(完整word版)用样本估计总体练习试题
高一数学用样本估计总体试题
![高一数学用样本估计总体试题](https://img.taocdn.com/s3/m/da969adf4b35eefdc9d33344.png)
高一数学用样本估计总体试题1.一个样本的方差是.【答案】5【解析】由样本可得,所以平均数为4;所以样本的方差为.【考点】样本数值特征.2.在一次选拔运动员中,测得7名选手的身高(单位:cm)的茎叶图为:,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.【答案】8【解析】由茎叶图可知:7名选手的身高分别为170、173、170+x、178、179、180、181,所以由此可得,所以x=8.【考点】茎叶图.3.在一次选拔运动员中,测得7名选手的身高(单位:cm)的茎叶图为:,记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,那么x的值为.【答案】8【解析】由茎叶图可知:7名选手的身高分别为170、173、170+x、178、179、180、181,所以由此可得,所以x=8.【考点】茎叶图.4.设的平均数是,标准差是,则另一组数的平均数和标准差分别是_________.【答案】,.【解析】另一组数的平均数为:,标准差为:,所以则另一组数的平均数和标准差分别是,.【考点】统计中的期望与方差.5.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是()A.36B.40C.48D.50【答案】C【解析】设报考飞行员的人数为,根据前3个小组的频率之比为,可设前三小组的频率分别为;由题意可知所求频率和为1,即,解得,则,解得.故选C.【考点】频率分布直方图.6.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速在[60,70)的汽车大约()A.30辆B.40辆C.60辆D.80辆【答案】D【解析】时速在[60,70)的频率为,故汽车大约有辆.【考点】频率分布直方图的应用.7.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输人为15,那么由此求出的平均数与实际平均数的差是( ).A.3.5B.-3C.3D.-0.5【答案】B【解析】数据相差了,平均数相差,故求出的平均数与实际平均数相差.【考点】平均数.8.某教师出了一份三道题的测试卷,每道题1分,全班得3分、2分、1分和0分的学生所占比例分别为30%、50%、10%和10%,则全班学生的平均分为分.【答案】2【解析】设班级总人数为n人,得3分的是人,得2分的是人,得1分的是人,得0分的是人,故班级平均分.【考点】数据的平均数公式及数据的基本处理能力.9.若样本的频率分布直方图中一共有个小矩形,中间一个小矩形的面积等于其余个小矩形面积和的,且样本容量为160,则中间一组的频数是()A.32B.20C.40D.25【答案】A【解析】设中间一个小矩形的面积为,其余个小矩形的面积之和为,依题意有,求解得到,所以中间一组的频率为,中间一组的频数为,故选A.【考点】频率分布直方图.10.200辆汽车通过某一段公路时,时速的频率分布直方图如右图所示,则时速在[50,70)的汽车大约有().A.60辆 B.80辆C.70辆D.140辆【答案】D【解析】需根据直方图中求出各个矩形的面积,即为各组频率,再由总数乘以频率即得各组频数.解:由直方图可知,时速在[50,60]的频率为0.03×10=0.3 时速在[60,70]的频率为0.04×10=0.4 所以时速在[50,70]的汽车大约有200×(0.3+0.4)=140辆.故答案为D.【考点】直方图点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.11.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,.(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.分数段【答案】(1).(2)73.(3)10【解析】(1)依题意得,,解得.(2)这100名学生语文成绩的平均分为:(分).(3)数学成绩在的人数为:,数学成绩在的人数为:,数学成绩在的人数为:,数学成绩在的人数为:.所以数学成绩在之外的人数为:.【考点】本题考查了频率分布直方图的运用点评:注意频率分布直方图中用小长方形面积的大小来表示在各个区间内取值的频率,所以在求频率时,通过已知求出所要区间的面积即可12.为了让学生了解更多“社会法律”知识,某中学举行了一次“社会法律知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;(2)填充频率分布表的空格①②③④并作出频率分布直方图;(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?【答案】(1)016 ;(2) 1 8 2 0.28 3 14 4 0.20;(3)256.【解析】(1)编号为016- -2分(2) 1 8 2 0.28 3 14 4 0.20- 每空1分2分在被抽到的学生中获二奖的人数是9+7=16人, 1分占样本的比例是, 1分所以获二等奖的人数估计为800×32%=256人. 1分答:获二等奖的大约有256人. 1分【考点】系统抽样;频率分布表;频率分布直方图。
用样本估计总体(平均数、中位数、众数)练习
![用样本估计总体(平均数、中位数、众数)练习](https://img.taocdn.com/s3/m/102baba56bec0975f465e29c.png)
用样本估计总体(平均数、中位数、众数)练习1、某厂10名工人在一个小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,中位数为b,众数为c,则有( )A.a>b>c B.b>c>a C.c>a>b D.c>b>a2、如图所示的茎叶图记录了一组数据,关于这组数据,其中说法正确的序号是________.①众数是9;②平均数是10;③中位数是9或10;④标准差是3.4.3、某次测量中A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A 样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( ) A.众数 B.平均数 C.中位数 D.标准差4、已知一组数据的频率分布直方图如图所示.求众数、中位数、平均数.5、如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数)分别是( )A.12.5、12.5 B.12.5 、13C.13、12.5 D.13、136、从下列频率分布直方图中估计所有中位数与众数之和为元。
7.一个样本a,3,5,7的平均数是b,且a、b是方程x2-5x+4=0的两根,则这个样本的方差是( )A.3 B.4 C.5 D.68.关于统计数据的分析,有以下几个结论:①一组数不可能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差一定是正数;⑤如右图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在[50,60)的汽车大约是60辆.则这5种说法中错误的个数是( )A.2 B.3 C.4 D.59、某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成、绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分及众数.(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.10、如图是某市有关部门根据该市干部的月收入情况,画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题.(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽多少人?(3)试估计样本数据的中位数.答案:1、D 2、①② 3、D 4、众数:65,中位数:65,平均数:67 5、B 6、7400 7、C 8、B 9、(1)0.005(2)73(3)10人 10、(1)2000(2)20人(3)1750元。
考点46 随机抽样、用样本估计总体、变量间的相关关系、统计案例
![考点46 随机抽样、用样本估计总体、变量间的相关关系、统计案例](https://img.taocdn.com/s3/m/2f50944b69eae009581bec6d.png)
温馨提示:此题库为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word文档返回原板块。
考点46 随机抽样、用样本估计总体、变量间的相关关系、统计案例一、选择题1. (2013·四川高考文科·T7)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示。
以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()【解析】选A.由[0,5),[5,10)内的频数均为1,可知频率分布直方图中的高度相等,可以排除选项B;由于分组时按照组距为5分的,而选项C,D的组距为10,故错误;所以选A.2.(2013·重庆高考理科·T4)以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x 、y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8 【解题指南】直接利用中位数和平均数的定义进行求解.【解析】选C. 因为甲组数据的中位数为15,所以易知5=x ,又乙组数据的平均数为16.8,所以8.165241018159=+++++y ,解得8=y .故选C.3. (2013·重庆高考文科·T6)下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )A.0.2B.0.4C.0.5D.0.6【解题指南】直接根据数据的总个数和落在区间[22,30)内的个数求解即可. 【解析】选B. 落在区间[20,30)内的个数为4个,总的数据有10个,故概率为0.4.选B.4.(2013·湖南高考理科·T2)某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法 【解题指南】 本题要弄懂三种抽样方法之间的区别和联系。
5_1_4_用样本估计总体练习(原卷版)
![5_1_4_用样本估计总体练习(原卷版)](https://img.taocdn.com/s3/m/3f4df535195f312b3069a531.png)
5.1.4用样本估计总体【基础练习】一、单选题1.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为()A.150B.177.8C.183.3D.2002.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是()A.甲班的数学成绩平均分的平均水平高于乙班B.甲班的数学成绩的平均分比乙班稳定C.甲班的数学成绩平均分的中位数高于乙班D.甲、乙两班这5次数学测试的总平均分是1033.有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如下:请根据表格中的信息,估计这4万个数据的平均数为()A.92.16B.85.23C.84.73D.77.974.如图是某学校的教研处根据调查结果绘制的本校学生每天放学后的自学时间情况的频率分布直方图:根据频率分布直方图,求出自学时间的中位数和众数的估计值(精确到0.01)分别是()A .2.20,2.25B .2.29,2.20C .2.29,2.25D .2.25,2.255.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下:嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>二、填空题6.解放战争中,国民党军队拥有过多辆各型坦克,编成了1个装甲兵团(师级编制).我军为了知道这个装甲兵团的各型坦克的数量,釆用了两种方法:一种是传统的情报窃取,一种是用统计学的方法进行估计.统计学的方法最后被证实比传统的情报收集更精确.这个装甲兵团对各型坦克从1开始进行了连续编号,在解放战争期间我军把缴获的这些坦克的编号进行记录并计算出这些编号的平均值为112.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计这个装甲兵团的各型坦克的数量大约有_______.7.为了解某市居民用水情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将该数据按照[0,0.5),[0.5,1),…[4.4.5]分成9组,绘制了如图所示的频率分布直方图,政府要试行居民用水定额管理,制定了一个用水量标准a,使85%的居民用水量不超过a(假设a为整数),按平价收水费,超出a的部分按议价收费,则a的最小值为_____.8.我国高铁发展迅速,技术先进,经统计在经停某站的高铁列车,有10个车次的正点率为0.97,有20个车次的正点率为0.99,有10个车次的正点率为0.98,则经停该站高铁列车的所有车次的平均正点率估计值为______.三、解答题9.某工厂为生产一种标准长度为40cm的精密器件,研发了一台生产该精密器件的车床,该精密器件的实际长度为acm,“长度误差”为40a cm,只要“长度误差”不超过0.03cm就认为合格.已知这台车床分昼、夜两个独立批次生产,每天每批次各生产1000件.已知每件产品的成本为5元,每件合格品的利润为10元.在昼、夜两个批次生产的产品中分别随机抽取20件,检测其长度并绘制了如下茎叶图:(1)分别估计在昼、夜两个批次的产品中随机抽取一件产品为合格品的概率;(2)以上述样本的频率作为概率,求这台车床一天的总利润的平均值.10.《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018年10月1日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:(1)已知小李2018年9月份上交的税费是295元,10月份工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.(i)请根据频率分布直方图估计该公司员工税前收入的中位数;(ii)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?【提升练习】1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定不总体分布在[100,110)的频数相等2.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸3.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤,()1150k b k ≤≤为n名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( )A .12150b b b M n ++= B .12150150b b b M ++=C .12150b b b M n++>D .12150150b b b M ++>4.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据被墨迹污损不清(如图1),但甲得分的折线图完好(如图2),则下列结论错误的是( )A .乙运动员得分的中位数是17,甲运动员得分的极差是19B .甲运动员发挥的稳定性比乙运动员发挥的稳定性差C .甲运动员得分有12的叶集中在茎1上 D .甲运动员得分的平均值一定比乙运动员得分的平均值低5.学校随机抽查了本校20个学生,调查他们平均每天进行体育锻炼的时间(单位:min ),根据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )A .B .C .D .6.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:①甲校学生成绩的优秀率大于乙校学生成绩的优秀率;②甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;③甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是____________.7.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s 1、s 2、s 3,则它们的大小关系为 .(用“>”连接)8.2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.9.某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a ,若某住户某月用电量不超过a 度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过a 度,则超出部分按议价b (单位:元/度)计费,未超出部分按平价计费.为确定a 的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值a;(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达a度的住户用电量保持不变;月用电量超过a度的住户节省“超出部分”的60%,试估计全市每月节约的电量.10.某校的3000名高三学生参加了天一大联考,为了分析此次联考数学学科的情况,现随机从中抽取15名学生的数学成绩(满分:150分),并绘制成如图所示的茎叶图.将成绩低于90分的称为“不及格”,不低于120分的称为“优秀”,其余的称为“良好”.根据样本的数字特征估计总体的情况.(1)估算此次联考该校高三学生的数学学科的平均成绩.(2)估算此次联考该校高三学生数学成绩“不及格”和“优秀”的人数各是多少.(3)在国家扶贫政策的倡导下,该地教育部门提出了教育扶贫活动,要求对此次数学成绩“不及格”的学生分两期进行学业辅导:一期由优秀学生进行一对一帮扶辅导,二期由老师进行集中辅导.根据实践总结,优秀学生进行一对一辅导的转化率为20%;老师集中辅导的转化率为30%,试估算经过两期辅导后,该校高三学生中数学成绩仍然不及格的人数.注:转化率=-辅导前不及格人数辅导后不及格人数辅导前不及格人数100%⨯。
