煤制天然气合成(甲烷化)技术综述
煤制气甲烷化技术对比及研究进展综述
煤制气甲烷化技术对比及研究进展综述摘要:近些年,随着环境承载力的日益减弱,环保压力逐渐增大,同时,各大城市的公共交通相继开展煤改气、油改气工程,对天然气需求量激增,适度发展煤制气项目,开发和储备一批煤制气技术,对于保障能源安全、对外议价等均具有举足轻重的作用。
基于此,本文主要对煤制气甲烷化技术对比及研究进展进行分析。
关键词:煤制气甲烷化;技术对比;研究进展1、甲烷化技术的起源氨合成工业中,由于CO和CO2的氧元素会使氨合成铁催化剂中毒,在合成气进氨合成前需将微量的CO和CO2脱除,脱除方法有液氮洗和微量甲烷化两种方法。
微量甲烷化技术是利用合成气中少量CO和CO2与H2反应转化为CH4,使合成气中CO+CO2小于10mg/m3。
由于微量甲烷化催化剂使用温区较窄(300~450℃),且甲烷化反应放热很大,为防止催化剂床层超温,进微量甲烷化反应器的CO+CO2含量要求不大于0.8%,同时,为防止微量甲烷化镍基催化剂中毒,合成气中要求硫含量小于0.1mg/m3,氯含量小于0.01mg/m3。
由于上述适用条件的限制,使得该催化剂无法在大量甲烷化装置上使用。
2、现有甲烷化技术的对比2.1 Davy甲烷化技术CRG技术最初由英国燃气公司在20世纪60年代末、70年代初开发,20世纪90年代Davy公司获得了CRG技术对外转让许可的专有权,并进一步开发、整合、完善成现在的CRG技术。
Davy甲烷化工艺前两级反应器为串并联的高温反应器,新鲜气一部分与循环气混合进一级反应器,一部分直接进二级反应器。
二级反应器出口的气体部分经循环气压缩机返回一级反应器入口。
在两级高温甲烷化反应器之后,设置多个补充甲烷化反应器。
其具体数量根据原料气成分及对合成天然气中甲烷、CO和H2含量的要求确定。
反应压力3.0~6.0MPa(g),催化剂可在230~700℃使用,副产高压或中压过热蒸汽。
2.2 Tops∮e甲烷化技术Tops∮e甲烷化工艺原料气经脱硫槽深度脱硫和脱氯,与循环气混合后进入GCC反应器,在此反应器内发生CO与H2O反应生成CO2和H2的反应,CO的浓度显著降低,然后进入高温甲烷化反应器。
煤制合成天然气工艺中甲烷化合成技术
在风 险 , 足 日益 增 长 的市 场 需求 , 满 而且 对 我 国的 能源 安全 、 能减排 等方 面也具 有 战略意义 。 节
1 甲烷化合成技术概况
煤 制天然 气工 艺路 线较 为 简 单 , 艺流 程 见 图 工
1 。煤制气经变换、 净化后合适 比例 的 H 、 O C : C 、 O 经 甲烷 化反 应 合成得 到 富含 甲烷 的 S G, 制 天然 N 煤
解决我 国天然气 供需 矛盾 的最有 效 办法是 多方
位、 多渠道扩 大天气 然 供给 。我 国每 年从 俄罗 斯 、 中
图 1 煤 制 天 然 气 工 艺 流 程
亚、 土库曼斯 坦 等通 过 长输 管 线 购买 约60亿 ~ 0 0 70 亿 m 天然气 。此 外 , 国与 印度尼 西亚 、 我 澳大 利亚 、 马来西 亚 等 国签署 了 进 口液化 天 然气 的协 议 。但 从 国外 进 口天 然气 易受 国际 能源 竞 争 、 区安 全形 地
( hn u u nE gnei o Ld , h nH bi 40 2 C i ) C i W ha n i r g C., t. Wua ue 3 23 hn a e n a
Ab t a t Ke e h oo y o h o lt a u a a sb s d o e me h n t n s n h s e h oo .Au h rh to u e h iu t n o e meh sr c : y t c n l g ft ec a o n t rlg s i a e n t t a ai y t e i tc n l g h o s y t o a i r d c d t est a i f h t — s n o t a ai n s n h sst c n l g th me a d a r a n t y t e i e h oo a o n b o d,h e a aey d s u s d t e t c n c e t r s a ay t ci i n r d ci e a p ia in e e t ft e o y s a s p r tl ic se h e h ia f au e ,c tl s t t a d p o u t p l t f c h l a vy v c o o t r e k n s o t a ai n p o e s s o v h e id fme h to r c s e fDa y,T n REMP a d L . n u Ke r s n t r a ;meh n to y wo d : au a g l s t a a in;c a o s n h tc n t rl g ;Da y;T o t y t ei au a a l s v REMP ;L ri ug.
煤制气甲烷化技术对比及研究进展综述
第57卷㊀第6期2019年12月化肥设计C h e m i c a l F e r t i l i z e rD e s i gn D e c .2019专题综述作者简介:肖敦峰(1982年 ),男,湖北仙桃人,2004年毕业于中国地质大学应用化学专业,高级工程师,现主要从事化工设计和管理工作.煤制气甲烷化技术对比及研究进展综述肖敦峰,张大洲,卢文新(中国五环工程有限公司,湖北武汉㊀430223)摘㊀要:介绍了甲烷化技术的起源和目前比较成熟的技术,重点比较了D a v y 和T o p s ϕe 甲烷化技术,阐述了国内外甲烷化技术的研究进展,并展望了其发展趋势.关键词:微量甲烷化;大量甲烷化;无循环甲烷化;等温甲烷化;耐硫甲烷化;析碳d o i :10.3969/j.i s s n .1004-8901.2019.06.001中图分类号:T E 665.3㊀㊀文献标识码:A㊀㊀文章编号:1004-8901(2019)06-0001-05B r i e fC o m p a r i s o na n dR e s e a r c hP r o g r e s s o fM e t h a n a t i o nT e c h n o l o gi e s i nC o a l Gt o GG a s P l a n t s X I A O D u n Gf e n g,Z H A N G D a Gz h o u ,L U W e n Gx i n (W u h u a nE n g i n e e r i n g Co .,L t d .,W u h a n H u b e i ㊀430223,C h i n a )A b s t r a c t :T h i s p a p e r i n t r o d u c e s t h e o r i g i no fm e t h a n a t i o n t e c h n o l o g y a n d t h e r e l a t i v e l y m a t u r e o n e s a t p r e s e n t .W i t h a f o c u s o n t h e c o m pa r i s o n o fD a v y a n dT o p s ϕem e t h a n a t i o n t e c h n o l o g i e s ,i t a l s o e x p o u n d s t h e r e s e a r c h p r o g r e s s o