风道设计计算的方法与步骤
空调系统风道设计word文档
/zykt/2/2.1.html第8章空调系统风道设计§8.1风道设计的基本知识一、道的布置原则风道布置直接与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。
1.空调系统的风道在布置时应考虑使用的灵活性。
2.风道的布置应符合工艺和气流组织的要求。
3.风道的布置应力求顺直,避免复杂的局部管件。
4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。
5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。
6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。
二、管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。
需要经常移动的风管—大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。
薄钢板有普通薄钢板和镀锌薄钢板两种,厚度一般为0.5~1.5m m 左右。
对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。
硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。
所以,仅限于室内应用,且流体温度不可超过-10~+60℃。
以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。
为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。
三、风管断面形状的选择风管断面形状:圆形断面的风管—强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统;矩形断面的风管—易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。
为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。
常用矩形风管的规格如下表所示。
为了减少系统阻力,进行风道设计时,矩形风管的高宽比宜小于6,最大不应超过10。
表8-1矩形风管规格§8.2风道设计的基本任务进行风道设计时应统筹考虑经济、实用两条基本原则。
风道计算规则
章节说明 镀锌薄钢板风管项目中的板材是按镀锌薄钢板编 制的,如设计要求厚度不同或不用镀锌薄钢板时, 板材可以换算,其他不变 。
薄钢板通风管道制作安装项目中,包括弯头、三 通、变径管、天圆地方等管件及法兰、加固框和 吊托支架的制作用工,但不包括过跨风管落地支 架,落地支架执行设备支架项目。
风道除锈、刷油工程量计算规则
1.薄钢板风管刷油按其工程量执行相应项目,仅外(或内) 面刷油者,项目乘以系数1.2,内外均刷油者,项目乘以系数 1.1(其法兰加固框、吊托支架已包括在此系数内); 当通风管道不需要除锈,刷油,单需要计算法兰、加固框、 吊架、托架、支架等除锈、刷油工程量时,其除锈、刷油 工程量,按通风管道制作安装定额中的型钢含量,计算其 重量; 2.薄钢板部件刷油按其工程量执行金属结构刷油项目,项 目乘以系数1.15;
风道计算规则:
一、风管制作安装以施工图规格不同按展开面积 计算,不扣除检查孔、测定孔、送风口、吸风口 等所占面积。 圆形风管:F=π×D×L 式中: F —— 圆形风管展开面积(以m2为单 位); D —— 圆形风管直径; L —— 管道中心线长度。 矩形风管按图示周长乘以管道中心线长度计算。
风道计算规则:
二、风管长度一律以施工图示中心线长度为准 (主管与支管以其中心线交点划分),包括弯头、 三通、变径管、天圆地方等管件的长度,但不得 包括部件所占长度。直径和周长按图示尺寸为准 展开,咬口重叠部分已包括在项目内,不另行增 加。
风道计算规则:
四、整个通风系统设计采用渐缩管均匀送风者, 圆形风管按平均直径,矩形风管按平均周长执行 相应项目,其人工乘以系数2.5。 五、柔性软风管安装,按图示管道中心线长度以 延长米为单位计算,柔性软ห้องสมุดไป่ตู้管阀门安装,按图 纸设计以“个”为计量单位计算。 六、软管(帆布接口)制作安装,按图示尺寸以 “m2”为计量单位计算。
风量风压风速的计算方法
风量风压风速的计算方法风量、风压和风速是风力工程中常用的几个重要参数,它们之间的关系和计算方法对于风力工程设计、建筑通风和空调系统设计等领域都非常重要。
