数字信号处理米特拉第四版实验六答案

合集下载

数字信号处理教程课后习题及答案

数字信号处理教程课后习题及答案
试判断系统是否是线性的?是否是移不变的?
分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n

[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =

数字信号处理实验答案

数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用FFT对信号作频谱分析。

实验四IIR数字滤波器设计及软件实现。

实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。

也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。

系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件。

系统的稳定性由其差分方程的系数决定。

数字信号处理实验答案完整版

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】实验一熟悉Matlab环境一、实验目的1.熟悉MATLAB的主要操作命令。

2.学会简单的矩阵输入和数据读写。

3.掌握简单的绘图命令。

4.用MATLAB编程并学会创建函数。

5.观察离散系统的频率响应。

二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。

在熟悉了MATLAB基本命令的基础上,完成以下实验。

上机实验内容:(1)数组的加、减、乘、除和乘方运算。

输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。

clear all;a=[1 2 3 4];b=[3 4 5 6];c=a+b;d=a-b;e=a.*b;f=a./b;g=a.^b;n=1:4;subplot(4,2,1);stem(n,a);xlabel('n');xlim([0 5]);ylabel('A');subplot(4,2,2);stem(n,b);xlabel('n');xlim([0 5]);ylabel('B');subplot(4,2,3);stem(n,c);xlabel('n');xlim([0 5]);ylabel('C');subplot(4,2,4);stem(n,d);xlabel('n');xlim([0 5]);ylabel('D');subplot(4,2,5);stem(n,e);xlabel('n');xlim([0 5]);ylabel('E');subplot(4,2,6);stem(n,f);xlabel('n');xlim([0 5]);ylabel('F');subplot(4,2,7);stem(n,g);xlabel('n');xlim([0 5]);ylabel('G');(2)用MATLAB实现下列序列:a) x(n)= 0≤n≤15b) x(n)=e+3j)n 0≤n≤15c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15(n)=x(n+16),绘出四个周期。

数字信号处理教程第四版答案

数字信号处理教程第四版答案

z2 x (n ) [z ]z 0 8 1 (z )z 4
当n 0时,围线内部没有极点 ,故x(n) 0
1 x(n) 7 u(n 1) 8(n) 4
n
z2 部分分式法: X(z) 1 z 4 X(z) z2 A1 A2 故 1 1 z z (z )z z 4 4
数 字 信 号 处 理
第二章 z变换与离散时间傅里叶 变换(DTFT)
2.2 z变换的定义与收敛域
序列x(ห้องสมุดไป่ตู้)的z变换定义为:
n x ( n ) z
X ( z)
n
对任意给定序列x(n),使其z变换收敛的所有z值的集合 称为X(z)的收敛域,上式收敛的充分必要条件是满足绝 对可和
1 z2 A1 [(z ) ] 1 7 1 4 (z )z z 4 4 z2 A 2 [z ] 8 1 z 0 (z )z 4
n

7 1 X( z ) 8,| z | 1 1 4 1 z 4
1 x(n) 7 u(n 1) 8(n) 4
1 | z | 4
n 1
jIm[z]
1/4 o
Re[z]
当n 1时,分母中z的阶次比分子中 z的阶次高两阶 或两阶以上,可用围线 外部极点求解
1 (z 2)z n 1 1 n x (n ) [(z ) ] 1 7( ) z 1 4 4 4 z 4
z2 当n 0时,F(z) ,此时围线内部有一阶 极点z 0 1 (z )z 4
1 n x (n ) ( ) u (n ) 2
部分分式法: Z[a n u (n )]
1 , | z || a | 1 1 az

数字信号处理实验报告6 加思考题

数字信号处理实验报告6 加思考题

实验报告实验名称______________________课程名称院系部: 专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学(北京)一:实验目的及要求应用离散傅里叶变换DFT 分析模拟信号x(t)的频谱,深刻理解利用DFT 分析模拟信号频谱的原理、分析过程中出现的现象及解决方法。