人教版A数学必修三第二单元单元测试B卷:_用样本估计总体(有答案)
![人教版A数学必修三第二单元单元测试B卷:_用样本估计总体(有答案)](https://img.taocdn.com/s3/m/2e6333cb0912a216147929f9.png)
人教版A数学必修三第二单元单元测试B卷:用样本估计总体一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个选项符合题意),已知1. 在样本频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的14样本容量是80,则该组的频数为()A.20B.16C.30D.352.已知某机器加工的1000件产品中次品数的频率分布如下表:则次品数的众数、平均数依次为()A.0,1.1B.0,1C.4,1D.0.5,23. 某班有50名学生,该班上学期期中考试的英语平均分为70分,标准差为s,后来发现两名学生的成绩记录有误:小明得了71分,却误记为46分;小刘得了70分,却误记为95分.更正后的标准差为s1,则s与s1之间的大小关系为()A.s1=sB.s1>sC.s1<sD.无法确定4. 某财经学院有n名学生参加2016年的全国会计从业资格考试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是12,则n等于()A.35B.40C.45D.505. 某赛季甲、乙两名篮球运动员12场比赛的得分情况如图所示,对这两名运动员的得分进行比较,下列四个结论中不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均数大于乙运动员的得分的平均数D.甲运动员的得分比乙运动员的得分稳定6. 某校5人参加头脑奥林匹克竞赛选拔考试,已知这5人的平均考试成绩为81分,其中4人的成绩分别为73分,82分,82分,84分,由这5人得分所组成的—组数据的中位数是()A.81B.82C.83D.847. 在某中学举办的爱国主题演讲比赛中,七位评委给甲、乙两位选手打分的茎叶图如图所示,但其中在△处数据丢失.按照规则,甲、乙各去掉一个最高分和一个最低分,用x和y分别表示甲、乙两位选手获得的平均分,则()A.x>yB.x<yC.x=yD.x和y之间的大小关系无法确定8.一个频数分布表(样本容量为20)不小心被损坏了一部分,部分数据如下表所示,若样本中数据在[20,60)内的频率为0.8,则样本中在[40,60)内的数据的个数为()C.7D.99. 一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.55.2,3.6B.55.2,56.4C.64.8,63.6D.64.8,3.610. 为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e ,众数为m 0,平均值为x ¯,则( )A.m e =m 0=x ¯B.m e =m 0<x ¯C.m e <m 0<x ¯D.m 0<m e <x ¯二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图,估计这批产品的平均长度为________mm .如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的极差为a ,乙加工零件个数的平均数为b ,则a +b =________.如图是某校2016级的高一男生体重的频率分布直方图,已知图中从左到右的前三组的频率之比为1:2:3,则第二组的频率为________.某校高一年级有400名学生,随机抽查了40名学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图.给出结论:①该校高一年级学生1分钟仰卧起坐的次数的中位数为25;②该校高一年级学生1分钟仰卧起坐的次数的众数为24;③该校高一年级学生1分钟仰卧起坐的次数超过30的人数约为80;④该校高—年级学生1分钟仰卧起坐的次数少于20的人数约为8.用样本估计总体,上述结论正确的是________.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)某游戏平台为了了解玩家对某款游戏的喜爱程度,随机采访10位经常玩这款游戏的用户,收集到他们每次登录的平均时长(单位:分钟)如下:6.27.07.65.96.77.36.58.17.87.9(1)根据以上数据,画出茎叶图;(2)求出中位数、平均数、方差.某面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.(1)求a的值,并估计在一个月(按30天算)内日销售量不低于95个的天数;(2)利用频率分布直方图估计每天销售量的平均数及方差(同一组中的数据用该组区间的中点值作代表).某高校为了解学生的体能情况,随机抽取部分学生进行一分钟跳绳测试,将所得数据整理后,画出频率分布直方图(如图).图中从左到右各小长方形面积之比为2:4:17:15:9:3,其中第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数不低于110为达标,试估计该高校全体学生的达标率.(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.对某校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天识记和晚上睡前识记.为了研究背单词的时间安排对记忆效果的影响,某社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是:使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图所示.试估计这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤)将某班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:求全班学生的平均数和标准差.中秋佳节来临之际,小李准备销售一种农特产,这段时间内,每售出1箱该特产获利50元,未售出的,每箱亏损30元.经调查,市场需求量的频率分布直方图如图所示.小李购进了160箱该特产,以x(单位:箱,100≤x≤200)表示市场需求量,y (单位:元)表示经销该特产的利润.(1)根据频率分布直方图估计市场需求量的众数和平均数;(2)将y表示为x的函数;(3)根据频率分布直方图求利润不少于4800元的频率.参考答案与试题解析人教版A数学必修三第二单元单元测试B卷:用样本估计总体一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个选项符合题意)1.【答案】B【考点】频率分布直方图【解析】此题暂无解析【解答】解:设该组的频数为x,则其他组的频数之和为4x.由样本容量是80,得x+4x=80,解得x=16,即该组的频数为16.故选B.2.【答案】A【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:由于次品数为0的频率最大,所以众数为0,平均数为0×0.5+1×0.2+2×0.05+3×0.2+4×0.05=1.1.故选A.3.【答案】C【考点】极差、方差与标准差独立性检验的基本思想【解析】此题暂无解析【解答】解:依题意,知虽然两名学生的成绩记录出错,但50名学生成绩的平均分没变化.由于(71−70)2+(70−70)2<(46−70)2+(95−70)2,根据方差的公式,可得s1<s.故选C.4.【答案】B【考点】频率分布直方图【解析】此题暂无解析【解答】=0.005×20+0.010×20=0.3,解:由12n解得n=40.故选B.5.【答案】D【考点】茎叶图众数、中位数、平均数【解析】此题暂无解析【解答】解:由图可知甲运动员得分的极差大于乙运动员得分的极差,结论A正确;由图可知甲运动员的得分始终大于乙运动员的得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,甲运动员得分的平均数大于乙运动员得分的平均数,结论B,C正确;由图可知甲运动员得分波动性较大,乙运动员得分波动性较小,所以乙运动员的得分比甲运动员的得分稳定,结论D错误.故选D.6.【答案】B【考点】众数、中位数、平均数【解析】此题暂无解析【解答】解:由题意可得,第五个人的得分为84分,将所有人的分数按从高到低进行排序为84,84,82,82,73,则这5人得分所组成的一组数据的中位数是82.故选B.7.【答案】B【考点】茎叶图【解析】此题暂无解析【解答】解:∵ 2+5+5+4+△=△+16,2+5+6+7=26,△<10,∴ x<y.故选B.8.【答案】C【考点】用样本的频率分布估计总体分布【解析】此题暂无解析【解答】解:由图知,样本中数据在[20,40)内的频数为4+5=9,所以样本中数据在[20,40)内的频率为9÷20=0.45.所以样本中在[40,60)内的数据的频率为0.8−0.45=0.35,所以样本中在[40,60)内的数据的个数为20×0.35=7.故选C.9.【答案】D【考点】极差、方差与标准差众数、中位数、平均数【解析】此题暂无解析【解答】解:设原来的数据为x1,x2,⋯,x n,则所得的新数据为x1+60,x2+60,⋯,x n+60.由题意得x1+x2+⋯+x n=4.8n,(x1−4.8)2+(x2−4.8)2+⋯+(x n−4.8)2=3.6n,则新数据的平均数为1n[(x1+60)+(x2+60)+⋯+(x n+60)]=1n[(x1+x2+⋯+x n)+60n]=1n(4.8n+60n)=64.8,新数据的方差为1n[(x1+60−64.8)2+(x2+60−64.8)2+⋯+(x n+60−64.8)2]=1n[(x1−4.8)2+(x2−4.8)2+⋯+(x n−4.8)2]=1n×3.6n=3.6.所以新数据的平均数和方差分别为64.8,3.6.故选D.10.【答案】D【考点】频率分布直方图众数、中位数、平均数【解析】此题暂无解析【解答】解:由图,可知30名学生的得分情况依次为2人得3分,3人得4分,10人得5分,6人得6分,3人得7分,2人得8分,2人得9分,2人得10分.中位数为得分由小到大排列后第15,16个数(分别为5,6)的平均数,即m e=5+62=5.5;由于5出现次数最多,故m0=5;x¯=130×(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m0<m e<x¯.故选D.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 【答案】22.75【考点】频率分布直方图【解析】此题暂无解析【解答】解:根据颜率分布直方图,估计这批产品的平均长度为(12.5×0.02+17.5×0.04+22.5×0.08+27.5×0.03+32.5×0.03)×5=22.75(mm).故答案为:22.75.【答案】40【考点】茎叶图【解析】此题暂无解析【解答】解:由茎叶图,知甲加工零件个数的极差a=35−18=17,乙加工零件个数的平均数b=1×(10×3+20×4+30×3+17+11+2)=23,10则a+b=40.故答案为:40.【答案】0.25【考点】频率分布直方图【解析】此题暂无解析【解答】解:由频率分布直方图知前三组的频率之和为1−(0.0125+(0.0375)×5=0.75,=0.25.所以第二组的频率为0.75×21+2+3故答案为:0.25.【答案】③【考点】频率分布直方图【解析】此题暂无解析【解答】解:第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三组数据的频率为0.08×5=0.4,所以中位数在第三组内,设中位数为25+x,则x×0.08=0.5−0.1−0.3=0.1,解得x=1.25,所以所求中位数为26.25,①错误;最高矩形是第三个,又第三组数据的中间值为27.5,所以所求众数为27.5,②错误;样本中学生1分钟仰卧起坐的次数超过30的频率为0.04×5=0.2,则该校高一年级学生1分钟仰卧起坐的次数超过30的人数约为400×0.2=80,③正确;样本中学生1分钟仰卧起坐的次数少于20的频率为0.02×5=0.1,则该校高一年级学生1分钟仰卧起坐的次数少于20的人数约为400×0.1=40,④错误.故答案为:③.三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤)【答案】解:(1)如图所示,茎表示个位数,叶表示小数点后的数字.(2)中位数为7.0+7.32=7.15, 平均数x ¯=110×(6.2+7.0+7.6+5.9+6.7+7.3+6.5+8.1+7.8+7.9)=7.1,方差s 2=110×[(6.2−7.1)2+(7.0−7.1)2+(7.6−7.1)2+(5.9−7.1)2+(6.7−7.1)2+(7.3−7.1)2+(6.5−7.1)2+(8.1−7.1)2+(7.8−7.1)2+(7.9−7.1)2]=0.52.【考点】茎叶图众数、中位数、平均数【解析】此题暂无解析【解答】解:(1)如图所示,茎表示个位数,叶表示小数点后的数字.(2)中位数为7.0+7.32=7.15, 平均数x ¯=110×(6.2+7.0+7.6+5.9+6.7+7.3+6.5+8.1+7.8+7.9)=7.1,方差s 2=110×[(6.2−7.1)2+(7.0−7.1)2+(7.6−7.1)2+(5.9−7.1)2+(6.7−7.1)2+(7.3−7.1)2+(6.5−7.1)2+(8.1−7.1)2+(7.8−7.1)2+(7.9−7.1)2]=0.52.【答案】解:(1)由(0.006+0.008+a +0.026+0.038)×10=1,解得a =0.022.日销售量不低于95个的频率为(0.038+0.022+0.008)×10=0.68,30×0.68=20.4≈20,故一个月内日销售量不低于95个的天数约为20.(2)日销售量的平均数为x ¯=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100. 日销售量的方差为s 2=(−20)2×0.06+(−10)2×0.26+102×0.22+202×0.08=104,即日销售量的平均数的估计值为100,方差的估计值为104.【考点】频率分布直方图此题暂无解析【解答】解:(1)由(0.006+0.008+a+0.026+0.038)×10=1,解得a=0.022.日销售量不低于95个的频率为(0.038+0.022+0.008)×10=0.68,30×0.68=20.4≈20,故一个月内日销售量不低于95个的天数约为20.(2)日销售量的平均数为x¯=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.日销售量的方差为s2=(−20)2×0.06+(−10)2×0.26+102×0.22+202×0.08=104,即日销售量的平均数的估计值为100,方差的估计值为104.