【大学物理】静电场

合集下载

大学物理学(上册)第5章 静电场

大学物理学(上册)第5章 静电场
q ne (n 1,2,3, )
e 1.6021019C 量子性
电荷量e的数值最早由美国 科学家密立根用实验测得.
量子性始终不变
强子理论研究中提出所谓夸克模型,以四味夸克为例
夸克 U quark (上)
带电量 2/3 |e|
D quark(下) S quark(奇) C quark(粲)
-1/3 |e| -1/3 |e|
电量为Q
电量为Q
+
v
X′
X
⑵ 库仑定律
库仑(1736~1806)
库仑扭秤
① 库仑定律的内容主要内容 在真空中处于静止状态的两个点电荷的相互作用力的大 小,与每个点电荷的电量成正比,与两个点电荷间距离的 平方成反比,作用力的方向沿着两个点电荷的连线. 当 两个点电荷带同号电荷时,它们之间是排斥力,带异号 电荷时,它们之间是吸引力.
例1 长为L的均匀带电直杆,电荷线密度为 ,求它在空
解 d间q一点dPx产生d的E电场4强1度0 (rd2Px点到杆的垂直dy距Ey离为dEa).
dEx dE cos dEy dE sin
P
dEx
由图上的几何关系
x a tan(θ ) acotθ 2
r
1
a
2
dq O
x
dx a csc2θ dθ
dq
讨论
E
qx
q
4 0 (x2 R2 )3/ 2
R
1)环心处:x=0 E=0 表明环心处的电场强度为零
o
xP
Ex
2)当 x >> R,则
(x2 R2 )3/2 x3
E
1
4 0
q x2
dq '

大学物理第一章 静电场

大学物理第一章 静电场
第一章
静止电荷的电场
本章是静电部分重点,主要讨 论如何描述电场,即从电荷在电场 中受力的角度建立电场强度的概念。 重点讨论用两种方法求场强分布。
1
一、基本概念
1. 电荷
(1) 种类 只有两种 (2) 电荷是量子化的(charge quantization ) 自然界物体所带电荷:q = ne (3) 电荷遵从守恒定律 (law of conservation of charge) (4) 电量是相对论不变量
dE
dq 4 o r
e 2 r
13
例2 均匀带电直线,带电量为q,长为L,
求空中任意一点P的场强。
解:
(1)取电荷元
q dq dl dl L
y
dq
(2)电荷元产生 元场强大小 1 dq dE 4 0 r 2
L
dl
r
o
x

P
14
dE
x
方向:与dq到场点的矢径 r
q 1 1 Ey 4 0 L x 2 ( L d )2 x2 d 2
式中:
x是场点到带电线的垂直距离
d 是垂足到直线下端点的距离(取绝对值)
17
(5)长直带电线周围任一点电场强度
大小:
E E E E E E
2 x 2 y 2 z 2 x
2. 数学表达式:
q1q2 F k 2 er r
er :
单位矢径
大小:等于1 方向:从施力电荷(场源) 指向受力电荷(场点) 3
1 k 8.988 1012 Nm 2 / c 2 4 o
o 8.8510 12 C 2 / Nm 2

大学物理 静电场

大学物理 静电场

0
s q
(3)任意闭合曲面 s ,不包围电荷,点
电荷 q 位于闭合曲面外,情况如何?
有电场线连续,则穿入和穿出曲面 s 的电场线数 相等,则穿出闭合曲面 s 的电场强度通量为零。
qi e E ds 0
s
q
0
(4)任意闭合曲面 s 内有点电荷 q1 , q2 ,, qn 曲面外有点电荷 Q1 , Q2 ,, Qn ,则通过该闭 合曲面的电场强度通量
第五章 静电场
静电场----相对于观察者静止的电荷产生的电场
稳恒电场—不随时间改变的电荷分布产生不随时间
改变的电场
两个物理量:
场强、电势;
一个实验规律:库仑定律;
两个定理:
高斯定理、环路定理
§1 电荷及其相互作用
摩擦起电和雷电:对电的最早认识
§8-1 电荷
库仑定律
电荷的种类:正电荷和负电荷
电性力:同号相斥、异号相吸 电量:物体带电的多少 使物体带点的方法: 1.摩擦起电
e E ds q 4 0 R q
2
ds
ds
q
0
(2)任意闭合曲面 s 内包围一点电荷q 以 q 为中心作一半径为 R 的球面,由于电场线
在空间连续不中断,显然通过球面与通过闭合曲面
s 的电场强度通量相等

q e E ds
s
x dE
电场强度的计算
dq
y
R
当dq 位臵发生变化时,它所激发的电场 矢量构成了一个圆锥面。 所以,由对称性
.
z
x
dE
dE
E y Ez 0
§3 静电场的高斯定理
电场线