二:实验仪器三:实验原理连续周期信号相对于离散周期信号,连续非周期信号相对于离散非周期信号,都可以通过时域抽样定理建立相互关系。

因此,在离散信号的DFT 分析方法基础上,增加时域抽样的步骤,就可以实现连续信号的DFT 分析。

利用DFT 计算连续周期信号的频谱分析步骤为:(1) 确定周期信号的基本周期T0;(2) 计算一个周期内的抽样点数N 。

若周期信号的最高次谐频为p 次谐波pw0 ,则频谱中有2p+1根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据工程允许而定)能量的前(p+1)次谐波为近似的频谱范围,其余谐波忽略不计。

取N>=2p+1; (3) 对连续周期信号以抽样间隔T= T0 /N 进行抽样,得到x[k] ; (4) 利用FFT 函数对x[k]作N 点FFT 运算,得到X[m]; (5) 最后求得连续周期信号的频谱为X(nw0)=X[m]/N 。

利用DFT 计算连续非周期信号x(t) 的频谱分析步骤为:(1)根据时域抽样定理,确定时域抽样间隔T ,得到离散序列x[k]; (2) 确定信号截短的长度M 及窗函数的类型,得到有限长M 点 离散序列xM[k]=x[k]w[k];(3) 确定频域抽样点数N ,要求N>=M ;(4) 利用FFT 函数进行N 点FFT 计算得到N 点的X[m]; (5由X[m]可得连续信号频谱X(jw)样点的近似值 。

)(~t x四:实验步骤第一:实验内容1. 利用FFT分析信号)t=的频谱。

ux t-e(2t()(1) 确定DFT计算的各参数(抽样间隔,截短长度,频谱分辨率等);(2) 比较理论值与计算值,分析误差原因,提出改善误差的措施。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)
上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可 以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。
(2) y(n)=x(n)+x(nN+1)k 0
(3) y(n)= x(k)
(4) y(n)=x(n-nn0)n0
(5) y(n)=ex(n)
k nn0
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统
题2解图(二)
第 1 章 时域离散信号和时域离散系统
题2解图(三)
分别求出输出y(n)。
(1) h(n)=R4(n), x(n)=R5(n) (2) h(n)=2R4(n), x(n)=δ(n)-δ(n-2) (3) h(n)=0.5nu(n), xn=R5(n)
解: (1) y(n)=x(n)*h(n)=

数字信号处理习题答案及matlab实验详解.pdf

数字信号处理习题答案及matlab实验详解.pdf

阶跃响应为: y[n] x[n] h[n] x[m]h[n m] h(n m), n m, m 0
m
m0
即 y(0) 0, y(1) 0.25, y(2) 0.5, y(3) 0.75,其余y(n) 1, (n 3)
利用函数 h=impz(b,a,N)和 y=filter(b,a,x)分别绘出冲激和阶跃响应 b=[0,0.25,0.25,0.25,0.25]; a=1; x=ones(1,100); h=impz(b,a,100);y=filter(b,a,x) figure(1) subplot(2,1,1); stem(h,’.’); subplot(2,1,2); plot(y,’.’);
4
解:(1)系统的转移函数是是其单位抽样响应的 Z 变换,因此
H (z)
1 1 z1
1 1 0.3z1
1 1 0.6z1
(1
3 3.8z1 1.08z2 z1)(1 0.3z1)(1 0.6z1)
1
3 1.9
3.8z1 1.08z2 z1 1.08z2 0.18z
3
Z 1
系统的零极点图如下图所示: B=[3,-3.8,1.08]; A=[1,-1.9,1.08,-0.18]; [Z,P,K]=tf2zp(B,A); Zplane(B,A)
5
单位抽样响应:
h(n)
1 2
n1
u
(n
1)
(n)
1
y(n) x(n) * h(n)
2 m1
1 2
m1
e
j (n m)
e
jn
e
jn
e j
1 2 1
2
n
u(n1)