【答案】解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08,样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由图可估计该高校全体学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.【考点】随机抽样和样本估计总体的实际应用众数、中位数、平均数频率分布直方图【解析】此题暂无解析【解答】解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08,样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由图可估计该高校全体学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.解:总共抽取的人数为5%×1000=50,由甲组的条形图可知甲组人数为4+10+8+4+2+1+1=30,故乙组人数为20.因为按5%的比例对这1000名学生按时间安排类型进行分层抽样,所以被调查的1000名学生中,白天识记的学生人数为305%=600,晚上睡前识记的学生人数为400.40个音节的保持率不低于60%,即至少能准确回忆24个,其中白天识记的学生人数为130×600=20,晚上睡前识记的学生人数为(0.0625+0.0375)×4×400=160.所以这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数大约为20+160=180.【考点】古典概型及其概率计算公式频率分布直方图【解析】此题暂无解析【解答】解:总共抽取的人数为5%×1000=50,由甲组的条形图可知甲组人数为4+10+8+4+2+1+1=30,故乙组人数为20.因为按5%的比例对这1000名学生按时间安排类型进行分层抽样,所以被调查的1000名学生中,白天识记的学生人数为305%=600,晚上睡前识记的学生人数为400.40个音节的保持率不低于60%,即至少能准确回忆24个,其中白天识记的学生人数为130×600=20,晚上睡前识记的学生人数为(0.0625+0.0375)×4×400=160.所以这1000名被调查学生中识记结束8小时后40个音节的保持率不低于60%的人数大约为20+160=180.四、附加题(本大题共2小题,每小题10分,共20分.解答应写出文字说明、 证明过程或演算步骤)【答案】解:设第—组20名学生的成绩为x i (i =1,2,⋯,20),第二组20名学生的成绩为y i (i =1,2,⋯,20),依题意,有x ¯=90,y ¯=80,故全班学生的平均成绩为140(x 1+x 2+⋯+x 20+y 1+y 2+⋯+y 20) =140(90×20+80×20)=85.设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 12=120(x 12+x 22+⋯+x 202−20x ¯2), s 22=120(y 12+y 22+⋯+y 202−20y ¯2). 又设全班40名学生成绩的标准差为s ,则有s 2=140(x 12+x 22+⋯+x 202+y 12+y 22+⋯+y 202−40×852) =140(20s 12+20x ¯2+20s 22+20y ¯2−40×852) =12×(62+902+42+802−2×852)=51.即s =√51.所以全班学生成绩的平均数为85,标准差为√51.【考点】极差、方差与标准差【解析】此题暂无解析【解答】解:设第—组20名学生的成绩为x i (i =1,2,⋯,20),第二组20名学生的成绩为y i (i =1,2,⋯,20),依题意,有x ¯=90,y ¯=80,故全班学生的平均成绩为140(x 1+x 2+⋯+x 20+y 1+y 2+⋯+y 20) =140(90×20+80×20)=85.设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 12=120(x 12+x 22+⋯+x 202−20x ¯2), s 22=120(y 12+y 22+⋯+y 202−20y ¯2). 又设全班40名学生成绩的标准差为s ,则有s 2=140(x 12+x 22+⋯+x 202+y 12+y 22+⋯+y 202−40×852) =140(20s 12+20x ¯2+20s 22+20y ¯2−40×852) =12×(62+902+42+802−2×852)=51.即s =√51.所以全班学生成绩的平均数为85,标准差为√51.【答案】解:(1)由频率分布直方图,得市场需求量的众数的估计值是150. 需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15.则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100≤x<160时,y=50x−30×(160−x)=80x−4800,当160≤x≤200时,y=160×50=8000,所以y={80x−4800,100≤x<160 8000,160≤x≤200.(3)由80x−4800≥4800,解得x≥120.所以由(1)知利润不少于4800元的频率为1−0.1=0.9.【考点】离散型随机变量的期望与方差频率分布直方图众数、中位数、平均数【解析】此题暂无解析【解答】解:(1)由频率分布直方图,得市场需求量的众数的估计值是150.需求量为[100,120)的频率为0.005×20=0.1,需求量为[120,140)的频率为0.01×20=0.2,需求量为[140,160)的频率为0.015×20=0.3,需求量为[160,180)的频率为0.0125×20=0.25,需求量为[180,200]的频率为0.0075×20=0.15.则市场需求量的平均数约为110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153.(2)因为每售出1箱该特产获利50元,未售出的,每箱亏损30元,所以当100≤x<160时,y=50x−30×(160−x)=80x−4800,当160≤x≤200时,y=160×50=8000,所以y={80x−4800,100≤x<160 8000,160≤x≤200.(3)由80x−4800≥4800,解得x≥120.所以由(1)知利润不少于4800元的频率为1−0.1=0.9.。
第62讲 随机抽样与用样本估计总体达标检测学生版(1)
![第62讲 随机抽样与用样本估计总体达标检测学生版(1)](https://img.taocdn.com/s3/m/a67095f9185f312b3169a45177232f60ddcce7cd.png)
《随机抽样与用样本估计总体》达标检测[A组]一应知应会1. (2020春•合肥期末)某地区小学、初中、高中三个学段的学生人数分别为2400人,2000人,1200人, 现采用分层抽样的方法调查该地区中小学生的“智慧阅读”情况,在抽取的样本中,初中学生人数为35 人,则该样本中高中学生人数为()A. 21 人B. 42 人C. 64 人D. 98 人2. (2020春•海安市校级期中)一组数据90, 92, 99, 97, 96, X的众数是92,则这组数据的中位数是()A. 94B. 95C. 96D. 973. (2020・天津)从一批零件中抽取80个,测量其直径(单位:〃〃〃),将所得数据分为9组:[5.31,5.33), [5.33, 5.35),…,[5.45, 5.47), [5.47, 5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,A. 10B. 18C. 20D. 364. (2020春•烟台期末)某市从2017年秋季入学的高一学生起实施新高考改革,学生需要从物理、化学、生物、政治、历史、地理六门课中任选3门作为等级考科目.已知该市高中2017级全体学生中,81%选考物理或历史,39%选考物理,51%选考历史,则该市既选考物理又选考历史的学生数占全市学生总数的比例为()A. 9%.B. 19%C. 59%D. 69%5. (2020•新课标In)设一组样本数据Xi, X2,…,X“的方差为0.01,则数据IOXI, 10x2,…,104的方差为()A. 0.01B. 0.1C. 1D. 104 6. (2020・新课标ΠI)在一组样本数据中,1, 2, 3, 4出现的频率分别为pi, pz,p3, p,,且工闭=1,则下面四种情形中,对应样本的标准差最大的一组是()A. p∣=p4=0.1, P2=P3=O∙4B. pι=p4=0.4, p2=p3=O∙lC. PI=P4=0.2, p2=p3=O.3D. p∣=p4=0.3, p2=p3=O.27. (2020春♦平顶山期末)用样本估计总体的统计思想在我国古代数学名著《数书九章》中就有记载,其中有道“米谷粒分”题:粮仓开仓收粮,有人送来一批米,验得米内夹谷,抽样取米一把,数得250粒内夹谷25粒,若这批米内夹谷有160石,则这一批米约有()A. 600 石B. 800 石C. 1600 石D. 3200 石8. (2020春•黔南州期末)已知数据用,X2, X3, X4, X5的方差为5,则数据2xι - 3, 2x2-3, 2x3 - 3, 2x4 -3, 2x5-3的方差为()A. 10B. 15C. 17D. 209. (2020•碑林区校级模拟)2020年3月某省教研室组织了一场关于如何开展线上教学的大型调研活动,共收到有效问卷558982份,根据收集的教学类型得到统计数据如图:以上面统计数据为标准对线上学习的教学类型进行分析,下面说法正确的是()A.本次调研问卷的学生中采用纯直播教学形式进行学习的学生人数超过了30万B,线上利用了直播平台进行学习的学生比例超过了90%C.线上学习观看过录播视频的学生比例超过了40%D.线上学习使用过资源包的学生的比例不足25%10. (2020春•济宁期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标.常用区间[0, 10]内的一个数来表示,该数越接近10表示满意度越高.甲、乙两位同学分别随机抽取10位本地市民调查他们的幸福感指数,甲得到十位市民的幸福感指数为5, 6, 6, 7, 7, 7, 7, 8, 8, 9,乙得到十位市民的幸福感指数的平均数为8.方差为2.2,则这20位市民幸福感指数的方差为()A. 1.75B. 1.85C. 1.95D. 2.0511. (2020春•宣城期末)2020年4月24日下午,随着最后1例新冠肺炎重症患者治愈,武汉重症病例实现了清零,抗疫工作取得了阶段性重大胜利.某方舱医院从出院的新冠肺炎患者中随机抽取IOO 人,将 这些患者的治疗时间(都在[5, 30]天内)进行统计,制作出频率分布直方图如图所示,则估计该院新冠肺炎患者治疗时间的中位数是( ) 频率A. 16B. 17C. 18D. 19 12.(多选)(2020春•枣庄期末)在对某中学高一年级学生身高(单位:的)的调查中,随机抽取了男生 23人、女生27人,23名男生的平均数和方差分别为170和10.84, 27名女生的平均数和方整分别为160 和 28.84,则( )A.总样本中女生的身高数据比男生的高散程度小B.总样本的平均数大于164C.总样本的方差大于45D.总样本的标准差大于713.(多选)(2020春•厦门期末)对300名考生的数学竞赛成绩进行统计,得到如图所示的频率分布直方图.则 下列说法正确的是( )0.100.050.030.010 时间(天) 5 10 1520 25 30A. α=0.01B.成绩落在[80, 90)的考生人数最多C.成绩的中位数大于80D.成绩的平均分落在[70, 80)14. (2020春•开封期末)雷神山医院从开始设计到建成完工,历时仅十天.完工后,新华社记者要对部分参与人员采访.决定从300名机械车操控人员,160名管理人员和240名工人中按照分层抽样的方法抽取35人,则从工人中抽取的人数为.15. (2020•江苏)已知一组数据4, 2a, 3 - α, 5, 6的平均数为4,则。
2018届高考数学分类练习 第72练 用样本估计总体 含答案
![2018届高考数学分类练习 第72练 用样本估计总体 含答案](https://img.taocdn.com/s3/m/94dfc015581b6bd97f19ea57.png)
一、选择题1.对于一组数据x i (i =1,2,3,…,n),如果将它们改变为x i +C(i =1,2,3,…,n),其中C ≠0,则下列结论正确的是( )A .平均数与方差均不变B .平均数变,方差保持不变C .平均数不变,方差变D .平均数与方差均发生变化2.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x甲,x 乙,则下列判断正确的是( )A.x甲>x 乙;甲比乙成绩稳定B.x 甲>x 乙;乙比甲成绩稳定C.x 甲<x 乙;甲比乙成绩稳定D.x甲<x乙;乙比甲成绩稳定3.容量为100的样本数据,按从小到大的顺序分为8组,如下表:89第三组的频数和频率分别是( ) A .14和0.14 B .0.14和14 C.114和0.14 D.13和1144.(2016·全国丙卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个5.某班级统计一次数学测试后的成绩,并制成了如下的频率分布表,根据该表估计该班级的数学测试平均分为( )A.80 B.81C.82 D.836.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8。
高中数学必修二 9 2 用样本估计总体(精讲)(含答案)
![高中数学必修二 9 2 用样本估计总体(精讲)(含答案)](https://img.taocdn.com/s3/m/87349efa85254b35eefdc8d376eeaeaad1f31637.png)
9.2 用样本估计总体(精讲)考法一总体取值规律的估计【例1】(2021·全国高一课时练习)某市2020年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,空间质量为良;在101~150之间时,空间质量为轻微污染;在151~200之间时,空间质量为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.【答案】(1)频率分布表见解析;(2)频率分布直方图见解析;(3)该市空气质量有待进一步改善.【解析】(1)频率分布表(2)频率分布直方图(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的1 15;有26天处于良的水平,占当月天数的13 15;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.【一隅三反】1.(2020·全国高一单元测试)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:用户用水量频数直方图用户用水量扇形统计图(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格.【答案】(1)答案见解析;(2)答案见解析,79.2°;(3)4.08万户.【解析】(1)1010%100÷=;(2)用水15~20吨的户数为100-10-36-24-8=22(户),“15~20吨”部分的圆心角的度数为22 36079.2100︒⨯=︒(3)1022366 4.08100++⨯=(万户)所以该地区6万用户中约有4.08万户的用水全部享受基本价格.2.(2020·全国高一单元测试)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数. 【答案】(1)M =40,0.075p =,0.125a =;(2)90人. 【解析】(1)由[10,15)内的频数是10,频率是0.25知,100.25M=,所以M =40. 因为频数之和为40,所以10+25+m +2=40,m =3.330.07540p M ===. 因为a 是对应分组[15,20)的频率与组距的商,所以250.125405a ==⨯. (2)因为该校高一学生有360人,分组[10,15)内的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为3600.25⨯=90人.3.(2021·北京丰台区)为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW ·h 至350kW ·h 之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW ·h 的户数;(III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW ·h )的建议,并简要说明理由. 