习题 动量矩定理(2)
《理论力学》第十章--动量矩定理试题及答案
理论力学11章作业题解11-3 已知均质圆盘的质量为m ,半径为R ,在图示位置时对O 1点的动量矩分别为多大?图中O 1C=l 。
解 (a) 21l m l mv L c O w == ,逆时针转动。
(b) w w 2210||1mR J L v m r L c c c O =+=+´=rr ,逆时针转动。
(c ) )2(2221222121l R m ml mR ml J J c O +=+=+=w w )2(222111l R m J L O O +==,逆时针转动。
(d)ww mR R l mv R l R v mR l mv J l mv L v m r L c c c c c c c O )5.0()5.0(/||2211-=-=-=-=+´= r r,顺时针转动解毕。
v cv cv c11-5 均质杆AB 长l 、重为G 1,B 端刚连一重G 2的小球,弹簧系数为k ,使杆在水平位置保持平衡。
设给小球B 一微小初位移0d 后无初速度释放,试求AB 杆的运动规律。
解 以平衡位置(水平)为0=j ,顺时针转为正。
平衡时弹簧受力为:)5.0(312G G F s +=弹簧初始变形量:k G G k F s st /)5.0(3/12+==d在j 角时弹簧的拉力为(小位移):3/)5.0(3)3/(12l k G G l k F st s j j d ++=+=¢系统对A 点的动量矩:j j j&&&221233l gG G l l g G J L A A +=×+= 对点的动量矩定理)(/å=Ei A A F M dt dL r :j j 93/5.033221221kl l F lG lG l g G G s -=¢-+=+&& 0)3(321=++j jG G gk &&,令)3(3212G G gkp +=则有02=+j jp &&,其解为: )cos()sin(pt B pt A +=j由初始条件0| ,/|000====t t l jd j &得l B A / ,00d ==。
理论力学课后习题答案
第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)8. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 2213ml mr =+,式中m 为AB 杆的质量。
(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。
理论力学课后习题答案-第9章--动量矩定理及其应用)
习题9-2图习题20-3图习题20-3解图OxF Oy F gm Ddα第9章 动量矩定理及其应用9-1 计算下列情形下系统的动量矩。
1. 圆盘以ω的角速度绕O 轴转动,质量为m 的小球M 可沿圆盘的径向凹槽运动,图示瞬时小球以相对于圆盘的速度v r 运动到OM = s 处(图a );求小球对O 点的动量矩。
2. 图示质量为m 的偏心轮在水平面上作平面运动。
轮心为A ,质心为C ,且AC = e ;轮子半径为R ,对轮心A 的转动惯量为J A ;C 、A 、B 三点在同一铅垂线上(图b )。
(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对B 点的动量矩;(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对B 点的动量矩。
解:1、2s m L O ω=(逆)2、(1))1()(Remv e v m mv p A A C +=+==ωRv me J R e R mv J e R mv L A A A C C B)()()(22-++=++=ω(2))(e v m mv p A C ω+==ωωωω)()()())(()(2meR J v e R m me J e R e v m J e R mv L A A A A C C B +++=-+++=++=9-2 图示系统中,已知鼓轮以ω的角速度绕O 轴转动,其大、小半径分别为R 、r ,对O 轴的转动惯量为J O ;物块A 、B 的质量分别为m A 和m B ;试求系统对O 轴的动量矩。
