非常有利于mean-shift算法的理解

合集下载

mean-shift图像分割

mean-shift图像分割

由式 (4) 获得 :
������ = . ������+1
∑������������=1 ������������������������������(||������������������ℎ−������������������������||2)������(||������������������ℎ−������������������������||2) ∑������������=1 ������������������(||������������������ℎ−������������������������||2)������(||������������������ℎ−������������������������||2)
图4 3. 图像分割的细节图片如图 5 所示:
图5
实验小结
根据 mean-shift 算法原理,通过对聚类中心的不断迭代,从而找到相近的类,达到分割 的目的。通过这次实验,进一步理解了图像分割的含义,也充分体现了 mean-shift 算法在图 像分割中的应用。
参考文献
【1】 【2】 【3】
Mean-shift 跟踪算法中核函数窗宽的自动选取——彭宁嵩 杨杰 刘志 张凤超——软 件学报——2005,16(9) Mean-shift 算法的收敛性分析——刘志强 蔡自兴——《《软件学报》》——2007,18 (2) 基于分级 mean-shift 的图像分割算法——汤杨 潘志庚 汤敏 王平安 夏德深
计算机视觉实验三
——利用 mean-shift 进行图像分割
算法简介
mean-shift 是一种非参数概率密度估计的方法。通过有限次的迭代过程,Parzen 窗定义 的概率密度函数能够快速找到数据分布的模式。由于具有原理简单、无需预处理、参数少等 诸多优点,mean-shift 方法在滤波、目标跟踪、图像分割等领域得到了广泛的应用。

meanshift算法简介

meanshift算法简介

怎样找到数据集合中数据最密集的地方呢?
数据最密集的地方,对应于概率密度最大的地方。我们可 以对概率密度求梯度,梯度的方向就是概率密度增加最大 的方向,从而也就是数据最密集的方向。

,假设除了有限个点,轮廓函数 的梯度对所

均存在 。将 作为轮廓函数,核函数 为:
fh,K
x
2ck ,d n nhd 2 i1
Meanshift算法的概述及其应用
Meanshift的背景
Mean Shift 这个概念最早是由Fukunaga等人于 1975年在一篇关于概率密度梯度函数的估计中提出 来的,其最初含义正如其名,就是偏移的均值向量。
直到20年以后,也就是1995年,,Yizong Cheng发 表了一篇对均值漂移算法里程碑意义的文章。对基 本的Mean Shift算法在以下两个方面做了改进,首先 Yizong Cheng定义了一族核函数,使得随着样本与 被偏移点的距离不同,其偏移量对均值偏移向量的贡 献也不同,其次Yizong Cheng还设定了一个权重系 数,使得不同的样本点重要性不一样,这大大扩大了 Mean Shift的适用范围.另外Yizong Cheng指出了 Mean Shift可能应用的领域,并给出了具体的例子。
• 一维下的无参数估计 设X1,X2, …Xn是从总体中抽出的独立同分布
的样本,X具有未知的密度函数f(x),则f (x)的核估计为:
h为核函数的带宽。常用的核函数如下:
分别是单位均匀核函数 和单位高斯核函数
多维空间下的无参密度估计:
在d维欧式空间X中,x表示该空间中的一个点, 表示该空间中的
核函数,
(5)若
,则停止;否则y0←y1转步骤②。
限制条件:新目标中心需位于原目标中 心附近。

经典Mean Shift算法介绍

经典Mean Shift算法介绍

经典Mean Shift算法介绍1无参数密度估计 (1)2核密度梯度估计过程 (3)3算法收敛性分析 (4)均值漂移(Mean Shift)是Fukunaga等提出的一种非参数概率密度梯度估计算法,在统计相似性计算与连续优化方法之间建立了一座桥梁,尽管它效率非常高,但最初并未得到人们的关注。

直到1995年,Cheng改进了Mean Shift算法中的核函数和权重函数,并将其应用于聚类和全局优化,才扩大了该算法的适用范围。

1997年到2003年,Comaniciu等将该方法应用到图像特征空间的分析,对图像进行平滑和分割处理,随后他又将非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时进行。

由于Mean Shift算法完全依靠特征空间中的样本点进行分析,不需要任何先验知识,收敛速度快,近年来被广泛应用于模式分类、图像分割、以及目标跟踪等诸多计算机视觉研究领域。

均值漂移方法[4]是一种最优的寻找概率密度极大值的梯度上升法,提供了一种新的目标描述与定位的框架,其基本思想是:通过反复迭代搜索特征空间中样本点最密集的区域,搜索点沿着样本点密度增加的方向“漂移”到局部密度极大点。

基于Mean Shift方法的目标跟踪技术采用核概率密度来描述目标的特征,由于目标的直方图具有特征稳定、抗部分遮挡、计算方法简单和计算量小的特点,因此基于Mean Shift的跟踪一般采用直方图对目标进行建模;然后通过相似性度量,利用Mean Shift搜寻目标位置,最终实现目标的匹配和跟踪。

均值漂移方法将目标特征与空间信息有效地结合起来,避免了使用复杂模型描述目标的形状、外观及其运动,具有很高的稳定性,能够适应目标的形状、大小的连续变换,而且计算速度很快,抗干扰能力强,在解决计算机视觉底层任务过程中表现出了良好的鲁棒性和较高的实时处理能力。

1无参数密度估计目标检测与跟踪过程中,必须用到一定的手段对检测与跟踪的方法进行优化,将目标的表象信息映射到一个特征空间,其中的特征值就是特征空间的随机变量。

meanshif算法简介PPT课件

meanshif算法简介PPT课件
Meanshift算法的概述及其应用
Meanshift的背景
Mean Shift 这个概念最早是由 Fukunaga等人于1975年在一篇关于概率密度梯度函 数的估计中提出来的,其最初含义正如其名,就是偏 移的均值向量。
直到20年以后,也就是1995年,,Yizong Cheng 发表了一篇对均值漂移算法里程碑意义的文章。对 基本的Mean Shift算法在以下两个方面做了改进, 首先Yizong Cheng定义了一族核函数,使得随着样 本与被偏移点的距离不同,其偏移量对均值偏移向 量的贡献也不同,其次Yizong Cheng还设定了一个 权重系数,使得不同的样本点重要性不一样,这大大 扩大了Mean Shift的适用范围.另外Yizong Cheng 指出了Mean Shift可能应用的领域,并给出了具体 的例子。
Mean shift向量的物理意义的什么呢?
为了更好地理解这个式子的物理意义,假设上式中g(x)=1 平均的偏移量会指向样本点最密的方向,也 就是概率密度函数梯度方向
下面我们看一下mean shift算法的步骤
mh x
给定一个初始点x,核函数G(x), 容许误差 ,Mean
Shift算法循环的执行下面三步,直至结束条件满足,

若再考虑到
这个表达式就是基于核函数
的概率密度函数的估计
怎样找到数据集合中数据最密集的地方呢?
数据最密集的地方,对应于概率密度最大的地方。我们可 以对概率密度求梯度,梯度的方向就是概率密度增加最大 的方向,从而也就是数据最密集的方向。
令 的梯度对所有 廓函数,核函数
,假设除了有限个点,轮廓函数
均存在 。将
Meanshift的应用
• Mean Shift可以应用在很多领域,比如聚类,图像平 滑,,图像分割。尤其是应用在目标跟踪领域,其跟踪

