,三角形的高和角平分线,解题关键是熟练运用角平分线和高的意义求出角的度数.15.【分析】先由题意得CAB=30°∠ABD=60°再由三角形的外角性质即可得出答案【详解】解:∵探测线与地面的夹角为30°和60°∴∠CAB=30°∠ABD=60°∵∠ABD=∠CAB+∠C ∴∠C=6解析:30︒【分析】先由题意得CAB=30°,∠ABD=60°,再由三角形的外角性质即可得出答案.【详解】解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C ,∴∠C=60°-30°=30°,故答案为:30°.【点睛】本题考查了三角形的外角的性质,对顶角,解题的关键是熟练掌握三角形的外角性质,比较简单.16.2<a<12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(解析:2<a<12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a的取值范围是:(7-5)<a<(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.17.4【分析】证明△ABC≌△DEF(AAS)得到BC=EF即可得到答案【详解】解:∵AB∥DEAC∥DF∴∠B=∠E∠ACB=∠DFE在△ABC和△DEF中∴△ABC≌△DEF(AAS)∴BC=EF∴解析:4【分析】证明△ABC≌△DEF(AAS),得到BC=EF,即可得到答案.【详解】解:∵AB∥DE,AC∥DF,∴∠B=∠E,∠ACB=∠DFE,在△ABC和△DEF中,B EACB DFE AB DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=CE=5m,∴FC=BE﹣BF﹣CE=14m﹣5m﹣5m=4m;故答案为:4.【点睛】此题考查全等三角形的判定及性质;平行线的性质:两直线平行,内错角相等;正确掌握三角形全等的判定定理是解题的关键.18.30【分析】本题首先利用垂直性质以及角分线性质求证2∠BOD与∠BOC 的关系继而将已知代入求解∠BOD【详解】∵OA⊥OB∴∠AOB=90°即∠AOD+BOD=90°;∵OD平分∠AOC∴∠AOD=解析:30本题首先利用垂直性质以及角分线性质求证2∠BOD 与∠BOC 的关系,继而将已知代入求解∠BOD .【详解】∵OA ⊥OB ,∴∠AOB =90°,即∠AOD+BOD =90°;∵OD 平分∠AOC ,∴∠AOD =∠DOC ,即∠BOD+∠BOC+BOD =90°,即2∠BOD+∠BOC =90°∵∠BOC =30°,∴∠BOD =30°.故答案为:30.【点睛】本题考查垂直以及角分线的性质,解题关键在于角的互换,其次注意计算仔细即可. 19.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x 根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数 解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12. 20.4【分析】尝试在网格中寻找符合条件的点总共有16个点可以依次尝试一遍【详解】根据题意遍历网络中的所有点发现符合条件的点C 点如下图:故答案为:4【点睛】本题考查在格点中找寻符合要求的点此类题型我们需要【分析】尝试在网格中寻找符合条件的点,总共有16个点,可以依次尝试一遍.【详解】根据题意,遍历网络中的所有点,发现符合条件的点C 点如下图:故答案为:4.【点睛】本题考查在格点中找寻符合要求的点,此类题型,我们需要大胆尝试.三、解答题21.CD =BE ,CD ⊥BE ,证明见解析【分析】证明△ACD ≌△AEB ,根据全等三角形的性质得到CD =BE ,∠ADC =∠ABE ,根据三角形内角和定理得出∠BFD =∠BAD =90°,证明结论.【详解】解:猜想:CD =BE ,CD ⊥BE ,理由如下:∵AD ⊥AB ,AE ⊥AC ,∴∠DAB =∠EAC =90°.∴∠DAB +∠BAC =∠EAC +∠BAC ,即∠CAD =∠EAB ,在△ACD 和△AEB 中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△AEB (SAS ),∴CD =BE ,∠ADC =∠ABE ,∵∠AGD =∠FGB ,∴∠BFD =∠BAD =90°,即CD ⊥BE .【点睛】本题考查的是三角形全等的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.22.(1)16AD <<;(2)见解析;(3)CD BC AD =+,证明见解析【分析】(1)延长AD 到点M ,使DM AD =,连接BM ,即可证明ADC MDB ∆≅∆,则可得BM AC =,在ABM ∆中,根据三角形三边关系即可得到AM 的取值范围,进而得到中线AD 的取值范围;(2)延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,则可得M CAD BM AC ∠=∠=,,由AE EF =可知,CAD AFE ∠=∠,由角度关系即可推出BMF BFM ∠=∠,故BM BF =,即可得到AC BF =;(3)延长CE 到F ,使EF EC =,连接AF ,即可证明AEF BEC ∆≅∆,则可得EAF B AF BC ∠=∠=,,由//AD BC ,以及角度关系即可证明点,,F A D 在一条直线上,通过证明Rt DEF △≌DEC Rt △,即可得到FD CD =,进而通过线段的和差关系得到CD BC AD =+.【详解】(1)延长AD 到点M ,使DM AD =,连接BM ,∵AD 是ABC ∆的中线,∴DC DB =,在ADC ∆和MDB ∆中,AD MD =,ADC MDB =∠∠,DC DB =,∴ADC MDB ∆≅∆,∴BM AC =,在ABM ∆中,AB BM AM AB BM -+<<,∴7575AM -+<<,即212AM <<,∴16AD <<;(2)证明:延长AD 到点,M 使DM AD =,连接BM ,由(1)知ADC MDB ≅,∴M CAD BM AC ∠=∠=,,AE EF =,CAD AFE ∴∠=∠,MFB AFE ∠=∠,MFB CAD ∴∠=∠,BMF BFM ∴∠=∠,BM BF ∴=,AC BF ∴=,(3)CD BC AD =+,延长CE 到F ,使EF EC =,连接AF ,AE BE AEF BEC =∠=∠,,AEF BEC ∴∆≅∆,EAF B AF BC ∴∠=∠=,,//AD BC ,180BAD B ∴∠+∠=︒,180EAF BAD ∴∠+∠=︒,∴点,,F A D 在一条直线上,CE ED ⊥,∴90DEF DEC ==︒∠∠,∴在Rt DEF △和DEC Rt △中,EF EC =,DEF DEC ∠=∠,DE DE =,∴Rt DEF △≌DEC Rt △,FD CD ∴=,∵FD AD AF AD BC =+=+,CD BC AD ∴=+.【点睛】本题考查了三角形中线、全等三角形的证明和性质、三角形的三边关系、等腰三角形的性质、平行线的性质、平角的概念、线段的和差关系等,正确的作出辅助线以及综合运用以上知识是解答本题的关键.23.(1)18△<ABC 的周长26<;(2)7,9或11.【分析】(1)直接根据三角形的三边关系即可得出结论;(2)根据轴线为偶数,结合(1)确定周长的值,从而确定x 的值.【详解】解:(1)ABC 的三边长分别为4,9,x ,9494∴-<<+x ,即513x <<,945△∴++<ABC 的周长9413<++,即:18△<ABC 的周长26<;(2)ABC 的周长是偶数,由(1)结果得ABC 的周长可以是20,22或24, x 的值为7,9或11.【点睛】本题考查了三角形的三边关系,掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.24.(1)见解析;(2)①见解析;②60︒.【分析】(1)由等边三角形的性质可得60ABC ACB BA BC ∠=∠=︒=,,再由AD CE =,CF CD =,当,D E 两点重合时,可知点D 为等边三角形ABC 边AC 的中点,由三线合一性质,得1302DBC ABC F CDF ∠=∠=︒∠=∠,,由此解得30F ∠=︒,最后根据等角对等边解题即可;(2)①作//DH BC 交AB 于H ,连接BE ,由平行线性质解得6060AHD ABC ADH ACB ∠=∠=︒∠=∠=︒,,继而证明AHD 是等边三角形,从而得到AD DH AH CE ===,接着证明(SAS)BDH FEC ≌,最后由全等三角形对应边相等的性质解题即可;②由①中全等三角形对应角相等可得HBD F ∠=∠,结合角的和差解题即可.【详解】证明:(1)ABC 是等边三角形,60ABC ACB BA BC ∴∠=∠=︒=,,AD DC CF ==,1302DBC ABC F CDF ∴∠=∠=︒∠=∠,, 60ACB F CDF ∠=∠+∠=︒,30F ∴∠=︒,DBC F ∴∠=∠,BD DF ∴=;(2)①如图,作//DH BC 交AB 于H ,连接BE ,//DH BC , 6060AHD ABC ADH ACB ∴∠=∠=︒∠=∠=︒,,60A ∠=︒,AHD ∴是等边三角形,AD DH AH CE ∴===,AB AC =,BH CD ∴=,CD CF =,BH CF ∴=,120BHD ECF ∠=∠=︒,(SAS)BDH FEC ∴≌,BD EF ∴= ;②BDH FEC ≌HBD F∴∠=∠∴∠=∠+∠=∠+∠=∠=︒DGE GBF F GBF HBD ABC60【点睛】本题考查等边三角形的判定与性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)见解析;(2)见解析;(3)B,AE;(4)AE<AF<BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE⊥,∴线段BE的长度是点B到直线AE的距离,故答案是:B,AE;(4)∵AE是直角三角形AEF的直角边,AF是直角三角形AEF的斜边,<,∴AE AF∵BF是直角三角形ABF的斜边,AF是直角三角形ABF的直角边,∴AF BF<,∴AE AF BF<<,<<.故答案是:AE AF BF【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.26.证明见解析.【分析】由BC⊥AD,EF⊥AD得∠EFD=∠BCA=90°,由AB∥DE,得∠D=∠A,又BC=EF,从而△ABC≌△DEF,则AC=FD, AF=CD.【详解】证明:∵BC⊥AD,EF⊥AD,∴∠EFD=∠BCA=90°∵AB∥DE,∴∠D=∠A∵BC=EF,∴△ABC≌△DEF,∴AC=FD,∴AF=CD.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.。

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(有答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(有答案解析)