解:ω)(22r m R m J L B A O O ++=9-3 图示匀质细杆OA 和EC 的质量分别为50kg 和100kg ,并在点A 焊成一体。
若此结构在图示位置由静止状态释放,计算刚释放时,杆的角加速度及铰链O 处的约束力。
不计铰链摩擦。
解:令m = m OA = 50 kg ,则m EC = 2m 质心D 位置:(设l = 1 m) m 6565===l OD d 刚体作定轴转动,初瞬时ω=0l mg lmg J O ⋅+⋅=22α222232)2(212131ml ml l m ml J O =+⋅⋅+=即mgl ml 2532=α2rad/s 17.865==g l α gl a D 362565t =⋅=α 由质心运动定理: Oy D F mg a m -=⋅33t4491211362533==-=mg g mmg F Oy N (↑) 0=ω,0n=D a , 0=Ox F习题9-1图(a)v (b)(b ) 习题9-5解图习题9-5图J 9-4 卷扬机机构如图所示。
动量矩定理
思 考 题9-1. 质点系的动量按公式i i c m m ==∑I v v 计算,那么质点系的动量矩是否也可以按公式()()o o i i o c m m ==∑L M v M v 计算?为什么?9-2. 花样滑冰运动员利用手臂伸张和收拢来改变旋转速度,试说明其原因。
9-3. 坐在转椅上的人不接触地面,能否使转椅转动?为什么?9-4. 为什么直升飞机要有尾桨?如果没有尾桨,直升飞机飞行时将会怎样? 9-5.传动系统中J 1、J 2为轮I 、轮II 的转动惯量,轮I 的角加速度按式1112M J J α=+对吗?9-6. 质量为m 的均质圆盘,平放在光滑的水平面上,受力情况如图所示,设开始时,圆盘静止,图中R =2r 。
试说明各圆盘将如何运动。
思考题9-6图思考题9-5图习题9-4图习 题9-1 如图所示,已知均质杆的质量为M ,对1z 轴的转动惯量为1J ,求杆对2z 的转动惯量2J 。
9-2 均质直角折杆尺寸如图所示,其质量为3m ,求其对轴O 的转动惯量。
9-3 质量为m 的点在平面Oxy 内运动,其运动方程为:tb y ta x ωω2sin cos ==式中a 、b 和ω为常量。
求质点对原点O 的动量矩。
9-4 如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。
(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。
(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。
习题9-2图习题9-1图习题9-5图习题9-7图9-5如图所示水平圆板可绕z 轴转动,在圆板上有一质点M 作圆周运动,已知其速度的大小为常量,等于v 0,质点M 的质量为m ,圆的半径为r ,圆心到z 轴的距离为l ,M 点在圆板的位置由ϕ角确定,如图所示。
理论力学第十一章动量矩定理
2.规则几何形状物体的转动惯量
J Z = ∫ r 2 dm
均质圆环:
J z = ∑ ΔmR 2 =MR 2
往三个坐标轴投影:得到质点对轴的动量矩定理: d m x (mv ) = m x ( F ) dt d m y (mv ) = m y ( F ) dt d m z (mv ) = m z ( F ) dt (1)若Σmo(F)≡0, mo(mv)=常矢量; 两种特殊情况: (2)若Σmx(F)≡0, mx(mv)=常量。 以上两种情况均称为动量矩守恒
R 别为J 1 和J 2 ,两轮的半径分别为 R1 、 2 ,传 动比 i12 = R2 / R1 。轴Ⅰ上作用主动力矩 M 1 , 轴Ⅱ上有阻力矩 M 2,转向如图。忽略摩擦。 求轴Ⅰ的角加速度。
例 图示传动轴,轴Ⅰ和轴Ⅱ的转动惯量分
Ⅱ
M2
M1
Ⅰ
解 :分别取轴Ⅰ和Ⅱ为研究对象。受力如图。 两轴对各自轴心的转动微分方程分别为
体积
2π R
π R2
4 π R3 3
4π R 2
Δm
1 1 J O = ∑ ΔMR 2 = MR 2 2 2