多特征带宽自适应Mean Shift目标跟踪算法

多特征带宽自适应Mean Shift目标跟踪算法
e l l i p s e ,p ra a me t e r s i s o b t a i n e d b y c a l c u l a t i n g mo me n t o f p r o b a b i l i t y d e n s i t y .E x p e r i me n t a l r e s u l t s s h o w t h a t t h e a l g o r i t h m c a n e f f e c t i v e l y me e t t h e g o a l o f s c a l i n g , r o t a t i o n a n d o t h e r c o mp l e x mo t i o n , a n d n o t s e n s i t i v e t o l i g h t i n g c h a n g e a n d s i mi l r a c o l o r .
M u l t i . f e a t u r e Ba n d wi d t h Ad a p t i v e
Me a n S h i t f T a r g e t Tr a c k i n g Al g o r i t h m
DI NG Ye - b i n g , ZHAO Fe n g , HAO S h i - h a i
] [ Ke y w o r d s ]t rg a e t t r a c k i n g ; k e me l f u n c t i o n b a n d wi d t h ; t e x t u r e ; p r o b a b i l i t y d e n s i y; t mo me n t
特征带宽 自 适应 目 标 跟踪算法 。采用颜色和纹理信 息创 建特征模型 ,在最优 目 标位置 区域投 影,以生成概率密 度分布 图 , 通过计算获得 目 标密 度块的长度和宽度 ,从而 自 适 应调整核函数带宽 ,用椭 圆锁定 目 标, 椭 圆形状参数 由 目 标概率密度 的

meanshift算法简介

meanshift算法简介
Mean shift向量
基于核函数G(x)的 概率密度估计

用核函数G在 x点计算得到的Mean Shift 向量 正比于归一化的用核函数K估计的概率 密度的函数 的梯度,归一化因子为用核函数 G估计的x点的概率密度.因此Mean Shift向量 总是指向概率密度增加最大的方向.
Mean shift向量的物理意义的什么呢?

2ck ,d
n
2

2ck ,d cg ,d 2 d h cg ,d nh
g i 1
n
n x xi 2 xi g 2 h x xi i 1 x n x x 2 h i g h i 1
为了更好地理解这个式子的物理意义,假设上式中g(x)=1
平均的偏移量会指向样本点最密的方向,也 就是概率密度函数梯度方向
下面我们看一下mean shift算法的步骤
mh x
给定一个初始点x,核函数G(x), 容许误差 ,Mean Shift算法 循环的执行下面三步,直至结束条件满足, •计算mh ( x) •把 mh ( x)赋给 x. •如果 mh ( x) x ,结束循环;若不然,继续执行(1)
0 =1,2…..m i=1,2…..m
(5)若
,则停止;否则y ←y1转步骤②。
0
限制条件:新目标中心需位于原目标中 心附近。
Meanshift跟踪结果
• 转word文档。
• Meanshift优缺点: 优点 ①算法复杂度小; ②是无参数算法,易于与其它算法集 成; ③采用加权直方图建模,对目标小角 度旋转、轻微变形和部分遮挡不敏感等。

均值偏移算法

均值偏移算法

均值偏移算法
均值偏移算法(Mean Shift algorithm)是一种基于密度的非参数化聚类算法,用于数据聚类和图像分割等任务。

它的原理是通过迭代地移动数据样本的均值位置,直到满足某个终止条件为止,从而实现聚类的目标。

算法步骤如下:
1. 初始化每个数据样本的均值位置,可以选择随机选取或者使用其他聚类算法的结果作为初始点。

2. 对于每个数据样本,计算它与所有其他样本之间的距离。

3. 根据一定的核函数,将距离较近的数据样本聚集到一个小区域中。

4. 通过计算每个聚类区域的均值,更新每个数据样本的均值位置。

5. 重复步骤2~4,直到均值位置不发生变化或者达到迭代次数的终止条件。

均值偏移算法有以下特点:
- 不需要指定聚类的数量,而是根据数据样本自身的分布情况进行聚类。

- 对于不规则形状和密度变化较大的数据集效果好。

- 对噪声数据敏感。

在图像分割中,均值偏移算法可以通过选择合适的颜色空间和核函数,将图像中的每个像素点聚类到相应的区域中,从而实现图像的分割。

一种扩展带权值的Mean shift跟踪算法

一种扩展带权值的Mean shift跟踪算法
Xi e J i e
( Co l l e g e o f Au t o ma t i o n , Na n j i n g Un i v e r s i t y o f P o s t s a n d Te l e c o mmu n i c a t i o n s , Na n j i n g 2 1 0 0 0 3 , C h i n a )
雄 嫩 静 静

E I E C T R O N 1 C 电 M 子 E A S 测 U R E 量 M E N 技 T 术 T E C 年 第 4 月 4 期
种 扩 展 带权 值 的 Me a n s h i f t 跟踪 算 法

Ke y wo r d s :p i x e l s ;o b j e c t t r a c k i n g;M e a n s h i f t ;t e x t u r e ;h i s t o g r a m ;s c a l e a d a p t i v e
1 引
s i gn i f i c an c e h a ve a wi de l y r e s e a r c h v a l ue . Bas e d on t h e t r a d i t i o na l Me a n s hi f t t r a c k i n g a l go r i t hm i s s u s c ep t i b l e t O ke e p o ut , b a c kg r o un d i nf o r m at i o n a n d S O on. I n t hi s pa pe r, pu t a n e xt e n de d Me a n s h i f t a l g or i t h m。 c om b i n i ng wi t h t he t e x t ur e f e a t ur e s an d b a c kg r o un d we i ght f a c t or . Thr ou gh t he t e s t t h a t t h i s me t ho d f o r t a r ge t t r a c ki n g ha s a ve r y go o d e f f e c t

MeanShift

MeanShift

§5-1Mean Shift 算法Mean Shift 算法是由Fukunaga 和Hosteler 于1975年提出的一种无监督聚类方法[109],Mean Shift 的含义是均值偏移向量,它使每一个点“漂移”到密度函数的局部极大值点。

但是再提出之初,Mean Shift 算法并没有得到广泛的重视,直到1995年,Cheng 等人对该算法进行了进一步的研究[110],提出了一般的表达形式并定义了一族核函数,从而扩展了该算法的应用领域,此后Mean Shift 算法逐步得到了人们的重视。

目前,Mean Shift 算法已广泛应用于目标跟踪[111~114]、图像分割与平滑[115~118]等领域,同时由于该算法具有简洁、能够处理目标变形等优点,也是目前目标跟踪领域的一个重要研究热点。

5-1-1 Mean Shift 算法原理Mean Shift 算法是一种基于密度梯度的无参数估计方法,从空间任意一点,沿核密度的梯度上升方向,以自适应的步长进行搜索,最终可以收敛于核密度估计函数的局部极大值处。

基本的Mean Shift 算法可以描述为:设{}()1,,i x i n = 为d 维空间R d 中含有n 个样本点的集合,在点x 处的均值偏移向量的基本形式可以由式(5.1)表示:1()()hh ix S M x xx k∈=-∑ (5.1)其中,S h 是R d 中满足式(5.2)的所有y 点集合,其形状为一个半径为h 的高维球区域。

k 为所有n 个样本点中属于高维球区域的点的数目。

(x i -x )为样本点相对于点x 的偏移向量。

根据式(5.1)的定义可知,点x 的均值偏移向量就是所有属于S h 区域中的样本点与点x 的偏移向量均值,而S h 区域中的样本点大多数是沿着概率密度梯度的方向,所以均值漂移向量的方向与概率密度梯度方向一致,图5.1为具体的示意图。