大学物理——静电场汇总

大学物理——静电场汇总

第七章静电场§7.1点电荷库仑定律一、点电荷和狄拉克d 函数❶点电荷:是一个理想模型,忽略带电体本身的大小和形状,而将其抽象成带电荷的质点。

❷电荷连续分布线分布:dl dq =λ面分布:ds dq =σ体分布:vd dq =ρ❸d 函数(),00⎩⎨⎧=∞≠=x x X d ()1=⎰∞∞-dx X d 二、库仑定律❶真空12f 1q 2q 12r 21ff1q 2q12f 21f ,12312211212r r q Kq f f =-=229cNm 100.9-⨯=K设,410πε=K 212120mN C 1085.8---⨯=ε则3120122121124r r q q f f επ =-=电介质312312441221012212112r r q q r r q q f f r πεεεπ ==-=εr 电介质的相对介电常数ε 电介质的介电常数§7.2电场电场强度一、电场电荷周围存在的一种特殊形态的物质,具有能量、动量等。

电场对外表现:其一:电场对引入其中的电荷有力的作用;其二:当电荷在电场中移动时,电场对它要做功。

电荷之间的作用是通过电场实现的。

电荷⇔⇔电荷电场二、电场强度为了描述电场对电荷的施力性质,引入一个基本物理量--电场强度,简称场强,用表示,其定义为EqF E=三、场强迭加原理处于由产生的电场中q 0n q q q ,,,21 ∑∑=====n i in i iE F FE q q 11四、场强的计算点电荷电场,430rrq q F πε =34r r q E πε =点电荷系电场∑∑==i i i ii i r r q E E 34πε任意带电体电场用积分求解.解体步骤:1.将带电体分成无数个电荷元(电荷元不一定是点电荷)电荷元dq 在空间某点的场强:r rdq E d341πε=2.选取适当的坐标系,写出的各个分量的表达式。

Edzy x dE dE E d ,,3.求zy x dE dE E d ,,,⎰=E d E x x ,⎰=E d E y y ⎰=E d E z z 此步最好利用电荷分布的对称性判断方向,减少计算.E4. 带电体的场强kE j E i E E z y x++=§7.3 电感强度高斯定理一、电感强度D在各向同性的均匀电介质中,任一点处的电感强度等于该点的电场强度和介电常数的乘积,即:D εE EDε=二、电力线和电感线电力线电力线在电场中任一点处,通过垂直于的单位面积的电力线条数等于该点处的量值。

大学物理笔记(6)电磁学(一)静电场

大学物理笔记(6)电磁学(一)静电场
对于电荷面分布,可以取一小块面积元,其电荷面密度为σ ,则该面积元在距离r处产生的电势为dV=kσdA/r。
电荷体密度与电势关系
对于电荷体分布,可以取一小体积元,其电荷体密度为ρ, 则该体积元在距离r处产生的电势为dV=kρdV/r。电势ຫໍສະໝຸດ 与等势面概念及应用电势差定义
电势差是指电场中两点间电势的差值 ,用符号U表示,单位为伏特(V)。
种电荷相互吸引。
电场
电荷周围存在的一种特殊物质,对 放入其中的其他电荷有力的作用。
电场线
用来形象描述电场的曲线,电场线 上每点的切线方向表示该点的电场 强度方向,电场线的疏密程度反映 电场的强弱。
电场强度与电势
电场强度
描述电场强弱的物理量,用E表示 ,单位是牛/库仑(N/C)。电场 强度是矢量,方向与正电荷在该 点所受电场力方向相同。
电场强度
表示电场中某点的电场强弱 和方向的物理量,用E表示 。其方向与正电荷在该点所 受电场力的方向相同。
电势
描述电场中某点的电势能的 高低,用φ表示。电势差则 是两点间电势的差值,即电 压。
高斯定理
通过任意闭合曲面的电通量 等于该曲面内所包围的所有 电荷的代数和除以真空中的 介电常数。
常见误区及易错点提示
这种现象称为静电感应。
静电平衡
当导体内部电荷分布达到稳 定状态,即导体内部电场强 度为零时,称导体处于静电 平衡状态。此时,导体表面
电荷分布满足高斯定理。
屏蔽效应
处于静电平衡状态的导体, 其内部电场强度为零,因此 外部静电场对导体内部无影 响,这种特性称为屏蔽效应 。
介质在静电场中特性分析
01
电极化
05 静电场能量与能 量守恒定律探讨
静电场能量密度表达式推导

大学物理静电场

大学物理静电场


静电力的叠加原理
两个以上点电荷对于另一个点电荷的静电 作用力等于各个点电荷单独存在时对该点电荷 作用力的矢量和. N F qqi F2 ˆ e F Fi 2 ri i 4 0 ri i 1 r1 F 1 q 连续分布电荷Q对点电荷q作用力 q 1 r2 qdq q2


dl
电荷线密度
1 λe r E dl 2 l 4 πε 0 r
r
P
dE
17
求解电场强度的步骤:
1、按其几何形状的带电特征任取一电荷元dq
2、写出dq在所求场点的电场表达式 dE 3、分析不同电荷元在所求场点的电场方向是 否相同,如果不同则需要将 dE 分解,写出 dE 在具体坐标系各坐标轴方向上的分量式,并将 分量式进行积分,最后将各分量结果进行矢量 合成。
2 xr0 q E E E 2 2 2 i 4 πε0 ( x r0 4)
q -
r0
. 2
O
r0 2
q
+
x
E
A
.
E
x
21
q 2r0 1 2 xr0 q E i 2 2 2 2 i 4πε x 3 r0 2 4πε0 ( x r0 4) 0 (1 2 ) 4x
F dF Q
4 0 r
ˆ e 2 r
11.3
电场和电场强度
1. 库仑相互作用力的两种解释:
1)一个点电荷不需中间媒介直接施力与另一点电荷 -----超距相互作用 2)电荷产生电场,电场再作用于另一电荷
-----场传递相互作用
对静电情况 两种观点等价
在动态下会怎样呢? 结果完全不同!