数字信号处理参考答案

数字信号处理参考答案

数字信号处理参考答案《解答题及分析题》一、解释下列名词:(1)DSP: 数字信号处理或者数字信号处理芯片;(2)MIPS: 每秒执行百万条指令 ;(3)MOPS: 每秒执行百万条操作 ;(4)FFT: 快速傅里叶变换 ;(5)MAC 时间: 完成一次乘法和一次加法的时间 ;(6)指令周期:执行一条指令所需要的时间,单位通常为(ns );(7)BOPS:每秒执行十亿次操作;(8)MFLOPS :每秒执行百万次浮点操作;(9)TMS320C54X :TI 公司的54系列定点DSP 芯片;(10)ADSP21XX:AD :公司的21系列定点DSP 芯片;二、已知)()()]([n x n g n x T =判断系统是否为:① 因果系统;② 稳定系统;③ 线性系统;④ 移不变系统解:(1)求解系统的单位取样响应)(n h令)()(n n x δ=,则系统的单位取样响应)()()(n n g n h δ=① 当0<n 时,0)(=n h ,系统为因果系统;②0)(=∑+∞-∞=n n h ,是稳定系统; ③ 设)()()(),()()(2211n g n x n y n g n x n y ==由于)()()()([)(2121n by n ay n bx n ax T n y +=+=,④ 由于)()]([),()()(k n y k n X T k n g k n x k n y -≠---=-而, 因此,系统为移变系统。

其余几个题的判断方法与这个相同,略。

三、画方框图说明DSP 系统的设计步骤。

设计步骤:(1)根据实际问题的要求写出任务书确定设计目标;(2)算法研究并确定系统的性能指标;(3)选择DSP 芯片和外围芯片;(4)完成系统的硬件设计和软件设计;(5)完成系统的硬件仿真和软件调试;(6)系统集成和测试。

四、以TMS320C5402为例,说明一个典型的DSP 实时数字信号处理系统通常有哪些部分组成?画出系统组成的方框图。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

最后结果为 0
n<0或n>7
y(n)= n+1 0≤n≤3 8-n 4≤n≤7
y(n)的波形如题8解图(一)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2)
=2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5) y(n)的波形如题8解图(二)所示
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
因此系统是非时变系统。
第 1 章 时域离散信号和时域离散系统
(5) y(n)=x2(n)
令输入为
输出为
x(n-n0)
y′(n)=x2(n-n0) y(n-n0)=x2(n-n0)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n) =ax21(n)+bx22(n)
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)

数字信号处理六七章练习题(含答案)

数字信号处理六七章练习题(含答案)

数字信号处理第四次作业(第6、7章)一、判断1.数字滤波器中低通滤波器的通频带中心位于2ℼ的整数倍处,而高通滤波器的通频带中心位于ℼ的奇数倍处。

(√)α越大,通带波纹越大,通带逼近误差越大;阻带允许的最2.通带内允许的最大衰减pα值越大,阻带波纹越小,阻带逼近误差越小。

(√)小衰减s3.S平面的左半平面中的极点映射到Z平面的单位圆内。

(√)4.FIR数字滤波器的最大优点是绝对稳定和线性相位。

(X )线性相位FIR才有5.h(n)序列为FIR第二类线性相位并且长度为奇数时,它只能实现带通滤波器。

(√)6.窗函数法设计FIR滤波器,会引起吉布斯效应,即引起过渡带加宽以及通带和阻带内的波动。

(√)7.增加窗函数的长度,可以减少吉布斯效应的影响。

(X )二、填空1.五种模拟低通滤波器(巴特沃斯、切比雪夫I型、切比雪夫II型、椭圆、贝塞尔),当阶数相同时,有相同的通带最大衰减和阻带允许的最小衰减情况下,巴特沃斯的过渡带最宽;满足相同的滤波器幅频响应指标下,前四种滤波器中椭圆的阶数最低。