下面将详细介绍风量、风压和风速的计算方法。
1.风量计算方法:风量是指单位时间内通过风道或风口的空气量,通常用立方米每小时(m3/h)表示。
计算风量的方法主要有以下几种:a.风量计直接测量法:使用风量计器直接测量风量。
常用的风量计器有热线式风量计、翼片式风量计、旋翼式风量计等。
b.风量计算公式法:根据风道或风口的几何尺寸和空气速度计算风量。
如矩形风道的风量计算公式为:风量=风道的面积×风速。
c.实验室测试法:在实验室中通过建立模型进行风洞实验,测量模型上方或模型周围的风量,然后进行比例计算得到实际工程中的风量。
2.风压计算方法:风压是指风力作用于单位面积上的压力,通常用帕斯卡(Pa)或牛顿每平方米(N/m2)表示。
计算风压的方法主要有以下几种:a.风压计直接测量法:使用风压计直接测量风压。
常用的风压计有静压传感器、动压传感器、静压管等。
b.风压计算公式法:根据气流速度和管道形状等因素,使用相关的公式计算风压。
如圆管道风压计算公式为:风压=0.5×空气密度×风速的平方。
c.风洞实验法:通过模型在风洞中进行试验,测量模型表面的风压,然后进行比例计算得到实际工程中的风压。
3.风速计算方法:风速是指空气运动的速度,通常用米每秒(m/s)表示。
计算风速的方法主要有以下几种:a.风速计直接测量法:使用风速计直接测量风速。
常用的风速计有热线风速计、旋转风速计、风速计索等。
b.风速计算公式法:根据风压、风量等参数的关系,使用相关的公式计算风速。
如根据风量和风道面积计算风速的公式为:风速=风量/风道的面积。
c.等速线法:利用等速线的特性,在风速图上找到实际工况点的风速。
需要注意的是,以上计算方法是基于一些理想假设和模型推导得到的,并且在实际应用中还需要考虑实际工程环境、空气密度、局部阻力等因素的影响。
空调系统的风道设计、压力分布和计算
弯头内空气的流动 渐扩管内空气的流 合流三通内空气的流
状态
动状态
动
三、风道内空气流动阻力 风道内空气流动阻力,等于摩擦阻力和局部
阻力总和,即:
P ( P m Z ) ( lR m Z )
l 4Rs
v2
2
式中:λ-摩擦阻力系数
Rs-风道水力半径,m; l-风道长度,m;
v-风道内空气平均流速,m/s;
ρ-空气密度,kg/m3.
(一)摩擦阻力系数λ的确定
对于层流,λ只与Re数有关;对于紊流,λ与 Re数及壁面粗糙度都有关。根据实验研究结果, 通常按流态、分区域给出不同的计算λ公式。
2.变径管
空气流经变径管时,由于过流断面的变化而引 起流速变化,在减速增压区产生边界层脱离并 形成旋涡,造成局部阻力损失。过流断面变化 愈大,损失也愈大,要想减小阻力损失,就必 须减小过流断面的变化,可以用渐变管来代替 突然扩大和突然缩小管。
3. 三通
三通形状是由总流与支流的夹角α及其面积比 F1/F3,F2/F3这几个几何参数确定的。但三通 的特征是它的流量前后有变化,因此,三通局 部阻力系数不仅与几何形状有关,而且与流量 比L1/L3,L2/L3有关。
若按水力粗糙管推导,得到:
DL
=1.265
a3b3 ab
0.2
若按水力光滑管推导,得到:
DL=1.31(aa3bb)31.25
0.21
在运用当量直径时,有两点需要注意。
第一,当量直径概念用于紊流流动是合适的, 用于层流则会产生较大误差。条缝行风道运用 当量直径时也会产生较大误差。
第二,在利用线算图查摩擦阻力时,一定要注 意对应关系。如采用Dv时,必须用矩形风道中 流速去查,如采用Dl时,必须用矩形风道中流 量去查。但是,无论用哪种当量直径去查,其 单位长度摩擦阻力Rm都是相等的。
空调风道风速计算方法与风口选择
风管,是用于空气输送和分布的管道系统。
有复合风管和无机风管两种。
风管可按截面形状和材质分类。
中央空调风口是中央空调系统中用于送风和回风的末端设备,是一种空气分配设备。
送风口将制冷或者加热后的空气送到室内,而回风口则将室内污浊的空气吸回去,两者形成一整个空气循环,在保证室内制冷采暖效果的同时,也保证了室内空气的制冷及舒适度。
风口的大小取决于室内机容量的大小,如果出风口过大,风管过长,则气流速度就会下降,从而影响空调使用效果;如果出风口选择过小,则气流速度会变大,从而导致风直吹人体上引起的不适感,还有可能导致噪音过大。
1、风管内的风速:一般空调房间对空调系统的限定的噪音允许值控制在40 ~50dB(A)之间,即相应NR(或NC)数为35 ~ 45dB(A)。
根据设计规范,满足这一范围内噪音允许值的主管风速为4 ~ 7m/s,支管风速为2 ~ 3m/s。