《大学物理》第1章 静电场

《大学物理》第1章 静电场

三、电场
2.静电场
电场
q1
q2
超距作用和近距作用(场的观点)
电荷在其周围空间产生电场,电场对处于其中的 其他电荷施以电场力的作用。
3.电场强度
进入电场的任何带电体都将受到电场的作用力。
试探电荷 q0 的条件:
q0 →0,几何线度→0,
电场强度的矢量定义
E
q0
> F
0
q0
电场强度的单位: 牛顿/库仑 (N·C-1)
一个带电体所带总电量为其所带正负电的代数和。
3.电荷的量子性
实验证明,在自然界中,电荷总是以一个基本
单元的整数倍出现,即
q ne
n 1,2,3,
电荷的这种只能取分立的、不连续量值的特性叫做电
荷的量子性。
e 1.6021019C
4.电荷的连续分布
电磁现象的宏观规律 电荷在带电体上连续分布
大量电荷
SE
dS
q
0
对包含电荷 q 的任意闭合曲面都 成立。
六、高斯定律
任意闭合曲面内有多个点电荷时,由场强叠加
原理 故
E Ei
i
SE dS S Ei dS i
qi
i
S Ei dS
i
0
六、高斯定律 闭合曲面外的电荷电场线穿入 S 后又从 S 穿出,故其对 S 面的净电通量为零。
5.电荷守恒定律
在孤立系统中,不管其中的电荷如何迁移,系统的电荷 的代数和保持不变,这就是电荷守恒定律。
6.电荷的相对论不变性
实验表明,电荷的电量与它的运动状态无关。 在不同的参考系中,同一带电粒子的电量不变。
二、库仑定律
实验表明:在真空中,两个静止的点电荷之间的相互 作用力,其大小与它们电荷的乘积成正比,与它们之间 距离的二次方成反比;作用力的方向沿着两点电荷的连 线,同号电荷相斥,异号电荷相吸。

大学物理 静电场总结

大学物理 静电场总结

5. 电势定义:
a
Wpa q0
ur r E dl
a
静电场力作的功与电势差、电势能之间的关系:
b ur r
Aab qE dl q(a b ) (Wpb Wpa ) a
6. 电势分布的典型结论
1) 点电荷: q 4 0r
2) 均匀带电圆环轴线上:
4 0
q R2 x2
3) 均匀带电球面的电势分布:
1)平行板电容器 C 0S
d
2) 电容器的串并联:
串联 1 1 1 1
C C1 C2
Cn
并联 C C1 C2 Cn
4. 电场能量
电容器的静电能: W Q2
2C
电场能量密度:
w
1 2
0E2
各向同性的电介质:
电介质 电位移
D ε0E P
D ε0εr E εE
Gauss定理
2. 静电平衡时导体上的电荷分布 1) 实心导体: 电荷只分布在表面,导体内部没有净电荷.
2) 空腔导体: • 腔内无电荷 电荷分布在外表面,内表面无电荷. •:腔内有电荷: 腔体内表面所带的电量和腔内带电体所带 的电量等量异号。 • 接地空腔导体 外表面不带电, 静电屏蔽 :
3. 电容 C Q
q
4
q
0R
L L rR L L rR
40r
4) 无限长均匀带电直线: ln rB 20 r
(B 0)
7. 电势的计算 叠加法 定义法
第6章 静电场中的导体与电介质
1. 导体的静电平衡条件:
电场描述: ⑴ 导体内部任意一点的场强为零。 ⑵ 导体表面处的场强方向与该处表面垂直.
电势描述: 导体是一等势体,表面是一等势面.

大学物理课件静电场

大学物理课件静电场

有限差分法求解边值问题
有限差分法原理
将连续的空间离散化为网格,用差分方程近 似代替微分方程进行数值求解。
有限差分法的离散化方案
常见的离散化方案包括向前差分、向后差分 和中心差分等。
有限差分法的求解步骤
建立差分方程、确定边界条件、采用迭代法 或直接法求解差分方程得到近似解。
06 静电危害防护与 安全措施
连续分布电荷系统势能计算方法
通过积分求解连续分布电荷的势能,需考虑电荷分 布的空间范围和形状。
静电场能量密度和总能量
静电场能量密度定义
单位体积内静电场所具有的能量。
静电场能量密度计算公式
$w = frac{1}{2} varepsilon_0 E^2$,其中$varepsilon_0$为真空 介电常数,$E$为电场强度。
静电场总能量计算
通过对静电场能量密度在空间上的积分,可求得静电场的总能量。
能量守恒定律在静电场中应用
能量守恒定律表述
在一个孤立系统中,无论发生何种变化,系统的总能量保持不变。
静电场中能量转化与守恒
在静电场中,电荷的移动和电场的变化都会伴随着能量的转化,但 总能量保持不变。
应用实例
如电容器充放电过程中,电场能与电源提供的电能或其他形式的能 量相互转化,但总能量不变。
分离变量法的适用范围
适用于具有规则几何形状和简单边界条件的静电场问题。
格林函数法求解边值问题
1 2
格林函数法原理
利用格林函数表示点源产生的场,并通过叠加原 理求解任意源分布产生的场。
格林函数的性质 格林函数具有对称性、奇异性和边界条件等性质。
3
格林函数法的应用步骤 确定格林函数、将源分布表示为点源的叠加、利 用格林函数求解场分布。