fm e t h a n a t i o n t e c h n o l o g yb o t h i nC h i n a a n d a b r o a d a n d l o o k s i n t o t h e p r o s p ec t s o f i t sde v e l o p m e n t t r e n d .K e yw o r d s :m i c r o m e t h a n a t i o n ;m a s s i v e m e t h a n a t i o n ;n o n Gc y c l i c m e t h a n a t i o n ;i s o t h e r m a l m e t h a n a t i o n ;S u l f u r Gr e s i s t a n t m e t h a n a t i o n ;c a r b o n p r e c i pi t a t i o n d o i :10.3969/j.i s s n .1004-8901.2019.06.001㊀㊀近些年,随着环境承载力的日益减弱,环保压力逐渐增大,同时,各大城市的公共交通相继开展煤改气㊁油改气工程,对天然气需求量激增,而我国的能源结构属于 富煤㊁贫油㊁少气 ,为了将充裕的煤炭资源转化成清洁的甲烷, 十二五 期间,国家能源局积极倡导煤制气项目,其中,甲烷化技术是煤制气产业链中的重要步骤,在此期间,引进国外甲烷化技术建成投产了大唐克旗㊁新疆庆华㊁伊犁新天㊁内蒙古汇能四个大型煤制气项目,同时,利用国内自主开发的焦炉煤气制甲烷技术建成了多个小型煤制气项目,为缓解我国天然气紧张的局面做出了有益贡献.近年来,随着天然气价格改革逐步推进,2015年4月,增量气价格降低了0.44元,存量气价格提高了0.04元,实现价格并轨.2015年11月,将非居民用气门站价格降低0.7元/m3.天然气降价后,煤制气项目盈利难以保证,因此,国内诸多拟建和在建煤制气项目均处于停滞状态.统计数据表明,2017年中国天然气净进口量约920亿m 3,2018年净进口量约940亿m 3,进口量占总消费量的40%,对外依存度很高,因此,适度发展煤制气项目,开发和储备一批煤制气技术,对于保障能源安全㊁对外议价等均具有举足轻重的作用.1㊀甲烷化技术的起源氨合成工业中,由于C O 和C O 2的氧元素会使氨合成铁催化剂中毒,在合成气进氨合成前需将微量的C O 和C O 2脱除,脱除方法有液氮洗和微量甲烷化两种方法.微量甲烷化技术是利用合成气中少量C O 和C O 2与H 2反应转化为CH 4,使合成气中C O+C O 2小于10m g /m 3.由于微量甲烷化催化剂使用温区较窄(300~450ħ),且甲烷化反应放热很大,为防止催化剂床层超温,进微量甲烷化反应器的C O+C O 2含量要求不大于0.8%,同时,为防止微量甲烷化镍基催化剂中毒,合成气中要求硫含量小于0.1m g /m 3,氯含量小于0.01m g/m 3.由于上1述适用条件的限制,使得该催化剂无法在大量甲烷化装置上使用.2㊀现有甲烷化技术的对比20世纪70年代,全世界出现了自工业化革命以来的第一次石油危机,也促使了世界煤化工行业的蓬勃发展.其中最具代表性的是1984年美国大平原建成世界上第一个煤制天然气工厂,该厂以北达科达高水分褐煤为原料,采用14台鲁奇炉(12开2备)纯氧碎煤加压气化生产S N G ,产品气中甲烷含量96%,热值35.6M J /N m 3以上,年产S N G12.7亿N m 3,该厂已正常运行20多年.目前已实现工业化,且有商业化运行业绩的大量甲烷化技术主要有英国D A V Y 公司C R G 技术㊁丹麦T o p s ϕe 公司的T R E M P T M技术㊁德国鲁奇的甲烷化技术.2.1㊀D a v y 甲烷化技术C R G 技术最初由英国燃气公司在20世纪60年代末㊁70年代初开发,20世纪90年代D a v y 公司获得了C R G 技术对外转让许可的专有权,并进一步开发㊁整合㊁完善成现在的C R G 技术.D a v y 甲烷化工艺流程见图1,前两级反应器为串并联的高温反应器,新鲜气一部分与循环气混合进一级反应器,一部分直接进二级反应器.二级反应器出口的气体部分经循环气压缩机返回一级反应器入口.在两级高温甲烷化反应器之后,设置多个补充甲烷化反应器.其具体数量根据原料气成分及对合成天然气中甲烷㊁C O 和H 2含量的要求确定.反应压力3.0~6.0M P a (g ),催化剂可在230~700ħ使用,副产高压或中压过热蒸汽.图1㊀D a v y 甲烷化工艺流程2.2㊀T o ps ϕe 甲烷化技术T o ps ϕe 甲烷化工艺流程见图2,原料气经脱硫槽深度脱硫和脱氯,与循环气混合后进入G C C 反应器,在此反应器内发生C O 与H 2O 反应生成C O 2和H 2的反应,C O 的浓度显著降低,然后进入高温甲烷化反应器.高温反应器两级串联设置,第一级反应器出口为665~675ħ,第二级反应器出口为500~550ħ.T o p s ϕe 甲烷化技术的第一级反应器出口温度(665~675ħ)是所有甲烷化技术中最高的出口温度,且其通过G C C 反应器将入口温度降低到约250ħ,可提高单程甲烷转化率,从而显著降低气体循环比,减小循环气压缩机能力,适当降低装置投资和运行费用.图2㊀T o ps ϕe 甲烷化工艺流程2.3㊀鲁奇甲烷化技术采用鲁奇甲烷化技术的美国大平原煤制气工厂已经运行接近30年,其工艺流程见图3.原料气先进入脱硫槽深度脱硫和脱氯,将硫和氯含量均降至30μg /m 3,深度净化后合成气的一部分与循环气混合进入第一甲烷化反应器,一部分合成气直接进入第二甲烷化反应器,前两级甲烷化反应器采用串并联设置.第一高温甲烷化反应器出口高达650ħ,第二高温甲烷化反应器出口温度为500~600ħ,通过废热锅炉和蒸汽过热器回收热量.在鲁奇甲烷化技术中,前两级甲烷化反应器最初使用B A S F 的高温催化剂,后改用D a v y 催化剂.图3㊀鲁奇甲烷化工艺流程2.4㊀技术对比2.4.1㊀主要工艺参数对比与D a v y 甲烷化相比,T o ps ϕe 甲烷化开发历史㊁业绩等更成熟,且两者还有一些核心差异.以下以某年产10亿N m 3S N G 项目为例,重点讨论两者的差别.T o p s ϕe 甲烷化相较D a v y 甲烷化来说,核心的差异在于增加了一个G C C 调节器,也即C O 变换反应器,且1#和2#主甲烷化反应器出口温度更高.2 化肥设计2019年第57卷两种技术主要参数对比见表1.表1㊀两种技术主要参数对比增加G C C 调节器可使进气温度更低,通过变换放热自身加热,使温度满足1#甲烷化反应器入口条件,在出口温度限定的情况下,床层允许温升更大,单程转化率可更高,循环率更低,循环气压缩机投资和功耗均会降低.且G C C 催化剂能耐受较高浓度的C O 和低温,同时可避免甲烷化催化剂低温失活现象的发生,延长甲烷化催化剂的寿命.另外,T o p s ϕe 技术1#和2#甲烷反应器出口温度更高,进一步降低了循环率.增加G C C 调节器可降低进气中C O 的浓度,降低C O 发生歧化反应而出现析碳的风险.另外,为减少设备台数,降低设备投资,也可将G C C 催化剂装入1#主甲烷化反应器的上方.另外,D a v y 主甲烷化采用串并联工艺,两台反应器操作条件基本相同,T o p s ϕe 甲烷化采用串联工艺,两台反应器仅操作温度相同,气体组分完全不同,T o p s ϕe 甲烷化反应器内主要是高浓度C O 2的甲烷化.两种技术主甲烷化反应器入口参数对比见表2.