【答案】(I )0.006;(Ⅱ)18;(III )245.5 kW ·h.【解析】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW ·h ”的频率为()0.00240.0012500.18+⨯=, 所以用电量大于250kW ·h 的户数为:1000.1818⨯=, 故用电量大于250kW ·h 有18户;(3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW ·h.故第一档用电标准为245.5 kW ·h.4.(2021·陕西咸阳市)某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.【答案】(Ⅰ)0.02;(Ⅱ)10800元. 【解析】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为: ()0.040.025309+⨯⨯=(天), 一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.考法二 总体百分数的估计【例2】(2020·天津和平区)已知一组数据为4,5,67,8,8,,第40百分位数是( ) A .8 B .7C .6D .5【答案】C【解析】因为有6位数,所以640 2.4⨯=%,所以第40百分位数是第三个数6.故选:C 【一隅三反】1.(2020·山东菏泽市·高一期末)数据1,2,3,4,5,6的60%分位数为( ) A .3 B .3.5C .3.6D .4【答案】D【解析】由6⨯60%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D2.(2021·山东高一期末)已知从某中学高一年级随机抽取20名女生,测量她们的身高(单位:cm ),把这20名同学的身高数据从小到大排序:148.0 149.0 150.0 152.0 154.0 154.0 155.0 155.5 157.0 157.0 158.0 159.0 161.0 162.0 163.0 164.0 165.0 170.0 171.0 172.0 则这组数据的第75百分位数是( ) A .163.0 B .164.0C .163.5D .164.5【答案】A【解析】因为这组数据从小到大已排序,所以这组数据的第75百分位数为第200.7515⨯=个数,即为163.0故选:A3.(2020·山东滨州市·高一期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( ) A .7 B .7.5C .8D .9【答案】C【解析】该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=,故选:C.考法三 总体集中趋势的估计【例3】(2021·湖北荆州市)因受新冠疫情的影响,某企业的产品销售面临困难.为了改变现状,该企业欲借助电商和“网红”直播带货扩大销售.受网红效应的影响,产品销售取得了较好的效果.现将该企业一段时间内网上销售的日销售额统计整理后绘制成如下图所示的频率分布直方图:请根据图中所给数据,求: (1)实数a 的值;(2)该企业网上销售日销售额的众数和中位数; (3)该企业在统计时间段内网上销售日销售额的平均数. 【答案】(1)0.012;(2)55万元,57万元;(3)57.4万元. 【解析】(1)由频率分布直方图知:(0.0080.0160.0200.0180.0100.0042)101a ++++++⨯=,解得:0.012a =;(2)用频率分布直方图中最高矩形所在区间的中点值作为众数的近似值,得众数为55万元;因为第一个小矩形的面积为0.08,第二个小矩形的面积为0.12, 第三个小矩形的面积为0.16,0.080.120.160.36++=,设第四个小矩形中底边的一部分长为x ,则0.0200.50.36x ⨯=-,解得7x =, 所以中位数为50757+=万元; (3)依题意,日销售额的平均值为:250.08350.12450.16550.20650.18750.12850.10950.0457.4⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=所以该企业在统计时间段内网上销售日销售额的平均数为57.4万元. 【一隅三反】1.(2020·定边县第四中学高一期末)如图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:(Ⅰ)79.5-89.5这一组的频数、频率分别是多少? (Ⅱ)估计这次数学竞赛的平均成绩是多少?(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格). 【答案】(Ⅰ)15;0.25;(Ⅱ)70.5;(Ⅲ)75%. 【解析】(Ⅰ)79.589.5这一组的频率为0.025100.25⨯=,79.589.5这一组的频数为600.2515⨯=;(Ⅱ)估计这次数学竞赛的平均成绩是:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.故估计这次数学竞赛的平均成绩是70.5.(Ⅲ)估计这次环保知识竞赛的及格率(60分及以上为及格)()10.010.0151075%P =-+⨯=. 2.(2021·河北唐山市·开滦第一中学高一期末)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[)[)[]40,50,50,60,,90,100⋯后画出如下频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的众数m 与中位数n (结果保留一位小数); (2)估计这次考试的优秀率(80分及以上为及格)和平均分. 【答案】(1)75m =,73.3n =;(2)优秀率30%,平均分71分. 【解析】(1)众数是最高小矩形中点的横坐标,所以众数为75m =(分)前三个小矩形面积为0.01100.015100.015100.4⨯+⨯+⨯=, ∵中位数要平分直方图的面积, ∴0.50.47073.30.03n -=+=.(2)依题意,80及以上的分数所在的第五、六组, 频率和为 ()0.0250.005100.3+⨯=, 所以,抽样学生成绩的合格率是30%, 利用组中值估算抽样学生的平均分:450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=,估计这次考试的平均分是71分.3.(2021·吉林市)某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x 的值;并估计出月平均用水量的众数. (2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【答案】(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【解析】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为(0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5,解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯=(3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++, ∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 考点四 总体离散程度的估计【例4】(2021·山东威海市·高一期末)如图所示的四组数据,标准差最小的是( )A .B .C .D .【答案】A【解析】对A ,()12106206302402516x =⨯+⨯+⨯+⨯=,s == 对B ,()16102202306402516x =⨯+⨯+⨯+⨯=,s == 对C ,()13105205303402516x =⨯+⨯+⨯+⨯=,10s ==, 对D ,()15103203305402516x =⨯+⨯+⨯+⨯=,s == 所以标准差最小的是A.故选:A.【一隅三反】1.(2020·全国高一)已知数据12,,,n x x x 的平均数为x ,方差为2s ,则123x +,223x +,…,23n x +的平均数和方差分别为( )A .x 和2sB .23x +和24sC .23x +和2sD .23x +和24129s s ++ 【答案】B【解析】因为数据12,,,n x x x 的平均数为x ,方差为2s ,所以123x +,223x +,…,23n x +的平均数和方差分别为23x +和24s故选:B2.(2020·安徽蚌埠市·蚌埠二中高一月考)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是( )A .17.2,3.6B .54.8,3.6C .17.2,0.4D .54.8,0.4 【答案】C【解析】设一组数据为i x (1,2,3,,)i n =,平均数为x ,方差为21s ,所得一组新数据为i y (1,2,3,,)i n =,平均数为y ,方差为22s ,则350i i y x =-(1,2,3,,)i n =,12 1.6n y y y y n +++==, 所以123503503501.6n x x x n -+-++-=, 所以350 1.6x -=,所以51.617.23x ==, 由题意得22222121()()() 3.6n s y y y y y y n ⎡⎤=-+-++-=⎣⎦, 所以222121(350 1.6)(350 1.6)(350 1.6) 3.6n x x x n⎡⎤--+--++--=⎣⎦, 所以2221219(17.2)(17.2)(17.2) 3.6n x x x n ⎡⎤⨯-+-++-=⎣⎦ 所以2221219()()() 3.6n x x x x x x n⎡⎤⨯-+-++-=⎣⎦, 所以219 3.6s =,所以210.4s =.故选:C.3.(2020·唐山市第十一中学)已知样本数据由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a ,b 的值分别为( ).A .10,11B .10.5,9.5C .10.4,10.6D .10.5,10.5 【答案】D【解析】由于样本共有10个值,且中间两个数为a ,b ,依题意,得10.52a b +=,即21b a =-. 因为平均数为23371213.718.320101()0a b +++++++++÷=,所以要使该样本的方差最小,只需()()221010a b -+-最小.又()()()()222221010102110242221a b a a a a -+-=-+--=-+, 所以当4210.522a -=-=⨯时,()()221010a b -+-最小,此时10.5b =. 故选:D4.(2021·合肥市第六中学=)为了测试小班教学的实践效果,刘老师对A 、B 两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A 、B 两班学生的平均成绩分别为A x ,B x ,A 、B 两班学生成绩的方差分别为2A s ,2B s ,则观察茎叶图可知( )A .AB x x <,22A B s s < B .A B x x >,22A B s s <C .A B x x <,22A B s s >D .A B x x >,22A B s s >【答案】B【解析】根据茎叶图中数据的分布可得,A 班学生的分数多集中在[]70,80之间, B 班学生的分数集中在[]50,70 之间,所以A B x x >.相对两个班级的成绩分布来说,A 班学生的分数更加集中,B 班学生的分数更加离散,所以22A B s s <.故选:B。
高中数学必修第二册用样本估计总体练习题(平均数、方差、众数、百分位数等)
![高中数学必修第二册用样本估计总体练习题(平均数、方差、众数、百分位数等)](https://img.taocdn.com/s3/m/5fd768212cc58bd63086bda6.png)
用样本估计总体(平均数、众数、方差、百分位数等)一、单选题1.甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示.则甲、乙、丙三人训练成绩方差S甲2,S乙2,S丙2的大小关系是()A. S丙2<S乙2<S甲2B. S丙2<S甲2<S乙2C. S乙2<S丙2<S甲2D. S乙2<S甲2<S丙22.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花的纤维长度(棉花的纤维长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.估计棉花的纤维长度的样本数据的80%分位数是()A. 28mmB. 28.5mmC. 29mmD. 29.5mm3.某校为了解高三年级学生在线学习情况,统计了2020年4月18日∼27日(共10天)学生在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.根据组合图判断,下列结论正确的是()A. 这10天学生在线学习人数的增长比例在逐日减小B. 前5天在线学习人数的方差大于后5天在线学习人数的方差C. 这10天学生在线学习人数在逐日增加D. 前5天在线学习人数增长比例的极差大于后5天在线学习人数增长比例的极差4.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差的平方是这组数据的方差C. 数据2,3,4,5的方差是数据4,6,8,10的方差的一半D. 频率分布直方图中各小矩形的面积等于相应各组的频数5.为促进精准扶贫,某县计划引进一批果树树苗免费提供给贫困户种植.为了解果树树苗的生长情况,现从甲、乙两个品种中各随机抽取了100株,进行高度测量,并将高度数据制作成了如图所示的频率分布直方图.由频率分布直方图求得甲、乙两个品种高度的平均值都是66.5,用样本估计总体,则下列描述正确的是()A. 甲品种的平均高度高于乙品种,且乙品种比甲品种长的整齐B. 乙品种的平均高度高于甲品种,且甲品种比乙品种长的整齐C. 甲、乙品种的平均高度差不多,且甲品种比乙品种长的整齐D. 甲、乙品种的平均高度差不多,且乙品种比甲品种长的整齐6.从某中学抽取10名同学,他们的数学成绩如下:82,85,88,90,92,92,92,96,96,98(单位:分),则这10名同学数学成绩的众数、第25百分位数分别为()A. 92,85B. 92,88C. 95,88D. 96,857.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数3x1−2,3x2−2,3x3−2,3x4−2,3x5−2的平均数,方差分别是()A. 2,13B. 2,1 C. 4,3 D. 4,238.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:甲乙丙丁平均环数x8.68.98.98.2方差s2 3.5 3.5 2.1 5.6从这四人中选择一人参加奥运会射击项目比赛,最佳人选是()A. 甲B. 乙C. 丙D. 丁9.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则()A. x A>x B,s A>s BB. x A<x B,s A<s BC. x A>x B,s A<s BD. x A<x B,s A>s B10.某工厂的机器上有一种易损元件,这种元件发生损坏时,需要及时维修.现有甲、乙两名工人同时从事这项工作,下表记录了某月1日到10日甲、乙两名工人分别维修这种元件的件数.日期1日2日3日4日5日6日7日8日9日10日甲3546463784乙4745545547由于甲、乙的任务量大,拟增加工人,为使增加工人后平均每人每天维修的元件不超过3件,请利用上表数据估计最少需要增加工人的人数为()A. 2B. 3C. 4D. 5二、多选题(本大题共2小题,共10.0分)11.某赛季甲乙两名篮球运动员各6场比赛得分情况如表:场次123456甲得分31162434189乙得分232132113510则下列说法正确的是()A. 甲运动员得分的极差小于乙运动员得分的极差B. 甲运动员得分的中位数小于乙运动员得分的中位数C. 甲运动员得分的平均值大于乙运动员得分的平均值D. 甲运动员的成绩比乙运动员的成绩稳定12.一组样本数据的频率分布直方图如图所示,每组数据取中间值为代表,则下列说法正确的是()A. 此样本数据的中位数估计值为12B. 此样本数据的众数估计值为12C. 此样本数据的均值估计值为11.52D. 