2.从模拟滤波器转换到数字滤波器常用的2种方法是脉冲响应不变法和双线性变换法。

3. 脉冲响应不变法的缺点是有频谱混叠;优点是模拟角频率和数字角频率成线性关系ω=ΩT 。

4. 双线性变换法的优点是消除了频谱混叠,缺点是模拟角频率和数字角频率成非线性关系。

5. 要改变窗函数法设计FIR滤波器时引起的带内波动,需选择主瓣和旁瓣衰减比例大(或主瓣能量大,旁瓣幅度小)的窗函数。

三、简答1. 数字滤波器的设计步骤(间接法)答:(1)将给定的数字滤波器的技术指标,按某一变换规则转换成相应的模拟滤波器的性能指标。

(2)如要设计的不是数字低通滤波器,则需将步骤(1)中变换得到的相应(高通、带通、带阻)模拟滤波器性能指标转换为低通性能指标。

(3)设计一个过渡模拟低通滤波器。

(4)将模拟低通滤波器转换成相应类型的过渡模拟滤波器。

(5)再按照转换规则将模拟滤波器转换成数字滤波器。

程佩青_数字信号处理_经典版(第四版)_第6章_6.8-2

程佩青_数字信号处理_经典版(第四版)_第6章_6.8-2

jIm(z) Re(z)
|Ha(jW )|
S平面
图2
Z平面
|H(ejw )|
-2π/T -π/T
2020/4/20
π/T 2π/T Ω
-3π
-2π -π
图3 频双线谱性变混换法叠失真
π 2π 3π
11
问题的提出
讨论
1. 若给定了模拟滤波器的参数指标,则可通过增大抽样频
率fs(Ws)来减小混叠失真。
令z=ejW ,可分别获得两者的幅度响应。
2020/4/20
23
例: 利用BW型模拟低通滤波器和双线性变换法设计满足
指标Wp=p/3,Ap=3dB,N=1的数字低通滤波器,
并与脉冲响应不变法设计的DF比较。
1
0.7
脉冲响应不变法
Amplitude
3dB
脉冲响应不变法存在频
谱混叠,所设计的DF不满
双线性变换法
2. 若给定的是数字滤波器的参数指标,反推对应的模拟滤波
器的指标,再来进行由模拟滤波器到数字滤波器的设计,则
增大fs(W s)不能减小混叠失真。
这是因为 Ωc= ωc/T,而模拟折叠角频率范围为 [-π/T,π/T]。
随着fs=1/T的增大,该范围也增大了,即模拟滤波器的通带范
围展宽了,即Ωc和T同倍数变化(为了使ω c不变),故总有
双线性变换法
4
问题的提出
采用脉冲响应不变法
上节例题2,利用AF-BW filter及脉冲响应不变法设计一DF,
满足
wp=0.2p, w s=0.6p, Ap2dB, As15dB 。
0
-2
DF的频谱有混叠
-4
-6
As = 14.2dB

数字信号处理课后答案第6章

数字信号处理课后答案第6章

A2 s1
比较分子各项系数可知, A1、 A2应满足方程:
A1A1s2A2
1 A2 s1
a
解之得, A1=1/2, A2=1/2, 所以
Ha
(s)
s
1/ 2 (a
jb)
s
1/ 2 (a
jb)
套用教材(6.3.4)式, 得到
H (z)
2
Ak
k 1 1 es k T z 1
1/ 2 1 e(a jb)T z 1
2. 设计一个切比雪夫低通滤波器, 要求通带截止频率 fp=3 kHz,通带最大衰减αp=0.2 dB,阻带截止频率fs=12 kHz, 阻带最小衰减αs=50 dB。 求出滤波器归一化系统函数G(p)和实 际的Ha(s)。
解: (1) 确定滤波器技术指标。 αp=0.2 dB, Ωp=2πfp=6π×103 rad/s αs=50 dB, Ωs=2πfs=24π×103 rad/s
fp=20 kHz, 阻带截止频率fs=10 kHz, fp处最大衰减为3 dB,
阻带最小衰减as=15 dB。 求出该高通滤波器的系统函数Ha(s)。
解: (1) 确定高通滤波器技术指标要求:
p=20 kHz, ap=3 dB fs=10 kHz, as=15 dB
(2) 求相应的归一化低通滤波器技术指标要求: 套用图 5.1.5中高通到低通频率转换公式②, λp=1, λs=Ωp/Ωs, 得到
sp
s p
2π 12103 2π 6103
2
将ksp和λsp值代入N的计算公式, 得
N lg17.794 4.15 lg 2
所以取N=5(实际应用中, 根据具体要求, 也可能取N=4, 指标稍微差一点, 但阶数低一阶, 使系统实现电路得到 简化)。

数字信号处理课后习题答案(全)1-7章PPT课件

数字信号处理课后习题答案(全)1-7章PPT课件
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
T[ax1(n)+bx2(n)]=ax1(n) sin(ωn)+bx2(n) sin(ωn) =aT[x1(n)]+bT[x2(n)]
故系统是线性系统。
第 1 章 时域离散信号和时域离散系统
6. 给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明 理由。
(1) y(n)=
1 x(Nn-1 k)
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)

数字信号处理习题及解答..