表2㊀两种技术主甲烷化反应器入口参数对比T o ps ϕe 工艺中2#主甲烷化反应器出口气体温度为527ħ,根据反应平衡,该工艺2#甲烷反应器出口甲烷含量更高,两种技术次甲烷化反应器入口参数对比见表3,表3也证实了此推断.表3㊀两种技术次甲烷化反应器入口参数对比由于T o ps ϕe 技术4#次甲烷化反应器出口气体温度为301ħ,比D a v y 技术温度低,根据反应平衡原理,T o ps ϕe 技术所产的S N G 中甲烷含量更高,具体比较见表4.表4㊀两技术次甲烷化反应器主要参数对比另外,T o ps ϕe 在流程上单独设置了开车风机和5台开车加热器,5台反应器可同时升温,节省了开车时间.但此开车系统会增加装置投资,当有多个系列甲烷化装置时,此开车系统可共用,从而摊薄开车系统的投资成本.2.4.2㊀催化剂对比影响甲烷化催化剂寿命的主要因素为催化剂耐毒性㊁高温烧结和析碳.催化剂毒物主要是硫和氯,因此,在甲烷化反应器之前要设置精脱硫脱氯保护床,将总硫控制在20μg /m 3以内,氯控制在20μg /m 3以内.上述两种工艺均在甲烷化之前设置了保护床,用于深度脱硫和脱氯.抗高温烧结方面,T o ps ϕe 催化剂可长期运行在650~660ħ之间,D a v y 催化剂长期运行在620ħ左右,因此T o ps ϕe 催化剂耐高温性能更好.甲烷化反应中,当操作不慎时,会发生析碳附着在催化剂表面,严重影响催化剂的寿命.浙江工业大学李鑫[1]等人研究了甲烷化反应析碳的条件,证明低温㊁高压和高氢碳比㊁高水气比能降低碳的选择性,特别是在压力超过1.0M P a (g )时,650~750ħ中发生少量析碳;在压力超过2.0M P a (g )时,即使高温也不再发生析碳.因此,只要在开车时控3 第6期肖敦峰,张大洲,卢文新㊀煤制气甲烷化技术对比及研究进展综述制好反应压力和含水量,析碳的可能性就会大幅度降低.上述两种流程中,配置和操作条件均避免了催化剂中毒和析碳的发生,因此两家专利商提供的催化剂保证寿命均为2年,期望寿命均为3年.经过以上分析可见,T o p sϕe和D a v y两种甲烷化技术在工艺流程设计上各具特色,其中,T o p sϕe 工艺在诸多细节的研究更为深入.待庆华㊁汇能等项目长周期运行后,如果催化剂寿命能得到保证,其工艺流程和催化剂的优势会得到更多用户的充分认识.3㊀国内外甲烷化技术研究进展3.1㊀耐高浓度C O2甲烷化催化剂[2]日本日立造船公司和大机安宅工程公司与泰国P T T公用事业勘探开发公司从2012年开始合作开发用C O2制甲烷项目,已经完成第一阶段的研究.该工艺采用一种由大机安宅工程公司与日本东北大学开发的镍基催化剂,并利用可再生能源电解水得到的氢气作为原料.试验在一个管式反应器(管长5m)装置中进行,生产能力1000N m3/h,在相对低温(200ħ)下运行,氢气的转化率达99.3%,超出现有的高性能甲烷化催化剂的转化率(90%).公司计划未来进行第二阶段的放大研究.高浓度C O2甲烷化反应催化剂主要是要实现在低温下的高活性,其催化剂主要是以N i㊁C o㊁R h㊁R u㊁P d等为活性成分的负载型催化剂[2].3.2㊀无循环甲烷化技术美国福斯特惠勒(F o s t e r W h e e l e r)与科莱恩(南方化学)开发了全新的无循环V E S T A煤制天然气工艺.V E S T A无循环甲烷化技术的特点如下.(1)原料气由于未预先脱除C O2,且还添加水蒸气,C O2和水都能用于稀释反应气,从而控制反应温度.由于反应温度可控,循环气压缩机可取消.(2)合成气中C O同时发生变换和甲烷化反应,热量回收效率更高,且便于操作,产品质量稳定可靠.(3)最高操作温度不超过550ħ,避免采用高合金材料,可以显著降低设备费用和维护费用,且废锅和过热器工作条件温和,无金属粉末化风险.(4)甲烷化工序前的脱硫和甲烷化工序后的脱碳共用甲醇再生系统,S N G中的C O2及H2O在甲醇洗工序可完全脱除,取消三甘醇脱水装置.(5)适应各种气化技术所生产的合成气.唯一不足的是甲烷化后再脱碳,由于甲烷在甲醇中的溶解度相对C O和H2来说更高,脱碳时甲烷损失率略高.2014年6月,福斯特惠勒㊁科莱恩与惠生合作建成了一套中试装置,该中试装置由福斯特惠勒提供授权技术,科莱恩提供催化剂,惠生负责工程设计㊁建造及管理运营.2016年完成了所有中试试验,结果表明,该技术已具备商业化应用条件.3.3㊀耐硫甲烷化催化剂[3]如果能成功制备耐硫甲烷化催化剂,大型煤基大量甲烷化全流程技术将可在美国福斯特惠勒无循环甲烷化技术的基础上进一步优化,脱硫和脱碳均在甲烷后进行,进一步降低装置投资,节省运行费用.目前已经有很多钴钼加氢催化剂体系的研究报道,包括催化剂的制备和硫化,相关结论均可借鉴到耐硫直接甲烷化体系的研究中,但是针对耐硫直接甲烷化催化剂的研究相对较少,尤其是对在较低温度下仍具有较高催化活性的研究存在以下问题:①低温条件下耐硫直接甲烷化催化剂活性的提高;②高温条件下甲烷化反应与水汽变换反应的反应速率及相互影响的研究;③耐硫直接甲烷化反应机理缺乏深入的研究;④针对耐硫直接甲烷化体系,从反应器结构和换热设计上进行研究也是一大挑战.目前,已经有一些等温甲烷化和绝热固定床内置换热器等新型反应器的研究和应用,但距离大型化和商业化还有较大距离.北京低碳清洁能源研究所开发的酸性甲烷化催化剂已通过1300h寿命实验.在此之前,临潼化肥所㊁中科大㊁华东理工大学对耐硫甲烷化催化剂均做了较多研发工作.耐硫甲烷化催化剂的开发会给整个行业带来革命性的改变,将极大降低煤制天然气的投资和运行成本,其主要优势体现在以下几个方面.(1)将传统煤制天然气流程中的C O变换装置和甲烷化装置合二为一,取消天然气干燥装置,缩短了流程,降低了装置的投资及占地,同时避免了冷热病,提高了热利用率,增加了高品位蒸汽的产量,减少了低品位热量.(2)采用补充蒸汽的方式来调节净化气中C O 和H2的比例,不需要严格调节氢/碳比例,提高了装置操作的灵活性.(3)采用甲烷后脱硫和脱碳,吸收塔尺寸明显变小,脱硫脱碳部分投资降低.3.4㊀N R MT无循环甲烷化[4]由北京华福㊁大连瑞克㊁中煤龙化联合开发的4 化肥设计2019年第57卷无循环甲烷化新技术(N R MT ,N o n Gr e c yc l e M e t h a Gn a t i o nT e c h n o l o g y )是一项新型甲烷化技术.2015年10月,中国石油和化学工业联合会组织专家对中试装置进行了72h 现场标定,同年11月,中国石油和化学工业联合会组织的专家组在北京对无循环甲烷化工艺技术进行了科技成果鉴定.2016年4月, 年产13亿N m 3合成天然气无循环甲烷化工艺包 通过了中国石油和化学工业联合会组织的专家评审.该工艺的特点是富H 2气和富C O 气按比例逐级加入五级串联的反应器,每一级反应器通过控制反应气中C O 和H 2的浓度来控制反应温度,防止床层超温.该工艺无需循环气压缩机,其工艺流程见图4.图4㊀N R M T 甲烷化工艺3.5㊀等温甲烷化工艺20世纪70年代,L i n d e 公司开发了一种固定床间接换热的等温甲烷化反应器,移热冷管嵌入催化剂床层中,并据此开发了等温甲烷化工艺,但未得到推广应用.上海华西化工科技有限公司(以下简称上海华西)一段等温甲烷化技术是国内第一套长周期工业化运行的一段等温甲烷化焦炉煤气制L N G 装置.一段等温式甲烷化反应技术与多段绝热甲烷化技术相比,具有如下创新点:①甲烷化反应在一台或两台等温反应器内完成,无需气体循环;②甲烷化催化剂使用温度低于300ħ,使用寿命长;③工艺流程较短,相比传统流程可节约投资约2/3.该技术已在上海华西总承包的日处理量为20.4万N m 3焦炉煤气和3.6万N m3高炉煤气的低温甲烷化制液化天然气工业化项目中得到应用.2015年1月,焦炉煤气等温甲烷化反应制天然气技术 通过国家工信部组织的科技成果鉴定.