黄冈市中考数学试题与答案

合集下载

2023年湖北省黄冈市中考数学真题(含简单答案)

2023年湖北省黄冈市中考数学真题(含简单答案)

2023年湖北省黄冈市中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.的相反数是()A.B.C.D.2.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为()A.B.C.D.3.下列几何体中,三视图都是圆的是()A.长方体B.图柱C.圆锥D.球4.不等式的解集为()A.B.C.D.无解5.如图,的直角顶点A在直线a上,斜边在直线b上,若,则()A.B.C.D.6.如图,在中,直径与弦相交于点P,连接,若,,则()A.B.C.D.7.如图,矩形中,,以点B为圆心,适当长为半径画弧,分别交,于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线,过点C作的垂线分别交于点M,N,则的长为()A.B.C.D.48.已知二次函数的图象与x轴的一个交点坐标为,对称轴为直线,下列论中:①;②若点均在该二次函数图象上,则;③若m为任意实数,则;④方程的两实数根为,且,则.正确结论的序号为()A.①②③B.①③④C.②③④D.①④二、填空题.计算;_____________.请写出一个正整数m的值使得是整数;_____________边形的一个外角为,则_____________.已知一元二次方程的两个实数根为,若,则实数_____________.眼睛是心灵的窗户为保护学生视力,启航中学每学期给学生检查视力,下表是该校.综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的的俯角为,尚美楼顶部F的俯角为,己知博雅楼高度为米,则尚美楼高度为_____________果保留根号)15.如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中,,连接,若与的面积相等,则___________.16.如图,已知点,点B在y轴正半轴上,将线段绕点A顺时针旋转到线段,若点C的坐标为,则___________.三、解答题17.化简:.18.创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.(1)求两种型号垃圾桶的单价;(2)若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?19.打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20.如图,中,以为直径的交于点,是的切线,且,垂足为,延长交于点.(1)求证:;(2)若,求的长.21.如图,一次函数与函数为的图象交于两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足时x的取值范围;(3)点P在线段上,过点P作x轴的垂线,垂足为M,交函数的图象于点Q,若面积为3,求点P的坐标.22.加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/.(1)当___________时,元/;(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a为何值时,2025年的总种植成本为元?23.【问题呈现】和都是直角三角形,,连接,,探究,的位置关系.(1)如图1,当时,直接写出,的位置关系:____________;(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.24.已知抛物线与x轴交于两点,与y轴交于点,点P为第一象限抛物线上的点,连接.(1)直接写出结果;_____,_____,点A的坐标为_____,______;(2)如图1,当时,求点P的坐标;(3)如图2,点D在y轴负半轴上,,点Q为抛物线上一点,,点E,F分别为的边上的动点,,记的最小值为m.①求m的值;②设的面积为S,若,请直接写出k的取值范围.参考答案:1.B2.A3.D4.C5.C6.D7.A8.B9.210.811.512.13.4.614./15.16.17.18.(1)A,B两种型号的单价分别为60元和100元(2)至少需购买A型垃圾桶125个19.(1)18,6,(2)480人(3)20.(1)见解析(2)21.(1),(2)(3)点P的坐标为或22.(1)(2)当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;(3)当a为时,2025年的总种植成本为元.23.(1)(2)成立;理由见解析(3)或24.(1),2,,(2)(3),。

2024年黄冈中考数学试题

2024年黄冈中考数学试题

1、已知直角三角形两直角边长为a和b,且满足√(a - 7) + |b - 6| = 0,则该直角三角形的斜边长为( )A. 5B. 13C. √85D. √61(答案)C2、下列运算正确的是( )A. 3a + 2b = 5abB. (a2)3 = a6C. a6 ÷a2 = a3D. 2a(-2) = 1/(4a2)(答案)B3、若关于x的一元二次方程kx2 - 6x + 9 = 0有两个不相等的实数根,则k的取值范围为( )A. k < 1B. k < 1 且k ≠0C. k ≤1D. k ≤1 且k ≠0(答案)B4、已知点A(m, 2)与点B(3, n)关于y轴对称,则m + n = ( )A. -1B. 1C. 5D. -5(答案)C5、若反比例函数y = (m - 1)/x的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是( )A. m < 1B. m > 1C. m < 0D. m > 0(答案)B6、若关于x的不等式组{x - m < 0,3x - 1 > 2(x - 1)}无解,那么m的取值范围是( )A. m ≤-1B. -1 ≤m < 0C. -1 < m ≤0D. m > -1(答案)A7、在平行四边形ABCD中,AB = 5,AD = 3,∠BAD的平分线交CD于点E,则DE的长为( )A. 2B. 3C. 2或3D. 5或3(答案)C8、已知关于x的一元二次方程x2 - (2k + 1)x + 4(k - 1/2) = 0,若等腰三角形ABC的一边长a = 4,另一边长b、c恰好是这个方程的两个实数根,求△ABC的周长.A. 12或14B. 14C. 12D. 10或14(答案)D9、某商店经销一种品牌的空调,其中某一型号的空调每台进价为m元,商店将进价提高30%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号空调的零售价为( )A. 1.3m元B. 0.9m元C. 1.17m元D. 1.07m元(答案)C。

湖北省黄冈市2021年中考数学试卷(含解析)

湖北省黄冈市2021年中考数学试卷(含解析)

黄冈市2021年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。

每小题给出4个选项中,有且只有一个答案是正确的)1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a )2= -4a 2C. tan 45°=22D. cos 30°=233.函数y = 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为A.-1B.2C.0或2D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x =___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a -a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC =___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x -3(x -2)≤8 的所有整数解. 21x -1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。

2023年湖北省黄冈市数学中考真题(含解析)

2023年湖北省黄冈市数学中考真题(含解析)

黄冈市2023年初中学业水平考试数学试卷(满分:120分,考试用时:120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的.清在答题卡上把正确答案的代号涂黑)1. 的相反数是()A. B. C. D.【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:的相反数是,故选:B.【点拨】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2. 2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为()A. B. C. D.【答案】A【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数,且比原来的整数位数少1,据此判断即可.【详解】解:.故选:A.【点拨】此题主要考查了用科学记数法表示较大的数,一般形式为,其中,确定与的值是解题的关键.3. 下列几何体中,三视图都是圆的是()A. 长方体B. 图柱C. 圆锥D. 球【答案】D【解析】【分析】根据几何体的三视图进行判断即可.【详解】解:在长方体、图柱、圆锥、球四个几何体中,三视图都是圆的是球,故选:D【点拨】此题考查了三视图,熟练掌握常见几何体的三视图是解题的关键.4. 不等式的解集为()A. B. C. D. 无解【答案】C【解析】【分析】先求出两个不等式的解集,再求交集即可.【详解】解:解不等式,得:,解不等式,得:,因此该不等式组的解集为.故选C.【点拨】本题考查求不等式组的解集,解题的关键是熟记不等式组的解集口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.5. 如图,的直角顶点A在直线a上,斜边在直线b上,若,则()A. B. C. D.【答案】C【解析】【分析】利用平行线的性质及直角三角形两内角互余即可得解;【详解】,,又故选择:C【点拨】本题主要考查利用平行线的性质求三角形中角的度数,利用平行线的性质得到是解题的关键.6. 如图,在中,直径与弦相交于点P,连接,若,,则()A. B. C. D.【答案】D【解析】【分析】先根据圆周角定理得出,再由三角形外角和定理可知,再根据直径所对的圆周角是直角,即,然后利用进而可求出.【详解】解:∵,∴,∵,∴,又∵为直径,即,∴,故选:D.【点拨】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.7. 如图,矩形中,,以点B为圆心,适当长为半径画弧,分别交,于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线,过点C作的垂线分别交于点M,N,则的长为()A. B. C. D. 4【答案】A【解析】【分析】由作图可知平分,设与交于点O,与交于点R,作于点Q,根据角平分线的性质可知,进而证明,推出,设,则,解求出.利用三角形面积法求出,再证,根据相似三角形对应边成比例即可求出.【详解】解:如图,设与交于点O,与交于点R,作于点Q,矩形中,,,.由作图过程可知,平分,四边形是矩形,,又,,在和中,,,,,设,则,在中,由勾股定理得,即,解得,..,.,,,,即,解得.故选A.【点拨】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出平分,通过勾股定理解直角三角形求出.8. 已知二次函数的图象与x轴的一个交点坐标为,对称轴为直线,下列论中:①;②若点均在该二次函数图象上,则;③若m为任意实数,则;④方程的两实数根为,且,则.正确结论的序号为()A. ①②③B. ①③④C. ②③④D. ①④【答案】B【解析】【分析】将代入,可判断①;根据抛物线的对称轴及增减性可判断②;根据抛物线的顶点坐标可判断③;根据的图象与x轴的交点的位置可判断④.【详解】解:将代入,可得,二次函数图象的对称轴为直线,点到对称轴的距离分别为:4,1,3,,图象开口向下,离对称轴越远,函数值越小,,故②错误;二次函数图象的对称轴为直线,,又,,,当时,y取最大值,最大值为,即二次函数的图象的顶点坐标为,若m任意实数,则故③正确;二次函数图象的对称轴为直线,与x轴的一个交点坐标为,与x轴的另一个交点坐标为,的图象向上平移一个单位长度,即为的图象,的图象与x轴的两个交点一个在的左侧,另一个在的右侧,若方程的两实数根为,且,则,故④正确;综上可知,正确的有①③④,故选B.【点拨】本题考查根据二次函数图象判断式子符号,二次函数的图象与性质,解题的关键是掌握二次函数与一元二次方程的关系,熟练运用数形结合思想.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号9. 计算;_____________.【答案】2【解析】【分析】的偶数次方为1,任何不等于0的数的零次幂都等于1,由此可解.【详解】解:,故答案为:2.【点拨】本题考查有理数的乘方、零次幂,解题的关键是掌握:的偶数次方为1,奇数次方为;任何不等于0的数的零次幂都等于1.10. 请写出一个正整数m的值使得是整数;_____________.