一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1 2.已知三角形的两边长分别为1和4,则第三边长可能是( )A .3B .4C .5D .6 3.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52α C .2α D .32α 4.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个5.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 6.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .13cmB .6cmC .5cmD .4cm 7.能把一个三角形的面积平均分成两个面积相等的三角形,这条线一定是这个三角形的一条( )A .角平分线B .高C .中线D .一条边的垂直平分线8.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .509.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等;②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A .①②B .①③C .①③④D .①④⑤10.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 11.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,ACE DBF ≌,//AE DF ,8AD =,2BC =,则AB =______.14.如图,已知AD 、AE 分别为ABC 的角平分线、高线,若40B ∠=︒,60C ∠=°,则DAE ∠的度数为__________.15.如图,在△ABC 中E 是BC 上的一点,BC =3BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF ﹣S △BEF =____.16.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.17.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).18.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.19.三角形有两条边的长度分别是5和7,则第三边a 的取值范围是_____.20.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC Scm =,则ABE S 的值是_______.三、解答题21.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.22.如图:已知AD BE =,BC EF =且//BC EF ,求证:ABC DEF ≌△△.23.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.24.如图,在AOB 和COD △中,OA OB =,OC OD =,若60AOB COD ∠=∠=︒,(1)求证:AC BD =.(2)求APB ∠的度数.25.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C .(1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.26.如图,点A ,E ,F ,B 在直线l 上,AE BF =,//AC BD ,且AC BD =,求证:ACF BDE ≅△△.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x ,∵三角形两边的长分别是1和4,∴4-1<x <4+1,即3<x <5.故选:B .【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.3.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.4.C解析:C【分析】利用SAS 证明△DAC ≌△BAE ,利用三角形内角和定理计算∠BOD 的大小即可.【详解】∵ABD △与AEC 都是等边三角形,∴AD=AB ,AC=AE ,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB ,∴∠DAC =∠BAE ,∴△DAC ≌△BAE ,∴BE=CD ,∴结论①正确;∵△DAC ≌△BAE ,∴∠ADC =∠ABE ,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;无法证明BDO CEO ∠=∠,∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理, 熟练运用等边三角形的性质证明三角形的全等是解题的关键.5.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.6.B解析:B【分析】利用三角形的三边关系即可求解.【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<,故选:B .【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.7.C解析:C【分析】根据中线的性质即可求解.【详解】解:三角形的一条中线将三角形的面积平均分成两个面积相等的三角形,故选:C【点睛】本题主要考查的是中线的性质,正确的掌握中线的性质是解题的关键.8.A解析:A【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .9.C解析:C【分析】根据三角形中线的定义可得BD=CD ,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF 和△CDE 全等,根据全等三角形对应边相等可得CE=BF ,全等三角形对应角相等可得∠F=∠CED ,再根据内错角相等,两直线平行可得BF ∥CE .【详解】解:∵AD 是△ABC 的中线,∴BD=CD ,∴△ABD 和△ACD 面积相等,故①正确;∵AD 为△ABC 的中线,∴BD=CD ,∠BAD 和∠CAD 不一定相等,故②错误;在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.10.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.11.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD,在△ADE中可求得∠EAD,则可求得∠BAC.【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠BAC=∠EAD=80°,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.3【分析】根据全等三角形对应边相等可得AC=BD 再求出AB=CD 然后代入数据进行计算即可得解【详解】解:∵△ACE ≌△DBF ∴AC=DB ∴AC-BC=BD-BC 即AB=CD ∵AD=8BC=2∴AB=解析:3【分析】根据全等三角形对应边相等可得AC=BD ,再求出AB=CD ,然后代入数据进行计算即可得解.【详解】解:∵△ACE ≌△DBF ,∴AC=DB ,∴AC-BC=BD-BC ,即AB=CD ,∵AD=8,BC=2,∴AB=12(AD-BC )=12×(8-2)=3. 故答案为:3.【点睛】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上确定出对应边,然后求出AB=CD 是解题的关键.14.【分析】先求出∠BAC 的度数再根据角平分线和高求出∠BAE 和∠BAD 即可【详解】解:∵∴∠BAC=180°-40°-60°=80°∵AD 平分∠BAC ∴∠BAD=∠BAC=40°∵AE ⊥BC ∴∠AEB解析:10︒【分析】先求出∠BAC 的度数,再根据角平分线和高求出∠BAE 和∠BAD 即可.【详解】解:∵40B ∠=︒,60C ∠=°,∴∠BAC=180°-40°-60°=80°,∵AD 平分∠BAC ,∴∠BAD=12∠BAC=40°,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=90°-∠B=50°,∠DAE=∠BAE-∠BAD=10°,故答案为:10°.【点睛】本题考查了三角形内角和,三角形的高和角平分线,解题关键是熟练运用角平分线和高的意义求出角的度数.15.2【分析】S△ADF-S△BEF=S△ABD-S△ABE所以求出三角形ABD的面积和三角形ABE的面积即可因为BC=3BE点D是AC的中点且S△ABC=12就可以求出三角形ABD的面积和三角形ABE解析:2【分析】S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为BC=3BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.【详解】解:∵点D是AC的中点,∴AD=12AC,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵BC=3BE,∴S△ABE=13S△ABC=13×12=4,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点睛】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.16.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC的三边长分别是abc∴必须满足两边之和大于第三边两边的差小解析:3c b a+-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.17.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.55°【分析】由∠AFD =145°可求得∠CFD=35°证明Rt △BDE ≌△Rt △CFD 根据对应角相等推知∠BDE=∠CFD=35°进而可求出∠EDF 的值【详解】解:∵∠DFC+∠AFD=180°∠解析:55°【分析】由∠AFD =145°可求得∠CFD=35°,证明Rt △BDE ≌△Rt △CFD ,根据对应角相等推知∠BDE=∠CFD=35°,进而可求出∠EDF 的值.【详解】解:∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE ⊥AB ,DF ⊥BC ,∴∠BED=∠CDF=90°,在Rt △BDE 与△Rt △CFD 中,BE CD BD CF =⎧⎨=⎩, ∴Rt △BDE ≌△Rt △CFD (HL ),∴∠BDE=∠CFD=35°,∴∠EDF =180°-90°-35°=55°.故答案是:55°.【点睛】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 19.2<a <12【分析】已知三角形两边的长根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(解析:2<a <12.【分析】已知三角形两边的长,根据三角形三边关系定理知:第三边的取值范围应该是大于已知两边的差而小于已知两边的和.【详解】解:根据三角形三边关系定理知:第三边a 的取值范围是:(7-5)<a <(7+5),即2<a <12.【点睛】本题考查了三角形三边关系,两边之和大于第三边,两边之差小于第三边.20.【分析】中线AD 把△ABC 分成面积相等的两个三角形中线BE 又把△ABD 分成面积相等的两个三角形所以△ABE 的面积是△ABC 的面积的【详解】解:∵DE 分别是BCAD 的中点∴△ABD 是△ABC 面积的△A解析:21cm【分析】中线AD 把△ABC 分成面积相等的两个三角形,中线BE 又把△ABD 分成面积相等的两个三角形,所以△ABE 的面积是△ABC 的面积的14. 【详解】解:∵D 、E 分别是BC ,AD 的中点,∴△ABD 是△ABC 面积的12,△ABE 是△ABD 面积的12, ∴△ABE 的面积=4×12×12=21cm . 故答案为:21cm .【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.三、解答题21.(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键. 22.见解析【分析】由AD=BE 可求得AB=DE ,再结合条件可证明△ABC ≌△DEF .【详解】证明:∵AD BE =∴AD BD BE BD +=+∴AB DE =又∵//BC EF∴ABC DEF ∠=∠在ABC 和DEF 中AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△(SAS )【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .23.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD【分析】(1)延长BD 交AC 于点E .易证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠ADE=∠BDO ,可证∠AED=∠BOD=90º即可;(2)延长BD 交AC 于点F ,交AO 于点G .易证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠AGF=∠BGO ,可得∠AFG=∠BOG=90º即可;(3)BD 交AC 于点H ,AO 于M ,可证△AOC ≌△BOD (SAS ),可得AC=BD ,∠OAC=∠OBD ,由∠AMH=∠BMO ,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD ,AC ⊥BD ,证明:延长BD 交AC 于点E .∵△COD 和△AOB 均为等腰直角三角形,∴OC=OD ,OA=OB ,∠COA=∠BOD=90º,∴△AOC ≌△BOD (SAS ),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.24.(1)见解析;(2)60°【分析】(1)利用“SAS”证明AOC BOD ≅,即可得到结论;(2)由AOC BOD ≅得OAC OBD ∠=∠,再根据OAC AOB OBD APB ∠+∠=∠+∠即可求出结论.【详解】解:(1)证明:∵60AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,∴AOC BOD ∠=∠,在AOC △和BOD 中,AO BO AOC BOD CO DO =⎧⎪∠=∠⎨⎪=⎩,∴()AOC BOD SAS ≅△△,∴AC BD =;(2)∵AOC BOD ≅,∴OAC OBD ∠=∠,∵OAC AOB OBD APB ∠+∠=∠+∠,∴60OAC OBD APB ∠+︒=∠+∠,∴60APB ∠=︒.【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理. 25.(1)45°;(2)不变,45°【分析】(1)由题意,先求出135ABN ∠=︒,由角平分线的定义,求出67.5ABE ∠=︒,22.5∠︒=BAC ,由三角形外角的性质,即可求出答案;(2)由三角形的外角性质,得ACB ABE BAC ∠=∠-∠,再根据角平分线的定义即可求出答案.【详解】解:(1)∵90MON ∠=︒,即90AOB ∠=︒,45BAO ∠=︒,∴135ABN AOB BAO ∠=∠+∠=︒,∵BE 平分ABN ∠,AC 平分BAO ∠, ∴167.52ABE ABN ∠=∠=︒,122.52BAC BAO ∠=∠=︒, ∴67.522.545ACB ABE BAC ∠=∠-∠=︒-︒=︒.(2)ACB ∠的大小不会发生变化,理由如下: ∵BE 平分ABN ∠,AC 平分BAO ∠, ∴12ABE ABN ∠=∠,12BAC BAO ∠=∠, ∴ACB ABE BAC ∠=∠-∠1122ABN BAO =∠-∠ ()12ABN BAO =∠-∠12AOB =∠190452=⨯︒=︒. 【点睛】 本题考查了角平分线的定义,三角形的外角性质,解题的关键是熟练掌握所学的知识,正确的得到角的关系.26.见解析【分析】先证明AF BE =,然后根据平行线的性质得到∠CAF=∠DBE ,用SAS 即可证明△ACF ≌△BDE .【详解】证明:AE BF =,AE EF BF EF ∴+=+,即AF BE =; //AC BD ,CAF DBE ∴∠=∠在ACF 与BDE 中,AC BD CAF DBE AF BE =⎧⎪∠=∠⎨⎪=⎩ACF BDE ∴≅.【点睛】本题考查的是全等三角形的SAS 判定、平行线的性质,掌握SAS 判定是解题的关键.。

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

初一年级数学第七章三角形期中考复习题

初一年级数学第七章三角形期中考复习题

第七章 三角形期中考复习题一 选择题1、以下列各组长度的线段为边:能构成三角形的是: A .7cm :5cm :12cm B .6cm :8cm :15cm C .4cm :6cm :5cm D .8cm :4cm :3cm2、如图2:已知∠B =∠C :则∠ADC 与∠AEB 的大小关系是: A 、∠ADC >∠AEB B 、∠ADC <∠AEB C 、∠ADC =∠AEB D 、大小关系不能确定3、一个多边形的内角和比它的外角和的2倍还大180°:这个多边形的边数为: A .7 B .8 C .9 D .104、用一批完全相同的多边形地砖铺地面:不能进行镶嵌的是( )A 、正三角形B 、正方形C 、正八边形D 、正六边形 5、已知线段a 、b 、c :有a >b >c :则组成三角形必须满足的条件是( )A.a+b>cB.b+c>aC.c+a>bD.a-b>c 6、能把三角形的面积平分的是( )7、下列图形中能够用来作平面镶嵌的是( )A 、正八边形B 、正七边形C 、正六边形D 、正五边形 8、△ABC 中:三边长分别为6,7:x :则x 的取值范围为( )。

A 、2<x <12B 、1<x <13C 、6<x <7D 、无法确定9、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点:且S △ABC =4cm 2:则S 阴影的值为( )A 、2cm 2B 、cm 2C 、cm 2 D 、1cm 210、如图:在锐角△ABC 中:CD 、BE 分别是AB 、AC 边上的高: 且相交于一点P :若∠A=50°:则∠BPC 的度数是( )A .150°B .130°C .120°D .100°11、中华人民共和国国旗上的五角星:它的五个锐角的度数和是( )A 、500B 、100 0C 、180 0D 、 20012、在 ABC 中:三个内角满足∠B -∠A=∠C -∠B :则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 13、在锐角三角形中:最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90DA BECP14、给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点:这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点:且这点在三角形内。

人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷及答案解析

人教版七年级数学三角形测试试卷一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等4、在和中,已知,直接判定的根据是()A.B.C.D.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等10、下列图形中,不具有稳定性的是()A.B.C.D.11、已知图中的两个三角形全等,则度数是()A.B.C.D.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.18、如图所示,在中,,,已知,,,则.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.20、如图,于,那么图中以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?23、在中,平分,,垂足为,过作,交于,若,求线段的长.参考答案一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边【答案】C【解析】解:,,.,,().故答案应选:角边角.2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线【答案】B【解析】解:三角形的角平分线都在三角形的内部,故答案不正确三角形的中线都在三角形的内部,故答案不正确三角形的高有的在形内,有的在形上,有的在形外,故答案正确三角形的边的垂直平分线都在三角形的内部,故答案不正确故正确答案为:三角形的高3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等【答案】D【解析】解:、分别是的中线、高,,故答案为:与的周长之差为,的面积等于的面积.4、在和中,已知,直接判定的根据是()A.B.C.D.【答案】B【解析】解:,和分别是、的对边,根据可判定两三角形全等.故正确答案是.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对【答案】C【解析】解:如图,全等图形有对.6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧【答案】B【解析】解:以点为圆心,为半径作弧交于,然后以点为圆心,为半径画弧,两弧相交于,则.故正确答案是:以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.【答案】B【解析】解:由已知图形可得:与全等.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点【答案】A【解析】解:支撑点应是三角形的重心,三角形的重心是三角形三边中线的交点.9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等【答案】A【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故正确.10、下列图形中,不具有稳定性的是()A.B.C.D.【答案】C【解析】解:可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性.其他三个图形都是有三角形组成,一定具有稳定性.11、已知图中的两个三角形全等,则度数是()A.B.C.D.【答案】D【解析】解:两个三角形全等,.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到【答案】C【解析】解:当的底边上的高为,底边时,;底边时,.故从变化到.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.【答案】A【解析】解:,而,,点在的垂直平分线上,即点为的垂直平分线与的交点.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或【答案】B【解析】解:当为腰时,因为,所以不能组成三角形,所以为腰,所以等腰三角形的周长.二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.【答案】全等三角形的对应边【解析】解:"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明全等三角形的对应边相等.故答案为:全等三角形的对应边.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,在中,,,已知,,,则.【答案】10/3【解析】解:,,.,,,.故正确答案为:.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.【答案】16【解析】解:这两个三角形全等,两个三角形中都有,两三角形中长度为的边是一组对应边,与是一组对应边,与是一组对应边,,,.故答案是:.20、如图,于,那么图中以为高的三角形有个.【答案】6【解析】解:于,而图中有一边在直线上,且以为顶点的三角形有个,以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?【解析】解:由三角形的内角和定理,得,,,由邻补角的性质,得,,,故答案为:.23、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.。