该技术若直接应用于更高C O 浓度的煤基合成气甲烷化反应中,可能会出现超温现象.目前,国内正有多家研究机构对该问题进行研究攻关,其中,2018年煤炭清洁高效利用和新型节能技术 重点专项 合成气/热解气单段等低温甲烷化技术及示范 的目标即为开发新型甲烷化反应器,研究短流程㊁低能耗甲烷化新技术,形成合成气(或热解气)高效甲烷化成套技术,并进行工业示范.3.6㊀国内其他甲烷化技术最新进展在煤制气甲烷化技术开发方面,国内大唐化工研究院㊁中科院大连化物所㊁西南化工研究院㊁新奥等机构均进行了大量研究,目前已完成中试和/或工业化示范,并进行了技术成果鉴定.其中,采用大唐国际化工研究院技术生产的12t 预还原催化剂已应用于大唐克旗煤制气甲烷化装置,实现了国产S N G 催化剂首次在工业装置上的部分国产化替代,预计2019年下半年也将会在大唐阜新煤制气甲烷化装置上全线应用.4㊀结语从目前采用D a v y 和T o ps ϕe 技术建设的大型甲烷化装置运行情况来看,进口甲烷化技术在工艺及装备技术上已没有任何障碍,但可以通过国产化催化剂及工艺的开发,替代进口,进一步降低项目建设费用和操作费用.同时,还要积极开发等温甲烷化㊁高浓C O 2甲烷化㊁无循环甲烷化㊁耐硫甲烷化催化剂及工艺㊁装备等,为煤基合成气㊁焦炉煤气㊁荒煤气等不同气体定制适宜的甲烷化流程,甚至为回收C O 2制甲烷进行积极的探索,为我国天然气供应扩宽来源.煤制气属于高耗能㊁高投资行业,但我国天然气的供应缺口依然巨大,目前,常规天然气的勘探和开采没有重大发现,页岩气短期内也难以形成大量产能,还必须依赖进口.虽然在目前的天然气价格体系下,煤制气项目盈利能力弱,但在市场低迷期需要未雨绸缪,开发自有的技术和装备.在国内现有的煤化工产业基础和原有甲烷化催化剂研究成果基础上,完全有能力开发自主的多样化甲烷化催化剂及甲烷化工艺,为保障我国的能源安全助一臂之力.参考文献:[1]李鑫,韩文峰,魏雪梅,等.反应条件对C O 甲烷化反应平衡及催化剂性能的影响[J ].天然气化工(C 1化学与化工),2016(3):30G36.[2]石华信.利用C O 2生产甲烷的甲烷化新催化剂[J ].石油石化绿色低碳,2014(4):11.[3]贾中宝,杨振,熊杰明,等.耐硫甲烷化催化剂的研究[J ].工业催化,2014(10):785G790.[4]于孟林.中国首创无循环甲烷化新工艺[J ].化工管理,2016(19):65.修改稿日期:2019-10-215 第6期肖敦峰,张大洲,卢文新㊀煤制气甲烷化技术对比及研究进展综述。
煤制天然气甲烷化课件
煤制天然气甲烷化技术具有高效、环保、可实现煤炭资源的 高附加值利用等优点,但也存在投资大、技术复杂等挑战。
煤制天然气甲烷化技术的历史与发展
历史
煤制天然气甲烷化技术最早起源于 20世纪初,经过多年的研究和发展 ,技术逐渐成熟。
发展
近年来,随着环境保护意识的提高和 能源结构的调整,煤制天然气甲烷化 技术得到了快速发展,成为煤炭清洁 利用的重要方向之一。
煤制天然气甲烷 化课件
目录
• 煤制天然气甲烷化技术概述 • 煤制天然气甲烷化技术原理 • 煤制天然气甲烷化技术设备 • 煤制天然气甲烷化技术经济分析 • 煤制天然气甲烷化技术安全与环
保 • 煤制天然气甲烷化技术未来发展
展望
01
煤制天然气甲烷化技术概 述
定义与特点
定义
煤制天然气甲烷化技术是一种将煤炭转化为天然气的过程, 通过一系列化学反应将煤中的碳、氢元素转化为甲烷(CH4 )。
煤制天然气甲烷化催化剂
煤制天然气甲烷化催化剂是实现 高效甲烷化的关键因素之一。
常用的催化剂有镍基催化剂、铬 基催化剂和铁基催化剂等,其中 镍基催化剂具有较高的活性和稳
定性。
催化剂的制备方法、活性组分和 载体对催化剂的性能有重要影响 ,选择合适的催化剂可以提高甲 烷化效率和降低副反应的发生。
03
煤制天然气甲烷化技术设 备
04
煤制天然气甲烷化技术经 济分析
投资成本分析
固定资产投资
包括甲烷化装置、配套设 施和辅助设备的购置、安 装费用。
流动资金投入
涉及原材料、燃料、水、 电等物资的采购和储备。
土地费用
获取项目所需土地的使用 权所需要支付的费用。
运行成本分析
01
焦炉煤气制天然气之甲烷化技术现状
技术应用与研究2019·07105当代化工研究Modern Chemical Research焦炉煤气制天然气之甲烷化技术现状*朱 林(伊犁新天煤化工有限责任公司 新疆 835000)摘要:在我国社会不断进步的情况下,老百姓对生活水平的要求越来越高,将天然气运用到人们的生产与生活能带来巨大的便利,因此生产天然气的技术逐渐成为了当前技术人员研究的重点,制天然气的方法也越来越多。
在众多制作方法中,利用焦炉煤气进行制作是目前最受人们推荐的方法,而这种方法虽然存在很多优点,但是其制作过程中的重要优化方法,甲烷化技术的运用仍不够完善,存在很多缺陷和需要提升的地方。
本文就甲烷化技术作用及其现状做了简要概括,并对焦炉媒体制天然气的试验及应用也进行了相应的介绍,望给相关人士提供一些帮助。
关键词:焦炉煤气;天然气;甲烷化技术中图分类号:T 文献标识码:ACurrent Status of Methanation Technology for Natural Gas Production from Coke Oven GasZhu Lin(Yili Xintian Coal Chemical CO., LTD., Xinjiang, 835000)Abstract :With the continuous progress of our society, people's demands on living standards are getting higher and higher, and the applicationof natural gas to people's production and life can bring great convenience. Therefore, the technology of producing natural gas has gradually become the focus of current technical research, and the methods of producing natural gas are also more and more. Among many production methods, coke oven gas is the most recommended method at present. Although this method has many advantages, the important optimization method and the application of methanation technology in the production process are still not perfect, and there are many defects and needs to be improved. In this paper, the function and current situation of methanation technology are briefly summarized, and the test and application of coke oven medium to produce natural gas are also introduced, hoping to provide some help to the relevant people.Key words :coke oven gas ;natural gas ;methanation technology引言据统计我国目前工厂所使用的甲醇,绝大部分都是利用焦炉煤气进行生产的,我国对于甲醇的使用量比其生产量小,故为了将其充分利用,我国各工程就将生产甲醇多余的材料进行制作天然气,焦炉煤气制作天然气方法也随之产生。