【答案】8【解析】【分析】要使是整数,则要是完全平方数,据此求解即可【详解】解:∵是整数,∴要是完全平方数,∴正整数m的值可以为8,即,即,故答案为:8(答案不唯一).【点拨】本题主要考查了二次根式的化简,正确理解题意得到要是完全平方数是解题的关键.11. 若正n边形的一个外角为,则_____________.【答案】5【解析】【分析】正多边形的外角和为,每一个外角都相等,由此计算即可.【详解】解:由题意知,,故答案为:5.【点拨】本题考查正多边形的外角问题,解题的关键是掌握正n边形的外角和为,每一个外角的度数均为.12. 已知一元二次方程两个实数根为,若,则实数_____________.【答案】【解析】【分析】根据一元二次方程的根与系数的关系,得出,代入已知等式,即可求解.【详解】解:∵一元二次方程的两个实数根为,∴∵,∴,解得:,故答案为:.【点拨】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.13. 眼睛是心灵的窗户为保护学生视力,启航中学每学期给学生检查视力,下表是该校某班39名学生右眼视力的检查结果,这组视力数据中,中位数是_____________.视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.950人数12633412575【答案】4.6【解析】【分析】数据按从小到大排列,若数据是偶数个,中位数是最中间两数的平均数,若数据是奇数个,中位数是正中间的数.【详解】解:该样本中共有个数据,按照右眼视力从小到大的顺序排列,第个数据是,所以学生右眼视力的中位数为.【点拨】本题主要考查了学生对中位数的理解,解题关键是如何找中位数,注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14. 综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为,尚美楼顶部F的俯角为,己知博雅楼高度为15米,则尚美楼高度为_____________米.(结果保留根号)【答案】##【解析】【分析】过点E作于点M,过点F作于点N,首先证明出四边形是矩形,得到,然后根据等腰直角三角形的性质得到,进而得到,然后利用角直角三角形的性质和勾股定理求出,即可求解.【详解】如图所示,过点E作于点M,过点F作于点N,由题意可得,四边形是矩形,∴,∵,∴,∵博雅楼顶部E俯角为,∴,∴,∴,∵点A是的中点,∴,由题意可得四边形是矩形,∴,∵尚美楼顶部F的俯角为,∴,∴,∴,∴在中,,∴,∴解得,∴.故答案为:.【点拨】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.15. 如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中,,连接,若与的面积相等,则___________.【答案】【解析】【分析】根据题意得出,即,解方程得出(负值舍去)代入进行计算即可求解.【详解】解:∵图中,,∴∵与的面积相等,∴∴∴∴∴解得:(负值舍去)∴,故答案为:3.【点拨】本题考查了解一元二次方程,弦图的计算,根据题意列出关于的方程是解题的关键.16. 如图,已知点,点B在y轴正半轴上,将线段绕点A顺时针旋转到线段,若点C 的坐标为,则___________.【答案】【解析】【分析】在x轴上取点D和点E,使得,过点C作于点F,在中,解直角三角形可得,,再证明,则,,求得,在中,得,,得到,解方程即可求得答案.【详解】解:在x轴上取点D和点E,使得,过点C作于点F,∵点C的坐标为,∴,,在中,∴,,∵,∴,∴,∵,∴,∴,,∵点,∴,∴,在中,∴,∴,∵,∴,解得,故答案为:【点拨】此题考查了全等三角形的判定和性质、解直角三角形、旋转的性质等知识,构造三角形全等是解题的关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17. 化简:.【答案】【解析】【分析】先计算同分母分式的减法,再利用完全平方公式约分化简.【详解】解:【点拨】本题考查分式的约分化简,解题的关键是掌握分式的运算法则.18. 创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A,B两种型号的新型垃圾桶.若购买3个A型垃圾桶和4个B型垃圾桶共需要580元,购买6个A型垃圾桶和5个B型垃圾桶共需要860元.(1)求两种型号垃圾桶的单价;(2)若需购买A,B两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A型垃圾桶多少个?【答案】(1)A,B两种型号的单价分别为60元和100元(2)至少需购买A型垃圾桶125个【解析】【分析】(1)设两种型号的单价分别为元和元,然后根据题意列出二元一次方程组求解即可;(2)设购买A型垃圾桶个,则购买A型垃圾桶个,根据题意列出一元一次不等式并求解即可.【小问1详解】解:设A,B两种型号的单价分别为元和元,由题意:,解得:,∴A,B两种型号的单价分别为60元和100元;【小问2详解】设购买A型垃圾桶个,则购买B型垃圾桶个,由题意:,解得:,∴至少需购买A型垃圾桶125个.【点拨】本题考查二元一次方程组和一元一次不等式的实际应用,理解题意,找准数量关系,准确建立相应方程和不等式并求解是解题关键.19. 打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)18,6,(2)480人(3)【解析】【分析】(1)根据选择“E:其他类”的人数及比例求出总人数,总人数乘以A占的比例即为m,总人数减去A,B,C ,E的人数即为n,360度乘以B占的比例即为文学类书籍对应扇形圆心角;(2)利用样本估计总体思想求解;(3)通过列表或画树状图列出所有等可能的情况,再从中找出符合条件的情况数,再利用概率公式计算.【小问1详解】解:参与调查的总人数为:(人),,,文学类书籍对应扇形圆心角,故答案为:18,6,;【小问2详解】解:(人),因此估计最喜欢阅读政史类书籍的学生人数为480人;【小问3详解】解:画树状图如下:由图可知,共有9种等可能的情况,其中甲乙两位同学选择相同类别书籍的情况有2种,因此甲乙两位同学选择相同类别书籍的概率为:.【点拨】本题考查条形统计图、扇形统计图、利用样本估计总体、利用画树状图或者列表法求概率等,解题的关键是将条形统计图与扇形统计图的信息进行关联,掌握画树状图或者列表法求概率的原理.20. 如图,中,以为直径的交于点,是的切线,且,垂足为,延长交于点.(1)求证:;(2)若,求的长.【答案】(1)见解析(2)【解析】【分析】(1)连接,根据已知可得,则,又,等量代换得出,即可证明;(2)连接,证明,在中,,求得,根据得出,进而可得,根据,即可求解.【小问1详解】证明:如图所示,连接,∵以为直径的交于点,是的切线,∴,∵,∴,∴,又,∴,∴,∴;小问2详解】解:连接,如图,则,∴,∴,∴,在中,,∴,∴,又∵是直径,∴,∴,∴,∴,∴,∴,∴.【点拨】本题考查了切线的性质,直径所对的圆周角是直角,平行线分线段成比例,正切的定义,熟练掌握以上知识是解题的关键.21. 如图,一次函数与函数为的图象交于两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足时x的取值范围;(3)点P在线段上,过点P作x轴的垂线,垂足为M,交函数的图象于点Q,若面积为3,求点P的坐标.【答案】(1),(2)(3)点P的坐标为或【解析】【分析】(1)将代入可求反比例函数解析式,进而求出点B坐标,再将和点B坐标代入即可求出一次函数解析式;(2)直线在反比例函数图象上方部分对应的x的值即为所求;(3)设点P的横坐标为,代入一次函数解析式求出纵坐标,将代入反比例函数求出点Q的纵坐标,进而用含p的代数式表示出,再根据面积为3列方程求解即可.【小问1详解】解:将代入,可得,解得,反比例函数解析式为;在图象上,,,将,代入,得:,解得,一次函数解析式为;【小问2详解】解:,理由如下:由(1)可知,当时,,此时直线在反比例函数图象上方,此部分对应的x的取值范围为,即满足时,x的取值范围为;【小问3详解】解:设点P的横坐标为,将代入,可得,.将代入,可得,.,,整理得,解得,,当时,,当时,,点P的坐标为或.【点拨】本题属于一次函数与反比例函数的综合题,考查求一次函数解析式、反比例函数解析式,坐标系中求三角形面积、解一元二次方程等知识点,解题的关键是熟练运用数形结合思想.22. 加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/.(1)当___________时,元/;(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?(3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a为何值时,2025年的总种植成本为元?【答案】(1)(2)当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;(3)当a为时,2025年的总种植成本为元.【解析】【分析】(1)求出当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)函数关系式为,当时,,求出当时的x的值即可;(2)当时,,由二次函数性质得到当时,有最小值,最小值为,当时,由一次函数性质得到当时,有最小值,最小值为,比较后即可得到方案;(3)根据2025年的总种植成本为元列出一元二次方程,解方程即可得到答案.【小问1详解】解:当时,设甲种蔬菜种植成本y(单位;元/)与其种植面积x(单位:)的函数关系式为,把点代入得,,解得,∴当时,,当时,,∴当时,,解得,即当时,元/;故答案为:;【小问2详解】解:当时,,∵,∴抛物线开口向上,∴当时,有最小值,最小值为,当时,,∵,∴随着x的增大而减小,∴当时,有最小值,最小值为,综上可知,当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W最小;【小问3详解】由题意可得,解得(不合题意,舍去),∴当a为时,2025年的总种植成本为元.【点拨】此题考查了二次函数的应用、一元二次方程的应用、一次函数的应用等知识,读懂题意,正确列出函数解析式和方程是解题的关键.23. 【问题呈现】和都是直角三角形,,连接,,探究,的位置关系.(1)如图1,当时,直接写出,的位置关系:____________;(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.【答案】(1)(2)成立;理由见解析(3)或【解析】【分析】(1)根据,得出,,证明,得出,根据,求出,即可证明结论;(2)证明,得出,根据,求出,即可证明结论;(3)分两种情况,当点E在线段上时,当点D在线段上时,分别画出图形,根据勾股定理求出结果即可.【小问1详解】解:∵,∴,,∵,∴,∴,∴,∴,∵,,∴,∴;故答案为:.【小问2详解】解:成立;理由如下:∵,∴,∴,∵,∴,∴,∵,,∴,∴;【小问3详解】解:当点E在线段上时,连接,如图所示:设,则,根据解析(2)可知,,∴,∴,根据解析(2)可知,,∴,根据勾股定理得:,即,解得:或(舍去),∴此时;当点D在线段上时,连接,如图所示:设,则,根据解析(2)可知,,∴,∴,根据解析(2)可知,,∴,根据勾股定理得:,即,解得:或(舍去),∴此时;综上分析可知,或.【点拨】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.24. 已知抛物线与x轴交于两点,与y轴交于点,点P为第一象限抛物线上的点,连接.(1)直接写出结果;_____,_____,点A的坐标为_____,______;(2)如图1,当时,求点P的坐标;(3)如图2,点D在y轴负半轴上,,点Q为抛物线上一点,,点E,F分别为的边上的动点,,记的最小值为m.①求m的值;②设的面积为S,若,请直接写出k的取值范围.【答案】(1),2,,(2)(3),【解析】【分析】(1)利用待定系数法求二次函数解析式即可求得、,从而可得,,由,可得,求得,在中,根据正切的定义求值即可;(2)过点C作轴,交于点D,过点P作轴,交y轴于点E,由,即,再由,可得,证明,可得,设点P坐标为,可得,再进行求解即可;(3)①作,且使,连接.根据证明,可得,即Q,F,H共线时,的值最小.作于点G,设,则,根据求出点Q的坐标,燃然后利用勾股定理求解即可;②作轴,交于点T,求出解析式,设,,利用三角形面积公式表示出S,利用二次函数的性质求出S的取值范围,结合①中结论即可求解.【小问1详解】解:∵抛物线经过点,,∴,解得:,∴抛物线解析式为:,∵抛物线与x轴交于A、两点,∴时,,解得:,,∴,∴,,在中,,故答案为:,2,,;【小问2详解】解:过点C作轴,交于点D,过点P作轴,交y轴于点E,∵,,,∴,由(1)可得,,即,∴,∵,∴,∵轴,轴,∴,,∴,又∵,∴,∴,设点P坐标为,则,,∴,解得:(舍),,∴点P坐标为.【小问3详解】解:①如图2,作,且使,连接.∵,,∴,∵,,∴,∴,∴,∴Q,F,H共线时,的值最小.作于点G,∵,,∵,∴,∴.设,则,∴,解得或(舍去),∴,∴,∴,,∴;②如图3,作轴,交于点T,待定系数法可求解析式为,设,,则,∴,∴,∴.【点拨】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与x轴的交点、全等三角形的判定与性质、相似三角形的判定与性质、解一元二次方程、锐角三角函数、最值问题、二次函数最值、用分割法求三角形面积,熟练掌握相关知识是解题的关键.。