若将样本数据中每个数扩大1倍,则数据的方差也扩大1倍第II卷(非选择题)三、单空题13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速的众数、中位数的估计值分别为.14.某学校组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则60分为成绩的第百分位数.15.为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,图是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.四、多空题16.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)年龄组[25,30)对应小长方形的高度为;(2)由频率分布直方图估计这800名志愿者年龄的85%分位数为岁.(精确到0.01)五、解答题17.某市为了了解人们对“中国梦”的伟大构想的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了x人,按年龄分成5组(第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45]),得到如图所示的频率分布直方图,已知第一组有5人.(1)求x;(2)求抽取的x人的年龄的50%分位数(结果保留整数);(3)以下是参赛的10人的成绩:90,96,97,95,92,92,98,88,96,99,求这10人成绩的20%分位数和平均数,以这两个数据为依据,评价参赛人员对“一带一路”的认知程度,并谈谈你的感想.18.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.(3)根据(2)中求得的数据计算用电量的75%分位数.19.某校研究性学习课题小组为了了解某市工薪阶层的工资水平,从该市工薪阶层中随机调查了50位市民,调查结果如下表.(1)完成下图的月收入频率分布直方图(注意填写纵坐标);(2)估计该市市民月收入的第25和70百分位数.20.起源于汉代的“踢键子”运动,虽有两千多年历史,但由于简便易行,至今仍很流行.某校为丰富课外活动、增强学生体质,在高一年级进行了“踢键子”比赛,以学生每分钟踢毯子的个数记录分值,一个记一分.参赛学生踢键子的分值均在40∼100分之间,从中随机抽取了100个样本学生踢键子的成绩进行统计分析,绘制了如图所示的频率分布直方图,并称得分在80∼90之间为“踢毽健将”,90分以上为“踢建达人”.(1)求样本的平均值x(同一组数据用该区间的中点值代替);(2)求下列数据的四分位数.13,15,12,27,22,24,28,30,31,18,19,20.(3)求上述数据的40百分位数。
2016年秋季新版冀教版九年级数学上学期23.4、用样本估计总体同步练习2
![2016年秋季新版冀教版九年级数学上学期23.4、用样本估计总体同步练习2](https://img.taocdn.com/s3/m/f8a641eef61fb7360b4c6579.png)
23.4 用样本估计总体习题课1、随机抽样的三种方法是、、2、在简单随机抽样中,常用的两种办法是、3、画频率分布直方图的步骤是:4、茎叶图的两个优点是:(1)(2)课内探究一:用样本的平均数估计总体的平均数【例1】从一种棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352计算这25根棉花的纤维的平均长度,并估计这种棉花的纤维的平均长度?问题一:计算数据的平均数有没有较为简便的方法?跟踪训练:上图是CBA篮球联赛中,甲乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的运动员是________.课内探究二:用样本的标准差估计总体的标准差【例2】在一次跳远选拔比赛中,甲、乙两名运动员各进行了10次测试,成绩用样本估计总体习题课第1 页共2 页如下:甲运动员﹕5.85 5.93 6.07 5.91 5.99 6.13 5.89 6.05 6.00 6.19;乙运动员﹕6.11 6.08 5.83 5.92 5.84 5.81 6.18 6.17 5.85 6.21;观察上述样本数据,如果你是教练,选哪位选手去参加正式比赛?为什么?跟踪训练:1、甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽取6件进行测量,测得数据如下(单位:mm):甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求.2、某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91.复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是________.。
5.1.4用样本估计总体(原卷版)
![5.1.4用样本估计总体(原卷版)](https://img.taocdn.com/s3/m/240f254f91c69ec3d5bbfd0a79563c1ec5dad7ac.png)
频数
频率
10
24
2
合计
1
(1)写出表中 、 及图中 的值(不需过程);
(2)若该校高三年级学生有240人,试估计该校高三年级学生参加社区服务的次数在区间 上的人数;
(3)估计该校高三年级学生参加社区服务次数的中位数.(结果精确到0.01)
【变式11】4.(2023·高一课时练习)某校240名学生参加某次数学选择题测验(共10题每题1分),随机调查了20个学生的成绩如下:
A.a的值为0.005
B.估计这组数据的众数为75
C.估计这组数据的第85百分位数为86
D.估计成绩低于60分的有25人
【变式13】3.(2022·安徽·涡阳县第九中学高一期末)某县在创文明县城期间安排了“垃圾分类知识普及实践活动”.为了解市民的学习成果,该县从某社区随机抽取了160名市民作为样本进行测试,记录他们的成绩,测试卷满分为100分,将数据收集,并整理得到频率分布直方图,如图所示:
(1)求频率分布直方图中a的值;
(2)估计该100名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);
(3)该俱乐部计划招募成绩位列前10%的滑雪爱好者组成集训队备战明年的滑雪俱乐部联盟赛,请根据图中信息,估计集训队入围成绩(记为k).
【变式21】3.(2023下·湖南益阳·高一统考期末)某校有高一学生1000人,其中男生 600人,女生 400人,为了解该校全体高一学生的身高信息,甲与乙分别进行了调查.
成绩
1分
2分
3分
4分
5分
6分
7分
8分
9分
10分
人数
6
0
0
2
4
2
秋九年级数学上册 23.4 用样本估计总体作业 (新版)冀教版-(新版)冀教版初中九年级上册数学试题
![秋九年级数学上册 23.4 用样本估计总体作业 (新版)冀教版-(新版)冀教版初中九年级上册数学试题](https://img.taocdn.com/s3/m/e7e3ea0b7c1cfad6185fa70c.png)
23.4用样本估计总体一、选择题1.%,请估计某某地区1000斤蚕豆种子中不能发芽的有( )A.971斤 B.129斤斤 D.29斤2.[2017·某某]为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有的2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生的人数约为( )A.70 B.720 C.1680 D.23703.[2017·某某期末]积极行动起来,共建节约型社会!我市某居民小区400户居民参加了节水行动,现统计了10户家庭一个月的节水情况,有关数据整理如下表:估计该小区400户家庭这个月节约用水的总量是( )A.360吨 B.400吨C.480吨 D.720吨4.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是( ) A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的中位数就越大D.样本容量越大,对总体的估计就越准确二、填空题5.如图6-K-1,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图.若该校共有学生700人,则据此估计步行的有________人.图6-K-16.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量约为________只.7.某校在九年级的一次模拟考试中,随机抽取了40名学生的数学成绩进行分析,其中有10名学生的成绩达到108分及以上,据此估计该校九年级640名学生中这次模拟考试数学成绩达到108分及以上的有________名.8.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A,B,C三个级别,其中A级30棵,B级60棵,C级10棵,然后从A,B,C三个级别的苹果树中分别随机抽取了3棵,6棵,1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是________千克.三、解答题9.某鱼塘放养鱼苗10万条,根据这几年的经验知道鱼苗成活率为95%,一段时间后打捞出售,第一次捞出40条,,第二次捞出25条,,第三次捞出35条,,请你估计鱼塘中的鱼总质量大约是多少千克.10.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制成如下统计图表:身高情况分组表(单位:cm)图6-K-2根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在________组,中位数在________组;(2)样本中,女生身高在E组的人数为________;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生有多少人.11甲、乙两名工人同时加工同一种零件,现根据两人7天的产品中每天出现的次品数情况绘制成如下不完整的统计图(如图6-K-3)和统计表,依据图表信息,解答下列问题:图6-K-3相关统计量表次品数量统计表(单位:件)(1)补全统计图、表;(2)判断谁出现次品的波动小;(3)估计乙加工该种零件30天出现次品多少件.1.D [解析] 由题意,%)=1000×=29(斤).故选D.2.C [解析] ∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数为100-30=70,∴全校持“赞成”意见的学生人数约为2400×70100=1680(名).故选C.3.C [解析] 根据10户家庭一个月的节水情况可得,平均每户节水:(0.5×2+1×3+1.5×4+2×1)÷(2+3+4+1)=1.2(吨),∴400户家庭这个月节约用水的总量是400×1.2=480(吨).故选C.4. D5.2806.14000 [解答] 110×(6+5+7+8+7+5+8+10+5+9)×2000=14000(只).7.1608.7600 [解析] 根据题意,得平均每一棵苹果树的产量为80×3+75×6+70×13+6+1=76(千克),所以该果园的苹果总产量为76×100=7600(千克).9.解:由题意,可得(40×2.5+25×2.2+35×)÷(40+25+35)=2.53(千克),故100000×95%×=240350(千克).答:鱼塘中的鱼总质量大约是240350千克.10.解:(1)∵B组的频数为12,是最多的,∴众数在B组.男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20,21个数据都在C组,∴中位数在C组.(2)女生身高在E 组的人数占总人数的百分比为%-37.5%-25%-15%=5%. ∵抽取的样本中,男生、女生的人数相同, ∴样本中女生身高在E 组的人数为40×5%=2.(3)400×10+840+380×(25%+15%)=180+152=332(人).答:该校身高在160≤x<170之间的学生约有332人.11 解:(1)从次品数量统计表可以看出甲工人每天的次品数中2件出现了3次,出现的次数最多,故众数是2件.把甲工人每天的次品数按从小到大的顺序排列为(单位:件)0,1,2,2,2,3,4,最中间的数是2件,故中位数是2件.由于乙每天的次品数的平均数是1,所以乙工人第7天出现的次品有1×7-1-0-2-1-1-0=2(件).填表和补图如下.相关统计量表次品数量统计表(单位:件)(2)∵s 甲2=107,s 乙2=47,∴s 甲2>s 乙2,∴乙出现次品的波动小. (3)∵乙的平均数是1件, ∴1×30=30(件).答:估计乙加工该种零件30天出现次品30件.。
湘教版九年级上册数学第五章 用样本推断总体 单元测试题(有答案)
![湘教版九年级上册数学第五章 用样本推断总体 单元测试题(有答案)](https://img.taocdn.com/s3/m/fe8270c76294dd88d0d26b7b.png)
湘教版九年级数学上册第五章用样本推断总体单元评估检测试卷一、单选题(共10题;共30分)1.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A. 条形统计图B. 折线统计图C. 扇形统计图D. 条形统计图、扇形统计图均可2.(2017•德州)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A. 平均数B. 方差C. 众数D. 中位数3.小宁同学根据全班同学的血型绘制了如图所示的扇形统计图,该班血型为A型的有20人,那么该班血型为AB型的人数为()A. 2人B. 5人C. 8人D. 10人4.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况。
下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图。
请你根据图中提供的信息,若全校共有990名学生,估计这所学校有知道母亲的生日的学生有()名。
A. 440B. 495C. 550D. 6605.下列说法中,正确的是()A. —个游戏中奖的概率是,则做10次这样的游戏一定会中奖B. 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C. 一组数据8,8,7,10,6,8,9的众数是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有名学生中随机征求了名学生的意见,其中持“反对”和“无所谓”意见的共有名学生,估计全校持“赞成”意见的学生人数约为()A. B. C. D.7.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A. 1120B. 400C. 280D. 808.为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有()个白球.A. 10B. 20C. 100D. 1219.某市社会调查队对城区内一个社区居民的家庭经济状况进行调查。
高中数学必修二 9 2 用样本估计总体-同步培优专练
![高中数学必修二 9 2 用样本估计总体-同步培优专练](https://img.taocdn.com/s3/m/8203e1f3cf2f0066f5335a8102d276a20029607c.png)