大学物理 第六章 静电场

大学物理 第六章 静电场

-
开始, E’< E0 ,导体内部场强不为零,自由电子继续运动,E’ 增大。到E’= E0 即导体内部的场强为零,此时导体内没有电荷 作定向运动,导体处于静电平衡状态。
3 3、静电平衡条件 用电场表示 •导体内部任一点的电场强度为零; •导体表面处的电场强度,与导体的 表面垂直。 3 3、静电平衡条件
U AB
qd E d oS

球形电容器
+q R1 R2 o
解:两极板间电场
q E 2 4 o r
板间电势差
( R1 r R2 )
-q 讨论:①当R2 → 时,
U 12
电容
R2
R1
q 1 1 ( ) E dl
4 o R1 R2
C 4 o R1 ,
E表 表面
E内= 0
等 势 面
用电势表示: •导体是个等势体; •导体表面是等势面。 对于导体内部的任何两点A和B
U AB
对于导体表面上的两点A和B
B E dl 0
A

U AB
B Et dl 0
A
E dl
A
B
二、静电平衡时导体上电荷的分布
例1:两块平行放置的面积为S 的金属板,各带电量Q1、 Q2 ,
板距与板的线度相比很小。求:
① 静电平衡时, 金属 板电荷的分布和周围电
Q1
Q2
场的分布。
②若把第二块金属 板接地,以上结果如何?
1
EI
2
S
3
EII
4
S
EIII
解: 电荷守恒
( 1 2 ) s Q1 ( 3 4 ) s Q2 i i 高斯定理 2 o

大学物理 第11章 静电场

大学物理 第11章 静电场

电荷1 电荷1
电场1 电场1
电荷2 电荷2
二、电场强度
描述场中各点电场的强弱变化的物理量——电场强度 电场强度 描述场中各点电场的强弱变化的物理量 )(正 点电荷——可以准确的测量电场的 (1)(正)点电荷 )( 可以准确的测量电场的 试验电 分布 荷条件 足够小 (2)电量足够小——不显著地影响电场的分布 )电量足够 不显著地影响电场的分布 把试验电荷放到电场 中任意场点,测量受 中任意场点, 力情况,试验表明: 力情况,试验表明: (1)受力与位置(场点)有关 )受力与位置(场点)
-1
或: ⋅ m -1 V •电场强度单位: 电场强度单位: 电场强度单位 国际单位制 N ⋅ C •定义电场强度后,点电荷(q)处于外场中时受电 定义电场强度后,点电荷( ) 定义电场强度后 场作用力: 场作用力:
F = qE
三、点电荷电场的电场强度
根据库仑定律, 根据库仑定律,
q2
q1
q1
受到的电场力为
λdx Ex = ∫ cosθ 2 4πε0r
d r= sinθ
y
dE
x =−Hale Waihona Puke ctgθdEyP d
dEx
d dx = 2 dθ sin θ
Ex = ∫
θ2
θ1
r
θ
θ2
x
θ1
θ2
Ey = ∫
θ1
λ λ cos θ dθ = 4πε 0 d 4πε 0 d λ λ sin θ dθ = (cos θ1 − cos θ 2 ) 4πε 0 d 4πε 0 d
x dx Q L x a P
dq Qx d dE = = 2 2 4πε0x 4πε0Lx
E = ∫dE =

大学物理下册第九章:静电场

大学物理下册第九章:静电场
例题2
讨论静电除尘器的工作原理及性能评价指标。
例题3
解释静电复印机的工作过程及常见故障处理方法。
例题4
阐述静电场对人体产生的危害及相应的防护措施。
06 总结回顾与拓展延伸
本章知识点总结回顾
静电场的基本性质
静电场是由静止电荷所产生的电场,具有保守性和无源性 。其基本性质包括电场的强度、电势、电场线等概念。
静电屏蔽
当导体和绝缘体之间存在一定距离时,由于导体的静电屏蔽效应,可 以减弱或消除外部静电场对绝缘体的影响。
典型例题分析与讨论
01
例题1
分析导体球壳在点电荷电场中的静 电感应现象及电荷分布情况。
例题3
解释尖端放电现象的原理及影响因 素,并给出实际应用案例。
03
02
例题2
讨论平行板电容器中绝缘介质对电 容器电容的影响及原因。
03 电势能、电势与等势面
电势能概念及计算方法
电势能定义
电荷在电场中具有的势能,与电荷的电量和电场中的 位置有关。
电势能计算
通过电场力做功来计算电势能的变化,从而确定电势 能的大小。
电势能零点选择
通常选择无穷远处或地球表面为电势能零点,方便计 算。
电势定义及物理意义
电势定义
单位正电荷在电场中某点具有的电势能,反 映电场能的性质。
情况。
THANKS FOR WATCHING
感谢您的观看
大学物理下册第九章静电场
目录
• 静电场基本概念与性质 • 库仑定律与电场线 • 电势能、电势与等势面 • 静电场中导体和绝缘体性质 • 静电场应用与防护 • 总结回顾与拓展延伸
01 静电场基本概念与性质
静电场定义及特点
静电场