{}2():()()Th S x y y x y x h=--≤ (5.2)图5.1 Mean Shift 示意图 Fig.5.1 Mean Shift sketch map根据式(5.1)和图5.1可以看出,所有属于区域S h 中的样本点对于点x 的均值漂移向量贡献度相同,而与这些点与点x 间的距离无关。

MeanShift算法

MeanShift算法

核函数也称“窗口函数”。

一维空间用到的核函数有高斯(Gaussian)、余弦弧(Cosinus arch)、双指数(Double Exponential)、均匀(Uniform)、三角(Trangle)、依潘涅契科夫(Epanechikov)、双依潘涅契科夫(DoubleEpanechnikov)、及双权(Biweight)函数。

图2.1给出了最常用的几个核函数给定一组一维空间的n个数据点集合令该数据集合的概率密度函数假设为f (x),核函数取值为,那么在数据点x处的密度估计可以按下式计算:上式就是核密度估计的定义。

其中,x为核函数要处理的数据的中心点,即数据集合相对于点x几何图形对称。

核密度估计的含义可以理解为:核估计器在被估计点为中心的窗口内计算数据点加权的局部平均。

或者:将在每个采样点为中心的局部函数的平均效果作为该采样点概率密度函数的估计值。

MeanShift实现:1.选择窗的大小和初始位置.2.计算此时窗口内的Mass Center.3.调整窗口的中心到Mass Center.4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值,或者迭代次数达到设定值。

meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优。

它要做的就是输入一个在图像的范围,然后一直迭代(朝着重心迭代)直到满足你的要求为止。

但是他是怎么用于做图像跟踪的呢?这是我自从学习meanshift以来,一直的困惑。

而且网上也没有合理的解释。

经过这几天的思考,和对反向投影的理解使得我对它的原理有了大致的认识。

在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria),输出的是迭代完成的位置(comp )。

这是函数原型:int cvMeanShift( const void* imgProb, CvRect windowIn,CvTermCriteria criteria, CvConnectedComp* comp )但是当它用于跟踪时,这张输入的图像就必须是反向投影图了。

mean shift

mean shift

Mean Shift,我们翻译为“均值飘移”。

其在聚类,图像平滑。

图像分割和跟踪方面得到了比较广泛的应用。

由于本人目前研究跟踪方面的东西,故此主要介绍利用Mean Shift方法进行目标跟踪,从而对MeanShift有一个比较全面的介绍。

(以下某些部分转载常峰学长的“Mean Shift概述”)Mean Shift 这个概念最早是由Fukunaga等人于1975年在一篇关于概率密度梯度函数的估计(The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition )中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift是一个名词,它指代的是一个向量,但随着Mean Shift理论的发展,Mean Shift的含义也发生了变化,如果我们说Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间内Mean Shift并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift的重要文献(Mean shift, mode seeking, and clustering )才发表.在这篇重要的文献中,Yizong Cheng对基本的Mean Shift算法在以下两个方面做了推广,首先Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift的适用范围.另外Yizong Cheng指出了Mean Shift可能应用的领域,并给出了具体的例子。

Comaniciu等人在还(Mean-shift Blob Tracking through Scale Space)中把非刚体的跟踪问题近似为一个Mean Shift最优化问题,使得跟踪可以实时的进行。

meanshift算法学习笔记一

meanshift算法学习笔记一

Mean shift算法学习周记一我所认知的什么是mean shift算法Mean Shift算法本质上是最优化理论中的最速下降法(亦称梯度下降法,牛顿法等),即沿着梯度下降方法寻找目标函数的极值。

在跟踪中,就是为了寻找到相似度值最大的候选目标位置。

Mean shift算法的基本思想从初始目标区域提取的特征,对于下一个的视频而言,其上任意位置都可以圈定出一个与初始化目标区域相同大小的区域,并提取该区域的颜色直方图特征与初始化目标区域提取的颜色直方图特征进行匹配,计算得到两个特征之间的相似度。