数字信号处理习题及解答..
3 2 1 1 1 2 z 1 1 z 2 求出对应X(z)的各种可能的序列表达式。 X ( z)
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 3 解答 X(z)有两个极点: z1=0.5, z2=2, 因为收敛域总是以极点为 界, 因此收敛域有三种情况: |z|<0.5,0.5<|z|<2, 2<|z|。 三种收敛域对应三种不同的原序列。 (1)收敛域|z|<0.5:
j
1 1 1 ae j FT[ xo (n)] j Im[ X (e ] j Im[ ] j Im[ ] 1 ae j 1 ae j 1 ae j a sin 1 a 2 2a cos
j
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 已知长度为N=10的两个有限长序列:
(2) x2 (n)
1 1 δ(n 1) δ(n) δ(n 1) 2 2
数字信号处理习题及解答
第三章 信号的傅里叶变换 2 解答
(1)
X 1 (e
j
)
n



δ(n 3) e jn e j3
(2)
X 2 (e j )
n

x2 (n)e jn
1 0 ≤ n ≤ 4 x1 (n) 0 5≤ n≤ 9
1 x 2 ( n) 1
0≤ n ≤ 4 5≤ n ≤ 9
做图表示x1(n)、 x2(n)和y(n)=x1(n) * x2(n), 循环卷积区间长度L=10。
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 解答 x1(n)、 x2(n)和y(n)=x1(n) * x2(n)分 别如题3解图(a)、 (b)、 (c) 所示。

数字信号处理第六章 习题答案

数字信号处理第六章 习题答案

( )
H ( e jω ) = Ha ( jΩ)
又由 Ω =
ω
T
,则有
5 2 π ΩT + 3, − 2 ΩT + 5 , = π 3 0 2π π − ≤Ω≤ − 3T 3T π 2π ≤ Ω≤ 3T 3T 其他Ω
Ha ( jΩ) = H ( e jω )
ω=ΩT
Ha ( jΩ) = H ( e jω )
各极点满足下式ຫໍສະໝຸດ 1 1+ ( s Ωc )
4
sk = Ωce
π 2k −1 j + π 2 4
k = 12,4 ,3 ,
则 k = 1,2时,所得的 sk 即为 Ha ( s) 的极点
s1 = Ωce s2 = Ωce
3 j π 4
3 2 3 2 =− +j 2 2 3 2 3 2 =− −j 2 2
2
=
1−1.1683z−1 + 0.4241z−2
0.064(1+ 2z−1 + z−2 )
5.试导出二阶巴特沃思低通滤波器的系统函数。 设 Ωc = 3rad s 解:由幅度平方函数: H ( jΩ) =
2
1 1+ ( Ω Ωc )
4
令 Ω2 = −s2,则有
Ha ( s) Ha ( −s) =
∴H ( z ) = Ha ( s) s=1−z−1
1+ z−1
=
1 1− z 1− z 1+ z−1 + 1+ z−1 +1
−1 2 −1
(1+ z ) =
3 + z−2
−1 2

数字信号处理课后习题答案-第六章习题与答案

数字信号处理课后习题答案-第六章习题与答案

1.、2. 用冲激响应不变法将以下 )(s H a变换为变换为 )(z H ,抽样周期为T 。

为任意正整数 ,)()( )2()()()1(022n s s As H b a s as s H na a -=+++=分析:①冲激响应不变法满足)()()(nT h t h n h a nTt a===,T 为抽样间隔。

这种变换法必须)(s H a 先用部分分式展开。

②第(②第(22)小题要复习拉普拉斯变换公式1!][+=n n S n t L ,na n t s a S S As H t u n t Ae t h )()()()!1()(010-=⇔-=-,可求出可求出 )()()(kT Th t Th k h a kTt a===,|又 dz z dX z k kx )()(-⇔,则可递推求解。