苏科版数学七年级下期末复习提优专题三角形word版含解析

苏科版数学七年级下期末复习提优专题三角形word版含解析

本文由一线教师精心整理/word可编辑初一期末复习专题-三角形模块一:三角形三边关系1.如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm【解答】解:设第三边长为x,则由三角形三边关系定理得2﹣1<x<2+1,即 1<x<3.故选:B.2.如果三角形的两边长分别为5 和 7,第三边长为偶数,那么这个三角形的周长可以是A.10 B.11 C.16 D.26【解答】解:设第三边为acm,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则 a 可以为 4cm 或 6cm 或 8cm 或 10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.3.一个等腰三角形的边长分别是4cm 和 7cm,则它的周长是 15cm 或 18cm .【解答】解:①当腰是4cm,底边是 7cm 时,能构成三角形,则其周长=4+4+7=15cm;②当底边是 4cm,腰长是 7cm 时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm 或 18cm.4.一个三角形的三边长分别是 xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,则 x 的取值范围是()A.x≤133B.1< x≤133C.D.1< x≤73【解答】解:∵三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,∴x+2<x+x+1,x+x+1+x+2≤10,解得:x>1,,所以 x 的取值范围是 1<x≤73,故选:D.5.一个三角形的三边长分别为 xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则 x 的取值范围是 2<x≤11 .【解答】解:∵一个三角形的3 边长分别是 xcm,(x+2)cm,(x+4)cm,它的周长不超过 39cm,解得 2<x≤11.故答案为:2<x≤11.6.已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m 的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.7.现有长为 57cm 的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm 的整数,如果其中任意 3 小段都不能拼成三角形,则n 的最大值为 8 .【解答】解:因为 n 段之和为定值 57cm,故欲 n 尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意 3 段都不能拼成三角形,因此这些小段的长度只可能分别是 1,1,2,3,5,8,13,21,34,55,但 1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以 n 的最大值为 8.故答案为 8.模块二:三角形中求角度8.如图,△A BC 的角平分线AD 交 BD 于点D,∠1=∠B,∠C=66°,则∠BAC 的度数是 76° .【解答】解:∵△ABC 的角平分线 AD 交 BD 于点 D,∴∠C AD=∠1=1∠BAC,2∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC 中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°9.将一副直角三角板如图放置,使含 30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.10.在锐角△ABC 中,三条高交于点H,若∠BHC=110°,则∠BAC= 70 °.【解答】解:如图所示,∵CF⊥AB,B E⊥AC,∴∠AFC=∠AEB=90°,∵∠E HF=∠BHC=110°,∴∠A=360°﹣∠AFC﹣∠AEB﹣∠EHF=360°﹣90°﹣90°﹣110°=70°.故答案为:70.11.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD,则∠1+∠2= 75° .【解答】解:连接 AC,∵A B∥CD,∴∠BAC+∠ACD=180°.∵∠BAG=30°,∠EC D=60°,∴∠E AC+∠ACE=180°﹣30°﹣60°=90°.∵∠CE D=60°,∴∠GEF=180°﹣90°﹣60°=30°.同理∠E GF=180°﹣∠1﹣90°=90°﹣∠1,∠GFE=180°﹣45°﹣∠2=135°﹣∠2,∵∠GEF+∠EGF+∠GFE=180°,即30°+90°﹣∠1+135°﹣∠2=180°,解得∠1+∠2=75°.故答案为:75°.12.如图,方格中的点A,B 称为格点(格线的交点),以AB 为一边画△A BC,其中是直角三角形的格点 C 的个数为()A.3 B.4 C.5 D.6【解答】解:如图所示:以AB 为一边画△A BC,其中是直角三角形的格点C 共有 4 个,故选:B.13.我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角的数量关系与它不相邻的三个内角的和减去180° .【解答】解:四边形的一个外角与相邻的内角互补,而四个内角的和是360 度,则四边形的一个外角等于:与它不相邻的三个内角的和减去180°.故答案是:与它不相邻的三个内角的和减去180°.模块三:三角形模型14.已知△A BC 中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+12α ;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于 O 1、O 2,则∠BO 2C= 60°+23α ;请你猜想,当∠B 、∠C 同时 n 等分时,(n ﹣1)条等分角线分别对应交于 O 1、 O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C= (用含 n 和α的代数式表 示).【解答】解:在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O 2B 和 O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC+∠O 2CB=23(∠ABC+∠ACB )=23(180°﹣α)=120°﹣23α; ∴∠BO 2C=180°﹣(∠O 2BC+∠O 2CB )=180°﹣(120°﹣23α)=60°+23α;在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O n ﹣1B 和 O n ﹣1C 分别是∠B 、∠C 的 n 等分线,∴ ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB= 1n n -( ∠ ABC+ ∠ ACB ) = 1n n-( 180 ° ﹣ α ) = 0180(1)n n -﹣(1)n nα-. ∴ ∠ BO n ﹣ 1C=180 ° ﹣ ( ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB ) =180 ° ﹣ (0180(1)n n -﹣(1)n nα- )故答案为:60°+23 α;(1)n nα-+0180n 15.如图,在△ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点 A 1,得∠A 1;∠A 1BC 和 ∠A 1CD 的平分线交于点 A 2,得∠A 2;…∠A 2021BC 和∠A 2021CD 的平分线交于点 A 2021,则∠ A 2021= 20132m度.【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD , ∵∠A 1CD=∠A 1+∠A 1BC , 即12∠ACD=∠A 1+12∠ABC , ∴∠A 1=12(∠ACD ﹣∠ABC ), ∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD ﹣∠ABC ,∴∠A 1=12∠A , ∴∠A 1=12m °, ∵∠A 1=12∠A ,∠A 2=12∠A 1=212∠A, 以此类推∠A 2021=201312∠A=20132m °. 故答案为:20132m.16.如图,在△ABC 中,∠A=40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC= 110° .【解答】解:∵D点是∠ABC 和∠ACB 角平分线的交点,∴∠C BD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.模块四:多边形17.在一个 n(n>3)边形的 n 个外角中,钝角最多有()A.2 个B.3 个C.4 个D.5 个【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.18.若 n 边形的内角和是它外角和的2 倍,则 n= 6 .【解答】解:设所求多边形边数为n,则(n﹣2)•180°=360°×2,解得 n=6.19.如图是由射线 AB、BC、CD、DE、EA 组成的图形,∠1+∠2+∠3+∠4+∠5=360° .【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.20.一个多边形的内角和等于1080°,这个多边形是 8 边形.【解答】解:设所求正n 边形边数为 n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.模块五:面积问题21.如图,△A BC 三边的中线 AD、BE、CF 的公共点为 G,若 S△ABC=12,则图中阴影部分的面积是 4 .【解答】方法 1解:∵△ABC 的三条中线 AD、BE,CF 交于点 G,∴S△CGE=S△AGE=13S△A CF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC =12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为 4.方法 2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG 的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得: S1=S2 , S3=S4 , S5=S6 , S1+S2+S3=S4+S5+S6 ①,S2+S3+S4=S1+S5+S6②由①﹣②可得 S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.22.如图,A、B、C 分别是线段 A1B,B1C,C1A 的中点,若△A BC 的面积是 1,那么△A1B1C1的面积 7 .【解答】解:如图,连接AB1,BC1,CA1,∵A、B 分别是线段 A1B,B1C 的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1 的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.23.如图,在△ABC 中,C1,C2 是 AB 边上的三等分点,A1,A2,A3 是 BC 边上的四等分点,AA1 与 CC1 交于点 B1,CC2 与 C1A2 交于点 B2,记△AC1B1,△C1C2B2,△C2BA3 的面积为 S1,S2,S3.若 S1+S3=9,S2= 4 .【解答】解:根据图形和已知条件发现:S1=12S△ACC1,S2=13S△CC1C2,S3=14S△CC2B,S△ACC1=S△CC1C2=S△CC2B,∴S1=32S2,S3=34S2,若 S1+S3=9,S2=4.24.(1)如图①,AD 是△ABC 的中线,△A BD 与△A CD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC 的面积记为 S△ABC,如图②,已知S△ABC=1,△ABC 的中线 AD 、CE 相交于点 O ,求四边形 BDOE 的面积. 小华利用(1)的结论,解决了上述问题,解法如下:连接 BO ,设 S △BEO =x ,S △BDO =y , 由(1)结论可得:1122BCE ABD ABC S S S ∆∆∆===, S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x .则有BEO BCO BCE BAO BDO BADS S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即122122x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. 所以13x y +=. 即 四边形 BDOE 的面积为13请仿照上面的方法,解决下列问题:①如图③,已知 S △ABC =1,D 、E 是 BC 边上的三等分点,F 、G 是 AB 边上的三等分点,AD 、 CF 交于点 O ,求四边形 BDOF 的面积.②如图④,已知 S △ABC =1,D 、E 、F 是 BC 边上的四等分点,G 、H 、I 是 AB 边上的四等分 点,AD 、CG 交于点 O ,则四边形 BDOG 的面积为110. 【解答】解:(1)S △ABD =S △ACD .∵AD 是△A BC 的中线∴BD=CD ,又∵△ABD 与△A CD 高相等,∴S △ABD =S △ACD .(2)①如图 3,连接 BO ,设 S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =13S △ABC =13S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有BFO BCO BCF BDO BAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩即133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. , 所以 x+y=16,即四边形 BDOF 的面积为16; ②如图,连接 BO ,设 S △BDO =x ,S △BGO =y ,,S △BCG =S △ABD =14S △ABC =14, S △BCO =4S △BDO =4x ,S △BAO =4S △BGO =4y .则有BGO BCO BCG BDOBAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即144144x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 所以 x+y=110,即四边形 BDOG 的面积为110, 故答案为:110. 模块六:综合题25.证明:三角形三个内角的和等于180°. 已知: △A BC .求证: ∠BAC+∠B+∠C =180° .【解答】解:已知:△ABC , 求证:∠BAC+∠B+∠C =180°, 证明:过点 A 作 EF ∥BC ,∵E F ∥B C ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°. 即知三角形内角和等于 180°. 故答案为:△ABC ;∠BAC+∠B+∠C =180°.26.如图①,在 Rt△ABC 中,∠ACB=90°,D 是 AB 上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC 的平分线分别交 BC,CD 于点 E,F,求证:∠AEC=∠C FE.【解答】(1)证明:∵∠ACB=∠ACD+∠BCD=90°,∠B=∠ACD,∴∠B+∠BCD=90°,又∵∠CDB+∠B+∠BCD=180°,∴∠C DB=90°,∴CD⊥AB;(2)在△A CE 中,∠AEC+∠C AE=90°,在△AFD 中,∠FAD+∠AFD=90°,∵AE 平分∠BAC,∴∠C AE=∠FAD,∴∠AEC=∠AFD,又∵∠CFE=∠AFD,∴∠AEC=∠C FE.27.在△ABC 中,点 D、E 分别在边 AC、BC 上(不与点 A、B、C 重合),点 P 是直线 AB 上的任意一点(不与点A、B 重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点 P 在线段 AB 上运动,且 n=90°时①若PD∥BC,PE∥AC,则m= 90° ;②若 m=50°,求 x+y 的值.(2)当点 P 在直线 AB 上运动时,直接写出x、y、m、n 之间的数量关系.【解答】解:(1)①如图1,∵PD∥B C,PE∥AC,∴四边形 DPEC 为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠C DP=180°﹣x,∠CEP=180°﹣y,∵∠C+∠C DP+∠DPE+∠CE P=360°,∠C=90°,∠DPE=50°,∴90°+180°﹣x+50°+180°﹣y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为 360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.。

(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试(包含答案解析)