湖北省黄冈市中考数学真题及答案

湖北省黄冈市中考数学真题及答案

湖北省黄冈市中考数学真题及答案(考试时间120分钟满分120分)第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.的相反数是()A. B.﹣6 C.6 D.﹣2.下列运算正确的是()A.m+2m=3m2 B.2m3•3m2=6m6 C.(2m)3=8m3 D.m6÷m2=m33.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7 B.8 C.9 D.104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85 90 90 85方差50 42 50 42A.甲 B.乙 C.丙 D.丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A. B. C. D.6.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1 B.5:1 C.6:1 D.7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A. B. C. D.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=.10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.若|x﹣2|+=0,则﹣xy=.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD =度.13.计算:÷(1﹣)的结果是.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(注:丈,(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上。

2022年湖北省黄冈市中考数学试卷(解析版)

2022年湖北省黄冈市中考数学试卷(解析版)

2022年湖北省黄冈市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1.(3分)5-的绝对值是()A .5B .5-C .15-D .15【分析】5-的绝对值就是数轴上表示5-的点与原点的距离.【解答】解:5-的绝对值是5,故选:A .2.(3分)某几何体的三视图如图所示,则该几何体是()A .圆锥B .三棱锥C .三棱柱D .四棱柱【分析】从三视图的俯视图看是一个三角形,而主视图是一个矩形,左视图为矩形,可知这是一个三棱柱.【解答】解:由三视图可知,这个几何体是直三棱柱.故选:C .3.(3分)北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED 灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城.将数据21000用科学记数法表示为()A .32110⨯B .42.110⨯C .52.110⨯D .60.2110⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:421000 2.110=⨯;故选:B .4.(3分)下列图形中,对称轴条数最多的是()A .等边三角形B .矩形C .正方形D .圆【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:等边三角形有三条对称轴,矩形有两条对称轴,正方形有四条对称轴,圆有无数条对称轴,所以对称轴条数最多的图形是圆.故选:D .5.(3分)下列计算正确的是()A .248a a a ⋅=B .236(2)6a a -=-C .43a a a ÷=D .2235a a a +=【分析】根据同底数的幂的乘除、幂的乘方与积的乘方、合并同类项法则逐项判断.【解答】解:246a a a ⋅=,故A 错误,不符合题意;236(2)8a a -=-,故B 错误,不符合题意;43a a a ÷=,故C 正确,符合题意;235a a a +=,故D 错误,不符合题意;故选:C .6.(3分)下列调查中,适宜采用全面调查方式的是()A .检测“神舟十四号”载人飞船零件的质量B .检测一批LED 灯的使用寿命C .检测黄冈、孝感、咸宁三市的空气质量D .检测一批家用汽车的抗撞击能力【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【解答】解:A 、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A 符合题意;B 、检测一批LED 灯的使用寿命,适宜采用抽样调查的方式,故B 不符合题意;C 、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C 不符合题意;D 、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D 不符合题意;故选:A .7.(3分)如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,8AB =,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则 AD 的长为()A .πB .43πC .53πD .2π【分析】连接CD ,根据90ACB ∠=︒,30B ∠=︒可以得到A ∠的度数,再根据AC CD =以及A ∠的度数即可得到ACD ∠的度数,最后根据弧长公式求解即可.【解答】解:连接CD ,如图所示:90ACB =︒ ,30B ∠=︒,8AB =,903060A ∴∠=︒-︒=︒,142AC AB ==,由题意得:AC CD =,ACD ∴∆为等边三角形,60ACD ∴∠=︒,∴ AD 的长为:60441803ππ⨯=,故选:B .8.(3分)如图,在矩形ABCD 中,AB BC <,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论:①四边形AECF 是菱形;②2AFB ACB ∠=∠;③AC EF CF CD ⋅=⋅;④若AF 平分BAC ∠,则2CF BF =.其中正确结论的个数是()A .4B .3C .2D .1【分析】根据题意分别证明各个结论来判断即可.【解答】解:根据题意知,BF 垂直平分AC,在AOE ∆和COF ∆中,90EAO FCO AOE COF AO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOE COF AAS ∴∆≅∆,OE OF ∴=,AE AF CF CE ∴===,即四边形AECF 是菱形,故①结论正确;AFB FAO ACB ∠=∠+∠ ,AF FC =,FAO ACB ∴∠=∠,2AFB ACB ∴∠=∠,故②结论正确;11222AECF S CF CD AC OE AC EF =⋅=⋅⨯=⋅ 四边形,故③结论不正确;若AF 平分BAC ∠,则190303BAF FAC CAD ∠=∠=∠=⨯︒=︒,2AF BF ∴=,CF AF = ,2CF BF ∴=,故④结论正确;故选:B .二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9.(3分)若分式21x -有意义,则x 的取值范围是1x ≠.【分析】根据分式有意义的条件可知10x -≠,再解不等式即可.【解答】解:由题意得:10x -≠,解得:1x ≠,故答案为:1x ≠.10.(3分)如图,直线//a b ,直线c 与直线a ,b 相交,若154∠=︒,则3∠=126度.【分析】根据两直线平行,同位角相等和邻补角的定义解答即可.【解答】解://a b ,4154∴∠=∠=︒,3180418054126∴∠=︒-∠=︒-︒=︒,故答案为:126.11.(3分)若一元二次方程2430x x -+=的两个根是1x ,2x ,则12x x ⋅的值是3.【分析】根据根与系数的关系直接可得答案.【解答】解:1x ,2x 是一元二次方程2430x x -+=的两个根,123x x ∴⋅=,故答案为:3.12.(3分)如图,已知//AB DE ,AB DE =,请你添加一个条件A D ∠=∠,使ABC DEF ∆≅∆.【分析】添加条件:A D ∠=∠,根据ASA 即可证明ABC DEF ∆≅∆.【解答】解:添加条件:A D ∠=∠.//AB DE ,B DEC ∴∠=∠,在ABC ∆和DEF ∆中,A D AB DEB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC DEF ASA ∴∆≅∆,故答案为:A D ∠=∠.(答案不唯一)13.(3分)小聪和小明两个同学玩“石头,剪刀、布”的游戏,随机出手一次是平局的概率是13.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.【解答】解:小聪和小明玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小聪平局的概率为:3193=.故答案为:13.14.(3分)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为16m .(sin 580.85︒≈,cos 580.53︒≈,tan 58 1.60︒≈,结果保留整数).【分析】过点D 作DE AB ⊥于点E ,则6BE CD m ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE ∆中,45ADE ∠=︒,设AE x =m ,则DE x =m ,BC x =m ,(6)AB AE BE x m =+=+,在Rt ABC ∆中,6tan tan 58 1.60AB xACB BC x+∠=︒==≈,解得10x =,进而可得出答案.【解答】解:过点D 作DE AB ⊥于点E ,如图.则6BE CD m ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE ∆中,45ADE ∠=︒,设AE x =m ,则DE x =m ,BC x ∴=m ,(6)AB AE BE x m =+=+,在Rt ABC ∆中,6tan tan 58 1.60AB xACB BC x+∠=︒==≈,解得10x =,16AB m ∴=.故答案为:16.15.(3分)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;⋯,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;⋯,若此类勾股数的勾为2(3m m ,m 为正整数),则其弦是21m -(结果用含m 的式子表示).【分析】根据题意得2m 为偶数,设其股是a ,则弦为2a +,根据勾股定理列方程即可得到结论.【解答】解:m 为正整数,2m ∴为偶数,设其股是a ,则弦为2a +,根据勾股定理得,222(2)(2)m a a +=+,解得21a m =-,综上所述,其弦是21m -,故答案为:21m -.16.(3分)如图1,在ABC ∆中,36B ∠=︒,动点P 从点A 出发,沿折线A B C →→匀速运动至点C 停止.若点P 的运动速度为1/cm s ,设点P 的运动时间为()t s ,AP 的长度为()y cm ,y 与t 的函数图象如图2所示.当AP 恰好平分BAC ∠时t 的值为2.【分析】由图象可得4AB BC cm ==,通过证明APC BAC ∆∆∽,可求AP 的长,即可求解.【解答】解:如图,连接AP ,由图2可得4AB BC cm ==,36B ∠=︒ ,AB BC =,72BAC C ∴∠=∠=︒,AP 平分BAC ∠,36BAP PAC B ∴∠=∠=∠=︒,AP BP ∴=,72APC C ∠=︒=∠,AP AC BP ∴==,PAC B ∠=∠ ,C C ∠=∠,APC BAC ∴∆∆∽,∴AP PCAB AC=,24(4)AP AB PC AP ∴=⋅=-,2AP BP ∴=-=,(负值舍去),2t ∴=,故答案为:2+.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17.(6分)先化简,再求值:42(3)xy xy xy ---,其中2x =,1y =-.【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【解答】解:42(3)xy xy xy ---423xy xy xy =-+5xy =,当2x =,1y =-时,原式52(1)10=⨯⨯-=-.18.(8分)某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?【分析】(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,根据“买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元”,即可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买乙种快餐m 份,则购买甲种快餐(55)m -份,利用总价=单价⨯数量,结合总价不超过1280元,即可列出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设购买一份甲种快餐需要x 元,购买一份乙种快餐需要y 元,依题意得:27023120x y x y +=⎧⎨+=⎩,解得:3020x y =⎧⎨=⎩.答:购买一份甲种快餐需要30元,购买一份乙种快餐需要20元.(2)设购买乙种快餐m 份,则购买甲种快餐(55)m -份,依题意得:30(55)201280m m -+,解得:37m .答:至少买乙种快餐37份.19.(8分)为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“45t ”,B 组“4560t <”,C 组“6075t <”,D 组“7590t <”,E 组“90t >”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是100,请补全条形统计图;(2)在扇形统计图中,B 组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【分析】(1)根据C 组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D 组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B 组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.【解答】解:(1)这次调查的样本容量是:2525%100÷=,D 组的人数为:100102025540----=,补全的条形统计图如右图所示:故答案为:100;(2)在扇形统计图中,B 组的圆心角是:2036072100︒⨯=︒, 本次调查了100个数据,第50个数据和51个数据都在C 组,∴中位数落在C 组,故答案为:72,C ;(3)100518001710100-⨯=(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.20.(9分)如图,已知一次函数1y kx b =+的图象与函数2(0)m y x x =>的图象交于1(6,2A -,1(2B ,)n 两点,与y 轴交于点C .将直线AB 沿y 轴向上平移t 个单位长度得到直线DE ,DE 与y 轴交于点F .(1)求1y 与2y 的解析式;(2)观察图象,直接写出12y y <时x 的取值范围;(3)连接AD ,CD ,若ACD ∆的面积为6,则t 的值为2.【分析】(1)将点1(6,)2A -代入2m y x=中,求反比例函数的解析式;通过解析式求出B 点坐标,然后将点A 、B 代入1y kx b =+,即可求出一次函数的解析式;(2)通过观察图象即可求解;(3)由题意先求出直线DE 的解析式为132y x t =-+,过点F 作GF AB ⊥交于点G ,连接AF ,由45OCA ∠=︒,求出22FG =,再求出62AC =,由平行线的性质可知ACD ACF S S ∆∆=,则122622t ⨯=,即可求t .【解答】解:(1)将点1(6,)2A -代入2m y x=中,3m ∴=-,23y x-∴=,1(2B ,)n 在23y x-=中,可得6n =-,1(2B ∴,6)-,将点A 、B 代入1y kx b =+,∴162162k b k b ⎧+=-⎪⎪⎨⎪+=-⎪⎩,解得1132k b =⎧⎪⎨=-⎪⎩,1132y x ∴=-;(2) 一次函数与反比例函数交点为1(6,)2A -,1(2B ,6)-,∴162x <<时,12y y <;(3)在1132y x =-中,令0x =,则132y =-,13(0,)2C ∴-, 直线AB 沿y 轴向上平移t 个单位长度,∴直线DE 的解析式为132y x t =-+,F ∴点坐标为13(0,)2t -+,过点F 作GF AB ⊥交于点G ,连接AF ,直线AB 与x 轴交点为13(2,0),与y 轴交点13(0,)2C -,45OCA ∴∠=︒,FG CG ∴=,FC t = ,22FG ∴=,1(6,)2A - ,13(0,)2C -,AC ∴=,//AB DF ,ACD ACF S S ∆∆∴=,∴162⨯=,2t ∴=,故答案为:2.21.(9分)如图,O 是ABC ∆的外接圆,AD 是O 的直径,BC 与过点A 的切线EF 平行,BC ,AD 相交于点G .(1)求证:AB AC =;(2)若16DG BC ==,求AB 的长.【分析】(1)根据垂径定理,圆周角定理,等腰三角形的判定定理解答即可;(2)根据相似三角形的判定定理,勾股定理解答即可.【解答】(1)证明:EF 是O 的切线,DA EF ∴⊥,//BC EF ,DA BC ∴⊥,DA 是直径,∴AB AC =,ACB ABC ∴∠=∠,AB AC ∴=.(2)解:连接DB ,BG AD ⊥ ,BGD BGA ∴∠=∠,90ABG DBG ∠+∠=︒ ,90DBG BDG ∠+∠=︒,ABG BDG ∴∠=∠,ABG BDG ∴∆∆∽,∴AG BG BG DG=,即2BG AG DG =⨯,16BC = ,BG GC =,8BG ∴=,2816AG ∴=⨯,解得:4AG =,在Rt ABG ∆中,8BG =,4AG =,AB ∴=.故答案为:.22.(10分)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在2360m 的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元2/)m 与种植面积2()x m 之间的函数关系如图所示,乙种花卉种植费用为15元2/m .(1)当100x 时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于230m ,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.【分析】(1)分段利用图象的特点,利用待定系数法,即可求出答案;(2)先求出x 的范围;①分两段建立w 与x 的函数关系,即可求出各自的w 的最小值,最后比较,即可求出答案案;②分两段利用6000w ,建立不等式求解,即可求出答案.【解答】解:(1)当040x <时,30y =;当40100x <时,设函数关系式为y kx b =+,线段过点(40,30),(100,15),∴403010015k b k b +=⎧⎨+=⎩,∴1440k b ⎧=-⎪⎨⎪=⎩,1404y x ∴=-+,即30(040)140(40100)4x y x x <⎧⎪=⎨-+<⎪⎩;(2) 甲种花卉种植面积不少于230m ,30x ∴,乙种花卉种植面积不低于甲种花卉种植面积的3倍,3603x x ∴-,90x ∴,即3090x ;①当3040x 时,由(1)知,30y =,乙种花卉种植费用为15元2/m .15(360)3015(360)155400w yx x x x x ∴=+-=+-=+,当30x =时,5850min w =;当4090x <时,由(1)知,1404y x =-+,2115(360)(50)60254w yx x x ∴=+-=--+,∴当90x =时,21(9050)602556254min w =--+=,58505625> ,∴种植甲种花卉290m ,乙种花卉2270m 时,种植的总费用最少,最少为5625元;②当3040x 时,由①知,155400w x =+,种植总费用不超过6000元,1554006000x ∴+,40x ∴,即满足条件的x 的范围为3040x ,当4090x <时,由①知,21(50)60254w x =--+, 种植总费用不超过6000元,21(50)602560004x ∴--+,40x ∴(不符合题意,舍去)或60x ,即满足条件的x 的范围为6090x ,综上,满足条件的x 的范围为3040x 或6090x .23.(10分)问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC ∆的角平分线,可证AB BD AC CD=.小慧的证明思路是:如图2,过点C 作//CE AB ,交AD 的延长线于点E ,构造相似三角形来证明AB BD AC CD =.尝试证明:(1)请参照小慧提供的思路,利用图2证明:AB BD AC CD=;应用拓展:(2)如图3,在Rt ABC ∆中,90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.①若1AC =,2AB =,求DE 的长;②若BC m =,AED α∠=,求DE 的长(用含m ,α的式子表示).【分析】(1)证明CED BAD ∆∆∽,由相似三角形的性质得出CE CD AB BD=,证出CE CA =,则可得出结论;(2)①由折叠的性质可得出CAD BAD ∠=∠,CD DE =,由(1)可知,AB BD AC CD =,由勾股定理求出BC =,则可求出答案;②由折叠的性质得出C AED α∠=∠=,则tan tan AB C ACα∠==,方法同①可求出1tan m CD α=+,则可得出答案.【解答】(1)证明://CE AB ,E EAB ∴∠=∠,B ECB ∠=∠,CED BAD ∴∆∆∽,∴CE CD AB BD=,E EAB ∠=∠ ,EAB CAD ∠=∠,E CAD ∴∠=∠,CE CA ∴=,∴AB BD AC CD=.(2)解:① 将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处,CAD BAD ∴∠=∠,CD DE =,由(1)可知,AB BD AC CD=,又1AC = ,2AB =,∴21BD CD=,2BD CD ∴=,90BAC ∠=︒ ,BC ∴===,BD CD ∴+=,3CD ∴=,CD ∴=;53DE ∴=;② 将ACD ∆沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处,CAD BAD ∴∠=∠,CD DE =,C AED α∠=∠=,tan tan AB C ACα∴∠==,由(1)可知,AB BD AC CD=,tan BD CD α∴=,tan BD CD α∴=⋅,又BC BD CD m =+= ,tan CD CD m α∴⋅+=,1tan m CD α∴=+,1tan m DE α∴=+.24.(12分)抛物线24y x x =-与直线y x =交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)直接写出点B 和点D 的坐标;(2)如图1,连接OD ,P 为x 轴上的动点,当1tan 2PDO ∠=时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横坐标为(05)m m <<,连接MQ ,BQ ,MQ 与直线OB 交于点E .设BEQ ∆和BEM ∆的面积分别为1S 和2S ,求12S S的最大值.【分析】(1)令24y x x x =-=,求出x 的值即可得出点B 的坐标,将函数24y x x =-化作顶点式可得出点D 的坐标;(2)过点D 作DE y ⊥轴于点E ,易得1tan 2DOE ∠=,因为1tan 2PDO ∠=,所以ODG DOE =∠,分两种情况进行讨论,当点P 在线段OD 的右侧时,//DP y 轴,当点P 在线段OD 左侧时,设直线DO 与y 轴交于点G ,则ODG ∆是等腰三角形,分别求出点P 的坐标即可.(3)分别过点M ,Q 作y 轴的平行线,交直线OB 于点N ,K ,则11()2B E S QK x x =-,21()2B E S MN x x =-,由点Q 的横坐标为m ,可表达12S S ,再利用二次函数的性质可得出结论.【解答】解:(1)令24y x x x =-=,解得0x =或5x =,(5,5)B ∴;224(2)4y x x x =-=-- ,∴顶点(2,4)D -.(2)如图,过点D 作DE y ⊥轴于点E ,2DE ∴=,4OE =,1tan 2DOE ∴∠=,1tan 2PDO ∠= ,ODG DOE ∴=∠,①当点P 在线段OD 的右侧时,//DP y 轴,如图,(2,0)P ∴;②当点P 在线段OD 左侧时,设直线DO 与y 轴交于点G ,则ODG ∆是等腰三角形,OG DG ∴=,设OG t =,则DG t =,4GE t =-,在Rt DGE ∆中,2222(4)t t =+-,解得52t =,5(0,)2G ∴-,∴直线DG 的解析式为:3542y x =--,令0y =,则35042x --=,解得103x =-,10(3P ∴-,0).综上,点P 的坐标为(2,0)或10(3-,0).(3) 点(5,5)B 与点M 关于对称轴2x =对称,(1,5)M ∴-.如图,分别过点M ,Q 作y 轴的平行线,交直线OB 于点N ,K ,(1,1)N ∴--,6MN =, 点Q 横坐标为m ,2(,4)Q m m m ∴-,(,)K m m ,22(4)5KQ m m m m m ∴=--=-+.11()2B E S QK x x =- ,21()2B E S MN x x =-,∴221211525(5)()66224S QK m m m S MN ==--=--+,106-< ,∴当52m =时,12S S 的最大值为2524.。

湖北省黄冈市2021年中考数学试题真题(Word版+答案+解析)

湖北省黄冈市2021年中考数学试题真题(Word版+答案+解析)