合成气甲烷化文献综述
(二零一四年三月二十五日科研训练论文(文献综述)题 目:煤制天然气甲烷化技术的发展 ****:*** 学 号:201010508010 学 院:化工学院 班 级:化学工程与工艺10-1班 ****:***煤制天然气甲烷工段摘要:由煤或相似原料(石油焦、生物质等)生产替代天然气(SNG)在能源领域已经成为极具吸引力的选择。
托普索循环甲烷化工艺(TREMPTM)允许不同组分的合成气为原料,生产出适合管道运输标准的SNG。
这项技术是基于MCR-2X催化剂的应用,它允许第一甲烷化反应器内大幅度温升。
TREMPTM的高温设计确保了过热高压蒸汽的高产量,这就间接的相当于每生产一立方米SNG,相应产出电能约1kWh。
关键词:煤制天然气;高温甲烷化;SNG1.引言由于油价的不断飙升和一些政策法规的颁布,由煤或相似原料(石油焦、生物质等)生产替代天然气(SNG)在能源领域成为极具吸引力的选择。
环境问题和能源供应的保障问题都已经提上了政治议程。
能源的替代性、转化的灵活性、能源的分布网,对减少对石油和天然气的依赖起着很重要作用。
石油和天然气的储量有限,且大部分都集中在局部地区,这些地区大多远离主要市场,且通常都地域上或者政治上的敏感地带。
相比而言,煤的含量丰富,且大多集中在几个重要的能源市场,如中国、印度、美国。
因此,煤又成为了一种重要的气化原料,用于生产合成气(主要是氢气和一氧化碳混合气)这项重要的技术中。
随着人们生活水平的提高,城市化进程的加快,对优质、高效天然气的需求急剧攀升,导致天然气供需矛盾日益突出。
煤制天然气是以煤为原料生产天然气的工艺技术,可以将煤炭转化为便于远距离输送的清洁燃料CH4,成为缓解天然气供需矛盾和煤炭高效清洁转化的重要途径之一。
该技术是通过多相催化甲烷化反应原理,将合成原料气中的碳氧化合物(CO+C02)催化加氢生成甲烷(CH4)。
甲烷化技术是煤制天然气的核心技术之一,甲烷化催化剂是甲烷化工艺开发的基础。
煤制合成天然气工艺中甲烷化合成技术
煤制合成天然气工艺中甲烷化合成技术发表时间:2020-05-22T04:39:43.102Z 来源:《防护工程》2019年24期作者:闫振文[导读] 并且对于煤制合成天然气工艺之中甲烷化合成技术进行了一定的概述,希望由此能够为阅读本文的相关人员提供一定的参考。
伊犁新天煤化工有限责任公司新疆伊宁 835000摘要:现如今,我国人们的生活水平显著提升,天然气是人们生活和生产中必不可少的物品,由于其本身的优势,使得其被广泛应用,但是天然气开采比较困难,所以我国探究了如何利用煤来制作天然气,在煤制天然气技术之中最为关键的是甲烷合成技术。
笔者在本文之中简要分析了国内与国外有关于甲烷化合成技术的概况,并且对于煤制合成天然气工艺之中甲烷化合成技术进行了一定的概述,希望由此能够为阅读本文的相关人员提供一定的参考。
关键词:天然气;甲烷化;煤制合成天然气引言我国能源特点是“富煤、贫油、少气”,由于作为清洁燃料的天然气资源不足,故很大程度依赖进口。
煤制替代天然气作为常规天然气的重要补充,对国家能源战略安全、缓解环境压力具有重要意义。
近年来,煤制替代天然气的技术开发与工业应用成为行业热点。
1煤制合成天然气概述天然气在广义上所指的是在自然界之中所存在的所有气体,而在能源应用的角度进行分析则可以将天然气归结为能够被用来作为燃料的煤层气、油田气以及气田气等,其组成主要包括可燃烧的低分子烃类和一些非烃类的气体。
因为天然气能源存有较多的优势,因此不仅在日常生活之中得到了较为广泛的应用,并且在化工产业和汽车工业等各个领域也得到了较大程度的应用。
由于当前能源的紧缺造成了我国对于煤制合成天然气工艺的研究有了较为广泛的应用。
2国内煤制天然气发展近况由于国内能源赋存,开发了很多大规模煤制天然气的工业化项目,涉及产能共计2410×108m3/a,目前国家发展改革委员会核准8个煤制天然气项目,总产能311×108m3/a。
煤制天然气-甲烷化
煤制天然气-甲烷化1. 简介煤制天然气(Coal-to-Natural-Gas,简称CTG)是一种将煤炭转化为天然气的技术,主要过程是甲烷化,即将煤炭中的有机化合物转化为甲烷气体。
煤制天然气是一项重要的能源转化技术,可以将煤炭资源转化为更清洁的天然气,从而减少对传统石油和天然气资源的依赖。
2. 煤制天然气的步骤煤制天然气的主要步骤包括煤气化和甲烷化两个过程。
2.1 煤气化煤气化是指将煤炭在高温和高压条件下,在缺氧或有限氧气条件下进行化学反应,使煤炭转化为合成气。
合成气由一氧化碳(CO)、二氧化碳(CO2)和氢气(H2)组成,其中一氧化碳和氢气是后续甲烷化反应的主要原料。
2.2 甲烷化甲烷化是将合成气转化为甲烷气体的过程。
在高温和催化剂的作用下,合成气中的一氧化碳和氢气发生反应生成甲烷气体。
甲烷气体是主要成分,其含量通常达到90%以上,可以直接作为燃料供应给城市燃气系统或工业领域使用。
3. 煤制天然气的优势和挑战3.1 优势•利用煤炭资源:煤炭是一种丰富的能源资源,通过煤制天然气技术可以有效利用这些资源,减缓传统石油和天然气的供需矛盾。
•降低碳排放:相比燃烧煤炭产生的二氧化碳排放,煤制天然气技术可以显著降低碳排放量,对环境更加友好。
•提高能源利用效率:煤制天然气技术可以实现高效能源利用,将煤炭中的有机物质转化为更高价值的甲烷气体。
3.2 挑战•能源转化效率:煤制天然气技术在转化过程中会产生一定的能量损失,需要进一步提高转化效率,减少能源浪费。
•环境影响:煤制天然气过程中会产生一定的副产物和废弃物,对环境造成一定的影响和压力,需要合理处理和减少环境污染。
•经济可行性:煤制天然气技术的投资和运营成本较高,需要找到经济上可行的路径和模式,以实现可持续发展。
4. 煤制天然气在全球的应用和发展煤制天然气技术在许多国家得到了广泛应用和快速发展。
其中,中国是全球最大的煤制天然气生产国之一。
中国在煤制天然气领域进行了大规模的投资和研发,建设了多个煤制天然气项目。
煤制合成天然气工艺中甲烷化合成技术
煤制合成天然气工艺中甲烷化合成技术摘要:天然气是一种重要的一次能源,在发电、工业燃料、化工原料、汽车能源、居民燃气等方面具有广泛用途。
虽然我国每年天然气产量呈逐年增长的趋势,但仍远远落后于市场需求的增长,天然气供不应求的局面将长期存在。
而我国的能源结构特点是“富煤、少油、缺气”,根据国内的能源结构特点,在富煤地区适度发展煤制天然气,既可清洁加工利用煤炭资源,也可有效补充天然气资源的供给,缓解国内天然气供求矛盾。
关键词:煤制合成天然气;甲烷化合成技术引言:煤制天然气工艺主要包括煤气化和合成气甲烷化两个过程。
综述了煤制天然气工艺中合成气甲烷化催化剂的研究进展,从活性组分、载体和助剂等方面介绍了国内外甲烷化催化剂的研究现状,并分析了甲烷化催化剂的失活原因。
合成气甲烷化催化剂的发展方向是使催化剂具有更好的催化活性和热稳定性,以期开发出性能优异的具有自主知识产权的合成气甲烷化催化剂及配套技术。
1.中国煤制天然气技术至今为止,中国还没有经过工业化验证的煤制天然气技术。
中国的CO甲烷化技术主要应用于富氢体系中微量CO的去除以及城市煤气的部分甲烷化。
开发的水煤气甲烷化工艺,其原料气首先进行脱硫操作,在0.05MPa、350℃下进行加氢反应。