一、选择题1.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 2.已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( ) A .13cmB .6cmC .5cmD .4cm 3.有下列长度的三条线段,能组成三角形的是( ) A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 4.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E 5.已知如图,△OAD ≌△OBC ,且∠O=70°,∠C=25°,则∠OAD=( )A .95°B .85°C .75°D .65°6.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A.2B.5C.3D.77.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A.40°B.35 C.30°D.45°≌,则点Q可能是图中的()8.图中的小正方形边长都相等,若MNP MFQA.点D B.点C C.点B D.点A9.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法:①三角形有且只有一条中线;②三角形的高一定在三角形内部;③三角形的两边之差大于第三边;④三角形按边分类可分为等腰三角形和不等边三角形.其中错误的说法是()A.①②B.①③C.①②③D.①②③④10.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①②去11.已知三角形的三边长分别是3,8,x,则x的值可以是()A.6 B.5 C.4 D.312.下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④二、填空题13.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC 上取一点G ,使△AEG 与△BEF 全等,则AG 的长为_____.14.如图所示,在等腰Rt ABC 中,90ACB ∠=︒,点D 为射线CB 上的动点,AE AD =,且,AE AD BE ⊥与AC 所在的直线交于点P ,若3AC PC =,则BD CD=_______.15.如图,四边形ABCD 中,AC BC =,90ACB ADC ∠=∠=︒,10CD =,则BCD ∆的面积为______.16.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.17.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.18.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 .19.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________20.已知:AD 、AE 分别是ABC 的高,中线,6BE =,4CD =,则DE 的长为_________.三、解答题21.已知ABC 的周长为37cm ,AD 是BC 边上的中线,23AC BC =.(1)如图,当15AB cm =时,求BD 的长.(2)若14AC cm =,能否求出DC 的长?为什么?22.如图:已知AD CB =,CE BD ⊥,AF BD ⊥,垂足分别为点E 、F ,若DE BF =,求证://AD BC .23.如图,90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =.(1)试说明:ADE 是等腰直角三角形;(2)若2CDE BAE ∠=∠,求CDE ∠的度数.24.如图,在ABC 中,AB AC =,AB BC >,点D 在边BC 上,点E ,F 在线段AD 上,且2DF AF =,12BAC ∠=∠=∠.若BE 的长为5,求AD 的长.25.如图,点B 、E 、C 、F 四点在一条直线上,∠A =∠D ,AB //DE ,老师说:再添加一个条件就可以使△ABC ≌△DEF .下面是课堂上三个同学的发言,甲说:添加AB =DE ;乙说:添加AC //DF ;丙说:添加BE =CF .(1)甲、乙、丙三个同学说法正确的是________;(2)请你从正确的说法中选择一种,给出你的证明.26.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.2.B解析:B【分析】利用三角形的三边关系即可求解.【详解】解:第三边长x 的范围是:8383x -<<+,即5cm 11cm x <<,故选:B .【点睛】本题考查三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.3.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.C解析:C【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】 此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .5.B解析:B【分析】根据△OAD ≌△OBC 得∠OAD=∠OBC ,再根据三角形内角和定理求出∠OBC 的度数即可.【详解】∵△OAD ≌△OBC ,∴∠OAD=∠OBC ,∵∠O=70°,∠C=25°,∴∠OBC=180°-70°-25°=85°,∴∠OAD=85°故选B .考点: 1.全等三角形的性质;2.三角形内角和定理.第II 卷(非选择题)请点击修改第II 卷的文字说明6.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.7.A解析:A【分析】 根据已知ACB ≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB ≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A .【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 8.A解析:A【分析】根据全等三角形的判定即可解决问题.【详解】解:观察图象可知△MNP ≌△MFD .故选:A .【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 9.C解析:C【分析】三角形有三条中线对①进行判断;钝角三角形三条高,有两条在三角形外部,对②进行判断;根据三角形三边的关系对③进行判断;根据三角形的分类对④进行判断.【详解】①三角形有三条中线,故①错误;②钝角三角形三条高,有两条在三角形外部,故②错误;③三角形的任意两边之差小于第三边,故③错误;④三角形按边分类可分为等腰三角形、不等边三角形,故④正确;综上,选项①②③错误,故选:C.【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别.10.C解析:C【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.11.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.12.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.二、填空题13.40或75【分析】设BE=2t则BF=3t使△AEG与△BEF全等由∠A=∠B=90°可知分两种情况:情况一:当BE=AGBF=AE时列方程解得t可得AG;情况二:当BE=AEBF=AG时列方程解得解析:40或75.【分析】设BE=2t,则BF=3t,,使△AEG 与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当 BE = AG ,BF = AE 时,列方程解得t ,可得 AG;情况二:当 BE = AE ,BF = AG时,列方程解得 t ,可得AG.【详解】设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=100,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=100,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.14.或2【分析】分两种情况:(1)当点D位于CB延长线上时如图:过点E作AP延长线的垂线于点M可证可得由等腰三角形的性质可得AC=BC根据线段的和差关系可证的结论;(2)当点D位于CB之间时如图过点E作解析:25或2【分析】分两种情况:(1)当点D位于CB延长线上时,如图:过点E作AP延长线的垂线于点M,可证ADC△AEM≌△,EMP△BCP≌△,可得,AM CD PC PM==,由等腰三角形的性质可得AC=BC,根据线段的和差关系可证的结论;(2)当点D位于CB之间时,如图过点E作AP的垂线于点N,可证ADC△AEN≌△,ENP△BCP ≌△,可得,AN CD PC PN==,由等腰三角形的性质可得AC=BC,根据线段的和差关系可证的结论;【详解】(1)当点D位于CB延长线上时,如图:过点E作AP延长线的垂线于点M,ABC为等腰直角三角形AC BC∴=90BCP ACD AME∴∠=∠=∠=︒90ADC DAC∴∠+∠=︒AE AD⊥90DAE∴∠=︒90DAC EAM∴∠+∠=︒ADC EAM∴∠=∠AD AE=∴在ADC和AEM△中ADC EAMACD AMEAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△EAM∴CD MA=,AC EM=EM BC∴=BPC EPM∠=∠∴在BCP 和EMP 中BCP EMP BPC EPM BC EM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴EMP △BCP ≌△PC PM ∴=CD AM =,3AC PC =,AC BC =∴设PC PM x ==3AC BC x ∴==5CD AM x ∴==CD BD BC =+2BD x ∴= 2255BD x CD x ∴== (2)当点D 位于CB 之间时,如图:过点E 作AP 的垂线于点N ,ABC 为等腰直角三角形AC BC ∴=90ACD ANE ∴∠=∠=︒90ADC DAC ∴∠+∠=︒AE AD ⊥90DAE ∴∠=︒90DAC EAN ∴∠+∠=︒ADC EAN ∴∠=∠AD AE =∴在ADC 和AEN △中ADC EAN ACD ANE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EAN∴CD NA =,AC EN =EN BC ∴=BPC EPN ∠=∠∴在BCP 和ENP 中BCP ENP BPC EPN BC EN ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ENP △BCP ≌△PC PN ∴=CD AN =,3AC PC =,AC BC =∴设PC PN x ==3AC BC x ∴==CD AN x ∴==CD BC BD =-2BD x ∴=22BD x CD x∴== 故答案为:25或2. 【点睛】本题主要考查了全等三角形的判定和性质,解题关键是利用三角形全等和线段的和差得出所求线段之间的关系,同时运用分类讨论的思想.15.50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E 先证明∠CBE=∠ACD 从而证明∆ACD ≅∆CBE 进而即可求解【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ∵BE ⊥CE ∴∠BEC=∠CDA=90°解析:50【分析】过点B 作BE ⊥DC 交DC 的延长线于点E ,先证明∠CBE=∠ACD ,从而证明∆ ACD ≅∆ CBE ,进而即可求解.【详解】过点B 作BE ⊥DC 交DC 的延长线于点E ,∵BE ⊥CE ,∴∠BEC=∠CDA=90°,∴∠CBE+∠BCE=90°,又∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠CBE=∠ACD ,在∆ ACD 与∆ CBE 中,∵CBE ACD CEB ADC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴∆ ACD ≅∆ CBE (AAS ),∴BE=CD=10,∴BCD ∆的面积=12CD∙BE=12×10×10=50, 故答案是50.【点睛】本题主要考查全等三角形的判定和性质,等腰直角三角形的性质,添加辅助线,构造“一线三垂直”模型,是解题的关键. 16.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2nθ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= ……∴∠A n =2n θ. 故答案为:4θ,2nθ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键. 17.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.18.1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边任意两边之差小于第三边解:由题意有8﹣5<1+2x <8+5解得:1<x <6考点:三角形三边关系解析:1<x <6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x <8+5,解得:1<x <6.考点:三角形三边关系.19.(-20)或(24)或(-24)【分析】根据全等三角形的判定和已知点的坐标画出图形即可得出答案【详解】如图所示:有三个点符合∵点A (20)B (04)∴OB=4OA=2∵△BOC 与△AOB 全等∴OB=解析:(-2,0)或(2,4)或(-2,4)【分析】根据全等三角形的判定和已知点的坐标画出图形,即可得出答案.【详解】如图所示:有三个点符合,∵点A (2,0),B (0,4),∴OB=4,OA=2,∵△BOC 与△AOB 全等,∴OB=OB=4,OA=OC=2,∴C 1(-2,0),C 2(-2,4),C 3(2,4).故答案为(2,4)或(-2,0)或(-2,4).【点睛】本题考查了坐标与图形性质,全等三角形的判定与性质,难点在于根据点C 的位置分情况讨论.20.2或10【分析】由已知条件可推导出;再假设D 点所在的不同位置分别计算即可得到答案【详解】∵是的中线且∴假设点D 在CB 的延长线上如下图∵是的中线且∴∵∴和图形不符∴该假设不成立;假设点D 在点E 和点B 之 解析:2或10【分析】由已知条件,可推导出6EC BE ==;再假设D 点所在的不同位置,分别计算DE ,即可得到答案.【详解】∵AE 是ABC 的中线,且6BE =∴6EC BE ==假设点D 在CB 的延长线上,如下图∵AE 是ABC 的中线,且6BE =∴212BC BE ==∵4CD =∴CD BC <,和图形不符∴该假设不成立;假设点D 在点E 和点B 之间,如下图∵4CD =,6EC =∴CD EC <,和图形不符∴该假设不成立;假设点D 在点E 和点C 之间,如下图∴642DE EC CD =-=-=;假设点D 在点BC 延长线上,如下图∴6410DE EC CD =+=+=;故答案为:2或10.【点睛】本题考察了三角形中线和三角形高的知识;求解的关键是熟练掌握三角形中线和三角形高的性质,从而完成求解.三、解答题21.(1)6cm ;(2)不能求出DC 的长,理由见解析【分析】(1)根据23AC AB =,15AB cm =及ABC 的周长为37cm ,可求得BC ,再根据三角形中线的性质解答即可;(2)利用(1)中的方法,求得BC 的长度,然后根据构成三角形的条件,可判断出△ABC不存在,进而可知没法求DC 的长.【详解】解:(1)∵23AC AB =,15AB cm =, ∴215103AC cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()3737151012BC AB AC cm =--=--=,又∵AD 是BC 边上的中线, ∴()1112622BD BC cm ==⨯=; (2)不能,理由如下: ∵23AC AB =,14AC cm =, ∴()314212AB cm =⨯=, 又∵ABC 的周长为37cm ,∴37AB AC BC ++=, ∴()373721142BC AB AC cm =--=--=,∴BC+AC=16<AB=21,∴不能构成三角形,故不能求出DC 的长.【点睛】此题考查三角形的中线、三角形的周长、构成三角形的条件,关键是根据三角形中线的性质解答.22.见解析【分析】利用已知条件证明△ADF ≌△CBE ,由全等三角形的性质即可得到∠B=∠D ,进而得出结论.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;在Rt △ADF 和Rt △BCE 中DF BE AD CB =⎧⎨=⎩, ∴Rt △ADF ≌Rt △CBE (HL ),∴∠B=∠D ,∴//AD BC .【点睛】本题考查了直角三角形全等的判定及性质;由DE=BF 通过等量加等量和相等得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.23.(1)见解析;(2)60°.【分析】(1)利用ASA 证明△BAE ≌△CED ,可证AE=DE ,后利用∠BAE+∠BEA=90°,证明∠BEA+∠CED=90°,问题得证;(2)利用直角三角形的两个锐角互余,求解即可.【详解】(1)∵90B C ∠=∠=︒,BAE CED ∠=∠,且AB CE =,∴△BAE ≌△CED ,∴AE=DE ,∵∠BAE+∠BEA=90°,∴∠BEA+∠CED=90°,∴∠AED=90°,∴△AED 是等腰直角三角形;(2)∵2CDE BAE ∠=∠,BAE CED ∠=∠,∴2CDE CED ∠=∠,∵∠CDE+∠CED=90°,∴∠CDE=60°.【点睛】本题考查了三角形的全等,等腰直角三角形的定义,直角三角形的锐角互余的性质,根据图形,结合条件选择对应判定方法,根据性质构造基本的计算等式是解题的关键. 24.【分析】解:由∠1=∠2=∠BAC ,得到∠BAE=∠ACF ,∠ABE=∠CAF 从而证明△ABE ≌△CAF(ASA).得到AF=BE ,再根据DF=2AF ,BE 的长为5,求得AD 的长.【详解】解:∵12BAC ∠=∠=∠,且1BAE ABE ∠=∠+∠,2CAF ACF ∠=∠+∠, ∠BAC=∠BAE+∠CAF ,∴∠BAE=∠ACF ,∠ABE=∠CAF .在ABE △和CAF 中,BAE ACF AB CA ABE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABE CAF ASA ≌△△.∴AF BE =∵2DF AF =,BE 的长为5,∴10DF =,5AF BE ==,∴51015AD AF DF =+=+=.【点睛】本题考查了全等三角形的性质和判定,解题的关键是熟悉掌握全等三角形的性质和证明. 25.(1)甲、丙;(2)见详解【分析】(1)根据平行线的性质,由AB ∥DE 可得∠B =∠DEC ,再加上条件∠A =∠D ,只需要添加一个能得出对应边相等的条件,即可证明两个三角形全等,添加AC //DF 不能证明△ABC ≌△DEF ;(2)添加AB =DE ,再由条件AB ∥DE 可得∠B =∠DEC ,然后再利用ASA 判定△ABC ≌△DEF 即可.【详解】(1)解:∵AB //DE ,∴∠B =∠DEC ,又∵∠A =∠D ,∴添加AB =DE ,可得△ABC ≌△DEF (ASA );添加BE =CF ,可得BC=EF ,可得△ABC ≌△DEF (AAS )∴说法正确的是:甲、丙,故答案为:甲、丙;(2)选“甲”,理由如下:证明:∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中A DB DEF AB DE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△DEF (ASA ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.26.(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E .【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.。

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

七年级下册数学期末复习试题1、已知:如图,∠A=∠B,∠3=∠4,求证:AC=BD.2、如图,D在AB上,E在AC上,BD、CE交于O,若AB=AC,∠B=∠C.求证:AD=AE.3、已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

5、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

6、将两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,求证:(1)DC=BE;(2)(2)DC⊥BE。

7、已知:如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2。

求证:△ABD≌△ACE.8、已知:如图,△ABC中,∠BAC=90°,AB=AC,直线DE经过点A,BD⊥DE,CE⊥DE,垂足为D、E.求证:BD=AE。

9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:BE+DE=AD.10、已知:如图3,AB∥CD,AD∥BC.求证:AB=CD,AD=BC.11、如图,已知AB=CD,AC=BD,求证:∠A=∠D.12、已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.13、14、15、16、如图所示,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.17、把两个含有45°角的直角三角板如图放置,点D在AC上连接AE、BD,试判断AE与BD的关系,并说明理由。

18、如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA, 点F在线段AB上运动,AD=4㎝,BC=3㎝, 且AD∥BC(1)你认为AE和BE有什么位置关系?并验证你的结论;(2)当点F运动到离点A多少㎝时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,此时BF=BC吗?为什么?并求出AB的长。

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)

(必考题)初中数学七年级数学下册第四单元《三角形》测试卷(含答案解析)