由此,可以得到一个由特征匹配程度构成的一个相似度概率密度分布图我们真正需要寻找的就是该概率密度分布图上的最大值(与初始目标特征最相似的位置)。

Mean Shift方法就是沿着概率密度的梯度方向进行迭代移动,最终达到密度分布的最值位置。

其迭代过程本质上是的最速下降法,下降方向为一阶梯度方向,步长为固定值。

但是,Mean Shift没有直接求取下降方向和步长,它通过模型的相似度匹配函数的一阶Talor展开式进行近似,直接推到迭代的下一个位置。

由此,沿着梯度方向不断迭代收敛到目标相似度概率目标分布的局部极大值。

Mean shift算法特点由于在实际中,我们不可能去求取下一帧中所有位置的相似度。

Mean Shift 是在不知道该概率密度分布的条件下,使用迭代过程中每次选定的目标区域的局部密度特征来进行迭代的,因此,它寻找的是目标的局部极大值。

这就导致目标运动过快或背景过于复杂时,迭代寻找的局部极值并不是目标在下一帧中的最佳匹配位置。

另外,Mean Shift作为最速下降法的一种,它的收敛速度并不快,且在接近最优值时,存在锯齿现象。

Mean shift算法的作用及特点(1)因为目标直方图具有特征稳定,抗部分遮挡,计算方法简单和计算量小的特点。

所以基于Mean Shift 的跟踪一般采用直方图对目标进行建模,然后通过相似度量,最终实现目标的匹配和跟踪。

mean shift算法讲解

mean shift算法讲解

mean shift算法讲解Mean shift算法是一种无监督的聚类算法,它的主要思想是通过不断迭代寻找数据点的概率分布密度的众数,从而实现数据的聚类。

本文将详细介绍Mean shift算法的具体步骤和实现流程,并深入解析其原理和应用场景。

一、算法背景和基本原理Mean shift算法最初由Comaniciu和Meer于1992年提出,它是一种基于密度估计的聚类方法。

其核心思想是通过计算每个数据点周围的概率密度分布,不断调整数据点的位置直到达到局部极大值点(众数),从而实现数据点的聚集。

Mean shift算法的基本原理如下:1.初始化:选择一个合适的核函数和带宽,然后从数据集中选择一个数据点作为初始中心点。

2.密度估计:计算每个数据点周围的概率密度分布,以核函数和带宽作为参数。

3.均值偏移:根据密度估计结果,通过计算梯度的方向,将当前中心点移动到密度分布的局部极大值点。

4.收敛判断:判断当前中心点和移动后的中心点之间的距离,如果小于某个阈值,则认为算法收敛,结束迭代。

否则,将移动后的中心点作为新的中心点,重复步骤2-4直到收敛。

二、算法步骤详解下面将详细解释Mean shift算法的每一步骤。

1.初始化为了实现Mean shift算法,我们首先需要选择一个适当的核函数和带宽。

核函数可以是高斯核函数或者其他类型的核函数。

带宽决定了数据点的搜索半径,即计算密度估计的范围。

一个较小的带宽会导致聚类过于散乱,而一个较大的带宽会导致聚类过于集中。

因此,合适的带宽选择是非常重要的。

2.密度估计在第二步中,我们需要计算每个数据点周围的概率密度分布。

这可以通过核函数和带宽来实现。

对于给定的数据点xi,其密度估计可以表示为:f(xi)=1/N*ΣK(xi-xj)/h其中,N是数据点的总数,K是核函数,h是带宽。

该公式意味着每个数据点的密度估计值是通过计算该数据点和所有其他数据点之间的核函数和的平均值得到的。

3.均值偏移在第三步中,我们通过计算梯度的方向来将当前中心点移动到密度分布的局部极大值点。

mean-shift算法matlab代码

mean-shift算法matlab代码

一、介绍Mean-shift算法Mean-shift算法是一种基于密度估计的非参数聚类算法,它可以根据数据点的密度分布自动寻找最优的聚类中心。

该算法最早由Dorin Comaniciu和Peter Meer在1999年提出,并被广泛应用于图像分割、目标跟踪等领域。

其原理是通过不断地将数据点向局部密度最大的方向移动,直到达到局部密度的最大值点,即收敛到聚类中心。

二、 Mean-shift算法的优势1. 无需事先确定聚类数量:Mean-shift算法不需要事先确定聚类数量,能够根据数据点的密度自动确定聚类数量。

2. 对初始值不敏感:Mean-shift算法对初始值不敏感,能够自动找到全局最优的聚类中心。

3. 适用于高维数据:Mean-shift算法在高维数据中仍然能够有效地进行聚类。

三、 Mean-shift算法的实现步骤1. 初始化:选择每个数据点作为初始的聚类中心。

2. 计算密度:对于每个数据点,计算其密度,并将其向密度增加的方向移动。

3. 更新聚类中心:不断重复步骤2,直至收敛到局部密度的最大值点,得到最终的聚类中心。

四、 Mean-shift算法的Matlab代码实现以下是一个简单的Matlab代码实现Mean-shift算法的示例:```matlab数据初始化X = randn(500, 2); 生成500个二维随机数据点Mean-shift算法bandwidth = 1; 设置带宽参数ms = MeanShift(X, bandwidth); 初始化Mean-shift对象[clustCent, memberships] = ms.cluster(); 执行聚类聚类结果可视化figure;scatter(X(:,1), X(:,2), 10, memberships, 'filled');hold on;plot(clustCent(:,1), clustCent(:,2), 'kx', 'MarkerSize',15,'LineWidth',3);title('Mean-shift聚类结果');```在代码中,我们首先初始化500个二维随机数据点X,然后设置带宽参数并初始化Mean-shift对象。

Mean+Shift图像分割的快速算法

Mean+Shift图像分割的快速算法

MeanShift图像分割的快速算法・23・MeanShift图像分割的快速算法孙小炜,李言俊,陈义(西北工业大学航天学院,陕西西安710072)摘要:MeanShift算法是一种搜索与样本点分布最相近模式的非参数统计方法。

在图像聚类分割中,MeanShift算法是一种有效的方法。

但是,由于MeanShift算法是一种迭代方法,要保证较高的数值计算精度则需要较多的迭代次数,耗费较长的计算时间。

为克服这一缺点,提出了在数字图像空间中标记收敛点,同时采用Fourier级数来近似计算高斯函数。

仿真实验表明,该方法对于加速McanShift计算过程是十分有效并且是相当精确的。

关键词:图像分割;高斯核函数;Fourier级数;MeanShift迭代中图分类号:TP391.41文献标识码:A文章编号:1000—8829(2008)07—0023—03FastMeanShiftAlgorithminImageSegmentationSUNXiao—wei,LIYan-jun,CHENYi(SchoolofAstronautics,NorthwesternPolytechnicalUniversity,Xi’tm710072,China)Abstract:TheMeanShiftalgorithmisanonparametricstatisticalmethodforseekingthenearestmodeofapointsampledistribu-tion.Inimageclusteringsegmentation,theMeanShiftalgorithmisaneffectivemethod.However,MeanShiftisaniterationscheme.Itwastesmoretimetocalculateandneedsmoreiterationtoensurehighernumericalaccuracy.Inordertoovercomeitsdisadvantage,markingconvergencepointsindigitalimagespaceisappliedandGaussfunctioniscalculatedapproximatelybyFourierseries.Theexperimentalresultsshowthatitisanefi%ientandaccuratemethodforacceleratingMeanShiftprocedure.Keywords:imagesegmentation;Gausskernelfunction;Fourierseries;MeanShiftiterationMeanShift算法是由Fukunaga和Hostetler在1975年提出¨J,直到1995年,Chen旧1的论文发表才引起人们的研究兴趣,掀起了研究和应用MeanShift算法的热潮。

均值平移算法

均值平移算法

均值平移算法均值平移算法(Mean Shift Algorithm)是一种用于数据聚类和图像分割的非参数方法。

它的基本思想是通过迭代计算数据点的均值平移向量,将数据点移动到局部密度最大的区域,从而实现聚类的目的。

在介绍均值平移算法之前,先来了解一下聚类的概念。

聚类是指将具有相似特征的数据点分组到一起的过程。

在实际应用中,聚类可以用于图像分割、目标跟踪、无监督学习等领域。

而均值平移算法作为一种常用的聚类算法,具有以下特点:1. 非参数化:均值平移算法不需要事先指定聚类的个数,而是通过迭代计算数据点的均值平移向量,从而确定聚类的个数和位置。

2. 局部搜索:均值平移算法是一种局部搜索算法,它通过计算数据点的均值平移向量,将数据点移动到局部密度最大的区域。

这样可以保证聚类的准确性,并且能够处理非凸形状的聚类。

下面我们来详细介绍均值平移算法的原理和步骤:1. 初始化:首先选择一个合适的窗口大小和数据点的初始位置。

窗口大小决定了局部搜索的范围,而初始位置可以是随机选择的或者根据先验知识进行选择。

2. 计算均值平移向量:对于窗口内的每个数据点,计算它与其他数据点的距离,并将距离加权后的向量相加。

这个加权和即为均值平移向量。

3. 移动数据点:根据计算得到的均值平移向量,将数据点移动到局部密度最大的区域。

具体做法是将数据点沿着均值平移向量的方向移动一定的距离。

4. 更新窗口:更新窗口的位置,使其包含移动后的数据点。

然后回到第2步,继续计算均值平移向量,并移动数据点,直到满足停止条件。

均值平移算法的停止条件可以是迭代次数达到一定的阈值,或者数据点的移动距离小于一定的阈值。

在实际应用中,可以根据具体的情况选择合适的停止条件。

均值平移算法的优点是可以自动发现数据中的聚类,并且对于非凸形状的聚类效果好。

然而,它也有一些缺点,比如对于大规模数据的处理速度较慢,并且对于窗口大小的选择比较敏感。

总结一下,均值平移算法是一种常用的聚类算法,它通过迭代计算数据点的均值平移向量,将数据点移动到局部密度最大的区域,从而实现聚类的目的。

高斯核函数mean-shift matlab

高斯核函数mean-shift matlab

高斯核函数mean-shift matlab高斯核函数是一种常用的核函数,它广泛应用于图像处理、模式识别、机器学习等领域。

平均漂移(mean-shift)算法是一种基于高斯核函数的非参数密度估计方法,具有较强的适应性和鲁棒性。

平均漂移算法基于传统的核密度估计方法,但它不需要指定数据的概率分布函数。

相反,它使用核函数来估计密度函数。

核函数通常采用高斯核函数,如下所示:$$K(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$$$x$表示一个样本点,$\sigma$表示高斯分布的标准差。