通风机与消声装置之间的风管,其风速可采用8 ~10m/s。
2、出风口尺寸的计算:为防止风口噪音,送风口的出风风速宜采用2 ~ 5m/s。
风口的尺寸计算与风管道尺寸的计算基本相同,一般当层高在3 ~ 4米的房间大约取风速在2 ~ 2.5m/s。
3、回风口的吸风速度:回风口位于房间上部时,吸风速度取4 ~ 5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3 ~ 4m/s,若靠近人员经常停留的地点,取1.5 ~2m/s,若用于走廊回风时,取1 ~1.5m/s。
4、风管安装注意事项及风管计算:在风管设计尽量小的情况下保证主管风速5m/s,支管风速3m/s。
(1)风管计算公式:所选设备风量÷3600÷风速=风管截面积;同时注意保证风管:长边÷短边≤4,一般不要>4,特殊情况特殊对待;(2)风口的选择:所选房间风量÷3600÷风速=散流器喉部截面积;注意:双百叶风口截面积为以上公式所得面积÷0.7。
通风管道系统的设计计算
通风管道系统的设计计算首先,通风管道系统的设计需要根据建筑物的用途和面积确定通风需求。
通风需求的计算通常基于建筑物的使用人数、通风目标、空气质量要求等因素。
其次,需要确定通风系统的工作参数,包括通风风量、通风速度和压力损失。
通风风量与通风需求密切相关,可以根据通风需求进行估算。
通风速度则根据通风风量和通风管道的截面积来计算。
压力损失与通风管道材料、直径、长度、弯头、分支等因素有关,可以通过计算或查表确定。
然后,根据通风系统的工作参数,选择合适的通风管道材料和规格。
通风管道材料常见的有金属材料如钢板、镀锌板、铁皮等以及非金属材料如塑料管、玻璃钢管等。
在选择时,需要考虑通风系统中的气流特性、耐腐蚀性、机械强度等因素。
接下来,需要进行管道系统的布置和分支计算。
通风管道系统应合理布置,避免管道的交叉和弯曲,减少阻力和压力损失。
分支计算时需要考虑分支管道的长度、直径和弯头数量,保证通风风量的平衡和均匀分布。
最后,进行管道系统的稳定性计算和支撑设计。
通风管道系统在运行过程中需要承受气流的冲击和压力变化,因此需要进行稳定性计算,确保管道系统的结构稳定和安全。
同时,还需要设计合适的支撑结构,保证管道的固定和支撑,防止因振动或外力导致的破坏。
综上所述,通风管道系统的设计计算是一个复杂的过程,需要考虑多个因素。
通过合理的设计和计算,可以确保通风系统的正常运行,提供良好的室内空气质量。
同时,还需要对通风管道系统的运行进行监测和维护,及时发现和解决问题,保持通风系统的稳定性和效率。
风量的计算方法风压和风速的关系
风量的计算方法风压和风速的关系风量,又称风流量,是指单位时间内通过其中一横截面的空气体积。
在工程中,风量的计算是非常重要的,尤其在通风系统设计和空气流动分析中。
以下是几种常见的风量计算方法:1.基本风量计算方法:基本风量计算主要是通过实际测量得到的数据进行计算。
通常使用的方法有风速和风口截面积法,以及温度差和质量流量法。
-风速和风口截面积法:通过测量风口截面的面积和风口的风速,可以计算出单位时间内通过该风口的风量。
公式为:风量=风口截面积×风速。
-温度差和质量流量法:通过测量空气流动前后的温度差和空气的质量流量,可以计算出单位时间内通过该横截面的风量。
公式为:风量=质量流量/空气密度。
2.风速计算法:在一些实际应用场景中,可能无法直接测量风量,但可以通过测量风速来计算。
常用的风速计算方法包括理论风量法和风道阻力法。
-理论风量法:通过设定一定的风速和风口形状,根据通风原理和流体力学计算方法,计算出理论上通过该风口的风量。
这种方法适用于通风系统初期设计时的估算,计算结果一般较为粗略。
公式为:风量=风速×风口截面积。
-风道阻力法:通过测量风道中的风压差(更准确地说是风道两侧的总压差)和风道的阻力特性,结合流体力学的计算方法,计算出单位时间内通过该风道的风量。
公式为:风量=风压差/风道总阻力。
风压和风速的关系:风压和风速是风量计算中的两个重要参数,它们之间存在一定的关系。
风压是指风力作用于单位面积上的压力,常用帕斯卡(Pa)作为单位。
风速则是指单位时间内空气流过其中一点的速度,常用米每秒(m/s)作为单位。
在理想条件下,风压与风速之间是成正比关系的,即风压随着风速的增大而增大。
这是由于风速的增大会导致单位面积上受到的风力增大,从而使得风压增大。
具体的关系可以用以下公式表示:风压=0.5×ρ×v²其中,ρ为空气密度,v为风速。
可以看出,当空气密度保持不变时,风压与风速的平方成正比。
风道设计计算的方法与步骤(带例题)