大学物理 静电场

大学物理  静电场

E
➢电力线的性质:
1)电力线起始于正电荷(或无穷远处)
,终止于负电荷,不会在没有电荷
处中断;
2)两条电场线不会相交;
q
3)电力线不会形成闭合曲线。
之所以具有这些基本性质, 由静电场的基本性质和场的单值性决定的。
E
q
二、电通量(电场强度通量)
——藉助电力线认识电通量
定义: 通过任一面元的电力线的条数称为通过这
E
ds
S
侧面
0
两底面
2ES
sS
0
s
E
2 0
由以上例题可见:
对 Q 的分布具有某种对称性的情况下 利用高斯定理解 E 较为方便
常见的电量分布的对称性:
球对称 柱对称
面对称
均 球面 匀
带 电
球体

无限长带电线 无限长柱面 无限长柱体
无限大平面(无厚度) 无限大平板(有厚度)
总结选取高斯面的规律
思考:有限长直导线 的电场轴对称吗?
思考: 均匀带电的无限长的柱面,设其截面
半径为R,带电线密度为.
rR E 0
rR E
2 0 r
P
r
例4 无限大均匀带电平面的场强,设电
荷面密度为s.
解: 场强具有面对称性
取垂直于带电面的柱面 E
s
E
为高斯面,设其截面积
为S。
S
E ds
E
ds
q1
0
q2
0
qn
0
0
0 1
0
qint
S内
qint
E dS i
S
0
高斯定理表述:
在真空中的静电场内,通过任一闭合面的电通量

大学物理静电场课件

大学物理静电场课件

Q dq
r q0
• P
那么电荷之间的作用是通过什么作用的呢?
§8.2 电场和电场强度
一、电场
• 场论观点(法拉第) 没有物质,物体之间的 相互作用是不可能发生的。
根据场论观点:
(1)特殊媒介物质——电场 电场
电荷
相互作用
(2)电场力
激发
电荷
电场
电荷 电场力
电荷
(3)电场是物质的一种特殊形态,不仅存在于带电体内, 而且存在于带电体外,弥漫在整个空间。
方向←
方向
电场强度小结
•电场强度的定义:
E
F
q0
•定量研究电场:对给定场源电荷求其 E分布函数 .
•基本方法: 用点电荷(或典型电荷)电场公式和
场强叠加原理
qr
E 4 0r 3
;
E Ei
i
dq dE ( dEx , dEy ) E dE
Ex dEx Ey dEy
•典型带电体 E分布:
电场 强度
电势
电通量
静电力叠加原理
高斯定理 环路定理
静电场的 基本性质
与带电粒子 的相互作用
稳恒电场
导体的静电平衡

电介质 极化
电 电位移矢量 介 容
质中高斯定理
场 能
• 重点
• 真空中的库仑定律 • 点电荷的概念 • 电场强度矢量 • 场强叠加原理
• 难点
• 电场强度矢量的计算(叠加法)
§8.1 静电的基本性质
EE与 与rr反 同向 向。 ;+q
(呈球对称分布)
P q0
r
-q
E
P q0 E
2、点电荷系的场强

大学物理笔记(6)电磁学(一)静电场

大学物理笔记(6)电磁学(一)静电场

大学物理笔记(6)电磁学(一)静电场contents •静电场基本概念与性质•库仑定律及其应用•电场线与等势面描绘方法•静电场中导体性质研究•静电场中绝缘体性质研究•静电场能量与能量守恒定律目录静电场基本概念与性质电荷电场电场线030201电荷与电场电场强度描述电场强弱的物理量,用E表示,单位是牛/库仑(N/C)。

电场强度是矢量,方向与正电荷在该点所受电场力方向相同。

电势描述电场中某点电势高低的物理量,用φ表示,单位是伏特(V)。

电势是标量,只有大小,没有方向。

电势差电场中两点间电势的差值,用U表示,单位是伏特(V)。

电势差是标量,有正负之分。

电场强度与电势静电场中的导体和绝缘体导体内部存在大量自由电子的金属物体。

在静电场中,导体内部电场强度为零,电荷分布在导体表面。

绝缘体内部几乎没有自由电子的物体。

在静电场中,绝缘体内部和表面都可以存在电荷。

静电平衡导体在静电场中达到稳定状态的过程。

在静电平衡时,导体内部电场强度为零,电荷分布在导体表面,且表面电荷分布与导体形状有关。

静电感应与电荷守恒静电感应当一个带电体靠近一个导体时,由于电荷间的相互作用力,导体会发生电荷重新分布的现象。

电荷守恒定律在一个孤立系统中,无论发生何种变化或相互作用,其总电荷量始终保持不变。

即电荷既不能被创造也不能被消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变。

库仑定律及其应用库仑定律表述库仑定律是描述真空中两个静止点电荷之间相互作用力的定律。

库仑定律的表述为:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们之间的距离的平方成反比,作用力的方向沿着这两个点电荷的连线。