平均漂移算法通过迭代来寻找样本点的密度中心,即最高密度的点。

为了找到密度中心,要先选择一个起始点,并使用核函数来计算该点周围所有点的权值。

然后,根据所有点的权值计算权重平均值,以此平移当前点的位置。

不断迭代此过程,直到找到密度中心为止。

1. 选择一个起始点$x_0$。

2. 计算权重$w_i = K(||x_i-x_0||)$,其中$||\cdot||$表示欧几里得距离。

3. 计算权重平均值:$m(x_0) =\frac{\sum_{i=1}^n w_ix_i}{\sum_{i=1}^n w_i}$。

4. 将$x_0$平移到$m(x_0)$,即$x_0 = m(x_0)$。

5. 重复2~4步,直到$m(x_0)$与$x_0$之间的距离小于某个阈值或达到预定的最大迭代次数。

```matlabfunction [center, idx] = mean_shift(data, bandwidth, eps)[n, d] = size(data); % 数据维度center = zeros(n, d); % 每个数据点的密度中心converged = false(n, 1); % 每个数据点是否已经收敛idx = zeros(n, 1); % 数据点所属簇的标签for i = 1:nx = data(i, :); % 取出一个数据点cnt = 0;while ~converged(i) && cnt < 100 % 最多迭代100次cnt = cnt + 1;w = exp(-sum((data-repmat(x, n, 1)).^2, 2)/(2*bandwidth^2)); % 计算所有点的权重x_new = sum(repmat(w, 1, d).*data, 1) / sum(w); % 根据权重计算新的位置if norm(x_new - x) < eps % 如果位置变化很小,认为已经收敛center(i, :) = x_new;idx(i) = find(abs(w-max(w))<eps, 1); % 选择权重最大的簇作为标签converged(i) = true;elsex = x_new;endendend````data`表示数据样本,`bandwidth`表示高斯核函数的标准差,`eps`表示收敛判定的阈值。

Mean Shift 概述

Mean Shift 概述

Mean Shift 概述Mean Shift 简介Mean Shift 这个概念最早是由Fukunaga 等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift 是一个名词,它指代的是一个向量,但随着Mean Shift 理论的发展,Mean Shift 的含义也发生了变化,如果我们说Mean Shift 算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间内Mean Shift 并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift 的重要文献[2]才发表.在这篇重要的文献中,Yizong Cheng 对基本的Mean Shift 算法在以下两个方面做了推广,首先Yizong Cheng 定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng 还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift 的适用范围.另外Yizong Cheng 指出了Mean Shift 可能应用的领域,并给出了具体的例子.Comaniciu 等人[3][4]把Mean Shift 成功的运用的特征空间的分析,在图像平滑和图像分割中Mean Shift 都得到了很好的应用. Comaniciu 等在文章中证明了,Mean Shift 算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift 算法可以用来检测概率密度函数中存在的模态.Comaniciu 等人[5]还把非刚体的跟踪问题近似为一个Mean Shift 最优化问题,使得跟踪可以实时的进行.在后面的几节,本文将详细的说明Mean Shift 的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift 在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用.Mean Shift 的基本思想及其扩展基本Mean Shift给定d 维空间dR 中的n 个样本点i x ,i=1,…,n,在x 点的Mean Shift 向量的基本形式定义为:()()1i hh i x S M x x x k ∈≡-∑ (1)其中,h S 是一个半径为h 的高维球区域,满足以下关系的y 点的集合,()()(){}2:Th S x y y x y x h ≡--≤ (2)k 表示在这n 个样本点i x 中,有k 个点落入h S 区域中.陈姝注:11111111()()kii k k k h i i i i i i x x k M x x x x x x kx x x k k k =====⎛⎫⎛⎫=-=-=-=- ⎪ ⎪⎝⎭⎝⎭∑∑∑∑我们可以看到()i x x -是样本点i x 相对于点x 的偏移向量,(1)式定义的Mean Shift 向量()h M x 就是对落入区域h S 中的k 个样本点相对于点x 的偏移向量求和然后再平均.从直观上看,如果样本点i x 从一个概率密度函数()f x 中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说, h S 区域内的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift 向量()h M x 应该指向概率密度梯度的方向.图1,Mean Shift 示意图如上图所示, 大圆圈所圈定的范围就是h S ,小圆圈代表落入h S 区域内的样本点i h x S ∈,黑点就是Mean Shift 的基准点x ,箭头表示样本点相对于基准点x 的偏移向量,很明显的,我们可以看出,平均的偏移向量()h M x 会指向样本分布最多的区域,也就是概率密度函数的梯度方向.扩展的Mean Shift核函数首先我们引进核函数的概念.定义:X 代表一个d 维的欧氏空间,x 是该空间中的一个点,用一列向量表示. x 的模2T x x x =.R 表示实数域.如果一个函数:K X R →存在一个剖面函数[]:0,k R ∞→,即()2()K x k x=(3)并且满足:(1) k 是非负的.(2) k 是非增的,即如果a b <那么()()k a k b ≥. (3) k 是分段连续的,并且0()k r dr ∞<∞⎰那么,函数()K x 就被称为核函数.举例:在Mean Shift 中,有两类核函数经常用到,他们分别是, 单位均匀核函数:1 if 1()0 if 1x F x x ⎧<⎪=⎨≥⎪⎩ (4)单位高斯核函数:2()xN x e-= (5)这两类核函数如下图所示.图2, (a) 单位均匀核函数 (b) 单位高斯核函数一个核函数可以与一个均匀核函数相乘而截尾,如一个截尾的高斯核函数为,()2if ()0 ifx e x N F x x ββλλλ-⎧<⎪=⎨≥⎪⎩ (6)图 3 显示了不同的,βλ值所对应的截尾高斯核函数的示意图.图3 截尾高斯核函数 (a) 11N F (b) 0.11N FMean Shift 扩展形式从(1)式我们可以看出,只要是落入h S 的采样点,无论其离x 远近,对最终的()h M x 计算的贡献是一样的,然而我们知道,一般的说来,离x 越近的采样点对估计x 周围的统计特性越有效,因此我们引进核函数的概念,在计算()h M x 时可以考虑距离的影响;同时我们也可以认为在这所有的样本点i x 中,重要性并不一样,因此我们对每个样本都引入一个权重系数. 陈姝注:考虑下particle filtering 中的重要函数,蒙特卡罗采样。

Mean_Shift_算法概述

Mean_Shift_算法概述

Mean Shift 概述Mean Shift 简介Mean Shift 这个概念最早是由Fukunaga 等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift 是一个名词,它指代的是一个向量,但随着Mean Shift 理论的发展,Mean Shift 的含义也发生了变化,如果我们说Mean Shift 算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间Mean Shift 并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift 的重要文献[2]才发表.在这篇重要的文献中,Yizong Cheng 对基本的Mean Shift 算法在以下两个方面做了推广,首先Yizong Cheng 定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng 还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift 的适用围.