专题9.2 用样本估计总体知识储备1.数据的最值、平均数、中位数、百分位数、众数4.频数(率)分布直方图5.用样本的数字特征估计总体的数字特征一般情况下,如果样本的容量恰当,抽样方法又合理的话,样本的特征能够反映总体的特征.特别地,样本平均数(也称为样本均值)、方差(也称为样本方差)与总体对应的值相差不会太大.在容许一定误差存在的前提下,可以用样本的数字特征去估计总体的数字特征,这样就能节省人力和物力等.所以,在估计总体的数字特征时,只需直接算出样本对应的数字特征即可.6.分层抽样的均值与方差以分两层抽样的情况为例.假设第一层有m个数,分别为x1,x2,…,x m,平均数为x,方差为s2;第二层有n个数,分别为y1,y2,…,y n,平均数为y,方差为t2.则x=m 11i m =∑x i ,s 2=11m i m =∑(x i -x )2,y =11nii y n=∑,t 2=211()nii y y n=-∑.如果记样本均值为a ,样本方差为b 2,则可以算出a=1m n +(1m i =∑x i +1ni =∑y i )=mx ny m n ++, b 2=2222[()][()]m s x a n t y a m n +-++-+=1m n+222()()mn ms nt x y m n ⎡⎤++-⎢⎥+⎣⎦. 7.常用结论1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k 的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.4.频率分布直方图与众数、中位数与平均数的关系 (1)最高的小长方形底边中点的横坐标即是众数. (2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.(2020·河北高二学业考试)为了解全年级1180名学生的数学成绩分布情况,在一次数学调研测试后,某教师随机抽取了80份试卷并对试卷得分(满分:150分)进行了整理,得到如下频率分布表:若同一组数据用该区间的中点值作代表,则此次数学测试全年级平均分的估计值是( ). A .110 B .108. 5C .105D .102. 5【答案】B【解析】由题意可得,此次数学测试全年级平均分的估计值是650.025750.050850.100950.1251050.2501150.200⨯+⨯+⨯+⨯+⨯+⨯ 1250.1001350.0751450.075108. 5+⨯+⨯+⨯=.故选:B.2.(2020·广东广州市·高三月考)某学校鼓励学生参加社区服务,学生甲2019年每月参加社区服务的时长(单位:小时)分别为1x ,2x ,…,12x ,其均值和方差分别为x 和2s ,若2020年甲每月参加社区服务的时长增加1小时,则2020年甲参加社区服务时长的均值和方差分别为( ) A .x ,2s B .1x +,21s +C .x ,21s +D .1x +,2s【答案】D【解析】由题意可知12121()12x x x x =++⋅⋅⋅+,222121221[()()()]12s x x x x x x =-+-+⋅⋅⋅+-, 设2020年甲参加社区服务时长的均值和方差分别为'x ,'2s ,则'1212121211[(1)(1)(1)][()12]11212x x x x x x x x =++++⋅⋅⋅++=++⋅⋅⋅++=+, '222212121[(11)(11)(11)]12x x x x x x s =+--++--+⋅⋅⋅++--22212121[()()()]12x x x x x x =-+-+⋅⋅⋅+-2s =故选:D 3.(2020·湖北十堰市·高二期中)如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.6,则,x y 的值分别A .58、B .57、C .78、D .7、7【答案】D 【解析】组数据的中位数为17,7x ∴=,乙组数据的平均数为17.4,()191616102917.45y ∴+++++=, 得8087y +=,则7y =,故选:D .4.(2020·湖北高三学业考试)棉花的纤维长度是棉花质量的重要指标.在一批棉花中随机抽测了50根棉花的纤维长度(单位:mm),其频率分布直方图如图所示.根据频率分布直方图,估计事件“棉花的纤维长度大于275mm”的概率为( )A .0.30B .0.48C .0.52D .0.70【答案】C 【解析】“棉花的纤维长度大于275mm”的概率为500.0040500.0064⨯+⨯0.52=.故选:C5.(2020·湖北高三学业考试)为做好精准扶贫工作,需关注贫困户的年收入情况.经统计,某贫困户近5年的年收分别为1a ,2a ,3a ,4a ,5a .下面给出的指标可以用来评估该贫困户年收入的稳定A .1a ,2a ,3a ,4a ,5a 的平均数B .1a ,2a ,3a ,4a ,5a 的标准差C .1a ,2a ,3a ,4a ,5a 的最大值D .1a ,2a ,3a ,4a ,5a 的中位数【答案】B【解析】标准差反映了各数据对平均数的偏离, 反映了一组数据的离散程度,在本题中即稳定程度, 而其他的统计量则不能反映稳定程度,故选:B6.(2020·全国高三专题练习)中国传统文化是中华民族智慧的结晶,是中华民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,列表如下:以下四个结论中正确的是( ). A .表中m 的数值为10B .估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C .估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D .若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50的样本,则分段间隔为25 【答案】C【解析】A 选项,由题意可得,8%10%20%26%18%%4%2%1m +++++++=, 则12m =;故A 错;B 选项,由题意可得,样本中该校高一学生参加传统文化活动次数不高于2场的学生占比为8%12%20%+=,则该校高一学生参加传统文化活动次数不高于2场的学生约为100020%200⨯=人;故B 错; C 选项,由题意,样本中该校高一学生参加传统文化活动次数不低于4场的学生占比为18%12%4%2%36%,则该校高一学生参加传统文化活动次数不低于4场的学生约为360人;故C 正确;D 选项,从若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50的样本,则分段间隔为10002050=;故D 错.故选:C. 7.(2020·山东临沂市·高一期末)某工厂12名工人的保底月薪如下表所示,第80百分位是( )A .3050B .2950C .3130D .3325【答案】A【解析】把这组数据从小到大排序:2710,2755,2850,2860,2880,2890,2920,2940,2950,3050,3130,3325, 所以%1280%9.6i n p =⨯=⨯=,所以第80百分位是3050,故选:A.8.(2020·黑龙江大庆市·大庆实验中学高二月考(文))在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A .甲地:总体平均值为3,中位数为4B .乙地:总体平均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为2 【答案】D【解析】不妨通过构造特殊值法进行判断,对于甲地:0,0,0,0,4,4,4,4,4,10符合条件,但其第10天新增疑似病例超过7人,故不符合题意;对于乙地:0,0,0,0,0,0,0,0,10符合条件,但其第10天新增疑似病例超过7人,故不符合题意;对于丙地,0,0,1,1,2 ,2,3,3,3,10符合条件,但其第10天新增疑似病例超过7人,故不符合题意;对于丁地,当总体平均数是2时,若有一个数据超过7,则方差就超过了2,符合题意,因此,一定没有发生大规模群体感染的是丁地.故选:D.二、多选题9.(2020·河北沧州市·高二期中)甲、乙两名射击运动员在某次测试中各射击20次,两人测试成绩的条形图如图所示,则()A.甲运动员测试成绩的中位数等于乙运动员测试成绩的中位数B.甲运动员测试成绩的众数大于乙运动员测试成绩的众数C.甲运动员测试成绩的平均数大于乙运动员测试成绩的平均数D.甲运动员测试成绩的方差小于乙运动员测试成绩的方差【答案】AD【解析】由图可得甲运动员测试成绩中3次7环,8次8环,5次9环,4次10环,所以甲运动员测试成绩的中位数为8,众数为8,平均数为3788594108.520⨯+⨯+⨯+⨯=,方差2222(78.5)3(88.5)8(98.5)5(108.5)4192020 -⨯+-⨯+-⨯+-⨯=;乙运动员测试成绩中4次7环,7次8环,4次9环,5次10环,所以乙运动员测试成绩的中位数为8,众数为8,平均数为4778495108.520⨯+⨯+⨯+⨯=,方差2222(78.5)4(88.5)7(98.5)4(108.5)5232020 -⨯+-⨯+-⨯+-⨯=,故选项A正确,B不正确,C不正确,D正确,故选:AD10.(2020·河北巨鹿中学高二月考)2020年3月6日,在新加坡举行的世界大学生辩论赛中,中国选手以总分230.51分获得冠军.辩论赛有7位评委进行评分,首先这7位评委给出某对选手的原始分数,评定该队选手的成绩时从7个原始成绩中去掉一个最高分、一个最低分,得到5个有效评分,则5个有效评分与7个原始评分相比,可能变化的数字特征是( ) A .中位数 B .平均数C .方差D .极差【答案】BCD【解析】因为5个有效评分是7个原始评分中去掉一个最高分、一个最低分, 所以中位数不变,平均数、方差、极差可能发生变化, 所以可能变化的数字特征是平均数、方差、极差.故选:BCD.11.(2020·湖南省汨罗市第二中学高三开学考试)气象意义上从春季入夏季的标志为:“连续5天的日平均温度均不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为24,众数为22; ②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8. 则肯定进入夏季的地区有( ) A .①②③ B .②C .③D .①【答案】CD【解析】由统计知识,①甲地:5个数据的中位数为24,众数为22,5个数据中2个是22,有2个大于24,一个是24,可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24,有可能某一天的气温低于22℃,所以不符合题意;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若有某一天的气温低于22℃,则总体方差就大于10.8,所以满足题意,故选:CD. 12.(2020·南京航空航天大学附属高级中学高二开学考试)已知一组数据1x ,2x ,3x ,4x ,5x 的平均数和方差均为2,则下列叙述正确的有( ) A .11x +,21x +,31x +,41x +,51x +的平均数为3 B .11x +,21x +,31x +,41x +,51x +的方差为3 C .12x ,22x ,32x ,42x ,52x 的方差为4D .122x +,222x +,322x +,422x +,522x +的方差为8 【答案】AD【解析】对,A B 选项,将每个数据在原基础上加1,故平均数加1,但是方差保持不变,故其平均数是3,方差是2;故A 正确;B 错误;对C ,将每个数据乘以2,故其方差变为原来的4倍,即为8,故C 错误; 对D ,将每个数据乘以2再加2,故其方差也变为原来的4倍,即为8,故D 正确. 故选:AD . 三、填空题13.(2020·贵溪市实验中学高三月考)甲乙两名链球运动员在比赛中各投掷5次,成绩如表(单位:米)22S S 甲乙、分别表示甲、乙两人比赛成绩的方差,则22S S 甲乙、的大小关系是_____________.(用<、=、>连接)【答案】22S S <甲乙【解析】7880778184805x 甲,()()()()()22222217880808077808180848065S 甲⎡⎤=-+-+-+-+-=⎣⎦,7680858277805x 乙,()()()()()22222217680808085808280778010.85S 乙⎡⎤=-+-+-+-+-=⎣⎦,则22S S <甲乙,故答案为:22S S <甲乙.14.(2020·西城区·北京铁路二中高三期中)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,给出下列四个结论:①第3天至第11天复工复产指数均超过80%;②这11天期间,复产指数增量大于复工指数的增量;③第9天至第11天复产指数增量大于复工指数的增量;④第1天至第3天复工指数的方差大于第2天至第4天复工指数的方差.其中所有正确结论的序号是____________________.【答案】①①【解析】由图像可得,第3天至第11天复工复产指数均超过80%,故①正确;由图像可得,第1天复产指数与复工指数的差大于第11天复产指数与复工指数的差,所以这11天期间,复产指数增量小于复工指数的增量,故②错误;由图像可得,第9天至第11天复产指数增量大于复工指数的增量;故③正确;由图像可得,第1天至第3天复工指数波动较小,第2天至第4天复工指数波动较大,所以第1天至第3天复工指数的方差小于第2天至第4天复工指数的方差,故④错误.故答案为:①①15.(2020·北京高一期末)某班数学兴趣小组组织了线上“统计”全章知识的学习心得交流:甲同学说:“在频率分布直方图中,各小长方形的面积的总和小于1”;乙同学说:“简单随机抽样因为抽样的随机性,可能会岀现比较‘极端’的样本,相对而言,分层随机抽样的样本平均数波动幅度更均匀”;丙同学说:“扇形图主要用于直观描述各类数据占总数的比例”;丁同学说:“标准差越大,数据的离散程度越小”.以上四人中,观点正确的同学是______.【答案】乙丙【解析】在频率分布直方图中,各小长方形的面积的总和等于1,故甲的观点错误;“简单随机抽样因为抽样的随机性,可能会岀现比较‘极端’的样本,相对而言,分层随机抽样的样本平均数波动幅度更均匀”,故乙的观点正确,“扇形图主要用于直观描述各类数据占总数的比例”,故丙的观点正确;“标准差越大,数据的离散程度越大”,故丁的观点错误.故答案为:乙丙.四、双空题16.(2020·滁州市第二中学高二月考)某高校在2013年的自主招生考试成绩中随机抽取50名学生的笔试成绩,绘制成频率分布直方图如图所示,由图中数据可知a=________;若要从成绩(单位:分)在[85,90),[90,95),[95,100]三组内的学生中,用分层抽样的方法选取12人参加面试,则成绩(单位:分)在[95,100]内的学生中,学生甲被选取的概率为________.【答案】0.04 0.4【解析】由频率分布直方图知,(0.0160.0640.060.02)51a++++⨯=,所以0.04a=.第3组的人数为0.06055015⨯⨯=,第4组的人数为0.04055010⨯⨯=,第5组的人数为0.0205505⨯⨯=,因为第3、4、5组共抽30名学生,所以利用分层抽样在30名学生中抽取12名学生.每组抽取的人数分别为:第3组:15126 30⨯=,第4组:10124 30⨯=第5组:512230⨯=,所以第3、4、5组分别抽取6人、4人、2人.则成绩在[95,100]内的5个学生中抽2个,学生甲被选取的概率为0.4故答案为:0.04;0.4。
人教版七年级下知识点试题精选-用样本估计总体
![人教版七年级下知识点试题精选-用样本估计总体](https://img.taocdn.com/s3/m/85e26ffdad51f01dc281f1ac.png)
用样本估计总体一.选择题(共20小题)1.从一个大鱼池中捞取50条鱼,作好标记后放回,混匀后再捞取100条鱼,其中有标记的鱼有10条,从这些数据中我们可以估计这个鱼池中大约有鱼()A.100条B.500条C.1000条D.250条2.下表是某公司今年8月份一周的利润情况记录:根据上表,你估计该公司今年8月份(31天)的总利润是()A.2万元B.14万元C.60万元D.62万元3.某自然保护区为了估计区内金丝猴的数量,第一次捕捉了24只并在做了标记后全部放回.第二次捕捉了80只,发现有4只是上次做了标记的.根据以上的方法,估计该保护区金丝猴的总只数为()A.480 B.320 C.416 D.以上答案均错4.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有()只.A.56 B.560 C.80 D.1505.不透明的口袋中装有若干个完全相同的白球,为了估计它们的个数,现将两个黑球(除颜色外其他都与白球相同)放入口袋中,然后从口袋中随机摸出一个球,记下颜色后再放回口袋中,按此方法摸了100次,有20次摸到了黑球,则估计口袋中共有白球()A.7个 B.8个 C.9个 D.10个6.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只7.为了估计湖中有多少条鱼,先从湖中捕捞100条鱼都做上记号,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现其中10条有标记,那么你估计湖中大约有()鱼.A.500条B.600条C.800条D.1000条8.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A.1120 B.400 C.280 D.809.从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg),依此估计这300尾草鱼的总质量大约是()A.450kg B.150kg C.45kg D.15kg10.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人11.水库中放养鲤鱼8000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9000条B.9600条C.10000条D.12000条12.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.31513.