湖北省黄冈市2021年中考数学试卷一、单选题1.(2021·黄冈)-3的相反数是( )A. −13B. 13C. 3D. -32.(2021·黄冈)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A. 47×107B. 4.7×107C. 4.7×108D. 0.47×1093.(2017·宜兴模拟)下列图形中,是轴对称图形但不是中心对称图形的是( )A. 等边三角形B. 正六边形C. 正方形D. 圆4.(2021·黄冈)下列计算正确的是( )A. a 3+a 2=a 5B. a 3÷a 2=aC. 3a 3⋅2a 2=6a 6D. (a −2)2=a 2−45.(2021·黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是( )A. B. C. D.6.(2021·黄冈)高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误..的是( )A. 样本容量为400B. 类型D 所对应的扇形的圆心角为 36°C. 类型C 所占百分比为 30%D. 类型B 的人数为120人7.(2021·黄冈)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A. 10B. 8C. 6D. 48.(2021·黄冈)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4.点P沿折线C−A−D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.二、填空题9.(2021·黄冈)式子√a+2在实数范围内有意义,则a的取值范围是________.10.正五边形的一个内角是________度。

2020年湖北省黄冈市数学中考试题及答案

2020年湖北省黄冈市数学中考试题及答案

t (秒) S (米) C D B AO 145 147 33 15 100 180 200第11题ABC(B) DA BC(D)…(A)D l 初中学业水平考试数学试题(课改实验区)(考试时间120分钟 满分120分)一.填空题(每空3分,满分24分)01.=02 ,4的算术平方根是 ,2cos60°+tan45°= 。

02.函数x y -=2中自变量x 的取值范围是 。

03.化简=32。

04.将a a -3分解因式,结果为 。

05.已知圆锥的侧面展开图是一个半园,则这个圆锥的母线长与底面半径长的比是 。

06.将边长为8cm 的正方形ABCD 的四边沿直线l 想右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是 cm 。

二.单项选择题(请将下列各题中唯一正确的答案序号填入题后的括号内,不填、填错或多填均不得分,每小题3分,共15分) 07.下列运算正确的是( )A 、23532x x x -=-B 、52232=+C 、5)(x -·102)(x x -=- D 、5235363)3()93(a x ax ax x a -=-÷-08.反比例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 09.计算:329632-÷--+m m m m 的结果为( ) A 、1 B 、33+-m m C 、33-+m m D 、33+m m10.一个无盖的正方体纸盒,将它展开成平面图形,可能的情形共有( )A 、11种B 、9种C 、3种D 、7种11.如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程S(米)与时间t(秒)之间的函数关系图像分别为折线OABC 和线段OD ,下列说法正确的是( ) A 、乙比甲先到达终点B 、乙测试的速度随时间增加而增大C 、比赛进行到29.4秒时,两人出发后第一次相遇D 、比赛全程甲的测试速度始终比乙的测试速度快A B C DE 三.解答下列各题12.(本题满分6分)如图,DB ∥AC ,且DB=21AC ,E 是AC 的中点,求证:BC=DE 。

黄冈中考数学试题及答案

黄冈中考数学试题及答案

黄冈中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列哪个数是无理数?A. -2B. 根号3C. 0.33333D. 1/3答案:B2. 如果一个角的余角是20°,那么这个角的度数是多少?A. 70°B. 90°C. 110°D. 100°答案:A3. 已知线段AB=10cm,点C在AB上,且AC=6cm,求BC的长度。

A. 2cmB. 4cmC. 6cmD. 10cm答案:B4. 下列哪个代数式是二次根式?A. √xB. x²C. 3xD. 1/x答案:A5. 一个正数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A6. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -8D. 8答案:A7. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 都不是答案:C8. 下列哪个方程是一元一次方程?A. x² + 3 = 0B. 2x + 1 = 3x - 2C. x/2 + 3 = 5D. 3x - 5y = 0答案:C9. 一个三角形的内角和是多少度?A. 90°B. 180°C. 270°D. 360°答案:B10. 一个圆的周长是2πr,那么它的面积是多少?A. πr²B. 2πrC. πrD. r²答案:A二、填空题(本题共5小题,每小题2分,共10分。

)11. 一个数的相反数是-5,这个数是________。

答案:512. 如果一个数的平方等于25,那么这个数可能是________或________。

答案:5,-513. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是________。

答案:514. 一个数的立方根是3,那么这个数是________。

往年湖北省黄冈市中考数学真题及答案

往年湖北省黄冈市中考数学真题及答案

往年年湖北省黄冈市中考数学真题及答案一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|= .10.(3分)分解因式:(2a+1)2﹣a2= .11.(3分)计算:﹣= .12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 度.13.(3分)当x=﹣1时,代数式÷+x的值是.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= .15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(, ),B(, ),D(, ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= (用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O 出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.往年年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(往年•黄冈)﹣8的立方根是()A.﹣2 B.±2 C.2 D.﹣【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选:A.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(往年•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180° C.α﹣β=90°D.α+β=90°【分析】根据互为余角的定义,可以得到答案.【解答】解:如果α与β互为余角,则α+β=900.故选:D.【点评】此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(往年•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5【分析】根据同底数幂的乘法和除法法则可以解答本题.【解答】解:A.x2•x3=x5,故A错误;B.x6÷x5=x,故B正确;C.(﹣x2)4=x8,故C错误;D.x2+x3不能合并,故D错误.故选:B.【点评】主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(往年•黄冈)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,象一个大梯形减去一个小梯形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(往年•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(往年•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40【分析】根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.【解答】解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(往年•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12π D.(4+4)π【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.【点评】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(往年•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC 边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.【分析】判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<5),纵观各选项,只有D选项图象符合.故选:D.【点评】本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(往年•黄冈)计算:|﹣|= .【分析】根据负数的绝对值等于它的相反数,可得答案案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(往年•黄冈)分解因式:(2a+1)2﹣a2= (3a+1)(a+1).【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(往年•黄冈)计算:﹣= .【分析】先进行二次根式的化简,然后合并同类二次根式求解.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(往年•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD= 60 度.【分析】延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.【解答】解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(往年•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.【分析】将除法转化为乘法,因式分解后约分,然后通分相加即可.【解答】解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为:3﹣2.【点评】本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(往年•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD= 4.【分析】连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB 得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.【解答】解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(往年•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为或5或10 cm2.【分析】因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.【解答】解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF=AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.【点评】本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(往年•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(往年•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【分析】设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.【解答】解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(往年•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(往年•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(往年•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.【解答】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.21.(7分)(往年•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.【点评】本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(往年•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2 , ),B( 2 , ﹣),D ( 1 , ﹣1 ).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.【分析】(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.【解答】解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,k1=,k2=4,又∵k≠,∴k=4,则当k=4时,▱ADBC是矩形.【点评】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(往年•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN 上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)【分析】(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x 的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.【解答】解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈126.3海里,∵126.3>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(往年•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y= 0.01k(x﹣n)+70(n<x≤6000)(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?【分析】(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.【解答】解:(1)由题意得当0≤x≤n时,y=70;当n<x≤6000时,y=0.01k(x﹣n)+70(n<x≤6000);(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.【点评】本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(往年•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.【分析】(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.【解答】解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=(t=0舍去),∴t=时,点O(1,﹣1)在抛物线y=x2﹣x上,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1(t=0舍去),∴t=1时,点Q(3,﹣1)在抛物线y=x2﹣x上.(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=S△OPQ=×(2t)×=t2,②1<t≤1.5时,S=S△OP′Q′﹣S△AEQ′=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=S梯形OABC﹣S△BGF=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+=﹣2t2+8t﹣;所以,S与t的关系式为S=.。

2020年湖北省黄冈市中考数学试卷(含答案)

2020年湖北省黄冈市中考数学试卷(含答案)

2020年湖北省黄冈市中考数学试卷参考答案与试题解析题序一二三四五六七八总分得分一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)(2020•黄冈)﹣8的立方根是()A .﹣2 B.±2 C.2 D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2020•黄冈)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)(2020•黄冈)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)(2020•黄冈)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)(2020•黄冈)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2020•黄冈)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)(2020•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)(2020•黄冈)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x ,则△DEF 的面积S 关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+,∴S与x的关系式为S=﹣(x﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)(2020•黄冈)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)(2020•黄冈)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)(2020•黄冈)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)(2020•黄冈)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)(2020•黄冈)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)(2020•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)(2020•黄冈)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)(2020•黄冈)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(2020•黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)(2020•黄冈)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)(2020•黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)(2020•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)(2020•黄冈)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)(2020•黄冈)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k 的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形,∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)(2020•黄冈)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C 在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)(2020•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)(2020•黄冈)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P 作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:①0<t≤1时,S=×(2t)×=t2,②1<t≤1.5时,S=×(2t)×﹣×(t﹣)2=2t﹣1;③1.5<t<2时,S=×(2+3)×1﹣×[1﹣(2t﹣3)]2=﹣2(t﹣2)2+;所以,S与t的关系式为S=.点评:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观.友情提示:一、认真对待每一次考试。

2024年湖北黄冈中考数学试题及答案

2024年湖北黄冈中考数学试题及答案

2024年湖北黄冈中考数学试题及答案一、选择题(每小题3分,共30分)1. 在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A. 10+元B. 10-元C. 20+元D. 20-元2. 如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A. B. C. D.3. 223x x ⋅的值是( )A. 25xB. 35xC. 26xD. 36x 4. 如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A. 50︒B. 60︒C. 70︒D. 80︒5. 不等式12x +≥的解集在数轴上表示为( )A.B. C.D.6. 下列各事件是,是必然事件的是( )A. 掷一枚正方体骰子,正面朝上恰好是3B. 某同学投篮球,一定投不中C. 经过红绿灯路口时,一定是红灯D. 画一个三角形,其内角和为180︒7. 《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值x 金,每只羊值y 金,可列方程为( )A. 5210258x y x y +=⎧⎨+=⎩ B. 2510528x y x y +=⎧⎨+=⎩C. 5510258x y x y +=⎧⎨+=⎩ D. 5210228x y x y +=⎧⎨+=⎩8. AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A. 40︒B. 25︒C. 20︒D. 15︒9. 平面坐标系xOy 中,点A 的坐标为()4,6-,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为( )A. ()4,6B. ()6,4C. ()4,6--D. ()6,4--10. 抛物线2y ax bx c =++的顶点为()1,2--,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( )A. 0a <B. 0c <C. 2a b c -+=-D. 240b ac -=二、填空题(每小题3分,共15分)11. 写一个比1-大的数______.12. 中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽的概率是______.13. 计算:111m m m +=++______.14. 铁的密度约为37.9kg /cm ,铁的质量()kg m 与体积()3cmV 成正比例.一个体积为310cm 的铁块,它的质量为______kg .15. DEF 等边三角形,分别延长FD DE EF ,,,到点A B C ,,,使DA EB FC ==,连接AB AC ,,BC ,连接BF 并延长交AC 于点G .若2AD DF ==,则DBF ∠=______,FG =______.为三、解答题(75分)16. 计算:()201322024-⨯-17. 已知:如图,E ,F 为□ABCD 对角线AC 上的两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .18. 小明为了测量树AB 的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得C 地与树AB 相距10米,眼睛D 处观测树AB 的顶端A 的仰角为32︒:方案二:如图(2),测得C 地与树AB 相距10米,在C 处放一面镜子,后退2米到达点E ,眼睛D 在镜子C 中恰好看到树AB 的顶端A .已知小明身高1.6米,试选择一个方案求出树AB 的高度.(结果保留整数,tan320.64︒≈)19. 为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了ABCD 四组,制成了不完整的统计图.分组:05A ≤<,510B ≤<,1015C ≤<,1520D ≤<.(1)A 组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.20. 一次函数y x m =+经过点()3,0A -,交反比例函数k y x=于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x =第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.21. Rt ABC △中,90ACB ∠=︒,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .且BD BC =.(1)求证:AB 是O 的切线.(2)连接OB 交O 于点F,若1AD AE ==,求弧CF 长.22. 学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.的的(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.23. 如图,矩形ABCD 中,,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 对称点P 落在AB 上,B 的对称点为G PG ,交BC 于H .(1)求证:EDP PCH △∽△.(2)若P 为CD 中点,且2,3AB BC ==,求GH 长.(3)连接BG ,若P 为CD 中点,H 为BC 中点,探究BG 与AB 大小关系并说明理由.24. 如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.的参考答案一、选择题(每小题3分,共30分)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】C二、填空题(每小题3分,共15分)【11题答案】【答案】0【12题答案】【答案】1 5【13题答案】【答案】1【14题答案】【答案】79【15题答案】【答案】 ①. 30︒##30度 ②.三、解答题(75分)【16题答案】【答案】3【17题答案】【答案】证明见解析.【18题答案】【答案】树AB 的高度为8米【19题答案】【答案】(1)12 (2)180(3)见解析【20题答案】【答案】(1)3m =,1n =,4k =;(2)1a >.【21题答案】【答案】(1)见解析 (2)弧CF 的长为3π.【22题答案】【答案】(1)()8021940y x x =-≤<;2280s x x =-+(2)能,25x =(3)s 的最大值为800,此时20x =【23题答案】【答案】(1)见详解 (2)34GH =(3)AB =【24题答案】【答案】(1)2b =;(2)103m=或83m=;(3)①()()22111111n n ndn n⎧-><⎪=⎨--<<⎪⎩或;②nn≤<或11n-<≤-.的。

2020年湖北省黄冈市中考数学试题及参考答案(word解析版)

2020年湖北省黄冈市中考数学试题及参考答案(word解析版)

黄冈市2020年初中毕业生学业水平和高中阶段学校招生考试数学试题(考试时间120分钟满分120分)第Ⅰ卷(选择题共24分)一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.的相反数是()A.B.﹣6 C.6 D.﹣2.下列运算正确的是()A.m+2m=3m2B.2m3•3m2=6m6C.(2m)3=8m3D.m6÷m2=m33.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7 B.8 C.9 D.104.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85 90 90 85方差50 42 50 42A.甲B.乙C.丙D.丁5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A.B.C.D.6.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1 B.5:1 C.6:1 D.7:18.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.第Ⅱ卷(非选择题共96分)二、填空题(本题共8小题,每小题3分,共24分)9.计算=.10.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.若|x﹣2|+=0,则﹣xy=.12.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.13.计算:÷(1﹣)的结果是.14.已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM 上。

湖北省黄冈市2020年中考数学试题(含答案解析)

湖北省黄冈市2020年中考数学试题(含答案解析)