风道设计计算的方法与步骤(带例题)一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。
风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
2.在计算草图上进行管段编号,并标注管段的长度和风量。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多的环路。
4.选择合理的空气流速。
风管内的空气流速可按下表确定。
表8-3空调系统中的空气流速(m/s)5.根据给定风量和选定流速,逐段计算管道断面尺寸,然后根据选定了的风管断面尺寸和风量,计算出风道内实际流速。
风道设计计算的方法与步骤
风道设计计算的方法与步骤评论(3)浏览(1777)[转帖]2010-7-23 15:03:56§8.3 风道设计计算的方法与步骤一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。
风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
<<返回二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
2.在计算草图上进行管段编号,并标注管段的长度和风量。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多的环路。
风量的计算方法
风量的计算方法风量是指单位时间内通过风道或通风设备的空气流量。
在工程设计、建筑通风、空调系统等领域,风量的计算是非常重要的。
本文将介绍几种常见的计算风量的方法。
一、静压法计算风量静压法计算风量是一种简单有效的方法。
静压法通过测量风道两端的静压差来计算风量。
首先,需要用静压传感器测量风道两端的静压值,然后根据风道的截面积和气体状态方程,可以计算出风道中的风量。
这种方法适用于直线风道和简单的风道系统。
二、速度法计算风量速度法计算风量是一种常用的方法。
速度法通过测量风道中的空气流速来计算风量。
首先,需要用风速仪等设备测量风道中的平均风速。
然后,根据风道的截面积,可以计算出单位时间内通过风道的空气体积,即风量。
这种方法适用于比较复杂的风道系统和通风设备。
三、风压法计算风量风压法计算风量是一种较为准确的方法。
风压法通过测量风道中的总风压来计算风量。
首先,需要用风压传感器测量风道中的总风压,即静压和动压之和。
然后,根据风道的截面积和气体状态方程,可以计算出单位时间内通过风道的空气体积,即风量。
这种方法适用于复杂的风道系统和气流较大的通风设备。
四、热量法计算风量热量法计算风量是一种间接的方法。
热量法通过测量风道中的温度差来计算风量。
首先,需要用温度传感器测量风道两端的温度差,然后根据风道的截面积、气体的密度和定压比热,可以计算出单位时间内通过风道的空气质量,即风量。
这种方法适用于需要同时考虑温度和风量的情况,如空调系统。
以上是几种常见的计算风量的方法。
不同的方法适用于不同的场景和要求。
在实际应用中,需要根据具体情况选择合适的计算方法,并结合其他因素进行综合分析。
同时,为了保证计算结果的准确性,还需要注意测量设备的选择和校准,以及计算公式的正确使用。
通过合理计算风量,可以为工程设计和设备选择提供依据,确保通风系统的正常运行和舒适性。
通风管道设计计算
通风管道系统的设计计算在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。
设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。
进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。
在一般的通风系统中用得最普遍的是等压法和假定流速法。
等压损法是以单位长度风管有相等的压力损失为前提的。
在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。
对于大的通风系统,可利用等压损法进行支管的压力平衡。
假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。
这是目前最常用的计算方法。
一、通风管道系统的设计计算步骤800m /h1500m /h 1234000m /h4除尘器657图6-8 通风除尘系统图一般通风系统风倌管内的风速(m/s)表6-10除尘通风管道最低空气流速(m/s)表6-111、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。