N维球
均质直杆:
J z = ∫ x 2 ρ l dx =
0
l
ρl l 3
3
1 2 J z = Ml 3
z
1 1 2 2 J z = ∑ (Δm)l = Ml 3 3
l
x
z
dx
Δm
x
理论力学(大学)课件22.2 动量矩定理
动量矩定理2、动量矩定理动量矩定理动量矩守恒定律若 则 常量。
(e)()0z M F ∑≡ z L =有心力:力作用线始终通过某固定点, 该点称力心. ()0O M F = ()M mv r mv =×= 常矢量若 (e)()0O M F ∑≡ O L = 则 常矢量,面积速度定理:质点在有心力作用下其面积速度守恒.(1) 与 必在一固定平面内,即点M 的运动轨迹是平面曲线.r v d (2)d r r mv r m b t×=×== 常量d d rr t ×=即 常量d 2d r r A×= d d A t=因此, 常量 人造卫星绕地球运动动量矩定理(e)sin OMM mg Rθ=−⋅R mg M mvR J t⋅−=+θωsin ][d d22sin mRJ mgR MR a +−=θRv m J L O +=ω解: R v =ωa tv =d d 由 ,得例1求:小车的加速度a 。
取小车和鼓轮为研究对象,受力如图所示。
高炉运送矿石的卷扬机如图所示。
已知鼓轮的半径为R ,转动惯量为J ,作用在鼓轮上的力偶矩为M 。
小车和矿石的总质量为m ,轨道的倾角为 。
设绳的质量和各处摩擦不计。
θ动量矩定理已知: , , , , , ,不计摩擦. m O J 1m 2m 1r 2r α求:(1)NF (2)O 处约束力 (3)绳索张力, 1T F 2T F例2动量矩定理)(222211r m r m J O ++=ω(e)1122()()O M F m r m r g∑=− 2222112211)(d d r m r m J g r m r m t O ++−==ωα 由 ,得(e)d ()d OO L M F t=∑ 222111r v m r v m J L O O ++=ω解:(1)分析系统,受力如图所示。
(2)由质心运动定理Cya m m m g m m m F )()(2121N ++=++−212211212211)(m m m r m r m m m m a m a m m y m y a ii i C Cy+++−=+++−=∑∑==αα1111T 11r m a m F g m ==−)(11T 1αr g m F −=)()(221121N r m r m g m m m F +−+++=α(3)研究1m α22222T 2r m a m g m F ==−2m(4) 研究求:剪断绳后, 角时的 。
3-2 定轴转动的动量矩定理
将上式变形后积分 Mdt d ( J ) dL
t2
t1
Mdt J2 J1 L2 L1
Mdt 表示作用在刚体上的合外力矩的时间积累
t2
, 称为冲量矩.
t1
动量矩定理: 作用在刚体上的冲量矩等于刚体动量 矩的增量.
三 动量矩守恒定律 若 M 0 则 L J 常量
解 把子弹和竿看作一个系统 . 子弹射入竿的过程系统角动量守恒
o
30
1 2 2 mva ( m l ma ) 3 3mva 2 2 m' l 3ma
a
m v
'
3mva 2 2 m' l 3ma
射入竿后,以子弹、细杆和 地球为系统 ,机械能守恒 .
o
30
a
m v
ex
角动量守恒定律是自然界的一个基本定律.
例:在光滑水平桌面上放置一个静止的质量为 M、长为 2l、可绕中心转动的细杆,有一质量为m的小球以速度 v0与杆的一端发生完全弹性碰撞,求小球的反弹速度 v 及杆的转动角速度。 解:在水平面上,碰撞过程中系统角动量守恒, L0 L
mlv0 mlv J
mvMl 2 6m(2 gh) 2 2 ml 12 ml 2 (m 6m)l
12
演员 N 以 u 起 跳, 达到的高度
u 2 l 2 2 3m 2 h ( ) h 2g 8g m 6m
例 一长为 l , 质量为 m 的竿可绕支点O自由 转动 . 一质量为 m、速率为 v 的子弹射入竿内距支 点为 a 处,使竿的偏转角为30º . 问子弹的初速率为 多少 ?