另外Yizong Cheng 指出了Mean Shift 可能应用的领域,并给出了具体的例子.Comaniciu 等人[3][4]把Mean Shift 成功的运用的特征空间的分析,在图像平滑和图像分割中Mean Shift 都得到了很好的应用.Comaniciu 等在文章中证明了,Mean Shift 算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift 算法可以用来检测概率密度函数中存在的模态.Comaniciu 等人[5]还把非刚体的跟踪问题近似为一个Mean Shift 最优化问题,使得跟踪可以实时的进行.在后面的几节,本文将详细的说明Mean Shift 的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift 在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用.Mean Shift 的基本思想及其扩展基本Mean Shift给定d 维空间dR 中的n 个样本点i x ,i=1,…,n,在x 点的Mean Shift 向量的基本形式定义为:()()1i hh i x S M x x x k ∈≡-∑ (1)其中,h S 是一个半径为h 的高维球区域,满足以下关系的y 点的集合,()()(){}2:Th S x y y x y x h ≡--≤ (2)k 表示在这n 个样本点i x 中,有k 个点落入h S 区域中.我们可以看到()i x x -是样本点i x 相对于点x 的偏移向量,(1)式定义的Mean Shift 向量()h M x 就是对落入区域h S 中的k 个样本点相对于点x 的偏移向量求和然后再平均.从直观上看,如果样本点i x 从一个概率密度函数()f x 中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说,h S 区域的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift 向量()h M x 应该指向概率密度梯度的方向图1,Mean Shift 示意图如上图所示, 大圆圈所圈定的围就是h S ,小圆圈代表落入h S 区域的样本点i h x S ∈,黑点就是Mean Shift 的基准点x ,箭头表示样本点相对于基准点x 的偏移向量,很明显的,我们可以看出,平均的偏移向量()h M x 会指向样本分布最多的区域,也就是概率密度函数的梯度方向.扩展的Mean Shift 核函数首先我们引进核函数的概念.定义:X 代表一个d 维的欧氏空间,x 是该空间中的一个点,用一列向量表示.x 的模2Tx x x=.R表示实数域.如果一个函数:K X R→存在一个剖面函数[]:0,k R∞→,即()2()K x k x=(3)并且满足:(1)k是非负的.(2)k是非增的,即如果a b<那么()()k a k b≥.(3)k是分段连续的,并且()k r dr∞<∞⎰那么,函数()K x就被称为核函数.举例:在Mean Shift中,有两类核函数经常用到,他们分别是,单位均匀核函数:1 if 1()0 if 1xF xx⎧<⎪=⎨≥⎪⎩(4)单位高斯核函数:2()xN x e-= (5)这两类核函数如下图所示.图2, (a)单位均匀核函数 (b)单位高斯核函数一个核函数可以与一个均匀核函数相乘而截尾,如一个截尾的高斯核函数为,()2 if()0 ifxe xN F xxββλλλ-⎧<⎪=⎨≥⎪⎩(6)图 3 显示了不同的,βλ值所对应的截尾高斯核函数的示意图.图3 截尾高斯核函数 (a) 11N F (b) 0.11N FMean Shift 扩展形式从(1)式我们可以看出,只要是落入h S 的采样点,无论其离x 远近,对最终的()h M x 计算的贡献是一样的,然而我们知道,一般的说来,离x 越近的采样点对估计x 周围的统计特性越有效,因此我们引进核函数的概念,在计算()h M x 时可以考虑距离的影响;同时我们也可以认为在这所有的样本点i x 中,重要性并不一样,因此我们对每个样本都引入一个权重系数.如此以来我们就可以把基本的Mean Shift 形式扩展为:()11()()()()()nHi i i i nHi i i Gx x w x x x M x Gx x w x ==--≡-∑∑ (7)其中:()()1/21/2()H i i G x x HG H x x ---=-()G x 是一个单位核函数H 是一个正定的对称d d ⨯矩阵,我们一般称之为带宽矩阵()0i w x ≥是一个赋给采样点i x 的权重在实际应用的过程中,带宽矩阵H 一般被限定为一个对角矩阵221diag ,...,d H h h ⎡⎤=⎣⎦,甚至更简单的被取为正比于单位矩阵,即2H h I =.由于后一形式只需要确定一个系数h ,在Mean Shift 中常常被采用,在本文的后面部分我们也采用这种形式,因此(7)式又可以被写为:()11()()()()()ni i i i h ni i i x xG w x x x hM x x x G w x h ==--≡-∑∑ (8)我们可以看到,如果对所有的采样点i x 满足(1)()1i w x =(2) 1 if 1()0 if 1x G x x ⎧<⎪=⎨≥⎪⎩则(8)式完全退化为(1)式,也就是说,我们所给出的扩展的Mean Shift 形式在某些情况下会退化为最基本的Mean Shift 形式.Mean Shift 的物理含义正如上一节直观性的指出,Mean Shift 指向概率密度梯度方向,这一节将证明Mean Shift 向量()h M x 是归一化的概率密度梯度.在本节我们还给出了迭代Mean Shift 算法的详细描述,并证明,该算法会收敛到概率密度函数的一个稳态点.概率密度梯度对一个概率密度函数()f x ,已知d 维空间中n 个采样点i x ,i=1,…,n,()f x 的核函数估计(也称为Parzen 窗估计)为,11()ˆ()()ni i i n di i x x K w x h f x h w x ==-⎛⎫⎪⎝⎭=∑∑ (9)其中()0i w x ≥是一个赋给采样点i x 的权重()K x 是一个核函数,并且满足()1k x dx =⎰我们另外定义:核函数()K x 的剖面函数()k x ,使得()2()K x kx=(10);()k x 的负导函数()g x ,即'()()g x k x =-,其对应的核函数()2()G x g x= (11)概率密度函数()f x 的梯度()f x ∇的估计为:()2'1212()ˆˆ()()()ni i i i nd i i x xx x k w x h f x f x h w x =+=⎛⎫--⎪ ⎪⎝⎭∇=∇=∑∑(12)由上面的定义,'()()g x k x =-,()2()G x gx =,上式可以重写为()()21212112112()ˆ()()()()2 ()()nii i i nd i i n i n i i i i i i n d n i i i i i x xx x G w x h f x h w x x x x x x x G w x G w x h h x x h h w x G w x h =+=====⎛⎫-- ⎪ ⎪⎝⎭∇=⎡⎤⎛⎫-⎡-⎤⎛⎫-⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎢⎥=⎢⎥-⎛⎫⎢⎥⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑ (13)上式右边的第二个中括号的那一部分就是(8)式定义的Mean Shift 向量,第一个中括号的那一部分是以()G x 为核函数对概率密度函数()f x 的估计,我们记做ˆ()Gf x ,而(9)式定义的ˆ()f x 我们重新记做ˆ()Kf x ,因此(11)式可以重新写为: ˆ()f x ∇=ˆ()K f x ∇=()22ˆ()G h f x M x h(14) 由(12)式我们可以得出,()2ˆ()1ˆ2()Kh G f x M x h f x ∇= (15)(15)式表明,用核函数G 在x 点计算得到的Mean Shift 向量()h M x 正比于归一化的用核函数K 估计的概率密度的函数ˆ()Kf x 的梯度,归一化因子为用核函数G 估计的x 点的概率密度.因此Mean Shift 向量()h M x 总是指向概率密度增加最大的方向.Mean Shift 算法 算法步骤我们在前面已经指出,我们在提及Mean Shift 向量和Mean Shift 算法的时候指代不同的概念,Mean Shift 向量是名词,指的是一个向量;而Mean Shift 算法是动词,指的是一个迭代的步骤.我们把(8)式的x 提到求和号的外面来,可以得到下式,()11()()()()ni i i i h n i i i x xG w x x hM x x x x G w x h ==-=--∑∑(16)我们把上式右边的第一项记为()h m x ,即11()()()()()ni i i i h n i i i x xG w x x hm x x x G w x h ==-=-∑∑ (17)给定一个初始点x ,核函数()G X , 容许误差ε,Mean Shift 算法循环的执行下面三步,直至结束条件满足, (1).计算()h m x (2).把()h m x 赋给x(3).如果()h m x x ε-<,结束循环;若不然,继续执行(1).由(16)式我们知道,()()h h m x x M x =+,因此上面的步骤也就是不断的沿着概率密度的梯度方向移动,同时步长不仅与梯度的大小有关,也与该点的概率密度有关,在密度大的地方,更接近我们要找的概率密度的峰值,Mean Shift 算法使得移动的步长小一些,相反,在密度小的地方,移动的步长就大一些.在满足一定条件下,Mean Shift 算法一定会收敛到该点附近的峰值,这一收敛性由下面一小节给出证明.