点电荷间相互作用力计算连续分布电荷间相互作用力计算库仑定律在实际问题中应用库仑定律在电磁学、原子物理等领域有着广泛的应用。

例如,在电场强度的计算中,可以利用库仑定律计算点电荷在空间中产生的电场强度分布;在电势差的计算中,可以利用库仑定律计算两个点电荷之间的电势差;在电容器、电阻器等电器件的设计和制造中,也需要利用库仑定律进行相关的计算和分析。

【大学物理】静电场

【大学物理】静电场

【大学物理】静电场在大学物理的广阔知识海洋中,静电场无疑是一个极其重要的篇章。

它不仅是物理学基础理论的重要组成部分,也在实际生活和众多科学技术领域中有着广泛而深刻的应用。

让我们先来了解一下什么是静电场。

静电场是由静止电荷产生的一种特殊的物质形态。

电荷是物质的基本属性之一,分为正电荷和负电荷。

当这些电荷静止不动时,它们周围的空间就会产生一种特殊的“力场”,这就是静电场。

静电场具有一些独特的性质。

首先,静电场对放入其中的电荷会产生力的作用。

这个力的大小与电荷的电荷量以及所处位置的电场强度有关。

电场强度是描述静电场强弱和方向的物理量,它等于单位正电荷在该点所受到的电场力。

从电场线的角度来看,静电场的电场线总是从正电荷出发,终止于负电荷,或者延伸到无穷远处。

而且电场线的疏密程度表示电场强度的大小,电场线越密,电场强度越大;电场线越稀疏,电场强度越小。

库仑定律是描述静电场中两个静止点电荷之间相互作用力的基本定律。

它表明,两个点电荷之间的作用力与它们的电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。

这个定律为我们研究静电场中电荷之间的相互作用提供了重要的依据。

静电场中的高斯定理也是一个非常重要的概念。

它指出,通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以真空中的介电常数。

这个定理为我们计算电场强度提供了一种有效的方法。

在实际生活中,静电场有着广泛的应用。

例如,静电复印机就是利用静电场来实现复印的功能。

在复印机中,通过对硒鼓充电形成静电场,使得墨粉能够吸附在硒鼓上,从而完成复印的过程。

再比如,静电除尘器是利用静电场使空气中的灰尘带电,然后在电场力的作用下将灰尘吸附到电极上,达到净化空气的目的。

在科学研究中,静电场也发挥着重要的作用。

例如,在加速器中,通过利用静电场对带电粒子进行加速,可以使粒子获得很高的能量,从而用于科学研究和医疗等领域。

静电场的研究不仅在物理学中具有重要意义,在其他学科领域如化学、生物学等也有着不可忽视的影响。

(完整版)大学物理静电场

(完整版)大学物理静电场

(
r
l 2
)2
1
(r
l 2
)2
1
E
(
r
l 2
)2
E
若r>>l,则有:
E 2ql 4 0r3
2Pe 4 0r3
写成矢量形式即为:
E 2Pe 4 0r3
电偶极子在电场中所受的力
如图所示 M=flSin
=qElSin =PeESin
则 M Pe E
f +
l
pe
f
θ
E
[例2] 如图示,求一均匀带电直线在 O点的电场。
3、电荷的量子化 e =1.6021892±0.0000046×10-19C 密里根油滴实验
二、库仑定律(Coulomb’s Law)
1、库仑定律
F
k
q1q2 r122
其中 k 1
4 0
0 8.85 1012C 2N 1m2
2、矢量性:
1 Qq
F
4 0
r2
r0
r0 F
与电荷电性无关(指研 究对象) 的方向与电荷电性及r0 有关
r2
Cos
5、选择积分变量
选作为积分变量,则
l = atga =atg(-/2)
=-aCtg dl=aCsc2 d r2=a2+l2=a2+a2Ctg2
=a2Csc2 所以有:
Y
dE
X
θ2
0
aa
r
a
θ1
q
dl
l
dEX
1 4 0
Cos aCsc2d a2Csc2
1 4 0
d a
Cos
大学物理 (下)

大学物理(下)03静电场3

大学物理(下)03静电场3
大学物理( 大学物理(下)
§11.3 电 势
静电场—电势 静电场 电势
1
§11.3 电 势
§11.3.1 §11.3.2 §11.3.3 §11.3.4 小结 电场力的功 电势能 电势 电势的计算
静电场—电势 静电场 电势
返回
2
§11.3
§11.3.1 电场力的功
1、在点电荷的电场中 、

+q

静电场—电势 静电场 电势
12
r+ ⋅ r− ≅ r
2
r− − r+ ≅ l cosθ
3. 连续带电体的电势 连续带电体的电势: (1). 电势积分法 电势积分法:
r dU
P
dq
UP = ∫

dq 4πε0r
Q
Q
(2). 场强积分法 场强积分法:
UP = ∫
P
v v E ⋅ dL
特点: 计算场强对称分布带电体的电势方便。 特点: 计算场强对称分布带电体的电势方便。
W = qU
静电场—电势 静电场 电势
返回
9
§11.3.4 电势的计算
1、 点电荷的电势 、
UP
r ∞ r = ∫ E ⋅ dl
P
q
r
P
r dl
r 设 dr = d l
U
r E