该工艺经过1000h稳定性实验,催化剂催化活性稳定,且起始温度低,寿命可达1a之久,但催化剂不耐硫。
在空速1500h-1时,该工艺的CO转化率高达95%,CH4选择性可以达到65%。
由中科院大连物化所研发的常压耐高温煤气直接甲烷化工艺采用自行研发的M348-2A型催化剂,以水煤气为原料气,经脱水、脱硫、脱氧等工序后进入甲烷化反应器。
反应产物经降温、除水、压缩等工序后进入煤气输配管道系统。
由于M348-2A型催化剂为非耐硫型催化剂,因此原料气再进入甲烷化反应器前必须经过脱硫与脱氧。
该工艺的产品热值大于14000kJ/m3,CO体积分数小于10%,完全满足城市煤气的质量标准。
该催化剂的性能稳定,活性、选择性高,CO转化率可达80%~90%,甲烷选择性为60%~70%,催化剂寿命在0.5~1a,但该工艺的脱硫成本较高。
煤制合成天然气工艺中甲烷化合成技术王江
煤制合成天然气工艺中甲烷化合成技术王江发布时间:2021-10-11T03:33:33.834Z 来源:《福光技术》2021年15期作者:王江[导读] 因为天然气是以甲烷为主的混合气体,所以将其重点放在如何利用煤来完成甲烷气体的合成。
盛虹炼化(连云港)有限公司江苏省连云港市 222000摘要:天然气以其无污染和效率高的特点受广大居民的青睐,随着国家对环境保护的愈加重视,很多城市都加大了对天然气设备的安装,同时也进一步提升了天然气的用量,天然气已经成为了我国大部分城市居民生活的不可获取的能源。
但是,从长远角度考虑,从自然环境中获取的天然气渐渐无法满足人民的需要,需要采用其他方法合成天然气。
天然气的主要成分是甲烷,利用煤制合成天然气的重点在于如何合成甲烷。
因此,本文针对甲烷合成技术展开了分析,从而为城市能源的利用提供借鉴。
关键词:煤制合成天然气;甲烷化合成技术;煤化产业;人工制气随着国家对环境保护工作的进一步落实,越来越多的地区将天然气作为了常用能源,同时这也让天然气的消耗更多,在未来可能达到供不应求的程度。
然而在实际角度上我国的三大能源形式却呈现出“煤多、油少、气不足”的问题,在这一大环境下,天然气的消费量激增的前提下也会对天然气的开采有了更多的要求。
然而,自然界中的天然气储量虽然丰富但是无法承担起持续的大规模的耗用,所以要采取手段进行人工合成天然气,从而获得满足人民使用的天然气能源。
现如今,常规使用的方法为煤制天然气。
因为天然气是以甲烷为主的混合气体,所以将其重点放在如何利用煤来完成甲烷气体的合成。
1甲烷化合成技术原理分析煤制天然气工艺路线较为简单,工艺流程见图1。
图1 煤制天然气工艺流程一氧化碳和氢反应:CO+3H2=CH4+H2O△H=-206.2KJ/mol反应生成的水与一氧化碳发生作用:CO+H2O=CO2+H2△H=-38.4KJ/mol二氧化碳与氢作用:CO2+4H2=CH4+2H2O△H=-165.0KJ/mol煤制气在完成合成和加工之后,会生成H2;CO;CO2这三类气体,随后在甲烷化反应合成之后可以得到含有较多甲烷的SNG。
煤制天然气合成(甲烷化)技术综述
煤制天然气合成(甲烷化)技术综述本文汇总统计了目前国外主流煤制天然气甲烷化技术,比如托普索技术(TREMP技术)、戴维技术(CRG技术)、鲁奇/巴斯夫SNG 合成技术、福斯特惠勒/南方化学技术(VESTA技术)等,同时分析了各自甲烷化技术的优点和缺点以及工艺发展历程,供煤制天然气项目在工艺技术选择时参考,同时关注国内如大连化物所、神华等甲烷化催化剂的研究进展情况。
1、托普索技术(TREMP技术):托普索很早就在中国混了,是国内各种化工催化剂的主要外国供应商之一。
最近几年煤制天然气如此之火,当然少不了它。
也正是由于有了良好的基础,可以说托普索技术在国内煤制天然气的推广是最成功的。
如庆华、汇能等(其网站上云在中国有4套在建的合成天然气装置使用托普索技术:3套煤气化为原料的装置,3套焦炉气为原料的装置),均已和托普索签订了技术转让合同。
早期典型工艺流程流程图:这个图只是一个简要的示意图,后期托普索的宣传资料给出了稍微改进的流程图:这种循环工艺首段或首两段装填托普索的耐高温甲烷化催化剂MCR-2X,据说能耐温700以上,并且经历了长时间的试验考验。
后面的中低温段装填托普索用于合成氨甲烷化的普通催化剂PK-7R.不循环的“一次通过”工艺流程:首段甲烷化补加了大量水蒸气,并在甲烷化催化剂上部装填了GCC“调变”催化剂,以减轻首段的负荷和温升,尽管如此,这段反应器中装填的MCR系列催化剂还是得耐740度的出口温度。
2、戴维技术(CRG技术):戴维催化剂在上世纪80年代曾用于美国大平原装置,意识到工艺限制后,戴维开发了高温甲烷化催化剂CRG-LH及所谓的HICOM工艺。
后戴维并入庄信万丰,成为其100%子公司。
戴维甲烷化工艺中的大量甲烷化两个反应器出口大约控制在650度。
一直让我很奇怪的是,戴维的4个甲烷化反应器中均是两种催化剂(CRG-S2SR和CRG-S2CR)混装,而且两种催化剂的体积比还不一样。
戴维SNG技术在中国的宣传比较低调,但是它已经获得了大唐(克旗和阜新)和新汶的合同,这主要得益于他们的催化剂曾在大平原上得到应用;但戴维技术貌似能找到的公开资料不多。
煤制天然气之甲烷化概述(PPT48页)
➢ 现有新疆庆华和内蒙汇能SNG工厂采用托普索TREMPTM甲烷 化技术。
12
甲烷化技术状况
(2)英国Davy公司的CRG甲烷化工艺:
7
甲烷化反应特点
平衡常数很大,在通常使用催化剂的活性温度范围内,平衡不是限制 因素;
强放热反应。每转化1%CO可使气体温升71 ℃ ,每转化1%CO2可使 气体温升61 ℃ ;
甲烷化反应是F-T法合成烃类的一种特殊案例。甲烷化相当于燃料的 一转化过程,经甲烷化反应后可提升气体燃料能量密度;
工业化面临 的技术难题
煤气(高CO含量)甲烷化开始于40年代,真正发展于70年代(石油危 机);
标志性示范装置:美国大平原厂,总投资21.13亿美元,采用鲁奇固定床 干法排灰煤气化生产的煤气净化后经甲烷化合成天然气的大型商业化工 厂年产14.4亿Nm3天然气
国际发展是以制取代用天然气为目的,国内是为提高煤气的热值为主
1. 强放热反应, 可引起催化剂床层剧 烈升温,使催化剂烧结失活;
2. 气体中氢/碳比偏小,增加了析碳的 可能,是催化剂积碳失活;
3. 气体中毒物可使催化剂中毒失活;
8
精脱硫
第一硫吸收塔: H2S + ZnO = ZnS + H2O
第二硫吸收塔: COS + H2O = H2S + CO2 C2H4 + H2 = C2H6
甲醇
MTO/MTP
焦炉气
焦油
焦油加工
焦炭 乙炔 聚氯乙烯
等离子
直接 利用
焦炉煤气制天然气之甲烷化技术现状
焦炉煤⽓制天然⽓之甲烷化技术现状焦炉煤⽓制天然⽓之甲烷化技术现状刘⾦刚刘振峰杜霞茹娄肖杰吴迪镛(⼤连凯特利催化⼯程技术有限公司⼤连辽宁116085)摘要:焦炉煤⽓制天然⽓项⽬在技术性和经济性⽅⾯具有较强的竞争⼒,已成为焦炉煤⽓综合利⽤的热点技术之⼀。
甲烷化技术是焦炉煤⽓制天然⽓项⽬中的关键技术之⼀,迄今仍未有成熟可靠的商业化应⽤实例。
甲烷化技术主要有绝热多段固定床⼯艺和等温列管⽔冷反应器⼯艺,这些焦炉煤⽓甲烷化⼯艺仍处于试验阶段,其中甲烷化催化剂是⼯艺关键,其稳定性和可靠性等均需进⼀步验证。
关键词:焦炉煤⽓天然⽓甲烷化催化剂1 前⾔中国的独⽴焦化企业每年副产焦炉煤⽓约900亿m3,除了回炉加热⾃⽤,⼯业⽤燃料、发电及放散等之外,⽬前对焦炉煤⽓的综合利⽤主要是制作⼯业原料甲醇。
但国内甲醇产能过剩,⽽且焦炉煤⽓制甲醇技术复杂,投资较⼤。
近些年焦炉煤⽓制天然⽓(管输天然⽓、压缩天然⽓CNG、液化天然⽓LNG)备受关注,该技术能量利⽤效率⾼,⼯艺流程简单,市场前景看好,正逐渐成为焦炉煤⽓综合利⽤的具有较强竞争⼒的新领域之⼀。