以风量和风速不变的风管为一管段。
一般从距风机最远的一段开始。
由远而近顺序编号。
管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。
2、选择合理的空气流速。
风管内的风速对系统的经济性有较大影响。
流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消耗增加,有时还可能加速管道的磨损。
流速低,压力损失小,动力消耗少;但是风管断面大,材料和建造费用增加。
对除尘系统,流速多低会造成粉尘沉积,堵塞管道。
因此必须进行全面的技术经济比较,确定适当的经济流速。
根据经验,对于一般的通风系统,其风速可按表6-10确定。
对于除尘系统,防止粉尘在管道内的沉积所需的最低风速可按表6-11确定。
通风管道的计算方法
通风管道的计算方法一、引言通风管道是建筑物中非常重要的设备之一,它能够将新鲜空气输送到室内,排出室内的污浊空气,保持室内空气的流通和清洁。
在设计和安装通风管道时,需要进行一系列的计算,以确保管道的尺寸和布局能够满足通风系统的要求。
本文将介绍通风管道计算的方法和步骤。
二、通风管道的基本参数在进行通风管道计算之前,需要了解以下几个基本参数:1. 风量:通风系统所需输送的空气量,一般以立方米/小时或立方英尺/分钟表示。
2. 风速:空气在管道中的流速,一般以米/秒或英尺/分钟表示。
3. 压力损失:空气在管道中流动时产生的阻力,一般以帕斯卡或英寸水柱表示。
三、通风管道的计算步骤1. 确定风量:根据建筑物的使用性质和人员密度等因素,确定通风系统所需输送的空气量。
一般情况下,可以参考相关标准或规范进行计算。
2. 确定风速:根据通风系统的要求和管道的布局,确定空气在管道中的流速。
一般情况下,风速不宜过高,以免产生噪音和能耗过大。
3. 计算管道尺寸:根据风量和风速,使用通风管道计算公式,计算出管道的尺寸。
通风管道的尺寸通常以直径或截面积表示。
4. 考虑压力损失:根据通风系统中的风机性能和管道的长度、弯曲等特性,计算出压力损失。
压力损失的计算可以使用通风管道压力损失计算公式或相关的计算表格。
5. 考虑风道材料和形状:通风管道可以采用不同的材料,如镀锌钢板、不锈钢、铝合金等。
根据实际需求和经济性考虑,选择合适的材料和管道形状。
6. 确定管道布局:根据建筑物的结构和通风系统的要求,确定通风管道的布局。
管道的布局应尽量简洁,避免过多的弯曲和分支,以减小压力损失和阻力。
四、通风管道的其他考虑因素除了上述基本步骤外,通风管道的设计和计算还需要考虑以下因素:1. 热损失:通风管道在冬季输送暖空气时,可能会发生热损失。
需要根据实际情况,在计算中考虑热损失,并采取相应的保温措施。
2. 声功率:通风系统中的风机会产生噪音,需要合理设计管道布局和选择静音设备,以减少噪音的传播和影响。
风道设计计算原则及方法
风道设计计算一.风道设计原则1.风管的界面尺寸,应采用国家颁布的通风管道的统一规格,以利于工业化的加工制作。
2.各并联支管之间的计算压力损失差值,应不大于15%。
如果不满足此要求,可以通过调整管径的方法使之达到平衡。
由于管径与总阻力之间有以下的类似关系:⊿P∝D0.22若以D,D'表示调整前后的管径,⊿P、⊿P'表示调整前后的总阻力,则有D'=D(⊿P⊿P')0.22按照上式调整管径,直到阻力平衡达到要求为此。
此外,在不可能通过确定分支管路管径达到阻力平衡要求时,则可利用风阀进行调节。
3.尽量减少局部部件,以减少局部阻力损失。
4.风机风压的确定,宜按风道总压力损失的10%~15%数值附加;风机风量的大小宜按系统总风量的10%附加。
二.风道的设计计算方法风道的设计计算方法有以下几种:1.流速控制法流速控制法的特点是,先按技术经济要求选定风管的流速,再根据风量确定风管的断面尺寸和阻力。
2.压损平均法压损平均无法也称为当量阻力法。
这种方法的特点是在已知总作用压头的情况下将总压头按干管长度平均分配给各部分,再根据各部分的风量和分配到的作用压头,计算管道断面尺寸。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法当流体的全压一定时,风速降低,则静压增加。
静压复得法就是利用这种管段内静压和动压的相互转换,由风管的每一分支处复得的静压来克服该管段的阻力,根据这一原则确定风管的断面尺寸。
此法适用于高速空调系统的设计计算。
工程上应用的最多的是流速控制法,下面主要介绍用这种方法进行风道系统的设计计算。