湖北省黄冈市2020年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.16的相反数是 ( ) A .6 B .-6 C .16 D .16- 2.下列运算正确的是( )A .223m m m +=B .326236m m m ⋅=C .33(2)8m m =D .623m m m ÷= 3.如果一个多边形的每一个外角都是36°,那么这个多边形的边数是( ) A .7 B .8 C .9 D .10 4.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A .甲B .乙C .丙D .丁 5.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是( )A .B .C .D . 6.在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A .4: 1B .5: 1C .6: 1D .7: 1 8.2020年初以来,红星消毒液公司生产的消毒液在库存量为m 吨的情况下,日销售量与产量持平,自1月底抗击“新冠病毒”以来,消毒液霱求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020年初至脱销期间,该厂库存量y (吨)与时间(天)之间函数关系的大致图象是( )A .B .C .D .二、填空题9.10.已知12,x x 是一元二次方程2210x x --=的两根,则121x x =____________. 11.若|2|0x -=,则12xy -=__________. 12.已知:如图,在ABC 中,点D 在边BC 上,,35AB AD DC C ︒==∠=,则BAD ∠=_______度.13.计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 14.已知:如图,//,75,135AB EF ABC CDF ︒︒∠=∠=,则BCD ∠=_____________度.15.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐问水深几何?”(注:丈、尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是_______________尺.16.如图所示,将一个半径10cm OA =,圆心角90AOB ∠=︒的扇形纸板放置在水平面的一条射线OM 上.在没有滑动的情况下,将扇形AOB 沿射线OM 翻滚至OB 再次回到OM 上时,则半径OA 的中点P 运动的路线长为_____________cm .三、解答题17.解不等式211322x x +≥,并在数轴上表示其解集. 18.已知:如图,在ABCD 中,点O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E ,求证:AD CE =.19.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”.一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元.如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元.请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.为了解疫情期网学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”、“良好”、“一般”、“不合格”四个等次中,选择一项作为自我评价网络学习的效果现将调查结果绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了_________________人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.已知:如图,AB 是O 的直径,点E 为O 上一点,点D 是AE 上一点,连接AE 并延长至点C ,使,CBE BDE BD ∠=∠与AE 交于点F .(1)求证:BC 是O 的切线;(2)若BD 平分ABE ∠,求证:2AD DF DB =⋅.22.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览.当船在A 处时,船上游客发现岸上1P 处的临皋亭和2P 处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.(1)求A 处到临皋亭P 处的距离.(2)求临皋亭1P 处与遗爱亭2P 处之间的距离(计算结果保留根号)23.已知:如图,一次函数的图象与反比例函数的图象交于A ,B 两点,与y 轴正半轴交于点C ,与x 轴负半轴交于点D ,1tan 2OB DOB =∠=.(1)求反比例函数的解析式;(2)当12ACO OCD S S =时,求点C 的坐标.24.网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W (元).(1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值.25.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且:3:5ACE CEBS S=,求直线CE的解析式(3)若点P在抛物线上,点Q在x轴上,当以点D、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点450,,(2,0)8H G⎛⎫⎪⎝⎭,在抛物线对称轴上找一点F,使HF AF+的值最小此时,在抛物线上是否存在一点K,使KF KG+的值最小,若存在,求出点K的坐标;若不存在,请说明理由.参考答案1.D【分析】根据相反数的定义解答即可.【详解】 根据相反数的定义有:16的相反数是16-. 故选D .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.C【分析】分别根据合并同类项、同底数幂相乘、幂的乘方、同底数幂相除逐一分析即可.【详解】解:A .23m m m +=,该项不符合题意;B .253322663m m m m +⋅==,该项不符合题意;C .33(2)8m m =,该项符合题意;D .62624m m m m -÷==,该项不符合题意;故选:C .【点睛】本题考查合并同类项、同底数幂相乘、幂的乘方、同底数幂相除,掌握运算法则是解题的关键.3.D【分析】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n =360°÷36°=10. 故选D .【点睛】本题考查了多边形外角与边数的关系,利用外角求正多边形的边数的方法,熟练掌握多边形外角和公式是解决问题的关键.4.B【分析】本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题.【详解】通过四位同学平均分的比较,乙、丙同学平均数均为90,高于甲、丁同学,故排除甲、丁;乙、丙同学平均数相同,但乙同学方差更小,说明其发挥更为稳定,故选择乙同学.故选:B.【点睛】本题考查平均数以及方差,平均数表示其平均能力的高低;方差表示数据波动的大小,即稳定性高低,数值越小,稳定性越强,考查对应知识点时严格按照定义解题即可.5.A【分析】根据题意分别画出各项三视图即可判断.【详解】各选项主视图、左视图、俯视图如下:A.,满足题意;B.,不满足题意;C.,不满足题意;D.,不满足题意;故选A.【点睛】本题考查几何体的三视图,关键在于牢记三视图的画法.6.A根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .【点睛】本题考查了点的坐标,解决本题的关键是掌握点的坐标特征.7.B【分析】如图,AH 为菱形ABCD 的高,AH =2,利用菱形的性质得到AB =4,利用正弦的定义得到∠B =30°,则∠C =150°,从而得到∠C :∠B 的比值.【详解】解:如图,AH 为菱形ABCD 的高,AH =2,∵菱形的周长为16,∴AB =4,在Rt △ABH 中,sinB =AH AB =2142=, ∴∠B =30°,∵AB ∥CD ,∴∠C =150°,∴∠C :∠B =5:1.故选:B .本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了正弦的定义及应用. 8.D【分析】正确理解函数图象与实际问题的关系,题目中的脱销时库存量为0.【详解】根据题意:一开始销售量与生产量持平,此时图象为平行于x 轴的线段,当下列猛增是库存随着时间的增加而减小,时间t 与库存量y 之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D .【点睛】本题要求能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.9.﹣2.【详解】立方根.【分析】根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得x 3=a ,则x 就是a 的一个立方根:∵(-2)3=-8,2-.10.-1【分析】根据根与系数的关系得到x 1x 2=-1,代入121x x 计算即可. 【详解】解:∵一元二次方程x 2−2x−1=0的两根为x 1,x 2,∴x 1x 2=-1, ∴121x x =-1.故答案为:-1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca. 11.2 【分析】根据非负数的性质进行解答即可. 【详解】解:|2|0x -=,20x ∴-=,0x y +=, 2x ∴=,2y =-,∴112(2)222xy -=-⨯⨯-=,故答案为:2. 【点睛】本题考查了非负数的性质,掌握几个非负数的和为0,这几个数都为0,是解题的关键. 12.40 【分析】根据等边对等角得到35CAD C ∠=∠=︒,再根据三角形外角的性质得到70BDA C CAD ∠=∠+∠=︒,故70B BDA ∠=∠=︒,由三角形的内角和即可求解BAD ∠的度数. 【详解】解:∵,35AD DC C ︒=∠=,∴35CAD C ∠=∠=︒,∴70BDA C CAD ∠=∠+∠=︒, ∵AB AD =,∴70B BDA ∠=∠=︒,∴18040BAD B BDA ∠=︒-∠-∠=︒, 故答案为:40.【点睛】本题考查等腰三角形的性质、三角形外角的性质、三角形的内角和,熟练掌握几何知识并灵活运用是解题的关键. 13.1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得. 【详解】 解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()yx y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()yy x y x y x y=÷+-+ ()()yx yx y x y y+=⋅+- 1x y=-, 故答案为:1x y-.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 14.30 【分析】本题可利用两直线平行,同位角相等求解∠EGC ,继而根据邻补角定义求解∠CDE ,最后根据外角定义求解∠BCD . 【详解】令BC 与EF 相交于G 点,如下图所示: ∵//,75,135AB EF ABC CDF ︒︒∠=∠=,∴∠EGC=∠ABC=75°,∠EDC=180°-∠CDF=180°-135°=45°,又∵∠EGC=∠BCD+∠EDC,∴∠BCD=75°-45°=30°,故答案:30.【点睛】本题考查直线平行的性质,外角以及邻补角定义,难度一般,掌握一些技巧有利于解题效率,例如见平行推角等.15.12【分析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2即可.【详解】设这个水池深x尺,由题意得,x2+52=(x+1)2,解得:x=12答:这个水池深12尺.故答案为:12.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.16.无解【详解】中考错题无解x≥-,数轴见解析17.3【分析】先去分母、移项、合并同类项解不等式,得出解集后在数轴上表示即可. 【详解】 解:211322x x +≥ 去分母得,433x x +≥, 移项得,433x x -≥-, 合并同类项得,3x ≥-. ∴原不等式的解集为:3x ≥-. 解集在数轴上表示为:【点睛】本题考查了解一元一次不等式,根据不等式的性质解一元一次不等式是解题的关键. 18.见解析 【分析】通过证明ADO ECO △≌△即可得证. 【详解】证明:∵点O 是CD 的中点,DO CO ∴=.在ABCD 中,//AD BC ,,D DCE DAO E ∴∠=∠∠=∠.在ADO △和ECO 中,DAO E D DCE DO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADO ECO AAS ∴△≌△AD CE ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定与性质等内容,熟练运用平行四边形的性质及全等三角形的判定是解题的关键.19.每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元 【分析】根据题意列出二元一次方程组解出即可. 【详解】解:设每盒羊角春牌绿茶x 元,每盒九孔牌藕粉y 元,依题意可列方程组:649603300x y x y +=⎧⎨+=⎩解得:12060x y =⎧⎨=⎩答:每盒羊角春牌绿茶120元,每盒九孔牌藕粉60元. 【点睛】本题考查二元一次方程组的应用,关键在于理解题意找出等量关系. 20.