国内⾸套焦炉煤⽓制天然⽓项⽬是太⼯天成2007年在⼭西河津实施的焦炉⽓综合利⽤新⼯艺⽰范⼯程,该项⽬中没有甲烷化⼯艺,采⽤前端组成净化、膜分离、低温液化等技术⽣产LNG和H2,项⽬于2009年建成,但由于各种各样原因,该⼯程⼀直未正常开⼯。
另据相关报道,2010年年底,内蒙乌海华清能源科技有限公司15万m3/d 焦炉煤⽓甲烷化制CNG⽰范装置成功开车,该项⽬中主要含焦炉煤⽓深度净化、绝热多段甲烷化、变压吸附、压缩等⼯艺,但由于新近开车,该⼯程还需经受“安稳长满”运⾏的考验。
另据报道,国内已有乌海、曲靖、菏泽、鄂尔多斯、攀枝花、孝义等地焦炉煤⽓制天然⽓项⽬正在规划、拟建或在建,这些项⽬中均含有甲烷化⼯艺,主要由国内和国外技术商提供⼯艺技术和催化剂。
2 甲烷化技术简介在焦炉煤⽓制天然⽓项⽬中,甲烷化⼯艺并不是必须的。
煤制合成天然气工艺中甲烷化合成技术
煤制合成天然气工艺中甲烷化合成技术作者:王亚龙孙璞珠来源:《中国化工贸易·下旬刊》2017年第02期摘要:随着经济水平的日益提升和发展,人们的生活质量得到了极大的改善,天然气作为一种高效、清洁型能源得到了有效推广和作用,随着城市化进程的不断加快,我国环保体系政策也越来越全面,天然气的消费量也在不断上涨。
但是从实际情况可以看出我国煤制天然气能源的开采受到了一定条件的限制,很难适应当前社会的发展需求。
甲烷化合成技术作为煤制天然气工艺中的重要组成部分具有重要应用价值,从物理化学角度分析,煤制天然气的主要成为是甲烷,因此技术人员要合理利用甲烷化合成技术进行煤制天然气开采研发,从不同的角度创新研究问题,有利于提高煤制天然气工艺的科学性和有效性,从而创造出更大的经济效益。
本文对煤制天然气工艺进行了基本论述,并对甲烷化合成技术的基本原理和具体应用进行了详细论述。
关键词:煤制合成天然气;工艺水平;甲烷化合成技术;基本原理;应用煤制天然气作为新型能源,一般情况下是不能直接利用的,在天然气能源转化过程中会消耗大量的资金成本,天然气在能源利用中占有较大的比重,因此煤制天然气工艺的运用需要技术人员投入足够的时间精力分析问题,总结制定出有效的方案,目前我国非催化部分氧化经过加工合成了新的工艺技术,甲烷化合成技术在资源开采过程中具有推动作用。
1 煤制合成天然气的基本论述煤制天然气主要以燃料作为能源,主要由可燃烧的低分子烃类和非烃类气体混合而成。
煤制天然气在化工产业及汽车产业中得到了广泛应用,满足了当前社会的发展需求,但是我国天然气能源的储存量相对减少,无法满足各行各业的安全运用,因此采用甲烷化合成技术已成为合成制气的必备手段。
技术人员要以煤炭作为基本原理从煤制天然气工艺的角度出发进行技术应用,为我国能源产业的发展奠定了基础条件。
2 甲烷化合成技术原理分析在煤制天然气工艺运行过程中要明确甲烷化合成技术的基本原理,然后按照基本操作流程就行转化,从而获取主要成分甲烷。
甲烷化技术综合篇
甲烷化甲烷化技术技术技术综合篇综合篇甲烷化就是利用催化剂使CO 和CO2加氢转化为CH4的方法,此法可以将碳氧化物降低到10ppm 以下,但需要消耗氢气。
一、 加氢反应CO+3H 2=CH 4+H 2O+206.16KJCO 2+4H 2=CH 4+2H 2O+165.08KJ此反应为强放热反应,有氧气存在时,氧气和氢气反应会生成水,在温度低于200℃,甲烷化催化剂中的镍会和CO 反应生成羰基镍:Ni+4CO=Ni(CO)4因此要避免低温下,CO 和镍催化剂的接触,以免影响催化剂的活性。
甲烷化的反应平衡常数随温度增加而下降,作为净化脱除CO 和CO2作用的甲烷化技术,反应温度一般在280~420℃之间,平衡常数值都很大,在400℃、2.53Mpa 压力下,计算CO 和CO 2的平衡含量都在10-4ppm 级。
湖南安淳公司开发的甲烷化催化剂起活温度210℃,使用温度为220~430℃之间。
进口温度增加,催化剂用量减少,压降和功耗有较大的降低。
这部分技术在国内已经非常成熟,而且应用多年。
目前,甲烷化技术已经用在大规模的合成气制天然气上,因此最大的问题是催化剂的耐温及强放热反应器的设计制作上。
二、 甲烷化催化剂甲烷化是甲烷蒸汽转化的逆反应,因此甲烷化反应的催化剂和蒸汽转化催化剂一样,都是以镍作为活性组分,但是甲烷化反应在温度更低的情况下进行,催化剂需要更高的活性。
为满足上述需要,甲烷化催化剂的镍含量更高,通常为15~35%(镍),有时还需要加入稀土元素作为促进剂,为了使催化剂能承受更高的温升,镍通常使用耐火材料作为载体,且都是以氧化镍的形态存在,催化剂可压片或做成球形,粒度在4~6mm 之间。
催化剂的载体一般选用AI 2O 3、MgO、TiO、SiO 2等,一般通过浸渍或共沉淀等方法负载在氧化物表面,再经焙烧、还原制得。
其活性顺序为:Ni/MgO<Ni/AI 2O 3<Ni/SiO 2<Ni/TiO 2<Ni/ZrO 2稀土在甲烷化催化剂中的作用主要表现在:提高催化剂活性和稳定性、抗积炭性能好、提高了催化剂耐硫性能。
浅谈甲烷化技术在煤制天然气中的应用及进展
浅谈甲烷化技术在煤制天然气中的应用及进展摘要甲烷化技术是煤制天然气的关键技术之一。
本文介绍了国内外甲烷化技术特点和进展关键词煤制天然气;甲烷化技术;固定床反应器;DA VY;TREMPTM;Lurgi;前言随着我国经济的快速发展以及城市化进程的推进,具有优质洁净和环保特点的天然气需求急剧攀升,其在能源结构中的比例也迅速增加。
目前,世界天然气供需基本平衡,但需求增速远远大于产量增速。
在中国,随着城市化进程的加快和人民生活水平的提高以及环境保护意识的增强,对天然气的需求呈快速增长势头,预计2020年我国天然气的需求量将达到2000亿m3 ,而同期的天然气产量只能达到1400亿~ 1600亿m3[1] 。
如此大的天然气缺口将对我国国民经济的发展带来诸多不利影响。
煤制合成天然气流程是将煤经过气化、变换、气体净化以及甲烷化四个工艺单元来制备天然气。
通过煤制天然气技术可以使煤直接燃烧过程中产生的有害物质集中回收利用,也是高碳能源向低碳、富氢能源转化的有效途径。
发展煤制天然气不仅可以缓解我国天然气供应不足的局面,弥补天然气供需缺口,对于实现油气资源的多元化、能源安全、节能减排等方面具有战略性甲烷化工艺技术甲烷化工艺技术应用广泛[2] ,不仅应用于煤制天然气和热解气、焦炉气、生物质热解气及CO2 的甲烷化反应,同时也用于合成氨和燃料电池等工业,用于去除富H2 体系中少量的CO以防止催化剂中毒。
煤制合成天然气技术又叫蒸汽氧化气化法,也称“两步法”。
主要反应分为两步[3] :图1 煤制天然气工艺流程煤制合成天然气核心技术是甲烷化技术,甲烷化反应原理如下:甲烷化反应是在催化剂作用下的强放热反应。
甲烷化的反应热是甲醇合成反应热的2倍。
在通常的气体组分中,每1个百分点的CO甲烷化可产生74℃的绝热温升;每1个百分点的CO2甲烷化可产生60℃的绝热温升。
由于传统的甲烷化催化剂适用的操作温区较窄(一般为300~ 400℃),起活温度较高,因此对于高浓度CO和CO2 含量的气体,其甲烷化合成工艺及催化剂有更高的要求[4] 。
煤制天然气甲烷化技术研究
煤制天然气甲烷化技术研究摘要:煤制天然气技术实施过程中具有流程复杂、控制难度大的特征,同时其中对于温度的掌控要求很高。
其中,甲烷化技术在煤制天然气中最为关键。
结合煤制天然气甲烷化技术的基本定义与特征,首先分析了我国煤制天然气甲烷化技术的发展现状,其次对煤制天然气技术的实现流程进行了解析,并在最后对煤制天然气甲烷化反应技术的优化策略进行了探讨,希望可以进一步提升甲烷化反应技术在煤制天然气中的应用效果,促进行业的发展。