三.假定流速法风道设计计算方法假定流速法的设计计算步骤是:1.绘制系统轴测图,标注各段长度和风量。
2.选定最不利环路(一般是指最长或局部构件最多的分支管路)。
3.选定流速,确定断面尺寸。
4.计算各管段的单位长度摩擦阻力R m和局部阻力Z。
阻力计算应从最不利环路开始。
风量的计算方法_风压和风速的关系
风量的计算方法_风压和风速的关系在通风工程、空调系统、工业生产等众多领域中,风量的计算以及风压和风速之间的关系都是非常重要的概念。
正确理解和掌握这些知识,对于优化系统设计、提高能源利用效率以及确保设备正常运行都具有至关重要的意义。
首先,我们来了解一下风量的计算方法。
风量,简单来说,就是单位时间内通过某一截面的空气体积。
其计算方法会因具体的应用场景和条件而有所不同。
在通风系统中,如果已知风道的截面积和空气的流速,那么风量(Q)可以通过截面积(A)乘以流速(v)来计算,即 Q = A × v 。
例如,风道的截面积为 1 平方米,空气流速为 5 米/秒,那么风量就是5 立方米/秒。
在一些特定的设备或场景中,风量的计算可能会更加复杂。
比如在风机性能测试中,可能会使用皮托管等测量仪器来测量压力差,然后通过特定的公式计算风量。
接下来,我们探讨一下风压和风速的关系。
风压是指由于空气流动而在垂直于气流方向上产生的压力。
风速则是空气流动的速度。
风压和风速之间存在着密切的关系,这种关系可以用伯努利方程来描述。
在理想情况下,忽略空气的粘性和可压缩性,风压(P)与风速(v)的平方成正比,即 P = 05 ×ρ × v² ,其中ρ 是空气的密度。
从这个公式可以看出,风速的增加会导致风压的急剧增加。
这意味着在设计通风系统或其他与空气流动相关的设备时,需要充分考虑风速变化对风压的影响。
例如,在高层建筑的通风系统中,由于风速随着高度的增加而增加,风压也会相应增大。
如果在设计时没有充分考虑这一因素,可能会导致风道破裂、设备损坏等问题。
在实际应用中,我们常常需要根据已知的风压来计算风速,或者根据已知的风速来计算风压。
如果已知风压,要求风速,可以通过对上述公式进行变形得到:v=√(2P /ρ) 。
如果已知风速,要求风压,直接使用 P =05 × ρ × v² 即可。
风道设计
风道•一、风口
5.5mm以下;
式,或直接开在端部;
径之间的距离较大,一般为4~5mm;以便让离心风扇从经向出来的风沿轴向•二、定子与机壳间的风道
•三、挡风板(导风圆)
•4、三相异步电机因转速n较低,风扇外径又受结构限制,风压较低,外径的平均值,挡风板到定子绕组端部的距离不少于4mm;
大1~2mm或相等;
•四、风扇与导风圆或机壳之间的距离
吸尘风扇与吸尘通道
•1、吸尘室与冷却室最好隔离,这样可以提高吸尘效率,主要表•2、根据1的要点:吸尘风扇、冷却风扇最好做成两个;
大小是根据吸尘的效率确定的,一般不超出定子外径;
叶片数要少,主要考虑到叶片间距要大些,有利于尘土或草叶顺利通
•2、进尘口:最好让灰尘或草叶从底压区进入,如从叶片的正面片的正面进尘,也应设法让进尘口延伸至底压区或叶片的内、外半径。
风道的直径计算公式
风道的直径计算公式风道是用来传输空气或气体的管道,通常用于工业生产和空调系统中。
在设计和建造风道时,计算其直径是非常重要的,因为直径的大小直接影响到风道的流量和阻力。
因此,有一个专门的公式用来计算风道的直径,以确保其能够满足设计要求。
风道的直径计算公式可以根据不同的参数来确定,其中最常用的是根据风道的流量和风速来计算。
下面将介绍一下风道直径计算公式的推导和应用。
首先,我们需要了解一下风道的流量和风速的关系。
风道的流量通常用立方米每小时(m³/h)来表示,而风速则用米每秒(m/s)来表示。
流量和风速之间的关系可以用以下公式表示:Q = A × V。
其中,Q表示风道的流量,单位为m³/h;A表示风道的横截面积,单位为平方米;V表示风速,单位为m/s。
接下来,我们来推导风道直径的计算公式。
假设风道为圆形,其横截面积可以用以下公式表示:A = π× (D/2)²。
其中,D表示风道的直径,π表示圆周率。
将上述两个公式结合起来,可以得到风道直径的计算公式:Q = π× (D/2)²× V。
根据上述公式,可以解出风道的直径D:D = √(4Q/πV)。
通过上述公式,可以根据风道的流量和风速来计算出风道的直径,从而确保风道能够满足设计要求。
除了流量和风速,风道的直径还受到其他因素的影响,如风道的材质、风道的长度、风道的形状等。
因此,在实际应用中,还需要考虑这些因素对风道直径的影响,从而综合考虑各种因素来确定最终的风道直径。