解: (1)22111()()2a s a H s s a b s a jb s a jb ⎡⎤+==+⎢⎥+++++-⎣⎦[])( 21)()()(t u e e t h tjb a t jb a a --+-+= 由冲激响应不变法可得:由冲激响应不变法可得:由冲激响应不变法可得:[]()()()() ()2a jb nT a jb nT a T h n Th nT e e u n -+--==+ 11011() () 211naT jbT aT jbT n T H z h n z e e z e e z ∞------=⎡⎤==+⎢⎥--⎣⎦∑ 2211cos 21cos 1 ------+--⋅=z e bT z e bT z e T aT aT aT(2) 先引用拉氏变换的结论[]1!+=n n s n t L 可得:可得: n a s s As H )()(0-=))()!1()(10t u n t Ae t h n t s a -=-则 )()!1()()()(10k u n kT Ae T Tk Th k h n kT s a -⋅==- dzz dX zk kx az k u a ZZk )()( , 11)( 1-−→←-−→←-且按)11()()!1( )()!1( )()(111111000--∞=---∞=----=-==∑∑ze dz d z n AT e z k n T TA z k h z H T s n n kkT s n n k k可得⎪⎪⎩⎪⎪⎨⎧=-=-=•••---,3,2)1(1,1)(111000n z e z e AT n z e ATz H n T s T S n T s ,可以递推求得:2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为:2'4142136.111)(s s s H a ++=而而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用502⨯πs 来代替424'108696044.928830.444108696044.9)100()(⨯++⨯==s s s H s H a a π:设系统抽样频率为设系统抽样频率为Hz f s 500=,要求从这一低通模拟滤波器设计一个低通数字滤波器,采用阶跃响应不变法。

数字信号处理第6章_习题解答

数字信号处理第6章_习题解答

第六章 习题解答(部分)[1]解:对采样数字系统,数字频率ω与模拟角频率Ω之间满足线性关系T Ω=ω。

因此,当时,ms T 01.0=TT cc 8πω==Ω,Hz T f c c 6251612==Ω=π 当s T µ5=时, TT c c 8πω==Ω,Hz T f c c 125001612==Ω=π[2]解:的极点为:,)(s H a jb a s +−=1jb a s −−=1将部分分式展开: )(s H a )(21)(21)(jb a s j jb a s js H a +−−−+−−−=所以有1)(1)(121121)(−+−−−−−−+−=z e j z e j z H T jb a T jb a通分并化简整理得:TT T e z bT e z bTe z z H ααα2211cos 21sin )(−−−−−−+−=[3]解:归一化原型低通滤波器与带通滤波器之间的频率变换关系为:B⋅ΩΩ−Ω=Ω22s rad p p /1002210×=ΩΩ=Ωπ,s rad B /2002×=π,dB p 2=δs rad s /80021×=Ωπ,s rad s /124022×=Ωπ,dB s 15=δ因此,归一化原型低通滤波器的通带频率p Ω取1,通带处最小衰减为2dB 。

同理可得归一化原型低通滤波器的阻带频率分别为:9375.31221=ΩΩ−Ω=ΩΩ=Ωs Bs , 1597.62222=ΩΩ−Ω=ΩΩ=Ωs Bs因此,归一化原型低通滤波器的阻带频率9375.3),min(21=ΩΩ=Ωs s s ,这是因为取较小的频率值,则较大的频率处一定满足衰减要求,阻带处最大衰减为15dB 。

利用巴特沃斯低通滤波器设计归一化原型低通滤波器)(s H 利用归一化原型低通滤波器的指标,得巴特沃斯低通滤波器阶数N444.19372.31lg 2110110lg 5.12.0=⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−≥N 取,查表的归一化巴特沃斯原型低通滤波器的系统函数 2=N 14142.11)(2++=s s s H LP由归一化原型低通滤波器变换到实际模拟带通滤波器22202220222)(4142.1)()()(202B s sB s s B s s H s H Bs s s LP BP +Ω++Ω+==⋅Ω+= [4]解:(1)用冲激响应不变法① 确定数字滤波器指标rad p 3/πω=,dB p 3=δ rad s 5/4πω=,dB s 15=δ② 将数字滤波器指标转换为相应的模拟滤波器指标。