算法的收敛性证明我们用{}j y ,1,2,...j =来表示Mean Shift 算法中移动点的痕迹,由(17)式我们可写为,111()()()()ni ji ii j n i ji i x y G w x x h y x y G w x h=+=-=-∑∑,1,2,...j = (18)与j y 对应的概率密度函数估计值ˆ()jf y 可表示为, 11()ˆ()()ni j i i K j n di i x y K w x h f y h w x ==-⎛⎫⎪⎝⎭=∑∑ (19)下面的定理将证明序列{}j y 和{}ˆ()jf y 的收敛性. 定理:如果核函数()K x 有一个凸的,单调递增的剖面函数,核函数()G x 由式(10)和(11)定义,则序列{}j y 和{}ˆ()jf y 是收敛的. 证明:由于n 是有限的,核函数()(0)K x K ≤,因此序列{}ˆ()jf y 是有界的,所以我们只需要证明{}ˆ()jf y 是严格递增的的,即要证明,对所有j=1,2,…如果1j j y y +≠,那么 ˆ()j f y 1ˆ()j f y +< (20)不失一般性,我们可以假设0j y =,由(19)式和(10)式,我们可以得到1ˆ()j f y +ˆ()j f y -=221111 ()()n i j i ji ni d i i x y x y k k w x h h h w x +==⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑ (21) 由于剖面函数()k x 的凸性意味着对所有12,[0,)x x ∈∞且12x x ≠,有'2121()()()()k x k x k x x x ≥+-(22)因为'()()g x k x =-,上式可以写为,2112()()()()k x k x g x x x -≥-(23)结合(21)与(23)式,可以得到,1ˆ()j f y +ˆ()jf y - 222111211 ()()ni j i j i i n i d i i x y g x y x w x h h w x ++=+=⎛⎫-⎡⎤⎪≥--⎢⎥⎣⎦ ⎪⎝⎭∑∑ 2211112112()()ni j T j i j i n i d i i x y g y x y w x h h w x +++=+=⎛⎫-⎡⎤⎪=-⎢⎥⎣⎦ ⎪⎝⎭∑∑ 12221211112()()()j n nT ii i i j i n d i i i i x x y x g w x y g w x h h h w x +++===⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑∑(24)由(18)式我们可以得出,1ˆ()j f y +ˆ()jf y -2211211()n ij n i d i i x y g hhw x +=+=⎛⎫≥ ⎪ ⎪⎝⎭∑∑(25)由于剖面函数()k x 是单调递减的,所以求和项210nii x g h =⎛⎫>⎪ ⎪⎝⎭∑,因此,只要10j j y y +≠= (25)式的右边项严格大于零,即1ˆ()j f y +ˆ()jf y >.由此可证得,序列{}ˆ()j f y 收敛 为了证明序列{}j y 的收敛性,对于0j y ≠,(25)式可以写为1ˆ()j f y +ˆ()jf y -2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪≥- ⎪⎝⎭∑∑(26) 现在对于标号j,j+1,…,j+m -1,对(26)式的左右两边分别求和,得到ˆ()j m f y +ˆ()jf y - 22111211...()ni j m j m j m ni d i i x y y y g h h w x +-++-=+=⎛⎫- ⎪≥-+ ⎪⎝⎭∑∑ 2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪+- ⎪⎝⎭∑∑2211211...()j m j m j j n d i i y y y y M h w x ++--+=⎡⎤≥-++-⎢⎥⎣⎦∑ 2211()j m j n d i i y y M hw x ++=≥-∑(27)其中M 表示对应序列{}j y 的所有求和项21n i ji x y g h =⎛⎫-⎪ ⎪⎝⎭∑的最小值.由于{}ˆ()j f y 收敛,它是一个Cauchy 序列,(27)式意味着{}jy 也是一个Cauchy 序列,因此,序列{}j y 收敛.Mean Shift 的应用从前面关于Mean Shift 和概率密度梯度的关系的论述,我们可以清楚的看到,MeanShift 算法本质上是一个自适应的梯度上升搜索峰值的方法,如下图所示,如果数据集{},1,...i x i n =服从概率密度函数f(x),给定一个如图初始点x ,Mean Shift 算法就会一步步的移动,最终收敛到第一个峰值点.从这图上,我们可以看到Mean Shift 至少有如下三方面的应用:(1)聚类,数据集{},1,...i x i n =中的每一点都可以作为初始点,分别执行Mean Shift 算法,收敛到同一个点算作一类;(2)模态的检测,概率密度函数中的一个峰值就是一个模态,Mean Shift 在峰值处收敛,自然可以找到该模态.(3)最优化,Mean Shift 可以找到峰值,自然可以作为最优化的方法,Mean Shift 算法进行最优化的关键是要把最优化的目标转化成Mean Shift 隐含估计的概率密度函数.图4.Mean Shift 算法示意图Mean Shift 算法在许多领域获得了非常成功的应用,下面简要的介绍一下其在图像平滑,图像分割以及物体跟踪中的应用,一来说明其强大的生命力,二来使对上文描述的算法有一个直观的了解.图像平滑与分割一幅图像可以表示成一个二维网格点上p 维向量,每一个网格点代表一个象素,1p =表示这是一个灰度图,3p =表示彩色图,3p >表示一个多谱图,网格点的坐标表示图像的空间信息.我们统一考虑图像的空间信息和色彩(或灰度等)信息,组成一个2p +维的向量(,)s r x x x =,其中s x 表示网格点的坐标,r x 表示该网格点上p 维向量特征.我们用核函数,s r h h K 来估计x 的分布,,s r h h K 具有如下形式,22,2s rs r h h p s r sr C x x K k k h h h h ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎝⎭ (28)其中,s r h h 控制着平滑的解析度,C 是一个归一化常数.我们分别用i x 和i z ,i =1,…,n 表示原始和平滑后的图像.用Mean Shift 算法进行图像平滑的具体步骤如下, 对每一个象素点, 1,初始化1j =,并且使,1i i y x =2,运用Mean Shift 算法计算,1i j y +,直到收敛.记收敛后的值为,i c y3.赋值(),,s ri i i c z x y =图5是原始图像,图中40 20白框区域被选中来更好的显示基于Mean Shift的图像平滑步骤,图6显示了这一区域的平滑步骤,x,y表示这一区域的象素点的坐标,图6(a)在一个三维空间显示了各个象素点的灰度值,图6(b)显示各点的移动痕迹,黑点是最终收敛值,图6(c)显示了平滑后的各象素点的灰度值,图6(d)是继续分割后的结果.图5.原始图像图6.(a)原始图像的各象素点灰度值.(b)各象素点的Mean Shift移动路径.(c)平滑后的各象素点的灰度值.(d)分割后的结果图7显示了图5经过平滑后的结果,我们可以看到,草地上的草地纹理被平滑掉了,而图像中边缘仍然很好的保持着..图7平滑后的结果h h是非常重要的参数,人们可以根据解析在基于Mean Shift的图像平滑中,式(28)中的,s rh h会对最终的平滑结果有一定的影响,图7显示了这两个参数度的要求而直接给定,不同,s rh影响更大一些.对平滑结果的影响,我们可以看出,s图8,原始图和平滑后的图基于Mean Shift的图像分割与图像平滑非常类似,只需要把收敛到同一点的起始点归为一类,然后把这一类的标号赋给这些起始点,在图像分割中有时还需要把包含象素点太少类去掉,图6(d)显示分割后的灰度值.图8,显示了图5经过分隔后的结果图8,分割后的结果物体跟踪我们用一个物体的灰度或色彩分布来描述这个物体,假设物体中心位于0x ,则该物体可以表示为()21ˆi i s ns u i x xqC k b x u h δ=⎛⎫- ⎪⎡⎤=-⎣⎦ ⎪⎝⎭∑(29)候选的位于y 的物体可以描述为()21ˆ()hn s s i u h i i x ypy C k b x u h δ=⎛⎫-⎡⎤ ⎪=-⎣⎦ ⎪⎝⎭∑(30)因此物体跟踪可以简化为寻找最优的y ,使得ˆ()u py 与ˆu q 最相似. ˆ()u py 与ˆu q 的最相似性用Bhattacharrya 系数ˆ()y ρ来度量分布,即 []ˆ()(),mu y p y q ρρ=≡= (31)式(31)在ˆu p()0ˆy 点泰勒展开可得, []1111(),(22m mu u u p y q p y ρ==≈∑(32)把式(30)带入式,整理可得,[]2111(),22mnhii u i C y x p y q w k h ρ==⎛⎫-≈ ⎪ ⎪⎝⎭∑ (33)其中,1[()mi i u w b x u δ==-∑对式(33)右边的第二项,我们可以利用Mean Shift 算法进行最优化.在Comaniciu 等人的文章中,他们只用平均每帧图像只用4.19次Mean Shift 迭代就可以收敛,他们的结果很显示在600MHz 的PC 机上,他们的程序可以每秒处理30帧352⨯240象素的图像.下图显示了各帧需要的Mean Shift 迭代次数.