在工程实践中,风道的直径计算是一个非常重要的工作,它直接影响到风道系统的性能和能耗。
因此,工程师需要根据实际情况,结合风道的流量、风速和其他因素,合理地确定风道的直径,从而确保风道系统能够正常运行并达到预期的效果。
总之,风道的直径计算公式是工程设计和施工中的重要工具,通过合理地计算风道的直径,可以确保风道系统的性能和能耗达到设计要求,为工业生产和空调系统的正常运行提供保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风道设计计算的方法与步骤(带例题)一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。
风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
2.在计算草图上进行管段编号,并标注管段的长度和风量。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多的环路。
4.选择合理的空气流速。
风管内的空气流速可按下表确定。
表8-3空调系统中的空气流速(m/s)5.根据给定风量和选定流速,逐段计算管道断面尺寸,然后根据选定了的风管断面尺寸和风量,计算出风道内实际流速。
通过矩形风管的风量:G=3600abυ (m3/h)式中:a,b—分别为风管断面净宽和净高,m。
通过园形风管的风量:G=900πd2υ (m3/h)式中:d—为圆形风管内径,m。
6.计算风管的沿程阻力根据风管的断面尺寸和实际流速,查阅查阅附录13或有关设计手册中《风管单位长度沿程压力损失计算表》求出单位长度摩擦阻力损失△py,再根据管长l,进一步求出管段的摩擦阻力损失。
7.计算各管段局部阻力按系统中的局部构件形式和实际流速υ,查阅附录14或有关设计手册中《局部阻力系数ζ计算表》取得局部阻力系数ζ值,再求出局部阻力损失。
8.计算系统的总阻力,△P=∑(△pyl +△Pj)。
9.检查并联管路的阻力平衡情况。
10.根据系统的总风量、总阻力选择风机。
、三.风道设计计算实例\某公共建筑直流式空调系统,如图所示。
风道全部用镀锌钢板制作,表面粗糙度K=0.15mm。
已知消声器阻力为50Pa,空调箱阻力为290 Pa,试确定该系统的风道断面尺寸及所需风机压头。
图中:A.孔板送风口600×600;B.风量调节阀;C.消声器;D.防火调节法;E.空调器;F.进风格栅[解1.绘制系统轴测图,并對各管段进行编号,标注管段长度和风量。
2.选定最不利环路,逐段计算沿程压力损失和局部压力损失。
本系统选定管段1—2—3—4—5—6为最不利环路。
3.列出管道水力计算表8-4,并将各管段流量和长度按编号顺序填入计算表中。
4.分段进行管道水力计算,并将结果均列入计算表8-4中。
管段1—2:风量1500m3/h,管段长l=9m沿程压力损失计算:初选水平支管空气流速为4m/s,风道断面面积为:F’=1500/(3600×4)=0.104m2取矩形断面为320×320mm的标准风管,则实际断面积F=0.102m2,实际流速υ=1500/(3600×0.102)=4.08m/s根据流速4.08m/s,查附录13,得到单位长度摩擦阻力△py=0.7Pa/m,则管段1—2的沿程阻力:△Py=△py×l=0.7×9=6.3Pa局部压力损失计算:该管段存在局部阻力的部件有孔板送风口、连接孔板的渐扩管、多叶调节阀、弯头、渐缩管及直三通管。
孔板送风口:已知孔板面积为600×600mm,开孔率(即净孔面积比)为0.3,则孔板面风速为υ=1500/(3600×0.6×0.6)=1.16m/s根据面风速1.16m/s和开孔率0.3,查附录14序号35,得孔板局部阻力系数ζ=13,故孔板的局部阻力△pj1=13×(1.2×1.162)/2=10.5Pa渐扩管:渐扩管的扩张角α=22.5°,查附录14序号4,得ζ=0.6,渐扩管的局部阻力△pj2=0.9×(1.2×4.082)/2=5.99Pa多叶调节阀:根据三叶片及全开度,查附录14序号34,得ζ=0.25,多叶调节阀的局部阻力△pj3=0.25×(1.2×4.082)/2=2.5Pa弯头:根据α=90°,R/b=1.0,查附录14序号9,得ζ=0.23,弯头的局部阻力△pj4=0.23×(1.2×4.082)/2=2.3Pa渐缩管:渐缩管的扩张角α=30°<45°,查附录14序号7,得ζ=0.1,渐缩管的局部阻力△pj5=0.1×(1.2×4.082)/2=1Pa直三通管:根据直三通管的支管断面与干管断面之比为0.64,支管风量与总风量之比为0.5,查附录14序号19,得ζ=0.1,则直三通管的局部阻力△Pj6=0.1×(1.2×5.22)/2=1.6Pa (取三通入口处流速)该管段局部阻力:△Pj=△pj1+△pj2+△pj3+△pj4+△pj5 +△Pj6=10.5+5.99+2.5+2.3+1+1.6=23.89Pa该管段总阻力△P1-2=△Py+△Pj=6.3+23.89=30.19Pa管段2—3:风量3000m3/h,管段长l=5m,初选风速为5m/s。