一、选择题1.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为( )A .3cm 2B .4.5cm 2C .5cm 2D .6cm 22.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA3.如图,CD AB ⊥,BE AC ⊥,垂足分别为点D ,点E ,BE 、CD 相交于点O ,12∠=∠,则图中全等三角形共有( )A .2对B .3对C .4对D .5对4.已知如图,AB=AE ,只需再加一个条件就能证明△ABC ≌△AED ,下列选项是所加条件,请判断哪一个不能判断△ABC ≌△AED ( )A .∠B=∠EB .AC=ADC .∠ADE=∠ACBD .BC=DE 5.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是( )A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF 6.下列长度的三条线段中,有组成三角形的是( ) A .3cm,4cm,9cm B .8cm,7cm,15cmC .12cm,13cm,24cmD .2cm,2cm,6cm 7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒8.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 9.已知三角形的三边长分别是3,8,x ,则x 的值可以是( )A .6B .5C .4D .3 10.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠B=∠DB .BE=DFC .AD=CBD .AD ∥BC 11.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( )A .7B .8C .9D .1012.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不.一定成立的是( )A .AC=CDB .BE=CDC .∠ADE=∠AED D .∠BAE=∠CAD二、填空题13.如图,已知AC DB =,添加一个条件________,可以得到ABC DCB △≌△.14.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.15.如图,在ABC 中,D ,E 分别是BC ,AD 的中点,24ABC Scm =,则ABE S 的值是_______.16.如图10,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是_______________________________.17.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是 .18.已知:如图,ACB DBC ∠∠=,要使△ABC ≌△DCB ,只需增加的一个条件是_____(只需填写一个你认为适合的条件).19.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在ABC 中,点D E ,分别在AB AC ,上,设CD BE ,相交于点O ,若60A ∠=︒,12DCB EBC A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC 中,如果A ∠是不等于60︒的锐角,点D E ,分别在AB AC ,上,且12DCB EBC A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.22.(问题情境)(1)如图1,在四边形ABCD 中,AB AD =,90B D ︒∠=∠=,120BAD ︒∠=.点E ,F 分别是BC 和CD 上的点,且60EAF ︒∠=,试探究线段BE ,EF ,DF 之间的关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,再证明AEF AGF ≅△△,进而得出EF BE DF =+.你认为他的做法 ;(填“正确”或“错误”).(探索延伸)(2)如图2,在四边形ABCD 中,AB AD =,70B ︒∠=,110D ︒∠=,100BAD ︒∠=,点E ,F 分别是BC 和CD 上的点,且50EAF ︒∠=,上题中的结论依然成立吗?请说明理由.(思维提升)(3)小明通过对前面两题的认真思考后得出:如图3,在四边形ABCD 中,若AB AD =,180B D ︒∠+∠=,12EAF BAD ∠=∠,那么EF BE DF =+.你认为正确吗?请说明理由.23.(1)如图1,已知OAB 中,OA OB =,90AOB ∠=︒,直线l 经过点O ,BC ⊥直线l ,AD ⊥ 直线l ,垂足分别为点C ,D .依题意补全图l ,并写出线段BC ,AD ,CD 之间的数量关系为______;(2)如图2,将(1)中的条件改为:在OAB 中,OA OB =,C ,O ,D 三点都在直线l 上,并且有BCO ODA BOA ∠=∠=∠,请问(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,在ABC 中,AB AC =,90CAB ∠=︒,点A 的坐标为(0,1),点C 的坐标为()3,2,请直接写出点B 的坐标.24.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =,求1cm BE =,求DE 的长.25.如图,点A 、D 、B 、E 在一条直线上,BC 与DF 交于点G ,AD BE =,//BC EF ,BC EF =.求证:ABC DEF △≌△.26.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP=PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC=12S △ABC ,代入求出即可. 【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP=∠EBP ,∵AP ⊥BP ,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,ABP EBP PB PBAPB EPB ∠∠⎧⎪⎨⎪∠∠⎩===,∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×9cm2=4.5cm2,故选:B.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.2.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.3.C解析:C【分析】共有四对.分别为ADO≌AEO,ADC≌AEB,ABO≌ACO,BOD≌COE.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.【详解】解:∵CD⊥AB,BE⊥AC,∴∠ADO=∠AEO=90°,又∵∠1=∠2,AO=AO,∴ADO≌AEO;(AAS)∴OD=OE,AD=AE,∵∠DOB=∠EOC,∠ODB=∠OEC=90°,OD=OE,∴BOD≌COE;(ASA)∴BD=CE,OB=OC,∠B=∠C,∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°∵AD=AE,BD=CE,∴AB=AC,∵OB=OC,AO=AO,∴ABO≌ACO.(SSS)所以共有四对全等三角形.故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.D解析:D【分析】根据全等三角形的判定条件结合AE=AB、∠A=∠A逐项判定即可.【详解】解:∵AE=AB、∠A=∠A∴A、补充∠B=∠E,根据ASA可证明△ABC≌△AED,不符合题意;B、补充AC=AD,根据SAS可证明△ABC≌△AED,不符合题意;C、补充∠ADE=∠ACB,根据AAS可证明△ABC≌△AED,不符合题意;D、补充BC=DE,为SSA不能证明△ABC≌△AED,符合题意.故答案为D.【点睛】本题考查了三角形全等的证明,掌握AAA、SSA不能判定普通三角形全等是解答本题的关键.5.C解析:C【分析】根据全等三角形的判定方法一一判断即可;【详解】A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;6.C解析:C【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】解:A 、∵3+4=7<9,∴不能构成三角形,故本选项不符合题意;B 、∵8+7=15,∴不能构成三角形,故本选项不符合题意;C 、∵12+13=25>24,∴能构成三角形,故本选项符合题意;D 、∵2+2=4<6,∴不能构成三角形,故本选项不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG =⎧⎨=⎩∴ △BEG ≌△BEF ,∴BG=BF ,在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;9.A解析:A【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【详解】解:∵三角形的三边长分别为3,8,x,∴8-3<x<8+3,即5<x<11,故选:A.【点睛】本题考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10.C解析:C【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∠B=∠D,∠AFD=∠CEB,AF=CE,满足AAS,能判定△ADF≌△CBE;B、BE=DF,∠AFD=∠CEB,AF=CE,满足SAS,能判定△ADF≌△CBE;C、AD=CB,AF=CE,∠AFD=∠CEB,满足SSA,不能判定△ADF≌△CBE;D、AD∥BC,则∠A=∠C,又AF=CE,∠AFD=∠CEB,满足ASA,能判定△ADF≌△CBE;故选:C.【点睛】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.11.A解析:A【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:∵|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.12.A解析:A【详解】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CE,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,不符合题意;无法证明AC=CD,故A符合题意,故选A.二、填空题13.(答案不唯一)【分析】要使△ABC≌△DCB由于BC是公共边若补充一组边相等则可用SSS判定其全等;【详解】解:添加AB=DC∵AC=BDBC=BCAB=DC∴△ABC≌△DCB(SSS)∴加一个适(答案不唯一)解析:AB DC【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等;【详解】解:添加AB=DC,∵ AC=BD,BC=BC,AB=DC,∴△ABC≌△DCB(SSS),∴加一个适当的条件是AB=DC,故答案为:AB=DC.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知图形以及判定方法选择添加的条件是正确解答本题的关键.14.110°【分析】连接AD并延长根据三角殂的外角性质分别表示出∠3和∠4因为∠BDC是∠3和∠4的和从而不难求得∠BDC的度数【详解】解:连接AD 并延长∵∠3=∠1+∠B∠4=∠2+∠C∴∠BDC=∠解析:110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B,∠4=∠2+∠C.∴∠BDC=∠3+∠4=(∠1+∠B)+(∠2+∠C)=∠B+∠BAC+∠C.∵∠A=47°,∠B=38°,∠C=25°.∴∠BDC=47°+38°+25°=110°,故答案为:110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.15.【分析】中线AD把△ABC分成面积相等的两个三角形中线BE又把△ABD 分成面积相等的两个三角形所以△ABE的面积是△ABC的面积的【详解】解:∵DE分别是BCAD的中点∴△ABD是△ABC面积的△A解析:21cm【分析】中线AD把△ABC分成面积相等的两个三角形,中线BE又把△ABD分成面积相等的两个三角形,所以△ABE的面积是△ABC的面积的14.【详解】解:∵D、E分别是BC,AD的中点,∴△ABD是△ABC面积的12,△ABE是△ABD面积的12,∴△ABE的面积=4×12×12=21cm.故答案为:21cm.【点睛】本题考查了三角形的面积计算,解题的关键是熟悉三角形的中线把三角形分成面积相等的两个小三角形.16.③两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角得到原来三角形的边角根据三角形全等的判定方法即可求解【详解】第一块和第二块只保留了原三角形的一个角和部分边根据这两块中的任一解析:③ 两角和它们的夹边分别相等的两个三角形全等【分析】已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故答案为③;两个角及它们的夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,解题的关键是要认真观察图形,根据已知选择判定方法.17.1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边任意两边之差小于第三边解:由题意有8﹣5<1+2x<8+5解得:1<x<6考点:三角形三边关系解析:1<x<6【解析】试题分析:根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.考点:三角形三边关系.18.∠A=∠D或∠ABC=∠DCB或BD=AC【分析】已知一条公共边和一个角有角边角或角角边定理再补充一组对边相等或一组对角相等即可【详解】解:添加∠A=∠D∠ABC=∠DCBBD=AC后可分别根据AA解析:∠A=∠D或∠ABC=∠DCB或BD=AC【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【详解】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可分别根据AAS、SAS、SAS判定△ABC≌△ADC.故答案为:∠A=∠D或∠ABC=∠DCB或BD=AC.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.2【分析】本题根据三角形的三边关系定理得到不等式组从而求出三边满足的条件再根据三边长是整数进而求解【详解】设摆出的三角形中相等的两边是x根则第三边是()根根据三角形的三边关系定理得到:则又因为是整数解析:2【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.20.3【分析】易证△ABE ≌△DCF 从而可得出△ABF ≌△DCE 进而可得出△BEF ≌△CFE 【详解】∵AB ∥DC ∴∠A=∠D ∵AB=CDAE=DF ∴△ABE ≌△DCF(SAS)∴AE=DFBE=CF ∴A 解析:3【分析】易证△ABE ≌△DCF,从而可得出△ABF ≌△DCE,进而可得出△BEF ≌△CFE .【详解】∵AB ∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE ≌△DCF(SAS)∴AE=DF ,BE=CF∴AF=ED∴△ABF ≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF ≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA 是不能证明全等的.三、解答题21.(1)平行四边形,等腰梯形,矩形等;(2)与A ∠相等的角是∠DOB (或∠EOC );猜想四边形BDEC 是等对边四边形;(3)存在等对边四边形,是四边形BDEC ,见解析.【分析】(1)本题理解等对边四边形的图形的定义,平行四边形,等腰梯形,矩形就是; (2)与∠A 相等的角是∠BOD (或∠COE ),四边形DBCE 是等对边四边形;(3)作CG ⊥BE 于G 点,作BF ⊥CD 交CD 延长线于F 点,易证△BCF ≌△CBG ,进而证明△BDF ≌△CEG ,所以BD =CE ,所以四边形DBCE 是等对边四边形.【详解】解:(1)如:平行四边形,等腰梯形,矩形等.(2)与A ∠相等的角是∠BOD (或∠COE ),∵∠A =60°,12DCB EBC A ∠=∠=∠, ∴∠OBC =∠OCB =30°,∴∠BOD =∠EOC =∠OBC +∠OCB =60°,∴与∠A 相等的角是∠BOD (或∠EOC ),猜想:四边形BDEC 是等对边四边形,(3)存在等对边四边形,是四边形BDEC ,证明:如图作CG ⊥BE 于G ,BF ⊥CD 交CD 的延长线于F ,在△BCF 和△CBG 中,DCB EBC BFC CGB BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCF ≌△CBG (AAS ),∴BF =CG ,∵BDF ABE EBC DCB ∠=∠+∠+∠,BEC ABE A ∠=∠+∠,∴BDF BEC ∠=∠,在△BDF 和△CEG 中,90BDF CEB BFC CGE BF CG ∠∠⎧⎪∠∠=︒⎨⎪⎩=== ∴△BDF ≌△CEG (AAS ),∴BD =CE∴四边形BDEC 是等对边四边形.【点睛】本题考查了全等三角形的性质和判定的应用,解决本题的关键是理解等对边四边形的定义,把证明BD =CE 的问题转化为证明三角形全等的问题.22.(1)正确;(2)成立,理由见解析;(3)正确,理由见解析.【分析】(1)延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题; (2)成立,证明方法同(1):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题;(3)正确,证明方法同(2):延长FD 到点G ,使DG BE =,连接AG .先证明ADG ABE ≅△△,可得AE=AG ,再证明AEF AGF ≅△△,可得EF=GF ,进而得出EF BE DF =+.即可解题.【详解】解:(1)正确.理由:如图1,延长FD 到点G ,使DG BE =,连接AG .∵90B ADF ︒∠=∠=,∴90ADG ADF B ∠=∠=∠=︒,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵120BAD ︒∠=,60EAF ︒∠=,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(2)(1)题中的结论依然成立;理由:如图2,延长FD 到点G ,使DG BE =,连接AG .∵110ADF ︒∠=,70B ︒∠=,∴18011070ADG B ∠=︒-︒=︒=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵100BAD ∠=︒,50EAF ∠=︒,∴∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+;(3)正确,理由:如图3,延长FD 到点G ,使DG BE =,连接AG .∵180B ADF ︒∠+∠=,180ADG ADF ∠+∠=︒, ∴ADG B ∠=∠,在△ABE 和△ADG 中,∵DG BE AB AD =⎧⎪=⎨⎪=⎩∠B ∠ADG , ∴△ABE ≌△ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,∵AE AG EAF GAF AF AF =⎧⎪=⎨⎪=⎩∠∠, ∴△AEF ≌△AGF (SAS ),∴EF=GF ,∵GF=DG+DF=BE+DF ,∴EF BE DF =+.【点睛】本题是三角形的综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.23.(1)补全如图所示见解析;CD BC AD =+;(2)成立,证明见解析;(3)点B 的坐标为()1,2-.【分析】(1)依题意补全图,易证△AOD ≌△OBC ,则有AD =CO ,OD =BC ,从而可得CD BC AD =+;(2)利用三角形内角和易证23∠∠=,再证明BCO ODA ≌,同(1)即可证明结论;(3)过B 、C 两点作y 轴垂线,构造如(1)图形,即可得三角形全等,再将线段关系即可求出点B 坐标.【详解】(1)补全图1如图所示,CD BC AD =+;证明:∵90AOB ∠=︒,BC ⊥直线l ,AD ⊥ 直线l ,∴∠BCO =∠ODA =90°,∴∠BOC +∠OBC =90°,又∵90AOB ∠=︒,∴∠BOC +∠AOD =90°,∴∠OBC =∠AOD ,在△AOD 和△OBC 中BCO ODA OBC AOD BO AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△OBC (AAS )∴AD =CO ,OD =BC ,∵CD OD CO =+,∴CD BC AD =+.(2)成立.证明:如图,∵12180BOA ∠+∠=︒-∠,13180BOA ∠+∠=︒-∠,BOA BCO ∠=∠ ∴23∠∠=在BCO 和ODA 中32BCO ODA BO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BCO ODA ≌(AAS )∴BC OD =,CO AD =∴CD CO OD AD BC =+=+(3)点B 的坐标为()1,2-.过程如下:过B 、C 两点作y 轴垂线,垂足分别为M 、N ,同理(1)可得,CN =AM ,AN =MB ,∵点A 的坐标为(0,1),点C 的坐标为()3,2,∴CN =AM =3,ON =2,OA =1,∴MB =AN =ON -OA =1,OM =AM -OA =2,∵点B 在第四象限,∴点B 坐标为:()1,2-.【点睛】主要考查了等腰直角三角形的性质,全等三角形的判定和性质、图形与坐标变换,构造出全等三角形是解本题的关键.24. 1.5cm DE =.【分析】根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证明△BCE ≌△CAD ;根据全等三角形的对应边相等得到AD =CE ,BE =CD ,利用DE =CE−CD ,即可解答.【详解】AD CE ⊥,BE CE ⊥90ADC CEB ∴∠=∠=︒90BCE CBE ∴∠+∠=︒又90ACB ∠=︒90BCE ACD ∴∠+∠=︒CBE ACD ∴=∠在ACD △和CBE △中ADC CEB ACD CBE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ∴△≌△CD BE ∴=,AD CE =又 2.5cm AD =,1cm BE =2.5cm CE ∴=,1cm =CD2.51 1.5cm DE CE CD ∴=-=-=.【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ACD CBE ∴≌的三个条件.25.见解析【分析】由AD BE =,得AB=DE ,由//BC EF ,得ABC E ∠=∠,根据SAS 可证.【详解】证明:∵AD BE =,∴AD BD BE BD +=+,∴AB DE =,∵//BC EF ,∴ABC E ∠=∠,在ABC 和DEF 中,AB DE ABC E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌.【点睛】本题考查了用“边角边”定理判断两个三角形全等,解题关键是挖掘题目隐含的全等条件,根据判定定理证明.26.(1)a>b>c;(2)见解析【分析】(1)a、b、c两两作差可得出a、b、c之间的大小关系;(2)对于任意一个三角形的三边a,b,c,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a-b=m2+n2-m2=n2>0;a-c=m2+n2-mn=(m-n)2+mn>0;b-c= m2-mn=m(m-n)>0∴a>b>c;(2)由(1)a>b>c可得,a+b>c∵a-b= m2+n2-m2=n2<mn∴a-b<c∴以a、b、c为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。

专题 认识三角形(与三角形有关的线段)(专项练习)数学七年级下册(北师大版)

专题 认识三角形(与三角形有关的线段)(专项练习)数学七年级下册(北师大版)