=
=
∫r

E dr

∫r 4πε 0
q 4πε0r
q
dr 2 r
q>0
r
o
=
q<0
静电场—电势 静电场 电势
10
2、电荷系的电势 、
(1). 当 P点 r > R2 : P = U1 1

大学物理 —— 第四章1 静电场

大学物理 —— 第四章1 静电场

E
Ei
i
Qi
4 0ri 2
ei
场强在坐标轴上的投影
E
E2
Ex Eix
Ey Eiy
e1
Q1
e2
P E1
Ez Eiz
Q2
所以总场强 E E x i E y j Ez k
例2.电偶极子
y
如电图偶已极知矩:qp、-q、q rx0,y >>r0,
求:A点及B点的场强. q
解: ● 强EA分点别:为4设E+0q(和和xq -qEr在20 )A2的i场

E
•B
y
r0
Or0
q

x
E
EA
• A
E
q
i
4 0 ( x
r0 2
)2
x
EA
1 q
4 0
(x
r0
)2
2
1
E A 4 0
q
( x r0 )
2
2qr0 x3
i
i 2
4 0
1
4 0
2qxr0 x4 (1 r0 )2
2x 2p x3
(1
r0 )2 2x
i
1q
●对B点:E E 4 0 ( y2 r02 )
F q0 比例系数与试验电荷电量无关。
B
1.定义:E
F
q0
Q
q0
A
C
q0
F
q0
电场中某点的电场强度在数值和方向上等于单位
正电荷在该点所受的电场力。单位: NC 1 V m
注意 a.空间是否存在场以及电场的强弱和方向,
与试验电荷 q0 无关,而由场本身决定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
a x
R
O

L
r0
L
图4-A-29
图4-A-31
例4 一厚为b的无限大带电平 板,其电荷体密度分布为 = kx (0 x b),式中k为一正常数. P1 求:1)平板外两侧任一点P1和P2 P 处的电场强度大小; O 2)平板内任一点P处的电场强度; 3)场强为零的点在何处?
P2
4 0 r
q1
电场是由电荷产生的,对其它电荷产生作用力.
场强满足叠加原理: E E1 E2 E3 Ei
高斯定律
高斯定律的应用 1.求场强

电场是有源场
r
R
r
l E
E
E
2 E d S E 4 r
S
E dS E 2rl
D. 静电场是保守场。 8. 在静电场中,电场强度 E 绕闭合回路一周的积分(电 场强度的环流)为零( L E dl 0 ) ,这表明静电场(或
静电力)的性质:
径无关,只与起点终点位置有关。
[ B ]

静电场是保守场或静电力是保守力或静电场力作功与路
9. 在电量为 q 的点电荷的静电场中,若选取与点电荷距 离为 r0 的一点为电势零点,则与点电荷距离为 r 处的电 势V 。
A. B. C. D.
1 2 0 r
1 2 2 0 r 2 2( R2 r ) 0
2( r R2 ) 0
1
[
A
]
15.关于静电场中某点电势值的正负,下列说法中正确 的是
A. 电势值的正负取决于置于该点的试验电荷的正负. B.电势值的正负取决于电场力对试验电荷作功的正负. C.电势值的正负取决于电势零点的选取. D.电势值的正负取决于产生电场的电荷的正负.
(2) 假设地表面内电场强度为零,且地球表面
处的电场强度完全是由均匀分布在地表面的电荷产
生,求地面上的电荷面密度.
解:(1)作高斯面如图
Q E 2 E 1 S S h 0 0
E1
h
0 E 2 E 1 h 8.85 1012 100 25 1.5 103 4.43 1013 C / m 3
电荷q在外电场中任意一点的电势能应为: E a q0 ja 补充例题 例1. 电偶极子在均匀外电场中的静电势能:
Ep qV qV
qr0 E cos
q
Ep p E
Pe E Fr0q F
E
上式表明:电偶极子取向与外电场一致时,电势能最 低;取向相反时。电势能最高。
E2
(2)作高斯面如图 S E S 0
0 E 8.85 1012 100 8.85 1010 C / m 2
习题
23. 24. 25. 26
静电场练习题 1.一带电体可作为点电荷处理的条件是
(A)电荷必须呈球形分布; (B)带电体的线度很小; (C)带电体的线度与其它有关长度相比可忽略不计; (D)电量很小。
[ A ]
5. 如图所示, 边长为 a 的正方形的四个顶点放有电量均 为 q 的 点 电 荷 , 则 每 个 点 电 荷 的 受 力 值 为
q a q

0
R
a
a
O
q
dlx
q2 2 2 1 2 8 0a
dl , x; 2 4 0 R
q
6、如图所示,一均匀带电细线弯成半径为 R 的带有小 缺口的圆环,电荷线密度为 λ,小缺口开于 x 轴处,其 弧长 dl<<R,圆心处的电场强度大小为 方向为 。 ,
WA qV V A qVA 3.6 10 ( J )
6
E E A E WA 3.6 10 ( J )
6
A r
B r r D
C
a/2
(2)V
B
a/2