沿程压力损失计算:根据假定流速法及标准化管径,求得风管断面尺寸为320×500mm,实际流速为5.2m/s,查得单位长度摩擦阻力△py=0.8Pa/m,则管段2—3的沿程阻力△Py=△py×l=0.8×5=4.0Pa局部压力损失计算:分叉三通:根据支管断面与总管断面之比为0.8,查附录14序号21,得ζ=0.28,则分叉三通管的局部阻力△Pj =0.28×(1.2×6.252)/2= 6.6Pa. (取总流流速)该管段总阻力△P2-3=△Py+△Pj=4.0+6.6=10.6Pa管段3—4:风量4500m3/h,管段长l=9m,初选风速为6m/s。
沿程压力损失计算:根据假定流速法及标准化管径,求得风管断面尺寸为400×500mm,实际流速为 6.25m/s,查得单位长度摩擦阻力△py=0.96Pa/m,则管段3—4的沿程阻力△Py=△py×l=0.96×9=8.64Pa局部压力损失计算:该管段存在局部阻力的部件有消声器、弯头、风量调节阀、软接头以及渐扩管。
消声器:消声器的局部阻力给定为50Pa,即△pj1= 50.0Pa弯头:根据α=90°,R/b=1.0,a/b=0.8,查附录14序号10,得ζ=0.2,弯头的局部阻力△pj2=0.2×(1.2×6.252)/2=4.7Pa风量调节阀:根据三叶片及全开度,查附录14序号34,得ζ=0.25,风量调节阀的局部阻力△pj3=0.25×(1.2×6.252)/2=5.9Pa软接头:因管径不变且很短,局部阻力忽略不计。
渐扩管:初选风机4—72—11NO4.5A,出口断面尺寸为315×360mm,故渐扩管为315×360mm~400×500mm,长度取为360mm,渐扩管的中心角α=22°,大小头断面之比为1.76查附录14序号3,得ζ=0.15,对应小头流速υ=4500/(3600×0.315×0.36)=11m/s渐扩管的局部阻力△pj4=0.15×(1.2×112)/2=10.9Pa该管段局部阻力△Pj=△pj1+△pj2+△pj3+△pj4=50.0+4.7+5.9+10.9=71.5Pa该管段总阻力△P3-4=△Py+△Pj=8.64+71.5=80.14Pa管段4—5:空调箱及其出口渐缩管合为一个局部阻力考虑,△Pj=290 Pa该管段总阻力△P4-5=△Pj=290Pa管段5—6:风量4500m3/h,管段长l=6m,初选风速为6m/s。
沿程压力损失计算:根据假定流速法及标准化管径,求得风管断面尺寸为400×500mm,实际流速为 6.25m/s,查得单位长度摩擦阻力△py=0.96Pa/m,则管段5—6的沿程阻力△Py=△py×l=0.96×6=5.76Pa局部压力损失计算:该管段存在局部阻力的部件有突然扩大、弯头(两个)、渐缩管以及进风格栅。
突然扩大:新风管入口与空调箱面积之比取为0.2,查附录14序号5,,得ζ=0.64,突然扩大的局部阻力△pj1=0.64×(1.2×6.252)/2=15.1Pa弯头(两个):根据α=90°,R/b=1.0,a/b=0.8,查附录14序号10,得ζ=0.20,弯头的局部阻力△pj2=0.2×(1.2×6.252)/2=4.7Pa2△pj2=4.7×2=9.4 Pa渐缩管:断面从630×500mm单面收缩至400×500mm,取α=<45°,查附录14序号7,得ζ=0.1,对应小头流速υ=6.25m/s 渐缩管的局部阻力△pj3=0.1×(1.2×6.252)/2=2.36Pa进风格栅:进风格栅为固定百叶格栅,外形尺寸为630×500mm,有效通风面积系数为0.8,则固定百叶格栅有效通风面积为0.63×0.5×0.8=0.252m2其迎面风速为 4500/(3600×0.252)=5 m/s查附录14序号30,得ζ=0.9,对应面风速,固定百叶格栅的局部阻力△p4=0.9×(1.2×52)/2=13.5Pa该管段局部阻力△Pj=△pj1+2△pj2+△pj3+△pj4=15.1+9.4+2.36+13.5=40.36Pa该管段总阻力△P5-6=△Py+△Pj=5.76+40.36=46.12Pa5.检查并联管路的阻力平衡用同样的方法,进行并联管段7—3、8—2的水力计算,并将结果列入表8-4中。