专题4.2 认识三角形(与三角形有关的线段)(基础篇)(专项练习)一、单选题1.下列图形具有稳定性的是( )A .B .C .D .2.在△ABC 中,若△A -△B =90°,则△ABC 是( ) A .钝角三角形 B .直角三角形C .锐角三角形D .等边三角形3.下列线段中不能组成三角形的是( ) A .2,4,3B .12,6,8C .5,12,9D .3.5,6,2.54.图中,以DE 为边的三角形有( )A .2个B .3个C .4个D .5个5.以下是在钝角三角形ABC 中画BC 边上的高,其中画法正确的是( )A .B .C .D .6.如图,在ABC 中,AE 是高,BD 是角平分线,CF 是中线,下列说法不正确的是( )A .ACF BCF ∠=∠B .ABD CBD ∠=∠C .AEC AEB ∠=∠D .AF BF =7.周末李强和朋友到森林公园游玩,为测量园内湖岸A ,B 两点之间的距离,如图,李强在湖的一侧选取了一点O ,测得20m OA =,8m OB =,则A ,B 间的距离可能是( )A .10mB .22mC .30mD .32m8.如图,在ABC 中,12∠=∠,G 为AD 的中点,延长BG 交AC 于E .F 为AB 上一点,CF AD ⊥于H ,下面判断正确的有( )A .AH 是ACF △的角平分线和高B .BE 是ABD △边AD 上的中线C .FH 是ABD △边AD 上的高D .AD 是ABE 的角平分线9.M 是直线l 上一点,N 是直线l 外一点,在直线l 上求作一点P ,使得PM PN -的值最大,则这点P ( )A .与M 重合B .在M 的左边C .在M 的右边D .是直线l 上任一点10.如图,在ABC 中,已知点D ,E ,F 分别为边AC BD CE ,,的中点,且阴影部分图形面积等于4平方厘米,则ABC 的面积为( )平方厘米A .8B .12C .16D .18二、填空题11.一个三角形的两条边长分别为3,5,周长为11,那么它的第三边长为__________. 12.已知三角形的三边长分别为2,5,x ,则x 的取值范围是______.13.如图,AD 为ABC 的中线,BE 为ABD 的中线.若ABC 的面积为30,5BD =,则BDE 中BD 边上的高为______.14.如图,在ABC 中,AD 是BC 边上的中线,ADC △的周长比ABD △的周长多4,24AB AC +=,则AC 的长为__________.15.如图,在三角形ABC 中,AD 是中线,DE AB ⊥于E ,DF AC ⊥于F ,若6cm,4cm AB AC ==,则DEDF=____________.16.如图,△ABC 的角平分线AD ,中线BE 相交于点O ,有下列结论:△AO 是△ABE 的角平分线;△BO 是△ABD 的中线;△DE 是△ADC 的中线;△ED 是△EBC 的角平分线.其中正确结论的序号是 ________.17.已知a 、b 、c 是ABC 的三边,74a b ==,,c 为整数,则c 的最大值为_______. 18.如图所示,BC 是新建快速公路,长度为10km ,90A ∠=︒,6AB =km ,8AC =km ,一小镇位于点A ,现在该小镇要修一条公路到达快速公路,则修这条公路最短长度为______km .三、解答题19.如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm . (1) 求第三边x 的范围;(2) 当第三边长为奇数时,求三角形的周长.20.某木材市场上的木棍规格与价格如表:(1) 现再从该市场上购买一根木棍,钉成一个三角形支架,若接头忽略不计,问有几种购买方案?(2) 若想花费最少的钱,则他应该选择的规格是哪种?21.如图,ABC 中,按要求画图: (1) BAC ∠的平分线AD ;(2) 画出ABC 中BC 边上的中线AE ; (3) 画出ABC 中AB 边上的高CF .22.已知a ,b ,c 为三角形的三边,满足654a b c==,且26a b c +-=,求三角形周长.23.如图所示,已知,AD AE 分别是ABC 的高和中线,6cm,8cm,10cm,90AB AC BC CAB ===∠=︒.试求:(1) AD 的长; (2)ABE 的面积;(3) ACE △和ABE 的周长的差.24.如图,点D ,E ,F 分别是ABC 的三条边的中点,设ABC 的面积为S ,求DEF 的面积.你可以这样考虑:(1) 连接AE ,AEC △的面积是多少?(2) 由第(1)题,你能求出ECF △的面积吗?ADF △和DBE 的面积呢?参考答案1.D【分析】根据三角形具有稳定性解答.解:选项中只有选项D是三角形组成,故具有稳定性.故选:D.【点拨】本题考查了三角形具有稳定性,是基础题,需熟记,关键是根据三角形具有稳定性解答.2.A【分析】由已知条件,结合三角形的分类即可解答.解:在三角形ABC中,△A-△B=90°,∴∠=︒+∠A B90∴∠>︒A90△△ABC是钝角三角形故选:A.【点拨】本题考查了三角形的分类,是基础考点,掌握相关知识是解题关键.3.D【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边对各选项分析判断.+>,△能够组成三角形,故本选项不符合题意;解:A、△234B、△6812+>,△能够组成三角形,故本选项不符合题意;+>,△能够组成三角形,故本选项不符合题意;C、△5912+=,△不能够组成三角形,故本选项符合题意.D、△3.5 2.56故选:D.【点拨】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.4.C【分析】根据三角形的边得出三角形即可.解:以DE为边的三角形有△DEC,△AED,△DEF,△BED,故选:C.【点拨】此题考查三角形,关键是根据三角形的边解答.5.D【分析】找到经过顶点A且与BC垂直的AD所在的图形即可.解:A、没有经过顶点A,不符合题意;B、AD不垂直于BC,不符合题意;C 、垂足没有在BC 上,不符合题意;D 、高AD 交BC 的延长线于点D 处,符合题意. 故选:D .【点拨】本题考查了三角形的高的画法,过三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫做高,熟练掌握此定义是解决问题的关键.6.A【分析】根据三角形角平分线、高和中线的性质逐一判断即可.解:A 、当CF 是角平分线时,ACF BCF ∠=∠一定成立,但是CF 是中线,所以选项描述错误,故本选项符合题意;B 、由于BD 是角平分线,所以ABD CBD ∠=∠,故本选项不符合题意;C 、由于AE 是高,所以90AEC AEB ∠=∠=︒,故本选项不符合题意;D 、由于CF 是中线,所以点F 是AB 边的中点,即AF BF =,故本选项不符合题意; 故选:A【点拨】本题考查了三角形的角平分线、高和中线,解决本题的关键是掌握以上的性质并熟练的运用.7.B【分析】根据三角形三边的关系求出AB 的取值范围即可得到答案. 解:由题意得,OA OB AB OA AB -<<+, △20m OA =,8m OB =, △12m 28m AB <<, △只有B 选项符合题意, 故选B .【点拨】本题主要考查了三角形三边的关系,熟知三角形中,任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.8.A【分析】连接三角形的顶点和对边中点的线段叫三角形的中线;三角形的一个角的角平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高,据此逐项判断即可.解:A 、AH 是ACF △的角平分线和高,故此选项判断正确,符合题意; B 、BG 是ABD △边AD 上的中线,故此选项判断错误,不符合题意; C 、FH 为AHF △边AH 上的高,故此选项判断错误,不符合题意 D 、AD 是ABC 的角平分线,故此选项判断错误,不符合题意, 故答案为:A .【点拨】本题考查了三角形的角平分线、中线、高线的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和对边相交的交点之间的线段.正确理解定义是解题的关键.9.A【分析】点P ,点M ,点N 可构成P MN ,根据三角形三边关系分析即可. 解:当点P ,点M ,点N 可构成PMN ,根据三角形三边关系得:PM PN MN -<;点P 与点M 重合时,0PM PN MN MN -=-=; △PM PN MN -≤,即当点P 与点M 重合时,PM PN -的值最大, 故选:A .【点拨】本题考查最短路线问题,利用三角形三边关系分析问题是解题的关键. 10.C【分析】根据三角形的中线得出4AEFAFCS S==,ABE AED S S =△△,BECECDSS=,然后结合图形求解即可.解:△F 是EC 的中点, △142AEFAFCAECS SS ===,△8AECS=,△ E 是BD 的中点 , △ABE AED S S =△△,BECECDS S=,△8AEDECDAECS S S +==, △8ABE BEC AECS S S +==, △228=16ABC ABE BECAECAECSSSSS=++==⨯,故选:C .【点拨】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键.11.3【分析】根据三角形周长的定义求解即可.解:△一个三角形的周长为11,两条边长分别为3,5, △第三边长为:11353--=, 故答案为:3.【点拨】题目主要考查三角形的周长计算,理解题意是解题关键. 12.3<x <7【分析】根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和解答.解:根据三角形的三边关系,得:5﹣2<x <2+5,即:3<x <7. 故答案为:3<x <7.【点拨】本题考查了能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条就能够组成三角形.13.3【分析】先根据三角形的中线把三角形分成面积相等的两个三角形求得BDE △的面积,再根据三角形的面积公式求解即可.解:△AD 为ABC 的中线,ABC 的面积为30, △1152ABDABCSS ==,△BE 为ABD 的中线, △11522BDEABDSS ==, △5BD =,△BDE 中BD 边上的高为152532⨯÷=, 故答案为:3.【点拨】本题考查三角形的中线性质,熟知三角形的中线把三角形分成面积相等的两个三角形是解答的关键.14.14【分析】由ADC △的周长比ABD △的周长多4可得4AC AB -=,24AC AB +=,然后问题可求解.解:△AD 是BC 边上的中线, △BD CD =, △ADCC AD CD AC =++,ABDCAD BD AB =++,△4ADCABDCCAD CD AC AD BD AB AC AB -=++---=-=,△24AC AB +=, △228AC =, △14AC =; 故答案为14.【点拨】本题主要考查三角形的中线,熟练掌握三角形的中线得到相等的线段是解题的关键.15.23【分析】在ABC 中,可知ABD △和ADC △的面积相等;利用等面积法,即可求解.解:△在三角形ABC 中,AD 是中线, △BD CD =, △ABDADCSS=.△DE AB ⊥于E ,DF AC ⊥于F ,6cm AB =,4cm AC =, △1122AB DE AC DF ⨯=⨯, △116422DE DF ⨯⨯=⨯⨯, △4263DE DF ==. 【点拨】本题主要考查了用等面积法、三角形的中线,理解等面积法和掌握三角形中线的知识点是解题的关键.16.△△【分析】由已知条件易得△BAD=△CAD ,AE=CE ,根据这两个条件判断所给选项是否正确即可.解:△△ABC 的角平分线AD 、中线BE 相交于点O , △△BAD =△CAD ,AE =CE ,△在△ABE 中,△BAD =△CAD ,△AO 是△ABE 的角平分线,故△正确; △AO ≠OD ,所以BO 不是△ABD 的中线,故△错误; △在△ADC 中,AE =CE ,DE 是△ADC 的中线,故△正确;△△ADE 不一定等于△EDC ,那么ED 不一定是△EBC 的角平分线,故△错误; △正确的有2个选项△△.【点拨】本题考查三角形的角平分线、中线性质,熟练掌握性质是解题的关键 17.10【分析】根据已知的两边确定第三边的取值范围,再根据c 为整数,求此三角形的边c 的长度.解:△74a b ==,,△7474c -<<+,即311c <<, 又c 为整数, △c 的最大值为10. 故答案为:10.【点拨】本题考查了三角形三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.18.4.8【分析】过点A 作AD BC ⊥于点D ,根据点到直线的距离,垂线段最短,进而等面积法即可求解.解:如图,过点A 作AD BC ⊥于点D , 则AD 是ABC ,BC 边上的高,△90A ∠=︒,6AB =,8AC =,10BC =, △1122ABC S AB AC AD BC =⨯⨯=⨯⨯△, △68 4.810AB AC AD BC ⨯⨯===, 故答案为:4.8.【点拨】本题考查了垂线段最短,三角形的面积公式,三角形的高,掌握垂线段最短是解题的关键.19.(1)7<x <11 (2)20cm【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长. 解:(1)由三角形的三边关系得:9292x -<<+,即711x <<;(2)△第三边长的范围为711x <<,且第三边长为奇数,△第三边长为9,则三角形的周长为:99220cm ++=【点拨】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.20.(1)四种 (2)3m【分析】(1)根据三角形的三边关系,求出第三边的取值范围,即可求解;(2)根据第三根木棍时,花费最少,即可求解.(1)解:设第三根木棒的长度为m x ,根据三角形的三边关系可得:5353x -<<+,解得28x <<,3x =,4,5,6,共4种,一共有四种方案.(2)解:△规格为3m 的木棍价格最低,△应该选择的规格是3m .【点拨】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.21.(1)见分析 (2)见分析 (3)见分析【分析】(1)根据角平分线的画法即可画出BAC ∠的平分线AD ;(2)取BC 的中点E ,连接AE ,即可画出ABC 中BC 边上的中线AE ;(3)根据钝角三角形的高线的画法即可画出ABC 中AB 边上的高CF ,即过点C 画AB 的垂线CF 即可.(1)解:如图,AD 即为所求;(2)解:如图,中线AE 即为所求;(3)解:如图,高CF 即为所求.【点拨】本题考查了作图﹣复杂作图,三角形的角平分线、中线和高,解决本题的关键是掌握基本作图方法.22.30【分析】设654a b c k ===,可得6a k =,5b k =,4c k =,再由26a b c +-=,可得2k =,从而得到612a k ==,510,b k ==,48c k ==,即可求解. 解:设654a b c k ===, △6a k =,5b k =,4c k =,△26a b c +-=,△6586k k k +-=,△2k =,△612a k ==,510,b k ==,48c k ==,△30a b c ++=,即三角形的周长为30.【点拨】本题主要考查了求三角形的周长,根据题意得到a ,b ,c 的长值是解题的关键. 23.(1)AD 的长度为4.8cm(2)ABE 的面积是212cm (3)ACE △和ABE 的周长的差是2cm【分析】(1)由1122AB AC BC AD =再代入数值即可得到答案; (2)先求解()2116824cm 22ABCSAB AC ==⨯⨯=,再利用三角形的中线的性质可得答案;(3)利用三角形的中线的性质列式进行计算即可. (1)解:△90,BAC AD ∠=︒是边BC 上的高,△1122AB AC BC AD =, △6cm,8cm,10cm,AB AC BC ===△()4.8cm AD =,即AD 的长度为4.8cm ;(2)如图,△ABC 是直角三角形,6cm,8cm,10cm,AB AC BC ===△()2116824cm 22ABC S AB AC ==⨯⨯=. 又△AE 是边BC 的中线,△BE CE =,△ABE ACE SS =, △()2112cm 2ABE ABCS S ==. △ABE 的面积是212cm .(3)△AE 为BC 边上的中线,△BE CE =,△ACE △的周长-ABE 的周长()()862cm AC AE CE AB BE AE AC AB =++-++=-=-=, 即ACE △和ABE 的周长的差是2cm .【点拨】本题考查的是三角形的高,中线的含义,三角形面积的计算,掌握“三角形的高,中线的含义”是解本题的关键.24.(1)12S (2)14ECF S S =△,14DBE S S =△,14ADF S S =△,14DEF S S =△ 【分析】(1)根据三角形中线平分三角形面积进行求解即可;(2)根据三角形中线平分三角形面积进行求解即可.(1)解:△E 是BC 的中点, △1122AEC ABC S S S ==△△; (2)解:△F 是AC 的中点, △1124ECF ACE S S S ==△△; 同理可得111244DBE ABE ABC S S S S ===△△△; 如图所示,连接CD , 同理可得111244ADF ACD ABC S S S S ===△△△, △14DEF ABC ECF ADF BDE S S S S S S ==--=△△△△△.【点拨】本题主要考查了三角形中线的性质,熟知三角形中线平分三角形面积是解题的关键.。

七年级数学三角形复习题人教版

七年级数学三角形复习题人教版

初一数学三角形复习题一.选择题1.下列给出的三条线段中,能组成三角形的是( )A. 6. 7 .2.B. 三边之比为5:6:11C. 30cm8cm10cmD. 三边之比为5:3:1 2.如图,在△ABC 中,∠C =80°,D 为AC 上一点,则x 可能是( ) A.5 B.10 C3.在△ABC 中,D ,E 分别为BC 上两点,且BD=DE=EC,则图中面积相等的三角形有( )对。