(1)200;(2)图见解析,108︒;(3)16【分析】(1)用“良好”所占的人数80除以它所占的百分比40%即可得到调查的总人数;(2)用总分数减去“优秀”、“良好”、“一般”所占的人数即可计算出“不合格”的人数,然后补全条形统计图,用“一般”的人数除以总人数得到其所占的百分比,再乘以360°即可得到“一般”的学生人数所在扇形的圆心角度数;(3)画图树状图,然后再用概率公式求解即可. 【详解】解:(1)结合扇形统计图和条形统计图可知: 本次活动共调查了:80÷40%=200(人), 故答案为:200.(2)“不合格”的人数为:200-40-80-60=20人, 故条形统计图补全如下所示:学习效果“一般”的学生人数所占的百分比为:60÷200=30%, 故学习效果“一般”所在扇形的圆心角度数为30%×360°=108°, 故答案为:108°. (3)依题意可画树状图:共有12种可能的情况,其中同时选中“良好”的情况由2种,P ∴(同时选中“良好”)21126==. 故答案为:16. 【点睛】此题考查了列表法或树状图法求概率以及扇形与条形统计图,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;树状图法可以展示所有等可能的结果求出n ,再从中选出符合事件A 的结果数目m ,最后用概率公式求出P(A)=mn即可求出事件A 的概率. 21.(1)见解析;(2)见解析. 【分析】(1)利用AB 为直径,得出90BEA ∠=︒,利用,BDE BAE CBE BDE ∠=∠∠=∠得出BAE CBE ∠=∠,从而得出90EBA EBC ∠+∠=︒,进而得出结论;(2)证出FDA ADB ∽即可得出结论. 【详解】 证明:(1)AB 为直径,90BEA ∴∠=︒,在Rt BEA 中,90EBA BAE ∠+∠=︒,又,BDE BAE CBE BDE ∠=∠∠=∠,BAE CBE ∴∠=∠,90EBA CBE ∴∠+∠=︒,即90ABC ∠=︒,BC AB ∴⊥,又AB 为O 的直径,BC ∴是O 的切线;(2)BD 平分ABE ∠,EBD DBA ∴∠=∠,又EBD EAD ∠=∠,DBA EAD ∴∠=∠,又FDA ADB ∠=∠,FDA ADB ∴∽,AD FDBD AD∴=, 2AD DF DB ∴=⋅.【点睛】本题考查了切线的判定,同弧所对的圆周角相等,三角形相似的判定和性质;证明切线有两种情况(1)有交点,作半径,证垂直;(2)无交点,作垂直,证半径.22.(1);(2)米 【分析】(1)过点1P 作1PM AC ⊥于点M .设1 m PM x =,在1Rt APM 中,得到1 mAP =,在1Rt PMC 中,得到 m MC =,根据AC AB BC AM MC =+=+得到关于x 的一元一次方程,求解即可得到x 的值,进而A 处到临皋亭的距离即可求解;(2)过点B 作2BN AP ⊥于点N ,在Rt ABN △中,得到AN =,在2Rt NP B △中,得到2NP =,根据122121PP AP AP AN NP AP =-=+-求解即可. 【详解】解:(1)依题意有22145,75,30P AB P BA PCA ∠=︒∠=︒∠=︒.过点1P 作1PM AC ⊥于点M .设1 m PM x =,则在1Rt APM 中,11m m , AM PM x AP ===.在1Rt PMC 中,1122 m, m PC PM x MC ===. 又AC AB BC AM MC =+=+,600400.1)x x ∴+=+∴=11)AP ∴==∴点A 处与点1P 处临皋亭之间的距离为-. (2)过点B 作2BN AP ⊥于点N . 在Rt ABN △中,45ABN ∠=︒.AN BN ∴====. 在2Rt NP B △中,2230NBP P BA ABN ∠=∠-∠=︒.2NP ∴===.22AP AN NP ∴=+=.1221PP AP AP ∴=-==.∴点1P 处临亭与点2P 处遗爱亭之间的距离为. 【点睛】本题考查解直角三角形的应用,作出合适的辅助线,构造出直角三角形是解题的关键.23.(1)2y x=;(2)点C 的坐标为(0,2) 【分析】(1)过点B 作BM x ⊥轴于点M ,由1tan 2DOB ∠=设BM=x ,MO=2x ,由勾股定理求出x 的值,得到点B 的坐标,代入即可求解;(2)设点C 的坐标为(0, )m ,则0m >.设直线AB 的解析式为:y kx m =+,将B 点坐标代入AB 的函数关系式,可得12m y x m +=+,令y=0得到21mOD m =+,令212m x m x +=+,解得两个x 的值,A 点的横坐标为21m +,由12ACO OCD S S =列出方程求解即可. 【详解】解:(1)过点B 作BM x ⊥轴于点M ,则在Rt MOB 中1tan 2BM DOB MO ∠==. 设(0)BM x x =>,则2MO x =. 又2225,OB OM BM OB =+=.222(2)x x ∴+=.又0,x >1x ∴=,∴点B 的坐标是(2,1)-- ∴反比例的解析式为2y x=. (2)设点C 的坐标为(0, )m ,则0m >.设直线AB 的解析式为:y kx m =+. 又∵点(2,1)B --在直线AB 上将点B 的坐标代入直线解析式中,21k m ∴-+=-.12m k +∴=. ∴直线AB 的解析式为:12m y x m +=+. 令0y =,则21mx m =-+. 21mOD m ∴=+. 令212m x m x +=+,解得1222,1x x m =-=+.经检验12,x x 都是原方程的解. 又12ACO OCD s s ∆∆=. 111222A CO x CO OD ∴⋅=⨯⋅. 2A OD x ∴=.2411m m m ∴=++. 2m ∴=.经检验,2m =是原方程的解. ∴点C 的坐标为(0,2). 【点睛】本题考查反比例函数与一次函数综合、分式方程、一元二次方程和解直角三角形,解题的关键是熟练掌握反比例函数的图象和性质.24.(1)22100550027000(610)100560032000(1030)x x x w x x x ⎧-+-≤≤=⎨-+-<≤⎩;(2)当销售单价定为28元时,日获利最大,且最大为46400元;(3)2a = 【分析】(1)首先根据题意求出自变量x 的取值范围,然后再分别列出函数关系式即可;(2)对于(1)得到的两个函数关系式在其自变量取值范围内求出最大值,然后进行比较,即可得到结果;(3)先求出当40000w =,即210056003200040000x x -+-=时的销售单价,得当40000,2036w x ≥≤≤,从而2030x ≤≤,得1(6)(1005000)2000w x a x =---+-,可知,当1282x a =+时,max 42100w =元,从而有1128610028500020004210022a a a ⎡⎤⎛⎫⎛⎫+---++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,解方程即可得到a 的值. 【详解】解:(1)当4000y ≥,即10050004000x -+≥,10x ∴≤.∴当610x ≤≤时,(61)(1005000)2000w x x =-+-+-2100550027000x x =-+-当1030x <≤时,(6)(1005000)2000w x x =--+-2100560032000x x =-+-.22100550027000(610)100560032000(1030)x x x w x x x ⎧-+-≤≤∴=⎨-+-<≤⎩(2)当610x ≤≤时,2100550027000w x x =-+-.∵对称轴为5500551022(100)2b x a =-=-=>⨯-, ∴当10x =时,max 54000200018000w =⨯-=元.当1030x <≤时,2100560032000w x x =-+-.∵对称轴为56002822(100)b x a =-=-=⨯-, ∴当28x =时,max 222200200046400w =⨯-=元.4640018000>∴综合得,当销售单价定为28元时,日获利最大,且最大为46400元.(3)4000018000>,1030x ∴<≤,则2100560032000w x x =-+-.令40000w =,则210056003200040000x x -+-=.解得:1220,36x x ==.在平面直角坐标系中画出w 与x 的数示意图.观察示意图可知:40000,2036w x ≥≤≤.又1030x <≤,2030x ∴≤≤.1(6)(1005000)2000w x a x ∴=---+-2100(5600100)320005000x a x a =-++--. 对称轴为560010012822(100)2b a x a a +=-=-=+⨯- 4a <,∴对称轴128302x a =+<. ∴当1282x a =+时,max 42100w =元. 1128610028500020004210022a a a ⎡⎤⎛⎫⎛⎫∴+---++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2881720a a ∴-+=,122,86a a ∴==.又4a <,2a ∴=.【点睛】本题考查了二次函数和一元二次方程在销售问题中的应用,明确成本利润问题的基本数量关系及二次函数的性质是解题的关键.25.(1)2y x 2x 3=-++;(2)63y x =-+;(3)点P 的坐标为(11),(1±-;(4)存在,点K 的坐标为(2,3)【分析】(1)由于点A 、B 为抛物线与x 轴的交点,可设两点式求解;也可将A 、B 、C 的坐标直接代入解析式中利用待定系数法求解即可;(2)根据两个三角形的高相等,则由面积比得出:3:5AE EB =,求出AE,根据点A 坐标可解得点E 坐标,进而求得直线CE 的解析式;(3)分两种情况讨论①当四边形DCPQ 为平行四边形时;②当四边形DCQP 为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答;(4)根据抛物线的对称性,AF=BF ,则HF+AF=HF+BF ,当H 、F 、B 共线时,HF+AF 值最小,求出此时点F 的坐标,设()00,K x y ,由勾股定理和抛物线方程得0174KF y =-,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174,则点S 的坐标为017,4x ⎛⎫ ⎪⎝⎭,此时,0174KS y =-,∴KF+KG=KS+KG,当S 、K 、G 共线且平行y 轴时,KF+KG 值最小,由点G 坐标解得0x ,代入抛物线方程中解得0y ,即为所求K 的坐标.【详解】解:(1)方法1:设抛物线的解析式为(3)(1)y a x x将点(0,3)C 代入解析式中,则有1(03)31a a ⨯-=∴=-.∴抛物线的解析式为()222323y x x x x =---=-++.方法二:∵经过,,A B C 三点抛物线的解析式为2y ax bx c =++, 将(1,0),(3,0),(0,3)A B C -代入解析式中,则有30930c a b c a b c =⎧⎪∴-+=⎨⎪++=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的解析式为2y x 2x 3=-++.(2):3:5ACE CEB S S ∆∆=,132152AE CO EB CO ⋅∴=⋅. :3:5AE EB ∴=.3334882AE AB ∴==⨯=. 31122E x ∴=-+=. E ∴的坐标为1,02⎛⎫ ⎪⎝⎭. 又C 点的坐标为(0,3).∴直线CE 的解析式为63y x =-+.(3)2223(1)4y x x x =-++=--+.∴顶点D 的坐标为(1,4).①当四边形DCPQ 为平行四边形时,由DQ ∥CP ,DQ=CP 得:D Q C P y y y y -=-,即403P y -=-.1p y ∴=-.令1y =-,则2231x x -++=-.1x ∴=±∴点P的坐标为(11)-.②当四边形DCQP 为平行四边形时,由CQ ∥DP ,CQ=DP 得:c Q D p y y y y -=-,即304P y -=-1p y ∴=.令1y =,则2231x x -++=.1x ∴=±∴点P 的坐标为(1±.∴综合得:点P 的坐标为(11),(1-(4)∵点A 或点B 关于对称轴1x =对称∴连接BH 与直线1x =交点即为F 点.∵点H 的坐标为450,8⎛⎫ ⎪⎝⎭,点B 的坐标为(3,0), ∴直线BH 的解析式为:154588y x =-+. 令1x =,则154y =. 当点F 的坐标为151,4⎛⎫ ⎪⎝⎭时,HF AF +的值最小.11分 设抛物线上存在一点()00,K x y ,使得FK FG +的值最小.则由勾股定理可得:()222001514KF x y ⎛⎫=-+- ⎪⎝⎭. 又∵点K 在抛物线上,()20014y x ∴=--+()20014x y ∴-=-代入上式中, ()2220001517444KF y y y ⎛⎫⎛⎫∴=-+-=- ⎪ ⎪⎝⎭⎝⎭ 0174KF y ∴=-. 如图,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174. ∴点S 的坐标为017,4x ⎛⎫ ⎪⎝⎭. 则0174SK y =-.000171717,444y y y ⎛⎫<∴-=- ⎪⎝⎭(两处绝对值化简或者不化简者正确.)KF SK ∴=.KF KG SK KG ∴+=+当且仅当,,S K G 三点在一条直线上,且该直线干行于y 轴,FK FG +的值最小. 又∵点G 的坐标为(2,0),02x ∴=,将其代入抛物线解析式中可得:03y =.∴当点K 的坐标为(2,3)时,KF KG +最小.【点睛】本题主要考查了二次函数与几何图形的综合,涉及待定系数法、平行四边形的性质、、三角形面积、求线段和的最小值(即将军饮马模型)等知识,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.。