机械能守恒定律 条件:A外 0 A内非 0 (或只有保守力作功)
理论力学课后习题答案-第10章--动能定理及其应用-)
理论力学课后习题答案-第10章--动能定理及其应用-)(a)v ϕABC rv 1v 1v 1ωϕ(a)CCωCvωO第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。
在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。
2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。
3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。
细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。
解:1.222222163)2(2121)2(212121BBB CCCmv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m vm T +=⋅++= 3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。
现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。
当杆与铅垂线的夹角为ϕ时,试求系统的动能。
解:图(a ) B AT T T +=)2121(21222211ωC CJ vgWv g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]cos 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。
齿轮II 通过匀质的曲柄OC 带动而运动。
工程力学 2动量矩定理
投影式:
r ( e) dLx = ∑ M x (Fi ) dt
dLy dt dt r ( e) = ∑ M y (Fi )
r ( e) dLz = ∑ M z (Fi ) dt
内力不能改变质点系的动量矩. 内力不能改变质点系的动量矩
若在运动过程中, 若在运动过程中,作用在质点系上的合力对某固定轴 的矩恒为0 则该质点系对该轴的动量矩守恒。 的矩恒为0,则该质点系对该轴的动量矩守恒。
注:计算动量矩与力矩时,符号规定应一致 计算动量矩与力矩时,
d d d m x ( mv ) = m x ( F ), m y ( mv ) = m y ( F ), m z ( mv ) = m z ( F ) dt dt dt
上式称质点对固定轴的动量矩定理 质点对固定轴的动量矩定理,也称为质点动量矩定 质点对固定轴的动量矩定理 理的投影形式。即质点对任一固定轴的动量矩对时间的导数, 等于作用在质点上的力对同一轴之矩。 若 mO ( F ) = 0 ( m z ( F ) = 0) 则 mO ( mv ) = 常矢量 ( m z ( mv ) =常量) 称为质点的动量矩守恒 质点的动量矩守恒。 质点的动量矩守恒
= ∑ miω ri ri = ω ∑ mi ri引入转动惯量 Nhomakorabea2
J z = ∑ mi ri2
Lz = J zω
转动刚体对转轴的动量矩为其对 该轴的转动惯量与角速度的乘积
§11-2 11§1. 质点的动量矩定理
动量矩定理
dv 牛顿第二定律有: m = F dt d (m v ) = F 变形为: dt
2、质点系的动量矩定理
对于第i个质点应用质点的动量矩定理,有:
r r (i ) r r ( e) d r r MO (mi vi ) = MO ( Fi ) + MO ( Fi ) dt r r (i ) s r ( e) d r r ∑ MO (mi vi ) = ∑ MO (Fi ) + ∑ MO ( Fi ) dt r r (i ) 由于 ∑ MO (Fi ) = 0 r r dLO d r d r r ∑ MO (mi vi ) = ∑ MO (mi vi ) = dt dt dt x
理论力学第13章动量矩定理
mi
rC x′
C
y′ y
mi vi mvC
LC ri mi vi
x
LO rC mvC LC
LO rC mvC LC
dLO d (e) (rC mvC LC ) r i Fi dt dt
r i rC ri
drC dLC d (e) i Fi ( e ) mvC rC mvC r C Fi r dt dt dt
v R
应用动量矩定理
O
FOx
mg
M
(e)
WR
dLO (e ) M dt
WR 2 a W 2 (JO R ) g
P
v
JO W dv ( R) WR R g dt
W
z
例 题3
z
求:此时系统的角速度 解:取系统为研究对象
M
A
(e ) z
0
A
B
a l
a
B
Lz 恒量
l
由质心坐标公式,有
z
vi z′ ri r′ i rC x′
C
mi
y′ y
O
mi ri mrC 0
x
LC ri mi vir
§13-6 刚体的平面运动微分方程
LC J C