《数字信号处理(第四版)》部分课后习题解答

《数字信号处理(第四版)》部分课后习题解答

《数字信号处理(第四版)》部分课后习题解答一、简答题1. 什么是数字信号处理?数字信号处理(DSP)是指对数字信号进行处理和分析的一种技术。

它使用数学和算法处理模拟信号,从而实现信号的采样、量化、编码、存储和重构等过程。

DSP广泛应用于通信、音频处理、图像处理和控制系统中。

2. 数字信号处理的主要特点有哪些?•数字信号处理能够处理和分析具有广泛频谱范围的信号。

•数字信号处理能够实现高精度的信号处理和复杂的算法运算。

•数字信号处理能够实现信号的存储、传输和复原等功能。

•数字信号处理可以利用计算机等处理硬件进行实时处理和系统集成。

3. 数字信号处理的基本原理是什么?数字信号处理的基本原理是将连续时间的模拟信号转换成离散时间的数字信号,然后通过一系列的算法对数字信号进行处理和分析。

该过程主要涉及信号的采样、量化和编码等环节。

4. 什么是离散时间信号?离散时间信号是指信号的取样点在时间上呈现离散的情况。

在离散时间信号中,只能在离散时间点上获取信号的取样值,而无法观测到连续时间上的信号变化。

5. 描述离散时间信号的功率和能量的计算方法。

对于离散时间信号,其功率和能量的计算方法如下:•功率:对于离散时间信号x(n),其功率可以通过求平方和的平均值来计算,即功率P = lim(T->∞) [1/T *∑|x(n)|^2],其中T表示信号x(n)的观测时间。

•能量:对于离散时间信号x(n),其能量可以通过求平方和来计算,即能量E = ∑|x(n)|^2。

二、计算题1. 设有一个离散时间周期序列x(n) = [2, 3, -1, 4, 0, -2],求其周期N。

由于x(n)是一个周期序列,我们可以通过观察序列来确定其周期。

根据观察x(n)的取值,我们可以发现序列在n=1和n=5两个位置上取得了相同的数值。

因此,序列x(n)的周期为N = 5 - 1 = 4。

2. 设有一个信号x(t) = 2sin(3t + π/4),请将其离散化为离散时间信号x(n)。

数字信号处理第6章答案 史林 赵树杰编著

数字信号处理第6章答案  史林 赵树杰编著

第六章练习题答案%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 设计一个满足下列指标要求的模拟低通巴特沃斯滤波器,并求出其系统函数的极点。

通带截止频率 2.1p f kHZ =,阻带截止频率8s f kHZ =,通带最大衰减0.5p dB α=,阻带最小衰减30s dB α=。

解:巴特沃斯模拟低通滤波器的设计步骤为:(1)根据模拟滤波器的设计指标p α,p Ω和s α,s Ω,由(6.3.16)式确定滤波器的阶数N 。

(2)由(6.3.17)式确定滤波器的3dB 截止频率c Ω。

(3)按照(6.3.13)式,求出N 个极点(1,2,,)k p k N =L ,将极点k p 代入式得滤波器的系统函数()a H s 。

****************0.110.11(10)lg (10) 3.36832lg(/)p s a a p s N --⎡⎤⎢⎥⎣⎦==ΩΩ2p p f πΩ= 2s s f πΩ= 取4N =3dB 截止频率:cp ΩΩ== 212,1,2,,k N j Nk c p ek N π+-=Ω=L11()()n Nnkk H s s p==-C去归一化()()a n cs H s H =Ω %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%利用二阶模拟低通巴特沃斯滤波器,设计一个中心频率为020/rad s Ω=,通带3dB 带宽为4/B rad s =的模拟带通滤波器。