9x°CBDAAD CBE22211111(第2题) (第3题) (第4题)4.观察图和所给表格中的数据后回答: 当梯形的个数为n 时,图形周长为( ) A.3n B.3n+1 C.3n+2 D.3n+3 错误..的个数是( ) (1)钝角三角形三边上的高都在三角形的外部(2)三角形中,至少有两个锐角,最多有一个直角或钝角(3)三角形的一个外角等于它的两个内角的和(4)三角形的一个外角大于它的任何一个内角(5)三角形的三个外角(每个顶点只取一个外角)中,钝角个数至少有2个6.若一个三角形的三个内角度数之比为3:2:1,则与之相邻的三个外角度数之比为( ) A. 3:2:1 B. 1:2:3 C. 5:4:3 D. 3:4:5 7.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形 D.属于哪一类不能确定 8.下面各角能成为某多边形的内角和的是( )A .430°B .4343°C .4320°D .4360°ACO B109. n 边形所有对角线的条数有( ) A. ()12n n -条 B.()22n n -条 C. ()32n n -条 D. ()42n n -条 10. 如右图,∠ABC 和∠ACB 的角平分线交于O 点,∠A=80°,则∠BOC 等于( ) A. 95° B. 120° C. 130° D. 无法确定11、如图,AB//CD//EF,那么∠BAC+∠ACE+∠CEF=( ) . A 、1800B 、2700C 、3600 D 、540012、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是( ).13、下列图形中,正确画出AC 边上的高的是( ).14、如果mn<O ,且m>O ,那么点P(m 2,m-n)在( ).A 、第一象限B 、第二象限C 、第三象限D 、第四象限15.已知点A ()2,2-,如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是( ) A 、()2,2 B 、()2,2- C 、()1,1-- D 、()2,2--二.填空题1.已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为.2、在平面直角坐标系中,点P(-4,5)到x 轴的距离为______,到y 轴的距离为________.3、若等腰三角形的边长分别为3和6,则它的周长为________.4、如果一个等腰三角形的外角为100°,则它的底角为________.5、如图,已知直线AE∥BF,∠EAC=28°,∠FBC=50°,∠ACB 的度数为.6、过钝角∠AOB 的顶点O 作CO ⊥AO ,CO 分∠AOB 为∠AOC 与∠BOC 两部分且∠AOC 是 ∠BOC 的4倍多2度,则∠AOB 的度数为.第(5)题FED C B A 11E D CB AF ADCBEFADC BE(第5题) (第7题图) (第9题)(第10题)7.如图,⊿A B C 中,∠A = 40°,∠B = 72°,CE 平分∠A CB ,CD ⊥A B 于D ,D F ⊥C E ,则∠CD F =度。

《第9章三角形》期末综合复习能力提升训练(附答案) 2020-2021学年七年级数学冀教版下册

《第9章三角形》期末综合复习能力提升训练(附答案) 2020-2021学年七年级数学冀教版下册

2021年冀教版七年级数学下册《第9章三角形》期末综合复习能力提升训练(附答案)1.如图,将一副直角三角板按如图所示叠放,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的大小是()A.10°B.15°C.25°D.30°2.下列长度的四根木棒,能与长度分别为1cm和5cm的木棒构成三角形的是()A.3cm B.5cm C.6cm D.10cm3.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形4.下列长度的三条线段(单位:cm)能组成三角形的是()A.1,2,1B.4,5,9C.6,8,13D.2,2,45.下面每组数分别是三根小木棒的长度,用它们不能摆成一个三角形的是()A.5cm,10cm,5cm B.7cm,8cm,9cmC.3cm,4cm,5cm D.6cm,20cm,20cm6.如图,在△ABC中,D是BC中点,E是AD中点,连接BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.如图,△ABC的面积是16,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG 的面积是()A.6B.7C.8D.98.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等9.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A.B.C.D.10.如图,三角形ABC的面积为1,分别延长AB、BC、CA至M、N、P,使得BM=2AB,CN=3BC,AP=4CA,则三角形MNP面积是.11.如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE与CF交于G,如果∠BDC =140°,∠BGC=110°,则∠A=.12.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=.13.如图,∠A+∠B+∠C+∠D+∠E+∠F=度.14.如图,在△ABC中,AB=8,AC=5,AD为中线,则△ABD与△ACD的周长之差=.15.如图,在Rt△ABC中,∠ACB=90°,AC=5,点G是重心,GH⊥BC,垂足是H,则GH的长为.16.如图,G为△ABC的重心,GE∥BC,则GE:BC=.17.如图,∠A+∠B+∠C+∠D+∠E=度.18.如图,将一副直角三角尺按图③放置,使三角尺①的长直角边与三角尺②的某直角边在同一条直线上,则图③中的∠1=°.19.在小学时,我们已经了解过“三角形的内角和是180°”,那为什么三角形的内角和一定是180°呢?小红在学习完平行线一节后,想到可以利用平行线的知识证明这个结论.如图1,是小红为证明三角形内角和是180°所采取的构图方法:延长△ABC的边BC至点E,过点C作CD平行于AB.(1)请你利用小红的构图,说明∠A+∠B+∠ACB=180°的理由.(2)如图2,BC和AD相交于点O,BA⊥AD,DC⊥BC,BE平分∠CBA,延长AD至点G,作∠CDG的角平分线DF.请结合(1)中已经证明的结论:三角形内角和是180°,解决下列问题.①写出证明∠OBA=∠ODC的推理过程.②通过说理判断BE和DF是否平行.20.如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC 于点F.(1)判断∠ADE与∠EFC是否相等,并说明理由;(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.21.已知△ABC.(1)如图1,若P为BC边上的任意一点(与点B、C不重合),则图中共有个三角形;(2)如图2,若P1、P2分别为BC边上的任意两点(与点B、C不重合),则图中共有个三角形;(3)若在BC边上任取4点(与点B、C不重合),则共有个三角形;(4)若在BC边上任取n点(与点B、C不重合),则共有个三角形.22.已知:如图,△ABC的两个外角的平分线交于点P,如果∠A=40°,求∠BPC的度数.参考答案1.解:∵∠B=45°,∴∠BAC=45°,∴∠EAF=135°,∴∠AFD=135°+30°=165°,∴∠BFD=180°﹣∠AFD=15°故选:B.2.解:设第三根木棒的长为xcm,∵两木棒的长度分别为1cm和5cm,∴5﹣1<x<5+1,即4<x<6,∴只有5cm的木棒符合题意,故选:B.3.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x,3x,5x,∴2x+3x+5x=180°,解得x=18°,∴5x=5×18°=90°.∴此三角形是直角三角形.故选:C.4.解:根据三角形的三边关系,知A、1+1=2,不能够组成三角形,故本选项错误;B、4+5=9,不能够组成三角形,故本选项错误;C、6+8>13,能够组成三角形,故本选项正确;D、2+2=4,不能够组成三角形,故本选项错误.故选:C.5.解:A、5+5=10,故以这三条线段不能构成三角形,选项正确;B、7+8>9,故以这三条线段能构成三角形,选项错误;C、3+4>5,故以这三条线段能构成三角形,选项错误;D、6+20>20,故以这三条线段可以构成三角形,选项错误.故选:A.6.解:∵D是BC中点,∴△ABD的面积=△ACD的面积=×△ABC的面积=10,∵E是AD中点,∴△EBD的面积=△ABD的面积=5,△ECD的面积=△ACD的面积=5,∴△BCE的面积=△EBD的面积+△ECD的面积=10,故选:B.7.解:∵点D是BC的中点,∴AD是△ABC的中线,∴△ABD的面积=△ADC的面积=×△ABC的面积,同理得:△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=×16=2,△AEG的面积=2,△BCE的面积=×△ABC的面积=8,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=×8=2,∴△AFG的面积是2×3=6,故选:A.8.解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选:C.9.解:延长AG交BC于D,如图,∵点G是△ABC的重心,∴CD=BD=BC=4,AG=2GD,∵GE⊥AC,∴∠AEG=90°,而∠C=90°,∴GE∥CD,∴EG=CD=×4=.故选:C.10.解:连接MC,AN∵2AB=BM,∴S△BCM=2S△ABC,∴S△BCM=2×1=2,∵3BC=CN,∴S△MNC=3S△BCM,S△ACN=3S△ABC,∴S△MNC=3×2=6,S△ACN=3×1=3,∵4CA=AP,∴S△ANP=4S△ACN,S△AMP=4S△AMC,∴S△ANP=4×3=12,S△AMP=4×(2+1)=12,∵S△MNP=S△ABC+S△BCM+S△MNC+S△ACN+S△ANP+S△AMP,∴S△MNP=1+2+6+3+12+12=36.故答案为:36.11.解:连接BC,∵∠BDC=140°,∴∠DBC+∠DCB=180°﹣140°=40°,∵∠BGC=110°,∴∠GBC+∠GCB=180°﹣110°=70°,∴∠GBD+∠GCD=70°﹣40°=30°,∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABG+∠ACG=∠GBD+∠GCD=30°,在△ABC中,∠A=180°﹣40°﹣30°﹣30°=80°.故答案为:80°.12.解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=×(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.13.解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.14.解:∵AD为中线,∴BD=CD,则C△ABD﹣C△ACD=(AB+AD+BD)﹣(AC+AD+CD)=AB+AD+BD﹣AC﹣AD﹣CD=AB﹣AC=8﹣5=3,故答案为:3.15.解:连接BG并延长交AC于D,如图,∵点G是△ABC的重心,∴BG=2GD,CD=AD=,∵HG⊥BC,∠C=90°,∴GH∥CD,∴GH=.故答案为.16.解:延长AG交BC于H,∵G为△ABC的重心,∴GE:BC=1:3,故答案为:1:3.17.解:∵∠2是△OBC的外角,∴∠B+∠C=∠2,∵∠1是△AEF的外角,∴∠A+∠E=∠1,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案为:180.18.解:由题意得,∠2=60°,∠3=45°,则∠1=∠2+∠3=105°,故答案为:105.19.解:(1)因为CD∥AB,所以∠A=∠ACD,∠B=∠DCE,又因为∠ACB+∠ACD+∠DCE=∠BCE=180°,所以∠A+∠B+∠ACB=180°;(2)因为BA⊥AD,DC⊥BC,所以∠A=∠C=90°,因为∠BOA=∠DOC(对顶角相等),在△ABO中,∠OBA+∠A+∠BOA=180°,在△DOC中,∠ODC+∠C+∠DOC=180°,所以∠OBA=∠ODC;(3)因为∠OME=∠BMA=90°﹣∠ABE=90°﹣∠OBA,因为∠GDF=∠GDC=(180°﹣∠ODC)=90°﹣∠ODC,因为∠OBA=∠ODC,所以∠OME=∠GDF,所以BE∥DF.20.解:(1)∠ADE=∠EFC,理由:∵DE∥BC,∴∠ADE=∠B,∵CD⊥AB,EF⊥CD,∴AB∥EF,∴∠B=∠EFC,∴∠ADE=∠EFC;(2)∵∠ACB=72°,∠A=60°,∴∠B=180°﹣∠A﹣∠ACB=48°,∵CD⊥AB,∴∠BDC=90°,∴∠DCB=180°﹣90°﹣48°=42°.21.解:(1)有△ABP、△ABC、△APC共3个三角形,即和A组成3个三角形.(2)有△ABP1、△ABP2、△ABC、△AP1P2、△AP1C、△ACP2共6个三角形.(3)BC上有15条线段,即和A组成15个三角形.(4)BC上有条线段,即和A组成个三角形.故答案为3,6,15,.22.解:∵∠A=40°,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠EBC+∠FCB=360°﹣140°=220°,∵BP、CP是△ABC的外角平分线,∴∠PBC=∠EBC,∠PCB=∠FCB,∴∠PBC+∠PCB=(∠EBC+∠FCB)=110°,∴∠BPC=180°﹣(∠PBC+∠PCB)=70°。