WAB qV A VB 3.6 10 0 3.6 10 ( J )


2 b x 2
2
例5 实验表明在靠近地面处
有相当强的电场,电场强度
垂直于地面向下,大小约为
E1
h
100 N/C;在离地面1.5 km高
的地方,也是垂直于地面向 下的,大小约为25 N/C.
E2
(1) 假设地面上各处E都是垂直于地面向下,试 计算从地面到此高度大气中电荷的平均体密度;
(C)
2. 带有 N 个电子的一个油滴,其质量为 m,电子的电 量的大小为 e。在重力场中由静止开始下落(重力加速 度为 g) ,下落中穿越一均匀电场区域,欲使油滴在该区 域中匀速下落,则电场的方向为 为 。 ,大小
从上向下, mg / Ne
3. 描述静电场性质的两个物理量是 它们的定义式是 和 。
b
x
解:1)由于无限大带电平面的结论及场强叠加原理可得平 板外两侧场强大小处处相等,方向垂直且背离平板平面。 作一柱形高斯面垂直于平面,底面积为 s ,按高斯定理 2 得 b 1 1 ksb
2 Es
kb2 ∴ 板外两侧的场强大小为 E 4

sdx

0
kxsdx
Q A
r1
a
q
r2
选择题1
b
Q 1 1 (A) 4 0 r1 r2 qQ 1 1 (C) 4 0 r1 r2
qQ 1 1 (B) 4 0 r1 r2
qQ (D) 4 0 r2 r1
2
(2)过P点垂直平板作一柱 形高斯面,底面积为 s,设该 处场强为 E ,按高斯定理有
( E ' E )s
q
kb 2 E 4 E
O

E
q

x
0
ksx 2 kxsdx 2
2 2

b
x
kx k b 2 E' E ( x ) (0 x b) 2 2 2 2 b 2 0 (3)必须是 E ' 0 ,得到 x . 2
[
C
]
16.如图所示,所有点电荷都与原点等距,且电荷量相 等.设无穷远处电势为零.试判断下列哪种情况原点O处 的电势和场强都等于零.
[
C
]
17.如图所示,一点电荷带电荷量为q=10-9C.A、B、 C三点分别距离点电荷为10cm、20cm、30cm。若选 B点的电势为零,则A点的电势为 V,C 45 点的电势为 V。 -15
(C)
13.点电荷q1、q2、q3和q4在真空中的分布如图所示,S 为高斯面,则通过该面的电通量为 式中E是点电荷
E dS
S
q2 q4 0 .
q1、q2、 和 q3, q4
在高斯面上
任一点产生的场强的矢量和。
14.如图所示,两个无限长的共轴圆柱面,半径分别为 R1和R2,其上均匀带电,沿轴线方向单位长度上所带 带电荷量分别为λ1和λ2,则在两圆柱面之间,距离 轴线为r处P点场强的大小为
6 6
4 o r
q1

4 o r
q2
0
E EB E A WAB 3.6 10 ( J )
6
例3 半径为R的均匀带电球面,带电量为q,沿矢径方向 上有一均匀带电细线,电荷线密度为,长度为L,细线 近端离球心距离为r0, 设球和线上的电荷分布不受相互 作用影响, 试求细线所受球面电荷的电场力和细线在该 电场中的电势能。 q
a 填空题1
7. 关于静电场的环路定理 L E dl 0 的物理意义,下列
说法中错误的是:
A. 静电场中的电荷在静电场力作用下沿闭合路径绕行 一周,静电场力对其作功为零; B. 静电场的电场线是闭合曲线; C. 在静电场中,若电荷移动时的起点、终点相同,则
沿任何路径静电场力对其作功均相同;
例2. 已知两点电荷电量为q1 = 3.010 -8C; q2 = -3.0 10 -8 C, a=8.0cm, r=6.0cm.(1)将电量为2.010-9 C的点电荷从 无限远处移到A点, 电场力作功多少?电势能增加多少? B C (2)将此电荷从A点移到B点, A 电场力作多少功?电势能增加 r r r 多少? 解: ( 1) Wab Ea Eb qo (Va Vb ) q1 a/2 D a/2 q2 q1 q2 VA 1800 (V ) 2 2 4 o r 4 o r a
5. 静电力、电势能、电场力的功等物理量的概念及其他们 与电场强度和电势这两个基本物理量的定量关系是什么?
静电学核心内容 作用机制?
电场线
库仑定律
q1q2 ˆ F r 2 4 0 r E1 4 0 r F q2 E1 q2
2
q1
ˆ r
+
q1
V
等势面
E P q 0 VP q 0
P0
P
E dl
Q
对大小有限的带 电体一般取无穷 远处为势能零点
场强方向总是从 电势高的地方指 向电势低的地方
(3)电势差(电压)
U PQ VP VQ
(4)电场力的功
P
E dl
WPQ q 0 (VP VQ )
电势和电势差的 单位都是伏特V 1V=1J/C
q 1 1 4 0 r r0
10. 如图为一簇电场线的示意图, A、B 为同一电场线上的两点。下 列表述中正确的是
B A
A. A点的电场强度值比B点的小; B. A点的电势高于B点;
相关文档
最新文档