解: 根据滤波器的阶数N ,直接查表 6.3.1,得到归一化(1c Ω=)的极点(1,2,,)k p k N =L 和归一化的系统函数11()()n Nnkk H s s p==-∏2101211N NN a a s a s a s s--=+++++K 然后利用式,得到3dB 截止频率为c Ω的巴特沃斯模拟低通滤波器的系统函数()a H s 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
A copy of Program P6_2 is given below:
% Program P6_2 % Parallel Form Realizations of an IIR Transfer num = input('Numerator coefficient vector = '); den = input('Denominator coefficient vector = '); [r1,p1,k1] = residuez(num,den); [r2,p2,k2] = residue(num,den); disp('Parallel Form I') disp('Residues are');disp(r1); disp('Poles are at');disp(p1); disp('Constant value');disp(k1); disp('Parallel Form II') disp('Residues are');disp(r2); disp('Poles are at');disp(p2); disp('Constant value');disp(k2);
Answers:
Q6.1
By running Program P6_1 with num = [2 10 23 34 31 16 4] and den = [1] we arrive at the following second-order factors:
h[0] = 2 β11 = 3 β21 = 2 β12 = 1 β22 = 2 β13 = 1 β23 = 0.5 In other words, with regards to Eq. (6.3) on p. 92 of the Lab Manual, we have
H1
(
z)
=
−2
+
2(−0.4219) − 2 ⎡⎣(−0.4219)(−0.25)
1− 2(−0.25)z−1 + ⎡⎢⎣(−0.25)2
+ +
(0.6201)(0.6614)⎤⎦
(
0.6614
)2
⎤ ⎥⎦
z
−2
z
−1
+ 2(0.3438) − 2 ⎡⎣(0.3438)(−0.25) + (−2.5079)(0.4330)⎤⎦ z−1
For Parallel Form I, the program returns:
Parallel Form I Residues are
-0.4219 + 0.6201i -0.4219 - 0.6201i
0.3438 - 2.5079i 0.3438 + 2.5079i 2.3438 Poles are at -0.2500 + 0.6614i -0.2500 - 0.6614i -0.2500 + 0.4330i -0.2500 - 0.4330i -0.5000 Constant value
Q6.4
By running Program P6_1 with num = [2 10 23 34 31 16 4] and den = [36 78 87 59 26 7 1] we arrive at the following second-order factors:
The result of running the modified program P6_1 is the following: sos =
-2
Note that the complex poles occur in conjugate pairs with resides that are also conjugates. Thus, for a pair of conjugate poles at c + jd and c − jd with residues a + jb and a − jb, we get a pair of terms in the
bd ) z−1
+ d 2 z−2
.
5
For example, for the first pole pair returned for Parallel Form I above, we have a = −0.4219, b = 0.6201, c = −0.2500, and d = 0.6614. Thus, the partial fraction expansion in z−1 is given by (to within roundoff)
H1(z) is NOT a linear-phase transfer function, because the coefficients do not have the required symmetry.
Q6.2
By running Program P6_1 with num = [6 31 74 102 74 31 6] and den = [1] we arrive at the following second-order factors:
h[0] = 6
β11
=
15 6
β21 = 1
β12 = 2 β22 = 3
β13
=
2 3
β23
=
1 3
The block-diagram of the cascade realization obtained from these factors is given below:
H2(z) is a Type I linear-phase transfer function with odd length and even symmetry. 2
Project 6.3 Parallel Realization
Answers:
Q6.5
By running Program P6_2 with num = [3 8 12 7 2 –2] and den = [16 24 24 14 5 1] we arrive at the partial-fraction expansion of H1(z) in z–1 given by:
p0
=
1 18
β11 = 3 β21 = 2
α11
=
1 2
α 21
=
1 4
β12 = 1
β22 = 2
α12
=
2 3
α 22
=
1 3
β13 = 1
β23
=
1 2
α13 = 1
α 23
=
1 3
The block-diagram of the cascade realization obtained from these factors is given below:
( )( )( ) H1(z) = 2 1+ 3z−1 + 2z−2 1+ z−1 + 2z−2 1+ z−1 + 0.5z−2
1
The block-diagram of the cascade realization obtained from these factors is given below:
.
Comparing this partial fraction expansion to Eq. (6.10) on p. 96 of the Lab Manual, we have the following values for the Parallel Form I parameters:
1−
2(−0.25)z−1
+
⎡⎢⎣(
−0.25)2
+
(0.4330)2
⎤ ⎥⎦
z −2
+
1
2.3438 + 0.5z−1
=
−2
+
2.3438 1+ 0.5z−1
+
−0.8438 −1.0312z−1 1+ 0.5z−1 + 0.5z−2
+
0.6876 + 2.3437z−1 1+ 0.5z−1 + 0.25z−2
The block-diagram of the cascade realization of H2(z) with only 4 multipliers is shown below:
6.2 REALIZATION OF IIR TRANSFER FUNCTIONS
Project 6.2 Cascade Realization
Answers:
Q6.3
By running Program P6_1 with num = [3 8 12 7 2 –2] and den = [16 24 24 14 5 1] we arrive at the following second-order factors:
The result of running the modified program P6_1 is the following:
Partial Fraction Expansion given by (read the help for residuez if this isn’t clear to you)
( ) a +
1− (c +
jb
jd )
z −1+Βιβλιοθήκη a−1− (c −
jb
jd )
相关文档
最新文档