去年某市有1530人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有62名考生达到优秀,那么该市约有多少名考生达到优秀()A.500名B.475名C.450名D.400名14.在世界无烟日(5月31日),小华为了了解本地区大约有多少成年人在吸烟,随机调查了100个成年人,结果其中有18个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有82个成年人不吸烟C.本地区约有18%的成年人吸烟D.样本是18个吸烟的成年人15.某校九年级共有1100名学生参加“二诊”考试,随机抽取50名学生进行总成绩统计,其中有20名学生总成绩达到优秀,估计这次“二诊”考试总成绩达到优秀的人数大约为()A.400 B.420 C.440 D.46016.一个口袋中有3 个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中25次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.12 个B.15 个C.9 个D.10 个17.某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有()A.96人B.90人C.64人D.50人18.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取了200名考生的数学成绩,其中有60名考生的数学成绩达到优秀,那么该校考生数学成绩达到优秀的约有()A.400名B.450名C.475名D.500名19.“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的统计图,下面有四个推断:①小文一共抽样调查了20人②样本中当月使用“共享单车”30~40次的人数最多③样本中当月使用“共享单车”不足30次的人数有14人④若小文所在小区的居民约有740人,估计其中当月使用“共享单车”0~20次的人数约为120人其中合理的是()A.①②B.②③C.②④D.③④20.有一个不透明的袋子里装有若干个大小相同、质地均匀的白球,由于某种原因,不允许把球全部倒进来数,但可以从中每次摸出一个进行观察.为了估计袋中白球的个数,小明再放入8个同白球大小,质地均相同,只有颜色不同的红球,摇匀后从中随机摸出一个球并记下颜色,再把它放回袋中摇匀.这样不断重复摸球200次,其中有44次摸到红球,根据这个结果,估计袋中大约有白球()个.A.28 B.30 C.34 D.38二.填空题(共20小题)21.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚将其中6个涂上黑色后放入,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中300次摸到白球,则估计盒中大约有白球个.22.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有只.23.某出租车公司在“五•一”黄金周期间,平均每天的营业额为5万元,由此推断5月份该公司的总营业额为5×31=155(万元),你认为是否合理?答:.24.刘强同学为了调查全市初中生人数,对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因.25.为了发展农业经济,致富奔小康,李伯伯家2006年养了4000条鲤鱼,现在准备打捞出售,为估计鱼塘中鲤鱼的总质量,从鱼塘中捕捞了三次进行统计,得到的数据如表所示;那么,估计鱼塘中鲤鱼的总质量为千克.26.鱼塘中养了1000条鱼,成活率为80%,现从中任意捕出40条,称得重量为135斤,那么估计鱼塘中约有鱼斤.27.为了了解某校1000名学生对办理“羊城通”具体事项是否知道,从中随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校这1000名学生中约有名学生“不知道”如何办理“羊城通”.28.某商场5月份随机抽查7天的营业额,结果如下(单位:万元):3.6,3.2,3.4,3.9,(3.0,3.1,3.6.试估计该商场5月份(31天)的营业额大约是万元.29.为了估计湖里有多少条鱼,先捕了100条鱼,做好记号,然后放回到湖里,过一段时间,待带有标记的鱼完全混合于鱼群后,再捕上200条鱼,发现带有记号的鱼只有2条,则湖里鱼的条数大约是条.30.某电动车厂在一次质量检验中,从3000辆电动车中抽查了100辆,有3辆超标准(不合格),则3000辆电动车中大约有辆超标准(不合格).31.某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为件.32.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表.如果你是电视台负责人,在现场直播时,将优先考虑转播比赛.33.藏羚羊是国家保护动物,某地区为估计该地区藏羚羊的只数,先捕捉20只给它们分别作上记号然后放还,带有标记的羚羊完全混合于羊群后,第二次捕捉40只,发现其中有2只有标记.从而估计这个地区有藏羚羊只.34.为了估计鱼塘里有多少条鱼,我们从鱼塘里捕上100条鱼做上标记,然后放回鱼塘里去,待带标记的鱼完全混合于鱼群后,再捕第二次样品鱼200条,其中百标记的鱼有25条,试估计鱼塘里约有鱼条.35.实验探究:从装同种豆子布袋中取出100拉,做上记号后放入袋子中充分搅匀,再取出100粒刚好有记号的4粒.从而估计布袋中有豆子粒.36.某校随机抽取50名同学进行“世博知识知多少”的调查问卷,通过调查发现其中45人对于“世博”知识了解的比较全面,由此可以估计全校的1500名同学中,对于“世博”知识了解的比较全面的约为人.37.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.38.为了了解某校312号宿舍的用电量是多少,电工李亮在6月初连续几天同一时刻观察312号宿舍的电表显示的度数,记录如下:请你估计312号宿舍6月份的总用电量为度.39.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有个学生去过该景点.40.某养殖户在池塘中放养了鲤鱼1000条,鲢鱼若干,在一次随机捕捞中,共抓到鲤鱼200条,鲢鱼500条,估计池塘中原来放养了鲢鱼条.三.解答题(共10小题)41.调查员希望了解某水库中鱼的养殖情况.(1)怎样了解鱼的平均质量?(2)怎样了解鱼的总条数?42.某鱼塘共放养鱼苗5000尾,成活率为90%,成熟后,质量为1kg以上的鱼为优质鱼,若在一天中随机捕捞出100条鱼,分别称重后放回,其中45条鱼的质量在1kg以上,而优质鱼的利润为4元/尾,试估计这个鱼塘在优质鱼上可获利多少元?43.为了了解全年级学生英语作业的完成情况,帮助英语学习成绩差的学生尽快提高成绩,班主任和英语教师从全年级1000名学生中抽取100名进行调查.首先,老师检查了这些学生的作业本,记录下获得“优”“良”“中”“差”的人数比例情况;其次老师发给每人一张调查问卷,其中有一个调查问题是:“你的英语作业完成情况如何?”,给出五个选项:A.独立完成;B.辅导完成;C.有时抄袭完成;D.经常抄袭完成;E.经常不完成,供学生选择,英语教师发现选独立完成和辅导完成这两项的学生一共占65%,明显高于他平时观察到的比例,请回答下列问题:(1)英语教师所用的调查方式是;(2)指出问题中的总体,个体,样本,样本容量;(3)如果老师的英语作业检查只得“差”的同学有8名,那么估计全年级的英语作业中可能有多少同学得“差”;(4)通过问卷调查,老师得到的数据与事实不符,你能解释这个统计数字失真的原因吗.44.近年来,由于乱砍滥伐,掠夺性使用森林资源,我国长江、黄河流域植被遭到破坏,土地沙化严重,洪涝灾害时有发生.沿黄某地区为积极响应和支持“保护母亲河”的倡议,建造了长100千米,宽0.5千米的防护林.有关部门为掌握这一防护林共约有多少棵树,从中选出10块(每块长1千米,宽0.5千米)进行统计,每块树木数量如下(单位:棵)65 100 63 200 64 600 64 700 67 30063 300 65 100 66 600 62 800 65 500请你根据以上数据计算这一防护林共约有多少棵树(结果保留3个有效数字)45.为了解用电量的多少,李明在六月初连续八天同一时刻观察电表显示的度数,记录如下:(1)估计李明家六月份的总用电量是多少度;(2)若每度电的费用是0.5元,估计李明家六月份共付电费多少元?46.为了估计养鱼池里有多少条鱼,养鱼者从池中捕上100条鱼做上标记,然后放回池中,经过一段时间,待带标记的鱼完全混合于鱼群后,再捕第二次样品鱼120条,其中带标记的鱼有15条,试估计鱼池中约有鱼多少条?47.某个体养鱼户为估计池塘养鱼的数量,从中打捞了100条鱼,分别作了记号,又放回鱼塘,等鱼混合均匀后,又捕捞了200条,其中有5条鱼有记号,请你估计该池塘共有多少条鱼?48.张老汉为了对自己的鱼塘中的鱼的总质量进行估计,第一次捞出100条鱼,称得质量约为184kg,并将每条鱼都做上记号,放回鱼塘中.当它们与鱼群混合均匀后,又捞出200条,称得质量为416kg,且有记号的鱼有20条.(1)请你估计一下,鱼塘中的鱼有多少条?(2)请你计算一下,鱼塘中鱼的总质量大约是多少kg?49.春节前夕,咸丰县四大家在家领导与县直各单位上千名干部职工走上街头和城乡结合部的主要公路沿线,对积存的垃圾进行彻底清理,在全县掀起“洁万家”工作的热潮.学校是我家,清洁靠大家.为了让我校学生养成良好的卫生习惯,我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如表:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃个塑料袋.(2)这天,丢弃3个塑料袋的家庭户数占总户数的.(3)该校所在的居民区共有居民0.8万户,则该区一天丢弃的塑料袋有个.50.科学工作者为了考察某一地区的某种鸟的数目,一次捕获了这种鸟100只,并做上特殊记号后放回,以后每周再捕获这种鸟100只,连捕了6周发现每次做了记号的鸟分别占,,,,,,请你帮助这些科学工作者预测一下这个地区这种鸟的数目.用样本估计总体参考答案与试题解析一.选择题(共20小题)1.从一个大鱼池中捞取50条鱼,作好标记后放回,混匀后再捞取100条鱼,其中有标记的鱼有10条,从这些数据中我们可以估计这个鱼池中大约有鱼()A.100条B.500条C.1000条D.250条【分析】由于捞取100条鱼,其中有标记的鱼有10条,由此可以估计大鱼池中有标记的鱼所占的比例为10%,然后用50除以10%可得到这个鱼池中鱼的条数.【解答】解:∵捞取100条鱼,其中有标记的鱼有10条,∴可以估计大鱼池中有标记的鱼所占的比例为10%,∵大鱼池中有50条鱼有标记,∴可以估计这个鱼池中大约有50÷10%=500条鱼.故选B.【点评】本题考查了用样本估计总体:用样本估计总体是统计的基本思想.用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).2.下表是某公司今年8月份一周的利润情况记录:根据上表,你估计该公司今年8月份(31天)的总利润是()A.2万元B.14万元C.60万元D.62万元【分析】先求出7天中平均每天的利润,然后用这个平均数乘以31天即可.【解答】解:7天中平均每天的利润=(2+1.7+2.3+2.1+1.9+1.8+2.2)÷7=2万元,∴该公司今年8月份(31天)的总利润是2×31=62万元.故选D.【点评】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.3.某自然保护区为了估计区内金丝猴的数量,第一次捕捉了24只并在做了标记后全部放回.第二次捕捉了80只,发现有4只是上次做了标记的.根据以上的方法,估计该保护区金丝猴的总只数为()A.480 B.320 C.416 D.以上答案均错【分析】设该地区有x只金丝猴,由于第一次捕捉了24只并在做了标记后全部放回.第二次捕捉了80只,发现有4只是上次做了标记的,因此可以列出方程x:24=80:4,解方程即可求解.【解答】解:设该地区有x只金丝猴,依题意得x:24=80:4,∴x=480.∴估计该地区有480只金丝猴.故选A.【点评】本题主要考查了利用样本估计总体的思想,解题时准确理解题意,然后根据题意列出方程即可解决问题.4.把养鸡场的一次质量抽查情况作为样本,样本数据落在1.5~2.0(单位:千克)之间的频率为0.28,于是可估计这个养鸡场的2 000只鸡中,质量在1.5~2.0千克之间的鸡有()只.A.56 B.560 C.80 D.150【分析】根据频数=频率×样本容量,进行计算即可.【解答】解:∵1.5~2.0(单位:千克)之间的频率为0.28,鸡的总数为2000,∴质量在1.5~2.0千克之间的鸡的数量=0.28×2000=560只.故选B.【点评】本题考查了用样本估计总体的知识,注意掌握每组的频率=该组的频数:样本容量.5.不透明的口袋中装有若干个完全相同的白球,为了估计它们的个数,现将两个黑球(除颜色外其他都与白球相同)放入口袋中,然后从口袋中随机摸出一个球,记下颜色后再放回口袋中,按此方法摸了100次,有20次摸到了黑球,则估计口袋中共有白球()A.7个 B.8个 C.9个 D.10个【分析】根据口袋中有2个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可.【解答】解:(1)∵实验总共摸了100次,其中有20次摸到了黑球,∵口袋中有2个黑球,假设有x个白球,∴,解得:x=8,∴口袋中有白球8个.故选B.【点评】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.6.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只【分析】根据先捕捉40只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.【解答】解:20÷=400(只).故选B.【点评】此题考查了用样本估计总体;统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.7.为了估计湖中有多少条鱼,先从湖中捕捞100条鱼都做上记号,然后放回湖中去,经过一段时间,待有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现其中10条有标记,那么你估计湖中大约有()鱼.A.500条B.600条C.800条D.1000条【分析】在样本中“捕捞100条鱼,发现其中10条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【解答】解:设湖中有x条鱼,则100:10=x:100,解得x=1 000(条).故选D.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.8.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为()A.1120 B.400 C.280 D.80【分析】先求出在随机调查的280名学生中希望举办文艺演出的学生所占的百分比,再用全校的人数乘以这个百分比数即可得到答案.【解答】解:由题意知从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,∴希望举办文艺演出的学生所占的百分比为:80÷280=,∴该学校希望举办文艺演出的学生人数为:1400×=400人.故选B.【点评】本题考查了用样本估计总体的知识,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.9.从鱼塘打捞草鱼300尾,从中任选10尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.5,1.8,1.3,1.4(单位:kg),依此估计这300尾草鱼的总质量大约是()A.450kg B.150kg C.45kg D.15kg【分析】首先根据已知条件求出任选10的尾鱼的平均质量,然后利用样本估计总体的思想即可求解.【解答】解:==1.50,∴300×1.50=450kg,∴估计这300尾草鱼的总质量大约是450kg.故选A.【点评】此题主要考查了利用样本估计总体的思想,首先求出任选10的尾鱼的平均质量,然后利用样本估计总体的思想即可解决问题.10.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有()A.2.5万人 B.2万人C.1.5万人 D.1万人【分析】求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.【解答】解:该镇看中央电视台早间新闻的约有15×=1.5万,故选:C.