图9,各帧需要的Mean Shift迭代次数下图显示了Comaniciu等人的跟踪结果图10,基于Mean Shift的物体跟踪结果结论本文回顾了Mean Shift的发展历史,介绍了它的基本思想,给出了具体的算法步骤,详细证明了它与梯度上升搜索法的联系,并给出Mean Shift算法的收敛性证明,最后给出了Mean Shift在图像平滑,图像分割以及实时物体跟踪中的具体应用,显示Mean Shift强大的生命力.参考文献[1]The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition (1975)[2]Mean shift, mode seeking, and clustering (1995)[3]Mean Shift: a robust approach toward feature space analysis (2002)[4]Real-time tracking of non-rigid objects using mean shift (2000)[5]Mean-shift Blob Tracking through Scale Space (2003)[6]An algorithm for data-driven bandwidth selection(2003)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Examples:
• Epanechnikov Kernel
K
E
(x)


c
1
x
2
x 1
0
otherwise
• Uniform Kernel
c x 1
KU
(x)


0
otherwise
• Normal Kernel
K
N
(x)

c

exp


1 2
x
2
Data
• Can handle arbitrary feature spaces
• Only ONE parameter to choose
• h (window size) has a physical meaning, unlike K-Means
Weaknesses :
• The window size (bandwidth selection) is not trivial
Function of vector length only
Kernel Density Estimation
Various Kernels
P(x)

1 n
n i 1
K(x - xi )
A function of some finite number of data points x1…xn
Kernel Density Estimation
Gradient
P(x)

1 n
n i 1
K (x - xi )
Give up estimating the PDF ! Estimate ONLY the gradient
Using the Kernel form:
We get :
K (x - xi ) ck
Objective : Find the densest region Distribution of identical billiard balls
Mean Shift vector
Intuitive Description
Region of interest
Center of mass
Objective : Find the densest region Distribution of identical billiard balls
Mean Shift vector
Intuitive Description
Region of interest
Center of mass
Objective : Find the densest region Distribution of identical billiard balls
Mean Shift vector
Intuitive Description
Region of interest
Center of mass
Objective : Find the densest region Distribution of identical billiard balls
Mean Shift vector
Intuitive Description
Center of mass
Objective : Find the densest region Distribution of identical billiard balls
Mean Shift vector
Intuitive Description
Region of interest
Center of mass
Data point density implies PDF value !
Assumed Underlying PDF
Real Data Samples
Non-Parametric Density Estimation
Assumed Underlying PDF
Real Data Samples
PDF in feature space
• •
Color Scale
ssppaacceeDNenosni-typaErsatmimeatrtiicon
• Actually any feature space you can conceive
•…
Discrete PDF Representation
Data
x - xi h
2
Size of window
P(x)
c n
n
ki
i 1

c n n i1
gi



n
xi gi



i 1 n
i 1
gi
x

g(x) k(x)
CKoemrnpeul tDinegnsTihtyeEMsetiamnaStihoinft
• Inappropriate window size can cause modes to be merged, or generate additional “shallow” modes Use adaptive window size
Adaptive Gradient Ascent
• Convergence is guaranteed for infinitesimal steps only infinitely convergent, (therefore set a lower bound)
• For Uniform Kernel ( ), convergence is achieved in a finite number of steps
Region of interest
Center of mass
Objective : Find the densest region Distribution of identical billiard balls
What is Mean Shift ?
A tool for: Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in RN
Gradient
P(x)
c n
n
ki
i 1

c n n i1
gi



n
xi gi



i 1 n
i 1
gi
x

g(x) k(x)
Computing The Mean Shift
P(x)
c n
n
ki
i 1
• Applications
• Clustering • Discontinuity Preserving Smoothing • Object Contour Detection • Segmentation • Object Tracking
Mean Shift Theory
Intuitive Description
m(x)


n

i1 xi g
n g
i1
x - xi h
x - xi h
2
2


x
•Translate the Kernel window by m(x)
g(x) k(x)
Mean Shift Mode Detection

c n n i1
gi



n
xi gi

i1

n
gi
i 1
x

Yet another Kernel density estimation !
Simple Mean Shift procedure: • Compute mean shift vector
Non-parametric Density GRADIENT Estimation
(Mean Shift)
PDF Analysis
Non-Parametric Density Estimation
Assumption : The data points are sampled from an underlying PDF
PDF(x) =
c e
(
x-μi )2
2
2 i
irlying PDF
Real Data Samples
Kernel Density Estimation
Parzen Windows - Function Forms
P(x)

1 n
n i 1
Mean Shift Strengths & Weaknesses
Strengths :
• Application independent tool
• Suitable for real data analysis
• Does not assume any prior shape (e.g. elliptical) on data clusters
Real Modality Analysis
The blue data points were traversed by the windows towards the mode
Real Modality Analysis
An example
相关文档
最新文档