三角形的认识大题专练(分层培优解答30题,七下苏科)七年级数学下学期复习备考高分秘籍【苏科版】

三角形的认识大题专练(分层培优解答30题,七下苏科)七年级数学下学期复习备考高分秘籍【苏科版】

2022-2023学年七年级数学下学期复习备考高分秘籍【苏科版】专题2.2三角形的认识大题专练(分层培优解答30题,七下苏科)A卷基础过关卷(限时50分钟,每题10分,满分100分)1.(2021春•广陵区校级期中)已知a、b、c是一个三角形的三条边长,则化简|a+b﹣c|+|b﹣a﹣c|的结果是多少?2.(2020春•相城区期中)若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.3.(2019春•大丰区期中)如图,在△ABC中,点D在BC上,且∠BAD=∠CAD,E是AC的中点,BE 交AD于点F.图中哪条线段是哪个三角形的角平分线?哪条线段是哪个三角形的中线?4.(2022春•盱眙县期中)如图,已知AD、AE分别是△ABC的高和中线,AB=3cm,AC=4cm,BC=5cm,∠BAC=90°.试求:(1)△ABE的面积;(2)AD的长度.5.(2022春•姜堰区期末)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都在格点上.(1)利用网格画直线CD,使CD⊥AB,且点D在格点上,并标出所有符合条件的格点D;(2)在(1)的条件下,连接AD、BD,求△ABD的面积.6.(2022春•高港区校级月考)已知△ABC的三边长分别为3、5、a,化简|a﹣2|﹣|a﹣1|+|a﹣8|.7.(2022春•锡山区校级月考)已知a,b,c是一个三角形的三边长,(1)填入“>、<或=”号:a﹣b﹣c0,b﹣a﹣c0,c+b﹣a0.(2)化简:|a﹣b﹣c|+|b﹣a﹣c|﹣|c+b﹣a|.8.(2022春•亭湖区校级月考)如图,AD、AE、AF分别是△ABC的高线、角平分线和中线.(1)若S△ABC=20,CF=4,求AD的长.(2)若∠C=70°,∠B=26°,求∠DAE的度数.9.(2022春•泗阳县月考)如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时,若AE=6,△ABC的面积为30,求CD的长;(2)当AD为∠BAC的角平分线时,若∠C=66°,∠B=36°,求∠DAE的度数.10.(2022春•阜宁县期中)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.(1)∠2与∠DCB相等吗?为什么?(2)试说明CD是△ABC的高.B卷能力提升卷(限时60分钟,每题10分,满分100分)11.(2022春•东台市月考)如图,已知△ABC的周长为24cm,AB=6cm,BC边上的中线AD=5cm,△ABD 的周长为16cm,求AC的长.12.(2019春•锡山区期中)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.13.(2022春•鼓楼区期末)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.14.(2022春•秦淮区期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.15.(2020春•姜堰区期中)如图,在△ABC中,AE为边BC上的高,点D为边BC上的一点,连接AD.(1)当AD为边BC上的中线时.若AE=4,△ABC的面积为24,求CD的长;(2)当AD为∠BAC的角平分线时.①若∠C=65°,∠B=35°,求∠DAE的度数;②若∠C﹣∠B=20°,则∠DAE=°.16.如图,点P是△ABC内一点,连接BP,并延长交AC于点D.(1)试探究线段AB+BC+CA与线段2BD的大小关系;(2)试探究AB+AC与PB+PC的大小关系.17.如图,已知D、E是△ABC内的两点,问AB+AC>BD+DE+EC成立吗?请说明理由.18.如图,已知O是△ABC内的一点,试说明:(1)OB+OC<AB+AC;(2)OA+OB+OC>(AB+BC+AC).19.(2021秋•铁东区校级月考)如图,AD为△ABC中BC边上的中线(AB>AC)(1)求证:AB﹣AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.20.(2022秋•乌鲁木齐县月考)已知a,b,c是△ABC的三边长,a=4,b=6,设△ABC的周长是x.(1)求c与x的取值范围;(2)若x是小于18的偶数,试判断△ABC的形状.C卷培优压轴卷(限时70分钟,每题10分,满分100分)21.(2022春•宝应县校级月考)如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上.(1)若三角形BDE的周长与四边形ACDE的周长相等,求线段AE的长.(2)若三角形ABC的周长被DE分成的两部分的差是2cm,求线段AE的长.22.(2020春•如东县期末)如图,△ABC中,∠ACB=90°,AC=16cm,BC=12cm,AB=20cm,若动点P从点C开始按沿C→A→B→C的路径运动,且速度为每秒3cm,设运动时间为t秒.(1)当CP把△ABC的面积分成相等的两部分时,t的值为多少?(2)当t=8时,求CP把△ABC分成的两部分面积之比.23.(2019春•无锡期末)如图,已知△ABC中,点D、E分别在边AB、AC上,点F在CD上.(1)若∠AED=∠ACB,∠DEF=∠B,求证:EF∥AB;(2)若D、E、F分别是AB、AC、CD的中点,连接BF,若四边形BDEF的面积为6,试求△ABC的面积.24.(2019秋•江阴市期中)如图,P是长方形ABCD内一点,三角形ABP的面积为a.(1)若长方形ABCD的面积为m,则三角形CPD的面积为;(用含m、a的代数式表示)(2)若三角形BPC的面积为b(b>a),则三角形BPD的面积为.(用含a、b的代数式表示)25.(2020春•江阴市期中)如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3cm,设运动的时间为t秒.(1)当t=时,CP把△ABC的周长分成相等的两部分?(2)当t=时,CP把△ABC的面积分成相等的两部分?(3)当t为何值时,△BCP的面积为18cm2?26.(2022秋•西城区校级期中)已知△ABC(如图),按下列要求画图:(1)△ABC的中线AD;(2)△ABD的角平分线DM;(3)△ACD的高线CN;(4)若C△ADC﹣C△ADB=3,(C表示周长)且AB=4,则AC=.27.(2020春•张家港市期末)如图,已知∠BDC+∠EFC=180°,∠DEF=∠B.(1)求证:ED∥BC;(2)若D,E,F分别是AB,AC,CD边上的中点,四边形ADFE的面积为6.①求△ABC的面积;②若G是BC边上一点,CG=2BG,求△FCG的面积.28.(2020春•姑苏区期中)【数学经验】三角形的中线的性质:三角形的中线等分三角形的面积.【经验发展】面积比和线段比的联系:如图1,M为△ABC的AB上一点,且BM=2AM,若△ABC的面积为a,若△CBM的面积为S,则S=(用含a的代数式表示).【结论应用】如图2,已知△CDE的面积为1,,,求△ABC的面积.【迁移应用】如图3,在△ABC中,M是AB的三等分点(AM=AB),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为.29.(2021秋•秦淮区校级月考)如图,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒3个单位,设运动的时间为t秒.(1)当t为何值时,CP把△ABC的面积分成相等的两部分;(2)当t=5时,CP把△ABC分成的两部分面积之比是S△APC:S△BPC=;(3)当t为何值时,△BPC的面积为18.30.(2022春•沭阳县月考)如图,在△ABC中,∠A=∠BCD,CD⊥AB于点D,BE平分∠ABC交CD、CA于点F、E.(1)求∠ACB的度数;(2)试说明∠CEF=∠CFE;(3)若AC=3CE,AB=4BD,△ABC、△CEF、△BDF的面积分别表示为S△ABC、S△CEF、S△BDF,且S=60,则S△CEF﹣S△BDF=(仅填结果).△ABC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B C 七年级(下)第七章《三角形》复习学校 班级 姓名 学号 [一] 认识三角形1.三角形有关定义:在图9.1.3(1)中画着一个三角形ABC .三角形的顶点采用大写字母A 、B 、C 或K 、L 、M 等表示,整个三角形表示为△ABC 或△KLM (参照顶点的字母).如图9.1.3(2)所示,在三角形中,每两条边所组成的角叫做三角形的内角,如∠ACB ;三角形中内角的一边与另一边的反向延长线所组成的角叫做三角形的外角,如∠ACD 是与△ABC的内角∠ACB 相邻的外角.图9.1.3(2)指明了△ABC 的主要成分.图9.1.32.三角形可以按角来分类:所有内角都是锐角――锐角三角形;有一个内角是直角――直角三角形; 有一个内角是钝角――钝角三角形;3三角形可以按角边分类:.把三条边都相等的三角形称为等边三角形(或正三角形);两条边相等的三角形称为等腰三角形,相等的两边叫做等腰三角形的腰;. 练习:1、图中共有( )个三角形。

A :5B :6C :7D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( )A :AE B :CD C :BF D :AF3、三角形一边上的高( )。

A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能4、能将三角形的面积分成相等的两部分的是( )。

A :三角形的角平分线B :三角形的中线C :三角形的高线D :以上都不对 6、具备下列条件的三角形中,不是直角三角形的是( )。

A :∠A+∠B=∠CB :∠A=∠B=12∠C C :∠A=90°-∠B D :∠A-∠7、一个三角形最多有 个直角,有 个钝角,有 个锐角。

8、△ABC 的周长是12 cm ,边长分别为a ,b , c , 且 a=b+1 , b=c+1 , 则a= cm , b= cm , c= cm 。

9、如图,AB∥CD ,∠ABD 、∠BDC 的平分线交于E ,试判断△BED 的形状?图9.1.4CD AC10 、如图,在4×4的方格中,以AB为一边,以小正方形的顶点为顶点,画出符合下列条件的三角形,并把相应的三角形用字母表示出来。

(1)钝角三角形是。

(2)等腰直角三角形是。

(3)等腰锐角三角形是。

[二] 三角形的内、外角和定理及其推论的应用1.三角形的一个外角等于两个内角的和;2.三角形三角形的一个外角任何一个与它不相邻的内角3. 三角形的内角和三角形的外角和等于练习:1、三角形的三个外角中,钝角最多有()。

A:1个B:2个C:3 个D:4 个2、下列说法错误的是()。

A:一个三角形中至少有两个锐角B:一个三角形中,一定有一个外角大于其中的一个内角C:在一个三角形中至少有一个角大于60°D:锐角三角形,任何两个内角的和均大于90°3、一个三角形的外角恰好等于和它相邻的内角,则这个三角形是()。

A:锐角三角形B:直角三角形C:钝角三角形D:不能确定4、直角三角形两锐角的平分线相交所成的钝角是()。

A:120°B:135°C:150°D:165°5、△ABC中,BCA∠=∠=∠3,1000,则.___________=∠B6、在△ABC中,∠A=100°,∠B-∠C=40°,则∠B= ,∠C= 。

7、如图1,∠B=50°,∠C=60°,AD为△ABC的角平分线,求∠ADB的度数。

9、已知:如图3,AE∥BD,∠B=28°,∠A=95°,求∠C的度数。

图1 图3[三]三角形三边关系的应用三角形的任何两边的和第三边. 三角形的任何两边的差第三边.图9.1.9A B C D 练习:1、以下列线段为边不能组成等腰三角形的是( )。

A :2、2、4B :6、3、6C :4、4、5D :1、1、12、现有两根木棒,它们的长度分别为40 cm 和50 cm ,若要钉成一个三角架,则在下列四根棒中应选取( )。

A :10 cm 的木棒B :40 cm 的木棒C :90 cm 的木棒D :100 cm 的木棒 3、三条线段a=5,b=3,c 为整数,从a 、b 、c 为边组成的三角形共有( ). A :3个 B :5个 C :无数多个 D : 无法确定4、在△ABC 中,a=3x ,b=4x ,c=14 ,则 x 的取值范围是( )。

A :2<x<14 B: x>2 C: x<14 D: 7<x<145、如果三角形的三边长分别为 m-1, m , m+1 (m 为正数),则m 的取值范围是( )。

A :m>0 B: m>-2 C: m >2 D: m < 26、等腰三角形的两边长为25cm 和12cm ,那么它的第三边长为 cm 。

7、工人师傅在做完门框后.为防变形常常像图4中所示的那样上两条斜拉的木条 这样做根据的数学道理是 。

8、已知一个三角形的周长为15 cm ,且其中的两边都等于第三边的2倍,求这个三角形的最短边。

9、如果a ,b ,c 为三角形的三边,且22()()0a b a c b c -+-+-=,试判断这个三角形的形状。

10、如右图,△ABC 的周长为24,BC=10,AD 是△ABC 的中线,且被分得的两个三角形的周长差为2,求AB 和AC 的长。

[四]多边形的内、外角和定理的综合应用n 边形的内角和为_________________;正n 边形的单个内角为 任意多边形的外角和都为________;正n 边形的单个外角为1、若四边形的四个内角大小之比为1:2:3:4,则这四个内角的大小为 。

2、如果六边形的各个内角都相等,那么它的一个内角是。

3、在各个内角都相等的多边形中,一个外角等于一个内角的13,则这个多边形的每个内角为度。

4、(n+1)边形的内角和比n边形的内角和大()。

A:180°B:360°C:n×180°D: n×360°5、n边形的内角中,最多有()个锐角。

A:1个B:2 个C:3个D:4个7、若多边形内角和分别为下列度数时,试分别求出多边形的边数。

①1260°②2160°8、已知n边形的内角和与外角和之比为9:2,求n。

9、考古学家厄莎·迪格斯发掘出一块瓷盘的碎片。

原来的瓷盘的形状是一个正多边形。

如果原来的瓷盘是正十六边形,那么它大概是三世纪和平王朝礼仪用的盘子;如果原来的瓷盘是正十八边形,那么它大概是十二世纪哇丁王朝宴会用的盘子,厄莎度量这块碎片的每一条边的长度,发现它们的大小都相同。

她猜想原来的完好的盘子所有的边的大小都相同的。

她再度量每块碎片上的角,发现它们的大小也相同。

她猜想,原来的完好的盘子所有角的大小也相同。

如果每一个角的度数是160°,那么这个盘子出自哪一个朝代呢?[五]用正多边形拼地板当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就拼成一个平面图形1、用正三角形和正方形组合铺满地面,每个顶点周围有个正三角形和个正方形。

2、任意的三角形、也能铺满平面。

4、下列正多边形地砖中不能铺满地面的正多边形是()。

A:正三角形 B:正四边形 C:正五边形 D:正六边形5、若铺满地面的瓷砖每一个顶点处由6块相同的正多边形组成,正多边形只能是()。

A:正三角形 B:正四边形 C:正六边形 D:正八边形6、现有一批边长相等的正多边形瓷砖,请你设计能铺满地面的瓷砖图形。

正十二边形正八边形正六边形正方形正三角形(1)能用相同的正多边形铺满地面的有。

(2)从中任取两种来组合,能铺满地面的正多边形组合是。

(3)从中任取三种来组合,能铺满地面的正多边形组合是。

(4)你能说出其中的数学道理吗?7、下列图形中,哪些图形能接成一个平面图形而不留一点空隙?第七章三角形单元测试卷班级姓名学号一、选择题(4分×8=32分)1.一个三角形的三个内角中()A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D、至少有两个锐角2.下列长度的三条线段中,能组成三角形的是()A、3cm,5cm ,8cmB、8cm,8cm,18cmC、0.1cm,0.1cm,0.1cmD、3cm,40cm,8cm3.如图1,点P有△ABC内,则下列叙述正确的是()A、︒=︒yx B、x°>y°C、x°<y°D、不能确定4.已知,如图,AB∥CD,∠A=700,∠B=400,则∠ACD=()A、550B、700C、400D、11005.下列图形中具有稳定性有()A、2个B、3个C、4个D、5个6.一个多边形内角和是10800,则这个多边形的边数为()第3题Py0x0CBADA(5)第4题CB(2)(1)(3)(4)(6)A 、 6B 、 7C 、 8D 、 9 7.如图所示,已知△ABC 为直角三角形,∠C=90,若烟图中虚线剪去∠C ,则∠1+∠2 等于( )A 、90°B 、135°C 、270°D 、315°8. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500 ,则 ∠BPC 等于( ) A 、90° B 、130° C 、270° D 、315° 二、 填空题(3分×10=30分)9.如图,AB ∥CD ,∠A =96°,∠B =∠BCA,则∠BCD =________10.如图,△ABC 中,∠A =35°,∠C =60°,BD 平分∠ABC ,DE ∥BC 交AB 于E,则∠BDE =______,∠BDC=_______.11.某多边形内角和与外角和共1080°,则这个多边形的边数是 10.如图,则∠A +∠B +∠C +∠D +∠E +∠F =_________12.如图,BE 是△ABC 的角平分线,AD 是△ABC 的高,∠ABC =60°,则∠AOE =_______ADCBADCBE(第9题) (第10题)FACBEADCBE(第11题) (第12题)(第7题)(第8题)O13.用三种边长相等的正多边形铺地面,已选了正方形和正五边形两种,还应选正___边形。

14.等腰三角形的两边的长分别为2cm 和7cm ,则三角形的周长是. 15. 如图,若∠A =70°,∠ABD =120°,则∠ACD =16.一个多边形的每一个外角都等于30°,这个多边形的边数是 ,它的内角和是17、 一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形边数是18、观察图和所给表格中的数据后回答:梯形个数 1 2 3 4 …… 图形周长581114……当梯形的个数为n 时,图形周长为三、解下列各题(共38分)20.如图,∠B=42°,∠A+10°=∠1, ∠ACD=64°证明:AB ∥CD (8分)20.如图,AB ∥CD ,∠B = 72°,∠D = 32°,求∠F 的度数? (10分)DCAB121.看图解答(1)内角和为2005°,小明为什么说不可能?(3分) (2)小华求的是几边形的内角和。

相关文档
最新文档