由质心运动定理和相对于质 心的动量矩定理,有:
y
Fn
y′
D
F2 F1
maC Fi ( e ) d (e) J C J C M C ( Fi ) dt
用于质点系的外力对质心的主矩 ,这就是质点系相对于质心(平移
系)的动量矩定理。
动量矩定理
动量矩定理一、是非题1. 平动刚体各点的动量对一轴的动量矩之和可以用质心对该轴的动量矩表示。
( √ )2. 质点系对于任意动点的动量矩对时间的导数,等于作用于质点系的所有外力对于同一点的矩的矢量和。
( × )3. 因为质系的动量为C v p m =,所以质系对O 点的动量矩为()C O O mv M L =。
( × )4. 质点系的内力不能改变质点系的动量与动量矩。
( √ )5. 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。
( √ )6. 定轴转动刚体各点的动量对转轴上一点的动量矩之矢量和角速度矢量的数量积是负的值。
( × )动量矩7. 均质圆柱绕其对称轴作定轴转动,则圆柱惯性力系对于空间中平行于转轴的任意一轴的力矩之和,都是同一值。
( √ )动量矩8. P 为刚体作平面运动的速度瞬心,有动量矩定量)(d d )e (i P pM t L F ∑=。
( √ )动量矩 9. 均质平面正多边形,对平面内过其形心的任一轴的转动惯量均相等。
( √ )动量矩10. 如果质点系的质心速度为零,则质点系对任一固定点的动量矩都一样。
( √ )动量矩11. 图示无重刚杆焊接在z 轴上,与z 轴夹角90≠β,两球A 、B 焊接在杆两端,两球质量相同,且OB AO =,系统绕z 轴以不变的角速度ω转动,试判断下述说法是否正确:(1)系统对O 点的动量矩守恒,对z 轴的动量矩不守恒。
( × )(2)系统对O 点的动量矩不守恒,对z 轴的动量矩守恒。
( √ )(3)系统对O 点及z 轴的动量矩都守恒。
( × )(4)系统对O 点及z 轴的动量矩都不守恒。
( × )12. 图中,若两轮的转动惯量皆为J ,质心都在各自转轴上,轮I 的半径为R ,轮Ⅱ的半径为r ,两轮接触处无相对滑动,轮I 的角速度为ω 。
试判断下述说法是否正确:(1)系统对1O 轴的动量矩为零。
动量矩定理
动量矩定理 习 题例1:单摆将质量为m 的小球用长为l 的线悬挂于水平轴上,使其在重力作用下绕悬挂轴O 在铅直平面内摆动。
线自重不计且不可伸长,摆线由偏角0ϕ时从静止开始释放,求单摆的运动规律。
解:将小球视为质点。
其速度为ϕ&l v =且垂直于摆线。
摆对轴的动量矩为()ϕϕ&&2ml l ml mv m o =⋅= 又 ()o T m o =,则外力对轴O 之矩为()ϕsin mgl F m o -=注意:在计算动量矩与力矩时,符号规定应一致(在本题中规定逆时针转向为正)。
根据动量矩定理,有()ϕϕsin 2mgl ml tx-=&d d即 0sin =+ϕϕl g&& (a)当单摆做微幅摆动时,ϕϕ≈sin ,并令lgn =2ω 则式(a )成为 02=+ϕωϕn && (b )解此微分方程,并将运动初始条件带入,即当t=0时,0ϕϕ=,00=ϕ&,得单摆微幅摆动时的运动方程为tn ωϕϕcos 0=©由此可知,单摆的运动是做简谐振动。
其振动周期为gl T nπωπ22==C例2:双轴传动系统中,传动轴Ⅰ与Ⅱ对各自转轴的转动惯量为1J 与2J ,两齿轮的节圆半径分别为1R 与2R ,齿数分别为1z 与2z ,在轴Ⅰ上作用有主动力矩1M ,在轴Ⅱ上作用有阻力矩2M ,如图所示。
求轴Ⅰ的角加速度。
解:轴Ⅰ与轴Ⅱ的定轴转动微分方程分别为 1111R P M J τε-= (a ) 2222R P M J τε+-= (b)又122112z zR R i ===εε(c )以上三式联立求解,得 221211i J J iM M +-=ε例3:质量为m 半径为R 的均质圆轮置放在倾角为α的斜面上,在重力的作用下由静止开始运动,设轮与斜面间的静、动滑动摩擦系数分别为f 、f ',不计滚动摩阻。
试分析轮的运动。
解:取轮为研究对象,根据平面运动微分方程有F mg ma c -=αsin (a ) N mg +-=αcos 0 (b) FR J c =ε (c) 由式(b )得 αcos mg N = (d) 情况一: 设接触处绝对光滑。
大学本科理论力学课程第13章 动量矩定理--纯理论
第十三章 动量矩定理
第十三章 动量矩定理
1、质点的动量矩
M O (mv ) ro mv,矢量
MO ((mv)oxy) M z (mv),代数量
2、质点系的动量矩
n
LO M O (mivi ) i 1
n
Lz M z (mivi ) i 1
3、刚体动量矩计算:
(1)平动刚体
d dt
M
O
(mv
)
M
O
(F
)
d dt
M ox或oy或oz
(mv
)
M ox或oy或oz
(F
)
5、 质点系动量矩定理
d dt
Lox
n i 1
M ox (Fi (e) ),
d dt
d dt Loy
n
LO M O (Fi (e) )
n
i 1
M oy (Fi (e) ),
i 1
d dt
Loz
n i 1