湖北省黄冈市中考数学真题试题含解析

湖北省黄冈市中考数学真题试题含解析

2021年湖北省黄冈市中考数学试卷一、选择题〔此题共8小题,每题3分,共24分,每题给出的4个选项中,有且只有一个答案是正确的〕1.〔3分〕﹣3的绝对值是〔〕A.﹣3B.C.3D.±32.〔3分〕为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中〞为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为〔〕A.×106B.×105C.55×104D.×106 3.〔3分〕以下运算正确的选项是〔〕A.a?a2=a2B.5a?5b=5ab C.a5÷a3=a2D.2a+3b=5ab12是一元一次方程212的值为〔〕4.〔3分〕假设x,x x﹣4x﹣5=0的两根,那么x?xA.﹣5B.5C.﹣4D.45.〔3分〕点A的坐标为〔2,1〕,将点A向下平移4个单位长度,得到的点A′的坐标是〔〕A.〔6,1〕B.〔﹣2,1〕C.〔2,5〕D.〔2,﹣3〕6.〔3分〕如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是〔〕A.B.C.D.7.〔3分〕如图,一条公路的转弯处是一段圆弧〔〕,点O是这段弧所在圆的圆心,=AB40m,点C是的中点,且CD=10m,那么这段弯路所在圆的半径为〔〕A.25m B.24m C.30m D.60m8.〔3分〕林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y表示林茂离家的距离.依据图中的信息,以下说法错误的选项是〔〕A.体育场离林茂家kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min二、填空题〔此题共8小题,每题3分,共24分〕9.〔3分〕计算〔〕2+1的结果是.10.〔3分〕﹣x2y 是次单项式.11.〔3分〕分解因式3x2﹣27y2=.12.〔3分〕一组数据1,7,8,5,4的中位数是a,那么a的值是.13.〔3分〕如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,∠ACD=80°,那么∠DAC的度数为.14.〔3分〕用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,那么这个圆锥的底面圆的面积为.15.〔3分〕如图,一直线经过原点O,且与反比例函数y=〔k>0〕相交于点A、点B,过点A 作⊥轴,垂足为,连接.假设△面积为8,那么=.ACy C BC ABC k16.〔3分〕如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,假设∠CMD =120°,那么CD的最大值是.三、解答题〔此题共9题,总分值17.〔6分〕先化简,再求值.72分〕〔+〕÷,其中a=,b=1.18.〔6分〕解不等式组.19.〔6分〕如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.20.〔7分〕为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫〞活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九〔1〕班提前到达目的地,做好活动的准备工作.行走过程中,九〔1〕班步行的平均速度是其他班的倍,结果比其他班提前10分钟到达.分别求九〔1〕班、其他班步行的平均速度.21.〔8分〕某校开发了“书画、器乐、戏曲、棋类〞四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了假设干名学生进行调查〔每人必选且只能选一类〕,先将调查结果绘制成如下两幅不完整的统计图:1〕本次随机调查了多少名学生?2〕补全条形统计图中“书画〞、“戏曲〞的空缺局部;3〕假设该校共有1200名学生,请估计全校学生选择“戏曲〞类的人数;4〕学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动〞,用树形图或列表法求处恰好抽到“器乐〞和“戏曲〞类的概率.〔书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示〕22.〔7分〕如图,两座建筑物的水平距离BC为40m,从A点测得D点的俯角α为45°,测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.〔结果保存小数点后一位,(≈,≈.〕((((((((((23.〔8分〕如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.(1〕求证:△DBE是等腰三角形;(2〕求证:△COE∽△CAB.24.〔10分〕某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y〔万元〕与产量x〔吨〕之间的关系如下图〔0≤x≤100〕.草莓的产销投入总本钱p〔万元〕与产量x〔吨〕之间满足p=x+1.1〕直接写出草莓销售单价y〔万元〕与产量x〔吨〕之间的函数关系式;2〕求该合作社所获利润w〔万元〕与产量x〔吨〕之间的函数关系式;〔3〕为提高农民种植草莓的积极性,合作社决定按万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′〔万元〕不低于55万元,产量至少要到达多少吨?25.〔14分〕如图①,在平面直角坐标系xOy中,A〔﹣2,2〕,B〔﹣2,0〕,C〔0,2〕,D〔2,0〕四点,动点M以每秒个单位长度的速度沿B→C→D运动〔M不与点B、点D重合〕,设运动时间为t〔秒〕.1〕求经过A、C、D三点的抛物线的解析式;2〕点P在〔1〕中的抛物线上,当M为BC的中点时,假设△PAM≌△PBM,求点P的坐标;3〕当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠局部的面积为S,求S与t的函数关系式,并求出S的最大值;〔4〕点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK为等腰三角形?假设存在,直接写出符合条件的所有Q点的坐标;假设不存在,请说明理由.2021年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题〔此题共8小题,每题3分,共24分,每题给出的4个选项中,有且只有一个答案是正确的〕1.〔3分〕﹣3的绝对值是〔〕A.﹣3B.C.3D.±3【分析】利用绝对值的定义求解即可.【解答】解:﹣ 3的绝对值是3.应选:C.【点评】此题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.〔3分〕为纪念中华人民共和国成立70周年,我市各中小学积极开展了以“祖国在我心中〞为主题的各类教育活动,全市约有550000名中小学生参加,其中数据550000用科学记数法表示为〔〕A.×106B.×105C.55×104D.×106【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将550000用科学记数法表示为:×105.应选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔3分〕以下运算正确的选项是〔〕A.?2=2B.5?5=5C.a 5÷a3=a2D.2+3=5aaa abab abab 【分析】直接利用单项式乘以单项式以及同底数幂的乘除运算法那么、合并同类项法那么分别化简得出答案.【解答】解:A、a?a2=a3,故此选项错误;B、5a?5b=25ab,故此选项错误;C、a5÷a3=a2,正确;D、2a+3b,无法计算,故此选项错误.应选:C.【点评】此题主要考查了单项式乘以单项式以及同底数幂的乘除运算、合并同类项,正确掌握相关运算法那么是解题关键.12212的值为〔〕4.〔3分〕假设x,x是一元一次方程x﹣4x﹣5=0的两根,那么x?xA.﹣5B.5C.﹣4D.4【分析】利用根与系数的关系可得出x?x=﹣5,此题得解.12【解答】解:∵x1,x2是一元一次方程x2﹣4x﹣5=0的两根,∴1?2==﹣5.x x应选:A.【点评】此题考查了根与系数的关系,牢记两根之积等于是解题的关键.5.〔3分〕点A的坐标为〔2,1〕,将点A向下平移4个单位长度,得到的点A′的坐标是〔〕A.〔6,1〕B.〔﹣2,1〕C.〔2,5〕D.〔2,﹣3〕【分析】将点A的横坐标不变,纵坐标减去4即可得到点A′的坐标.【解答】解:∵点A的坐标为〔2,1〕,∴将点A 向下平移4个单位长度,得到的点′的坐标是〔2,﹣3〕,A应选:D.【点评】此题主要考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.正确掌握规律是解题的关键.6.〔3分〕如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是〔〕A.B.C.D.【分析】左视图有1列,含有2个正方形.【解答】解:该几何体的左视图只有一列,含有两个正方形.应选:B.【点评】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.7.〔3分〕如图,一条公路的转弯处是一段圆弧〔〕,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,那么这段弯路所在圆的半径为〔〕A.25m B.24m C.30m D.60m【分析】根据题意,可以推出AD=BD=20,假设设半径为r,那么OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.【解答】解:∵OC⊥AB,AD=DB=20m,222在Rt△AOD中,OA=OD+AD,设半径为r得:r2=〔r﹣10〕2+202,解得:r=25m,∴这段弯路的半径为25m应选:A.【点评】此题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.8.〔3分〕林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,以下说法错误的选项是〔〕A.体育场离林茂家kmB.体育场离文具店1kmC.林茂从体育场出发到文具店的平均速度是50m/minD.林茂从文具店回家的平均速度是60m/min【分析】从图中可得信息:体育场离文具店1000m,所用时间是〔45﹣30〕分钟,可算出速度.【解答】解:从图中可知:体育场离文具店的距离是:﹣=1=1000,km m所用时间是〔45﹣30〕=15分钟,∴体育场出发到文具店的平均速度==m/min应选:C.【点评】此题运用函数图象解决问题,看懂图象是解决问题的关键.二、填空题〔此题共8小题,每题3分,共24分〕9.〔3分〕计算〔〕2+1的结果是4.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式=3+1=4.故答案为:4.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.10.〔3分〕﹣x2y 是3次单项式.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式﹣x2y中所有字母指数的和=2+1=3,∴此单项式的次数是3.故答案为:3.【点评】此题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键11.〔3分〕分解因式3x2﹣27y2=3〔x+3y〕〔x﹣3y〕.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3〔x2﹣9y2〕=3〔x+3y〕〔x﹣3y〕,故答案为:3〔x+3y〕〔x﹣3y〕【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.〔3分〕一组数据1,7,8,5,4的中位数是a,那么a的值是5.【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】此题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.13.〔3分〕如图,直线AB∥CD,直线EC分别与AB,CD相交于点A、点C,AD平分∠BAC,∠ACD=80°,那么∠DAC的度数为50°.【分析】依据平行线的性质,即可得到∠BAC的度数,再根据角平分线的定义,即可得到∠DAC的度数.【解答】解:∵AB∥CD,∠ACD=80°,∴∠BAC=100°,又∵AD平分∠BAC,∴∠DAC=∠BAC=50°,故答案为:50°.【点评】此题主要考查了平行线的性质,以及角平分线的定义.解题时注意:两直线平行,同旁内角互补.14.〔3分〕用一个圆心角为120°,半径为6的扇形做一个圆锥的侧面,那么这个圆锥的底面圆的面积为4π.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径,从而可以计算面积.【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.∴面积为:4π,故答案为:4π.【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.15.〔3分〕如图,一直线经过原点,且与反比例函数y =〔>0〕相交于点、点,O k A B 过点A作AC⊥y轴,垂足为C,连接BC.假设△ABC面积为8,那么k=8.【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,那么O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于4,然后由反比例函数y =的比例系数k的几何意义,可知△的面积等于|k|,从而求出k的值.AOC【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,A、B两点关于原点对称,OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△的面积=|k |,AOC∴|k|=4,k>0,∴k=8.故答案为8.【点评】此题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.16.〔3分〕如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,假设∠CMD=120°,那么CD的最大值是14.【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【解答】解:如图,作点A关于CM的对称点A′,点B关于DM的对称点B′.∵∠CMD=120°,∴∠AMC+∠DMB=60°,∴∠CMA′+∠DMB′=60°,∴∠A′MB′=60°,MA′=MB′,∴△A′MB′为等边三角形CD≤CA′+A′B′+B′D=CA+AM+BD=2+4+8=14,∴CD的最大值为14,故答案为14.【点评】此题考查翻折变换,等边三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题,属于中考常考题型.三、解答题〔此题共9题,总分值72分〕17.〔6分〕先化简,再求值.〔+〕÷,其中a =,=1.b【分析】根据分式的运算法那么即可求出答案.【解答】解:原式=÷=?ab〔a+b〕5ab,当a=,b=1时,原式=5.【点评】此题考查分式的运算法那么,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.18.〔6分〕解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共局部就是不等式组的解集.【解答】解:,解①得:x>﹣1,解②得:x≤2,那么不等式组的解集是:﹣1<x≤2.【点评】此题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到〔无解〕.19.〔6分〕如图,是正方形,E 是边上任意一点,连接,作⊥,⊥,ABCD CD AE BF AE DGAE 垂足分别为F,G.求证:BF﹣DG=FG.【分析】根据正方形的性质可得AB=AD,再利用同角的余角相等求出∠BAF=∠ADG,再利用“角角边〞证明△BAF和△ADG全等,根据全等三角形对应边相等可得BF=AG,根据线段的和与差可得结论.【解答】证明:∵四边形ABCD是正方形,AB=AD,∠DAB=90°,BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∴∵,∴∴∴△BAF≌△ADG〔AAS〕,∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.【点评】此题考查了正方形的性质,全等三角形的判定与性质,证明△BAF≌△ADG是解题的关键.20.〔7分〕为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫〞活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九〔1〕班提前到达目的地,做好活动的准备工作.行走过程中,九〔1〕班步行的平均速度是其他班的倍,结果比其他班提前10分钟到达.分别求九〔1〕班、其他班步行的平均速度.【分析】设其他班步行的平均速度为x米/分,那么九〔1〕班步行的平均速度为x米/分,根据时间=路程÷速度结合九〔1〕班比其他班提前的分式方程,解之经检验后即可得出结论.【解答】解:设其他班步行的平均速度为x米/分,那么九〔10分钟到达,即可得出关于x1〕班步行的平均速度为x 米/分,依题意,得:﹣=10,解得:x=80,经检验,x=80是原方程的解,且符合题意,x=100.答:九〔1〕班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.【点评】此题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.〔8分〕某校开发了“书画、器乐、戏曲、棋类〞四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了假设干名学生进行调查〔每人必选且只能选一类〕,先将调查结果绘制成如下两幅不完整的统计图:1〕本次随机调查了多少名学生?2〕补全条形统计图中“书画〞、“戏曲〞的空缺局部;3〕假设该校共有1200名学生,请估计全校学生选择“戏曲〞类的人数;4〕学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动〞,用树形图或列表法求处恰好抽到“器乐〞和“戏曲〞类的概率.〔书画、器乐、戏曲、棋类可分别用字幕A,B,C,D表示〕【分析】〔1〕由器乐的人数及其所占百分比可得总人数;(2〕总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3〕利用样本估计总体思想求解可得;(4〕列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.(【解答】解:〔1〕本次随机调查的学生人数为30÷15%=200〔人〕;(((2〕书画的人数为200×25%=50〔人〕,戏曲的人数为200﹣〔50+80+30〕=40〔人〕,补全图形如下:〔3〕估计全校学生选择“戏曲〞类的人数约为1200×=240〔人〕;〔4〕列表得:A B C DAAB AC ADBBA BC BDCCA CB CDDDA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐〞和“戏曲〞类的有2种结果,∴恰好抽到“器乐〞和“戏曲〞类的概率为=.【点评】此题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.〔7分〕如图,两座建筑物的水平距离为40,从A 点测得D点的俯角α为45°,BC m测得C点的俯角β为60°.求这两座建筑物AB,CD的高度.〔结果保存小数点后一位,≈,≈.〕【分析】延长CD,交过A点的水平线 AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC﹣ED求出DC的长即可【解答】解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=40m,∠EAD=45°,∴ED=AE tan45°=20m,在Rt△ABC中,∠BAC=30°,BC=40m,∴AB=40≈m,那么CD=EC﹣ED=AB﹣ED=40﹣20≈m.答:这两座建筑物,的高度分别为和.AB CD m m【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解此题的关键.解决此类问题要了解角之间的关系,找到与和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.〔8分〕如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE.1〕求证:△DBE是等腰三角形;2〕求证:△COE∽△CAB.【分析】〔1〕连接OD,由DE是⊙O的切线,得出∠ODE=90°,∠ADO+∠BDE=90°,由ACB=90°,得出∠CAB+∠CBA=90°,证出∠CAB=∠ADO,得出∠BDE=∠CBA,即可得出结论;〔2〕证出CB是⊙O的切线,得出DE=EC,推出EC=EB,再由OA=OC,得出OE∥AB,即可得出结论.【解答】证明:〔1〕连接OD,如下图:DE是⊙O的切线,∴∠ODE=90°,∴∠ADO+∠BDE=90°,∵∠ACB=90°,∴∠CAB+∠CBA=90°,OA=OD,∴∠CAB=∠ADO,∴∠BDE=∠CBA,EB=ED,∴△DBE是等腰三角形;2〕∵∠ACB=90°,AC是⊙O的直径,∴CB是⊙O的切线,∵DE是⊙O的切线,DE=EC,∵EB=ED,EC=EB,∵OA=OC,OE∥AB,∴△COE∽△CAB.【点评】此题考查了切线的判定与性质、相似三角形的判定、等腰三角形的判定与性质、平行线的判定与性质等知识,熟练掌握切线的判定与性质是解题的关键.24.〔10分〕某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y〔万元〕与产量x〔吨〕之间的关系如下图〔0≤x≤100〕.草莓的产销投入总本钱p〔万元〕与产量x〔吨〕之间满足p=x+1.1〕直接写出草莓销售单价y〔万元〕与产量x〔吨〕之间的函数关系式;2〕求该合作社所获利润w〔万元〕与产量x〔吨〕之间的函数关系式;〔3〕为提高农民种植草莓的积极性,合作社决定按万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′〔万元〕不低于55万元,产量至少要到达多少吨?【分析】〔1〕分0≤x≤30;30≤x≤70;70≤x≤100三段求函数关系式,确定第2段利用待定系数法求解析式;2〕利用w=yx﹣p和〔1〕中y与x的关系式得到w与x的关系式;3〕把〔2〕中各段中的w分别减去x得到w′与x的关系式,然后根据一次函数的性质和二次函数的性质求解.【解答】解:〔1〕当0≤x≤30时,y=;当30≤x≤70时,设y=kx+b,把〔30,〕,〔70,2〕代入得,解得,y=﹣x;当70≤x≤100时,y=2;2〕当0≤x≤30时,w=x﹣〔x+1〕=x﹣1;当30≤x≤70时,w=〔﹣x〕x﹣〔x+1〕=﹣x2x﹣1;当70≤x≤100时,w=2x﹣〔x+1〕=x﹣1;〔3〕当0≤x<30时,w′=x﹣1﹣x=x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣22〔x﹣70〕xx﹣1﹣x=﹣xx﹣1=﹣2+48,当x =70时,′的最大值为48,不合题意;w当70≤≤100时,′=﹣1﹣x =﹣1,当=100时,′的最大值为69,此时x wx x x w x﹣1≥55,解得x≥80,所以产量至少要到达80吨.【点评】此题考查了一次函数的应用:学会建立函数模型的方法;确定自变量的范围和利用一次函数的性质是完整解决问题的关键.25.〔14分〕如图①,在平面直角坐标系xOy 中,〔﹣2,2〕,〔﹣2,0〕,〔0,2〕,A B CD〔2,0〕四点,动点M以每秒个单位长度的速度沿B→C→D运动〔M不与点B、点D重合〕,设运动时间为t〔秒〕.1〕求经过A、C、D三点的抛物线的解析式;2〕点P在〔1〕中的抛物线上,当M为BC的中点时,假设△PAM≌△PBM,求点P的坐标;3〕当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠局部的面积为S,求S与t的函数关系式,并求出S的最大值;〔4〕点Q为x轴上一点,直线AQ与直线BC交于点H,与使得△HOK为等腰三角形?假设存在,直接写出符合条件的所有y轴交于点K.是否存在点Q,Q点的坐标;假设不存在,请说明理由.【分析】〔1〕设函数解析式为y=ax2+bx+c,将点A〔﹣2,2〕,C〔0,2〕,D〔2,0〕代入解析式即可;〔2〕由易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,那么有1=﹣﹣x+2,即可求P;〔3〕设点Q〔m,0〕,直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣〔x+2〕+2,求出点K〔0,〕,H〔,〕,由勾股定理可得22 OK=,OH=+,2=+,分三种情况讨论△为等腰三角HK HOK形即可;【解答】解:〔1〕设函数解析式为y=ax2+bx+c,将点A〔﹣2,2〕,C〔0,2〕,D〔2,0〕代入解析式可得,∴,∴y=﹣﹣x+2;〔2〕∵△PAM≌△PBM,PA=PB,MA=MB,∴点P为AB的垂直平分线与抛物线的交点,AB=2,∴点P的纵坐标是1,∴1=﹣﹣x+2,∴x=﹣1+或x=﹣1﹣,∴P〔﹣1﹣,1〕或P〔﹣1+,1〕;〔3〕CM=t﹣2,MG=CM=2t﹣4,MD=4﹣〔BC+CM〕=4﹣〔2+t﹣2〕=4﹣t,MF=MD=4﹣t,BF=4﹣4+t=t,∴S=〔GM+BF〕×MF=〔2t﹣4+t〕×〔4﹣t〕=﹣+8t﹣8=﹣〔t﹣〕2+;当t=时,S最大值为;〔3〕设点Q〔m,0〕,直线BC的解析式y=﹣x+2,直线AQ的解析式y=﹣〔x+2〕+2,∴K〔0,〕,H〔,〕,22+2+,∴OK=,OH=,HK=①当OK=OH时,=+,2∴m﹣4m﹣8=0,∴m=2+2或m=2﹣2;②当OH=HK时,+=+,2∴m﹣8=0,∴m=2或m=﹣2;③当OK=HK时,=+,不成立;综上所述:Q〔2+2,0〕或Q〔2﹣2,0〕或Q〔2,0〕或Q〔﹣2,0〕;【点评】此题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.。