关键词:煤制天然气;甲烷化反应;技术研究引言我国是一个多煤少气的国家,由于煤炭资源十分丰富,所以利用煤制天然气的方式来补足能源方面的缺口就显得尤为关键。
随着我国商品经济的快速发展,目前经济因素与环保因素都在很大程度上促进了煤炭行业的规范化,许多地区都出台了本地的行业标准与环保技术要求,这也使得煤制天然气的生产技术更加复杂,需要做好技术引导与创新,适应国家可持续发展的要求。
为了进一步阐述煤制天然气甲烷化技术的应用优化策略,现就其基本特征介绍如下。
一、煤气甲烷化技术概述煤制天然气甲烷化是一种通过将二氧化碳、硫化氢脱除后剩余的部分气体中所含的氢气、一氧化碳及少量二氧化碳在镍催化剂的影响作用下形成甲烷的反应方式,该反应方式的基本原理就是通过甲烷较高的热值来为能源行业提供丰富的功能需求。
在甲烷化的制作过程中,不同类型的热值产品能够适应不同的工业、生产与生活需要。
其中甲烷化后的气体的热值往往可以达到原煤制气的2~3倍,资源的综合利用效率得到了显著的提升。
其中,由于热值整体水平与天然气接近,甚至理化性质也几乎相同,所以可以与天然气进行混合使用,大大拓宽了技术应用的规模与范围。
在煤制气甲烷化处理过程中,能够将煤制气体中的有毒物质转化为无毒物质,这样一来在燃烧过程中出现“煤气中毒”的类似问题的概率也会大大降低,通过将煤气的热值提升数倍,也可以在相对有限的城市管网运输环境中完成更高热值的传递与运输,相当于在一定程度上降低了输气的成本,减少了制气环节的理论压力,更是提升了产品的附加值,对于企业而言也可以获得更为丰厚的报酬。
甲烷化技术综合篇
甲烷化技术综合篇甲烷化甲烷化技术技术技术综合篇综合篇甲烷化就是利⽤催化剂使CO 和CO2加氢转化为CH4的⽅法,此法可以将碳氧化物降低到10ppm 以下,但需要消耗氢⽓。
⼀、加氢反应CO+3H 2=CH 4+H 2O+206.16KJCO 2+4H 2=CH 4+2H 2O+165.08KJ此反应为强放热反应,有氧⽓存在时,氧⽓和氢⽓反应会⽣成⽔,在温度低于200℃,甲烷化催化剂中的镍会和CO 反应⽣成羰基镍:Ni+4CO=Ni(CO)4因此要避免低温下,CO 和镍催化剂的接触,以免影响催化剂的活性。
甲烷化的反应平衡常数随温度增加⽽下降,作为净化脱除CO 和CO2作⽤的甲烷化技术,反应温度⼀般在280~420℃之间,平衡常数值都很⼤,在400℃、2.53Mpa 压⼒下,计算CO 和CO 2的平衡含量都在10-4ppm 级。
湖南安淳公司开发的甲烷化催化剂起活温度210℃,使⽤温度为220~430℃之间。
进⼝温度增加,催化剂⽤量减少,压降和功耗有较⼤的降低。
这部分技术在国内已经⾮常成熟,⽽且应⽤多年。
⽬前,甲烷化技术已经⽤在⼤规模的合成⽓制天然⽓上,因此最⼤的问题是催化剂的耐温及强放热反应器的设计制作上。
⼆、甲烷化催化剂甲烷化是甲烷蒸汽转化的逆反应,因此甲烷化反应的催化剂和蒸汽转化催化剂⼀样,都是以镍作为活性组分,但是甲烷化反应在温度更低的情况下进⾏,催化剂需要更⾼的活性。
为满⾜上述需要,甲烷化催化剂的镍含量更⾼,通常为15~35%(镍),有时还需要加⼊稀⼟元素作为促进剂,为了使催化剂能承受更⾼的温升,镍通常使⽤耐⽕材料作为载体,且都是以氧化镍的形态存在,催化剂可压⽚或做成球形,粒度在4~6mm 之间。
催化剂的载体⼀般选⽤AI 2O 3、MgO、TiO、SiO 2等,⼀般通过浸渍或共沉淀等⽅法负载在氧化物表⾯,再经焙烧、还原制得。
其活性顺序为:Ni/MgO稀⼟在甲烷化催化剂中的作⽤主要表现在:提⾼催化剂活性和稳定性、抗积炭性能好、提⾼了催化剂耐硫性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤制天然气合成(甲烷化)技术综述
以下资料大部分来源于公开资料:
1、托普索技术(TREMP技术):托普索很早就在中国混了,是国内各种化工催化剂的主要外国供应商之一。
最近几年煤制天然气如此之火,当然少不了它。
也正是由于有了良好的基础,可以说托普索技术在国内煤制天然气的推广是最成功的。
我所了解的,如庆华、汇能等(其网站上云在中国有4套在建的合成天然气装置使用托普索技术:3套煤气化为原料的装置,3套焦炉气为原料的装置“?”),均已和托普索签订了技术转让合同。
所以我们能从公开途径找到的托普索的资料也是最多的。
早期典型工艺流程流程图:
很多谈论托普索的甲烷化工艺喜欢用这张图,其实这个图真的只是一个简要的示意图,后期托普索的宣传资料给出了稍微改进的流程图:
这种循环工艺首段或首两段装填托普索的耐高温甲烷化催化剂MCR-2X,据说能耐温700以上,并且经历了长时间的试验考验。
后面的中低温段装填托普索用于合成氨甲烷化的普通催化剂PK-7R.
我曾在某个资料中看过托普索提出个不循环的“一次通过”工艺流程:
首段甲烷化补加了大量水蒸气,并在甲烷化催化剂上部装填了GCC“调变”催化剂,以减轻首段的负荷和温升,尽管如此,这段反应器中装填的MCR系列催化剂还是得耐740度的出口温度。
暂时托普索已签订合同的技术路线是哪一个,我并没有掌握相关信息。
2、戴维技术(CRG技术):戴维催化剂在上世纪80年代曾用于美国大平原装置,意识到工艺限制(后面会讲)后,戴维开发了高温甲烷化催化剂CRG-LH及所谓的HICOM工艺。
后戴维并入庄信万丰,成为其100%子公司。
戴维甲烷化工艺中的大量甲烷化两个反应器出口大约控制在650度。
一直让我很奇怪的是,戴维的4个甲烷化反应器中均是两种催化剂(CRG-S2SR和CRG-S2CR)混装,而且两种催化剂的体积比还不一样。
个人感觉戴维SNG技术在中国的宣传比较低调,但是它已经获得了大唐(克旗和阜新)和新汶的合同,这主要得益于他们的催化剂曾在大平原上得到应用;但戴维技术貌似能找到的公开资料不多。
3、鲁奇/巴斯夫技术:要说工业应用,鲁奇/BASF的甲烷化工艺和催化剂曾是直到现在也是全球唯一得到工业应用的SNG合成技术,但是他们在中国迄今还没分到一杯羹。
个人认为这和他们的技术路线有关。
使用他们技术的美国大平原,甲烷化工艺采用的是中低温,大量循环气,无法回收高压高温蒸汽。
后来鲁奇那这种工艺路线参与国内的投标,肯定拼不过托普索和戴维了。
但现在他们改进了:
这个工艺看起来和戴维的工艺没什么两样,仅是少了一个反应器而已。
BASF也适时开发了高温甲烷化催化剂
G1-86HT满足工艺的需要。
凭借这两个公司的名气,将来在国内斩获几个项目应该没有问题。
4、福斯特惠勒/南方化学技术(VESTA技术):说起来也是,鼎鼎大名的南方化学能不参与这个煤制天然气的热点吗?但貌似有点晚,而且他们现在联合了这个在国内听起来名气不大的福斯特惠勒,又开发了一个与众不同的SNG 工艺;可能这也正是他们的卖点吧:
个人认为他们的这个技术有新意,但是有几个问题:(1)大型化的深度脱硫技术,低温甲醇下应该是最适合的,如果低温甲醇下同时脱除CO2也是合算的。
本工艺中将CO2留待甲烷化脱除,那前面的脱硫工艺用的什么技术?是否合算?(2)将CO2留待甲烷化中通过,实际上是惰性气体做了无用功,能耗料耗较大。
个人之间,仅供讨论。
5、国内甲烷化技术研发现状
(1)大连化物所:8000h的实验室试验已完成,5000方/天的工业试验已完成1000h;
(2)大连凯特利:正在筹划5000方/h(以合成气计)的中试,预计2012年年中建成;
(3)中石化与与南化集团研究院搞了个“合成气制天然气重点实验室”;
(4)中石油乌鲁木齐石化公司拟作甲烷化侧线试验;
(5)太原理工和赛鼎合作搞流化床(浆态床)甲烷化工艺;
(6)新奥、大唐、神华、天大、清华、华能、西北院等均在开发甲烷化催化剂
总的说来,国内的研究开发慢了。
工艺上已没有什么新鲜玩意,主要是催化剂的开发。
将来会和甲醇催化剂一样,只是一个催化剂的更换问题了。