LO M O (mvC ) rOC mvC LOz M Oz (mvC )
(2)定轴转动刚体对转轴动量矩 (3) 平面运动刚体
LOz JOz
LO M O (mvC ) JC LCzr JCz
LOz M Oz (mvC ) JCz
理论力学电子教程
第十三章 动量矩定理
4、 质点动量矩定理
理论力学电子教程
第十三章 动量矩定理
若刚体做定轴转动,由动量定理知,当质心为固定轴上一 点时,vC=0,其动量恒为零,质心无运动, 但此时刚体受外力的作用而转动。
动量定理揭示了质点和质点系动量变化与外力的关系; 质心运动定理揭示了质心运动与外力的关系。
理论力学习题
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
( )4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体)- 1 -)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触.多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体- 2 -- 3 -第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体- 4 -- 5 -第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = — F ',所以力偶的合力等于零。
( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
11-2 动量矩定理
d LO = dt
∑ MO (Fi(e) )
—
质点系的动量矩定理
质点系对某定点O 的动量矩对时间
的一阶导数,等于作用于质点系的外力对
O点之矩的矢量和。
投影形式:
d Lx
dt
d Ly dt
= M x (Fi (e) )
= M y (Fi (e) )
d Lz dt
= M z (Fi (e) )
⑶ 摆捶对O轴的动量矩
M O (mv) = mv ⋅l
= (mlϕ) ⋅l = ml 2ϕ
摆捶外力对O轴的力矩 M O (F ) = −mg ⋅l sinϕ
⑷ 由摆捶对O轴的动量矩定理得
d dt
M
O
(mv)
=
M
O
(F
)
⇒
ml
2ϕ
=
−mg
⋅
l
sin
ϕOϕ Fm ⋅ (lϕ) mg
ml2ϕ = −mg ⋅l sin ϕ
= Mx(F)
= M y(F)
= Mz(F)
质点对某定轴的动量矩对时间的一阶导数,
等于作用力对同一轴之矩。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
例题
一单摆在平面内小幅度摆动,摆绳长l,摆捶质量为m,求摆捶微小摆动的运动方程。
解:⑴ 取摆捶为研究对象,画受力图
⑵ 运动分析 v = lω = lϕ
v
θ m2 g
ω
O
FOy
FOx M m1 g
L=O (J + m2R2 )v R
∑ MO (Fi(e) ) = M − (m2 g sinθ ) ⋅ R
三、动量矩守恒定律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量矩定理(2) 班级 学号 姓名
一、选择题
1、圆柱在重力作用下沿粗糙斜面下滚,角加速度 ;当小球离开斜面后,
角加速度 。
(1)等于零; (2)不等于零; (3)不能确定
2、OA 杆重P ,对O 轴的转动惯量为J ,弹簧的弹性系数为k ,当杆处于铅垂位置时弹
簧无变形,取位置角ϕ及其正向如图所示,则OA 杆在铅直位置附近作微振动的运动
微分方程为 。
(1) ϕϕϕ
Pb ka J --=2 ; (2) ϕϕϕ
Pb ka J 2+= ; (3) ϕϕϕ
Pb ka J +-=-2 ; (4)
二、填空题
1、在质量为M ,半径为R 的均质圆环上固接一质量为m 的均质细杆AB ,位置如图,切
有60=∠CAB °。
若系统在铅垂面内以角速度ω绕O 轴转动,则系统对O 轴的动量
矩的大小为 。
2、如图系统中,小球质量为m ,水平杆OA 质量不计,弹簧刚度系数为k ,图示为静
平衡位置, 则系统作微振动时的微分方程为 。
三、计算题(解题步骤:①取研究对象画受力图②运动分析③列动力学方程求解)
1、两个重物M 1和M 2的质量各为m 1与m 2,分别系在两条不计质量的绳上,如图所示。
此两绳又分别围绕在半径为r 1和r 2的塔轮上。
塔轮的质量为m 3,质心为O ,对轴O 的回转半径为ρ。
重物受重力作用而运动,求塔轮的角加速度。
ϕϕϕPb ka J -=-2
2、图示均质圆盘的半径R=180mm ,质量m=25kg 。
测得圆盘的扭转振动周期s 11=T ;当加上另一物体时,测得扭转振动周期为s 2.1
2=T 。
求所加物体对于转动轴的转动惯量。
3、一刚性均质杆重200N 。
A 、B 处为光滑铰链约束。
当杆位于水平位置时,C 处弹簧压缩了76mm ,弹簧刚度系数为8750N/m 。
试求当约束A 突然移走时,此瞬时支座B 的反力。