湖北省黄冈市中考数学试卷及答案

湖北省黄冈市中考数学试卷及答案

湖北省黄冈市中考数学试卷及答案(考题时间120分钟 满分120分)一、填空题(共10道题,每小题3分,共30分)1.2的平方根是_________.2.分解因式:x 2-x =__________.3.函数31x y x -=+的自变量x 的取值范围是__________________. 4.如图,⊙O 中,MAN 的度数为320°,则圆周角∠MAN =____________.第4题图 第5题图 5.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.6.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是_______元.7.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.主视图 左视图 俯视图第7题8.已知,1,2,_______.b a ab a b a b=-==+则式子= 9.如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.10.将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm.第9题图 第10题图二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共18分)11.下列运算正确的是( )A .1331-÷=B .2a a =C .3.14 3.14ππ-=-D .326211()24a b a b = 12.化简:211()(3)31x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41x x -- 13.在△ABC 中,∠C =90°,sinA =45,则tanB = ( ) A .43 B .34 C .35 D .45 14.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( )A .±6B .4C .±6或4D .4或-615.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13B .12C .23D .不能确定第15题图16.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( )A .1或-2B .2或-1C .3D .4三、解答题(共9道大题,共72分)17.(6分)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥18.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

黄冈中考数学试题及答案解析

黄冈中考数学试题及答案解析

黄冈中考数学试题及答案解析xx黄冈中考数学试题及答案解析,以下是收集的黄冈中考数学试题及答案,希望对大家有帮助!!黄冈市初中毕业生学业水平考试数学试题(考试时间120分钟) 总分值120分第一卷(选择题共18分)一、选择题(此题共6小题,每题3分,共18分。

每题给出4个选项,有且只有一个答案是正确的)1. -2的相反数是A. 2B. -2C. -D.【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。

一般地,任意的一个有理数a,它的相反数是-a。

a本身既可以是正数,也可以是负数,还可以是零。

此题根据相反数的定义,可得答案.【解答】解:因为2与-2是符号不同的两个数所以-2的相反数是2.应选B.2. 以下运算结果正确的选项是A. a2+a2=a2B. a2a3=a6C. a3÷a2=aD. (a2)3=a5【考点】合并同类项、同底数幂的乘法与除法、幂的乘方。

【分析】根据同类项合并、同底数幂的乘法与除法、幂的乘方的运算法那么计算即可.【解答】解:A. 根据同类项合并法那么,a2+a2=2a2,故本选项错误;B. 根据同底数幂的乘法,a2a3=a5,故本选项错误;C.根据同底数幂的除法,a3÷a2=a,故本选项正确;D.根据幂的乘方,(a2)3=a6,故本选项错误.应选C.3. 如图,直线a∥b,∠1=55°,那么∠2= 1A. 35°B. 45°C. 55°D. 65°2(第3题)【考点】平行线的性质、对顶角、邻补角.【分析】根据平行线的性质:两直线平行同位角相等,得出∠1=∠3;再根据对顶角相等,得出∠2=∠3;从而得出∠1=∠2=55°.【解答】解:如图,∵a∥b,∴∠1=∠3,∵∠1=55°,∴∠3=55°,∴∠2=55°.应选:C.4. 假设方程3x2-4x-4=0的两个实数根分别为x1, x2,那么x1+ x2=A. -4B. 3C. -D.【考点】一元二次方程根与系数的关系. 假设x1, x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2= - ,x1x2= ,反过来也成立.【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数除以二次项系数的商的相反数,可得出x1+ x2的值.【解答】解:根据题意,得x1+ x2= - = .应选:D.5. 如下左图,是由四个大小相同的小正方体拼成的几何体,那么这个几何体的左视图是从正面看 A B C D(第5题)【考点】简单组合体的三视图.【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”分析,找到从左面看所得到的图形即可;注意所有的看到的棱都应表现在左视图中.【解答】解:从物体的左面看易得第一列有2层,第二列有1层.应选B.6. 在函数y= 中,自变量x的取值范围是A.x>0B. x≥-4C. x≥-4且x≠0D. x>0且≠-4【考点】函数自变量的取值范围.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件。

2020年湖北省黄冈市中考数学试卷及其答案

2020年湖北省黄冈市中考数学试卷及其答案

2020年湖北省黄冈市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)的相反数是()A.6B.﹣6C.D.﹣2.(3分)下列运算正确的是()A.m+2m=3m2B.2m3•3m2=6m6C.(2m)3=8m3D.m6÷m2=m33.(3分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7B.8C.9D.104.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁5.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图、左视图、俯视图都相同的是()A.B.C.D.6.(3分)在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:18.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算=.10.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=.11.(3分)若|x﹣2|+=0,则﹣xy=.12.(3分)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.13.(3分)计算:÷(1﹣)的结果是.14.(3分)已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=度.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是尺.16.(3分)如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上,在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB再次回到OM上时,则O运动的路线长为cm.(计算结果不取近似值)三、解答题(本题共9题,满分72分)17.(5分)解不等式x+≥x,并在数轴上表示其解集.18.(6分)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处与遗爱亭P2处之间的距离.(计算结果保留根号)23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.(1)求反比例函数的解析式;(2)当S△ACO =S△OCD时,求点C的坐标.24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE :S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.2020年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分.每小题给出的4个选项中,有且只有一个答案是正确的)1.(3分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(3分)下列运算正确的是()A.m+2m=3m2B.2m3•3m2=6m6C.(2m)3=8m3D.m6÷m2=m3【解答】解:m+2m=3m,因此选项A不符合题意;2m3•3m2=6m5,因此选项B不符合题意;(2m)3=23•m3=8m3,因此选项C符合题意;m6÷m2=m6﹣2=m4,因此选项D不符合题意;故选:C.3.(3分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.7B.8C.9D.10【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选:D.4.(3分)甲、乙、丙、丁四位同学五次数学测验成绩统计如下表所示,如果从这四位同学中,选出一位同学参加数学竞赛.那么应选()去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁【解答】解:∵=>=,∴四位同学中乙、丙的平均成绩较好,又<,∴乙的成绩比丙的成绩更加稳定,综上,乙的成绩好且稳定,故选:B.5.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图、左视图、俯视图都相同的是()A.B.C.D.【解答】解:A.主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C.主视图是“L”型,俯视图是一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D.主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;故选:A.6.(3分)在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.7.(3分)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4:1B.5:1C.6:1D.7:1【解答】解:如图,AH为菱形ABCD的高,AH=2,∵菱形的周长为16,∴AB=4,在Rt△ABH中,sin B===,∴∠B=30°,∵AB∥CD,∴∠C=150°,∴∠C:∠B=5:1.故选:B.8.(3分)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A.B.C.D.【解答】解:根据题意:库存量y(吨)与时间t(天)之间函数关系的图象为先平,再逐渐减小,最后为0.故选:D.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算=﹣2.【解答】解:=﹣2.故答案为:﹣2.10.(3分)已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则=﹣1.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两根,∴x1x2=﹣1,则=﹣1,故答案为:﹣1.11.(3分)若|x﹣2|+=0,则﹣xy=2.【解答】解:∵|x﹣2|+=0,∴x﹣2=0,x+y=0,∴x=2,y=﹣2,∴,故答案为2.12.(3分)已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.13.(3分)计算:÷(1﹣)的结果是.【解答】解:原式=÷(﹣)=÷=•=,故答案为:.14.(3分)已知:如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=30度.【解答】解:∵∠CDF=135°,∴∠EDC=180°﹣135°=45°,∵AB∥EF,∠ABC=75°,∴∠1=∠ABC=75°,∴∠BCD=∠1﹣∠EDC=75°﹣45°=30°,故答案为:30.15.(3分)我国古代数学著作《九章算术》中有这样一个问题:”今有池方一丈,葭(jiā)生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则水池里水的深度是12尺.【解答】解:设水池里水的深度是x尺,由题意得,x2+52=(x+1)2,解得:x=12,答:水池里水的深度是12尺.故答案为:12.16.(3分)如图所示,将一个半径OA=10cm,圆心角∠AOB=90°的扇形纸板放置在水平面的一条射线OM上,在没有滑动的情况下,将扇形AOB沿射线OM翻滚至OB再次回到OM上时,则O运动的路线长为10π+cm.(计算结果不取近似值)【解答】解:如图,由勾股定理得,BP==5(cm),由题意知,扇形AOB沿射线OM翻滚至OB再次回到OM上时,进行了四次翻转,第一段绕点B顺时针旋转了90°,经过的路径长为,第二段过程中始终与OM相切,点P经过的路径长为的长,即为,第三段经过的路径长为,第四段经过的路径长为,∴点P运动的路线长为10π+,故答案为:10π+.三、解答题(本题共9题,满分72分)17.(5分)解不等式x+≥x,并在数轴上表示其解集.【解答】解:去分母得4x+3≥3x,移项、合并得x≥﹣3,所以不等式的解集为x≥﹣3,在数轴上表示为:18.(6分)已知:如图,在▱ABCD中,点O是CD的中点,连接AO并延长,交BC的延长线于点E,求证:AD=CE.【解答】证明:∵O是CD的中点,∴OD=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,,∴△AOD≌△EOC(ASA),∴AD=CE.19.(6分)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?【解答】解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.20.(7分)为了解疫情期间学生网络学习的学习效果,东坡中学随机抽取了部分学生进行调查.要求每位学生从“优秀”,“良好”,“一般”,“不合格”四个等次中,选择一项作为自我评价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共抽查了200人.(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果“一般”的学生人数所在扇形的圆心角度数.(3)张老师在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人,若再从这4人中随机抽取2人,请用画树状图法,求出抽取的2人学习效果全是“良好”的概率.【解答】解:(1)这次活动共抽查的学生人数为80÷40%=200(人);故答案为:200;(2)“不合格”的学生人数为200﹣40﹣80﹣60=20(人),将条形统计图补充完整如图:学习效果“一般”的学生人数所在扇形的圆心角度数为360°×=108°;(3)把学习效果“优秀”的记为A,“良好”记为B,“一般”的记为C,画树状图如图:共有12个等可能的结果,抽取的2人学习效果全是“良好”的结果有2个,∴抽取的2人学习效果全是“良好”的概率==.21.(7分)已知:如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD2=DF•DB.【解答】证明:(1)∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD,∵∠ADB=∠ADF,∴△ADF∽△BDA,∴,∴AD2=DF•DB.22.(8分)因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A处时,船上游客发现岸上P1处的临摹亭和P2处的遗爱亭都在东北方向,当游船向正东方向行驶600m到达B处时,游客发现遗爱亭在北偏西15°方向,当游船继续向正东方向行驶400m到达C处时,游客发现临摹亭在北偏西60°方向.(1)求A处到临摹亭P1处的距离;(2)求临摹亭P1处与遗爱亭P2处之间的距离.(计算结果保留根号)【解答】解:(1)作P1M⊥AC于M,设P1M=xm,在Rt△P1AM中,∵∠P1AB=45°,∴AM=P1M=xm,在Rt△P1CM中,∵∠P1CA=30°,∴MC==xm,∵AC=1000m,∴x+=1000,解得x=500(﹣1)(m),∴P1M=500(﹣1)m∴P1A==500(﹣)m,故A处到临摹亭P1处的距离为500(﹣)m;(2)作BN⊥AP2于N,∵∠P2AB=45°,∠P2BA=75°,∴∠P2=60°,在Rt△ABN中,∵∠P1AB=45°,AB=600m∴BN=AN=AB=300m,∴P1N=500(﹣)﹣300=(500﹣800)(m),在Rt△P2BN中,∵∠P2=60°,∴P2N=BN=×=100(m),∴P1P2=100﹣(500﹣800)=(800﹣400)(m).故临摹亭P1处与遗爱亭P2处之间的距离是(800﹣400)m.23.(8分)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.(1)求反比例函数的解析式;(2)当S△ACO =S△OCD时,求点C的坐标.【解答】解:过点B、A作BM⊥x轴,AN⊥y轴,垂足为点M,N,(1)在Rt△BOM中,OB=,tan∠DOB=.设BM=a,则OM=2a,在Rt△OBM中,由勾股定理得,BM2+OM2=OB2,即a2+(2a)2=()2,解得a=1(取正值)∴BM=a=1,OM==2a=2,又点B在第三象限,∴点B(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2,∴反比例函数的关系式为y=;(2)∵S△ACO =S△OCD,∴OD=2AN,又∵△ANC∽△DOC,∴===,设AN=a,CN=b,则OD=2a,OC=2b,∵S△OAN=|k|=1=ON•AN=×3b×a,∴ab=①,由△BMD∽△CNA得,∴=,即=,也就是a=②,由①②可求得b=1,b=﹣(舍去),∴OC=2b=2,∴点C(0,2).24.(11分)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.【解答】解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,∴当6≤x≤10时,w随x的增大而增大,即当x=10时,w最大值=18000元,当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28元/kg时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元,∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.25.(14分)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE :S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.【解答】解:(1)因为抛物线经过A(﹣1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,3)代入,可得a=﹣1,∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)如图1中,连接AC,BC.∵S△ACE :S△CEB=3:5,∴AE:EB=3:5,∵AB=4,∴AE=4×=,∴OE=0.5,设直线CE的解析式为y=kx+b′,则有,解得,∴直线EC的解析式为y=﹣6x+3.(3)由题意C(0,3),D(1,4).观察图象可知CD只能说平行四边形的边,不可能是对角线,当四边形P1Q1CD,四边形P2Q2CD是平行四边形时,点P的纵坐标为1,当y=1时,﹣x2+2x+3=1,解得x=1±,∴P1(1+,1),P2(1﹣,1),当四边形P3Q3DC,四边形P4Q4DC是平行四边形时,点P的纵坐标为﹣1,当y=﹣1时,﹣x2+2x+3=﹣1,解得x=1±,∴P1(1+,﹣1),P2(1﹣,﹣1),综上所述,满足条件的点P的坐标为(1+,1)或(1﹣,1)或(1﹣,﹣1)或(1+,﹣1).(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.∵H(0,),B(3,0),∴直线BH的解析式为y=﹣x+,∵x=1时,y=,∴F(1,),设K(x,y),作直线y=,过点K作KM⊥直线y=于M.∵KF=,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴(x﹣1)2=4﹣y,∴KF===|y﹣|,∵KM=|y﹣|,∴KF=KM,∴KG+KF=KG+KM,根据垂线段最短可知,当G,K,M共线,且垂直直线y=时,GK+KM的值最小,最小值为,此时K(2,3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档