【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.11.水库中放养鲤鱼8000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9000条B.9600条C.10000条D.12000条【分析】先计算出所抓到的鲤鱼占水库中放养鲤鱼的百分比,再根据抓到鲢鱼的条数估计出塘中原来放养了鲢鱼的数量.【解答】解:400÷×100%=10000(条),故选C.【点评】考查用样本估计总体的方法.12.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为()A.180 B.225 C.270 D.315【分析】先求出6名同学家丢弃废电池的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【解答】解:估计本周全班同学各家总共丢弃废电池的数量为:×45=270.故选C.【点评】此题主要考查了用样本估计总体,生产中遇到的估算产量问题,通常采用样本估计总体的方法.13.去年某市有1530人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有62名考生达到优秀,那么该市约有多少名考生达到优秀()A.500名B.475名C.450名D.400名【分析】首先求得抽取的200名考生的优秀率,然后乘以参加中考的总人数即可.【解答】解:∵抽取200名考生的数学成绩,其中有62名考生达到优秀,∴优秀率为×100%=31%∴1530人参加中考的学生达到优秀的有1530×31%≈475名,故选B.【点评】本题考查了用样本估计总体,解题的关键是求得样本的优秀率.14.在世界无烟日(5月31日),小华为了了解本地区大约有多少成年人在吸烟,随机调查了100个成年人,结果其中有18个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区只有82个成年人不吸烟C.本地区约有18%的成年人吸烟D.样本是18个吸烟的成年人【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:根据题意,随机调查100个成年人,是属于抽样调查,这100个人中82人不吸烟不代表本地区只有82个成年人不吸烟,样本是100个成年人,所以本地区约有15%的成年人吸烟是对的.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.某校九年级共有1100名学生参加“二诊”考试,随机抽取50名学生进行总成绩统计,其中有20名学生总成绩达到优秀,估计这次“二诊”考试总成绩达到优秀的人数大约为()A.400 B.420 C.440 D.460【分析】随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校九年级学生在这次测试中达到优秀的人数.【解答】解:随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%,又∵某校九年级共1100名学生参加“二诊”考试,∴该校这次“二诊”考试总成绩达到优秀的人数大约为:1100×40%=440人.故选C.【点评】本题考查了用样本估计总体,这是统计的基本思想,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.一个口袋中有3 个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中25次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()。
初三用样本估计总体练习题
![初三用样本估计总体练习题](https://img.taocdn.com/s3/m/31dd94c9a1116c175f0e7cd184254b35eefd1a1a.png)
初三用样本估计总体练习题样本估计是统计学中一种重要的方法,它通过从总体中抽取一部分样本数据,来推断总体的特征。
在初三数学学习中,样本估计也是一个重要的概念。
下面是一些初三用样本估计总体的练习题,帮助学生更好地理解和应用样本估计。
一、选择题1. 一位班级有50名学生的数学老师想要了解学生们的平均数学成绩。
他从这个班级中随机选择了10名学生,并计算出他们的平均成绩。
这个平均数是属于:A. 样本均值B. 总体均值C. 总体标准差D. 样本标准差2. 一位研究员想要了解某工厂的员工平均工资。
他从该工厂中随机选择了200名员工,并计算出他们的平均工资。
这个平均数是属于:A. 样本均值B. 总体均值C. 总体标准差D. 样本标准差3. 在一项市场调查中,研究员通过电话随机抽取了1000名市民进行问卷调查,以了解他们对某产品的购买意愿。
这里的1000名市民构成了:A. 总体B. 样本C. 参数D. 统计量二、填空题1. 从总体抽取的样本是对总体的 _________.2. 样本均值是对总体均值的 _________估计.3. 当样本容量增加,样本均值的标准差会 _________.三、解答题1. 一个森林里有许多树木,研究员想要了解这个森林中树木的平均高度。
由于时间和资源有限,研究员只能测量50棵树的高度。
请简要说明研究员是如何使用样本估计总体的平均高度的。
研究员选择了一个样本,测量了其中的50棵树木的高度。
通过计算这50个测量值的平均数,即样本均值,研究员可以得到一个关于样本的平均高度的估计。
然后,研究员可以将这个样本均值作为总体平均高度的估计值,即用样本估计总体平均高度。
2. 一家餐厅想要了解每晚就餐的平均人数。
为了估计总体平均人数,餐厅在连续的20个晚上每晚都记录了顾客的人数。
请简要说明餐厅是如何使用样本估计总体的平均人数的。
餐厅记录了连续的20个晚上的顾客人数,并计算了这20个晚上的人数的平均值,即样本均值。
用样本估计总体练习试题
![用样本估计总体练习试题](https://img.taocdn.com/s3/m/6334e27152d380eb62946dc7.png)
第二节用样本估计总体时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·卷)如下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)的频率为( )A.0.2 B.0.4C.0.5 D.0.6解析由茎叶图可知数据落在区间[22,30)的频数为4,所以数据落在区间[22,30)的频率为410=0.4,故选B.答案 B2.(2013·卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.答案 D3.(2013·卷)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析由茎叶图知,各组频数统计如下表:分组区间[0,5)[5,10)[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)频数统计1142433 2答案 A4.(2014·预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A.甲B.乙C.甲乙相等D.无法确定解析由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选A.答案 A5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:最佳人选是( )A .甲B .乙C .丙D .丁解析 由题目表格中数据可知,丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好,选C.答案 C6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ) A .n <mB .n >mC .n =mD .不能确定解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y ,所以n x +m y =(m +n )αx +(m +n )(1-α)y .所以⎩⎪⎨⎪⎧n =(m +n )α,m =(m +n )(1-α). 于是有n -m =(m +n )[α-(1-α)]=(m+n)(2α-1).因为0<α<12,所以2α-1<0.所以n-m<0,即n<m.答案 A二、填空题(本大题共3小题,每小题5分,共15分)7.某校举行2014年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为________.解析根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85.答案858.(2014·调研)某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则(1)图中的x =________;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.解析 由频率分布直方图知20x =1-20×(0.025+0.006 5+0.003+0.003),解得x =0.012 5.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72人可以申请住宿.答案 0.012 5 729.(2014·联考)已知x 是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x ,-y 这四个数据的平均数为1,则1x+y 的最小值为__________.解析 由已知得3≤x ≤5,1+3+x -y 4=1, ∴y =x ,∴1x +y =1x +x ,又函数y =1x+x 在[3,5]上单调递增,∴当x =3时取最小值103. 答案 103三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·调研)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出的次品数分别是:分别计算两个样本的平均数与方差,从计算结果看,哪台机床10天生产中出次品的平均数较小?出次品的波动较小?解x甲=110×(0×3+1×2+2×3+3×1+4×1)=1.5,x乙=110×(0×2+1×5+2×2+3×1)=1.2,s2甲=110×[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4-1.5)2]=1.65,s22=110×[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2+(1-1.2)2]=0.76.从结果看乙台机床10天生产中出次品的平均数较小,出次品的波动也较小.11.(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度的市场需求量,T(单位:元)表示下一个销售季度经销该农产品的利润.(1)将T 表示为X 的函数; (2)根据直方图估计利润T 不少于57 000元的概率.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度的利润T 不少于57 000元的概率的估计值为0.7.12.(2013·卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2, 估计x 1-x 2的值.解 (1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600. 样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56. (2)设甲、乙两校样本平均数分别为x ′1,x ′2.根据样本茎叶图可知,30(x ′1-x ′2)=30x ′1-30x ′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x ′1-x ′2=0.5.故x 1-x 2的估计值为0.5分.。
11.2_用样本估计总体练习题
![11.2_用样本估计总体练习题](https://img.taocdn.com/s3/m/ea5913945901020206409c55.png)
§11.2 用样本估计总体一、选择题1.用样本频率分布估计总体频率分布的过程中,下列说法正确的是 ( ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精确C.样本容量越大,估计越精确 D.样本容量越小,估计越精确2.频率分布直方图中,小长方形的面积等于 ( ) A.组距 B.频率 C.组数 D.频数3.一个容量为100的样本,其数据的分组与各组的频数如下表组别(0,10](10,20](20,30](30,40](40,50](50,60](60,70]频数1213241516137A.0.13 B.0.39 C.0.52 D.0.644.一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为 ( ) A.20% B.69% C.31% D.27%5.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102), [102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 ( )A.90 B.75 C.60 D.456.对某校400名学生的体重(单位:kg)进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为( )A.300 B.100C.60 D.207.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ).A. 65B.65C. 2 D.28.为了了解某地区10 000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图.根据图示,请你估计该地区高三男生中体重在[56.5,64.5]的学生人数是( )A.40 B.400C.4 000 D.4 4009.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是 ( )A.161 cm B.162 cmC.163 cm D.164 cm10.从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐11.对某种电子元件的使用寿命进行跟踪调查,所得样本的频率分布直方图如图所示,由图可知,这一批电子元件中使用寿命在100~300 h的电子元件的数量与使用寿命在300~600 h的电子元件的数量的比是( )A.12B.13C.14D.1612.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A.57.2,3.6 B.57.2,56.4 C.62.8,63.6 D.62.8,3.6二、填空题8题13.一个容量为n 的样本,分成若干组,已知甲组的频数和频率分别为36和14,则容量n =__,且频率为16的乙组的频数是___.14.为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出了自己的零花钱,他们捐款数(单位:元)如下:19,20,25,30,24,23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图时先计算最大值与最小值的差是________.若取组距为2,则应分成________组;若第一组的起点定为18.5,则在[26.5,28.5)内的频数为________.15.将容量为n 的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n =________.16.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知________.甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;③甲、乙两名运 动员的成绩没有明显的差别;④甲运动员的最低得分为0分.17.甲、乙两名同学学业水平考试的9科成绩如茎叶图所示,请你根据茎叶图判断谁的平均分高________.(填“甲”或“乙”)18. 如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为___.(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)19.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.20.某校开展“爱我青岛,爱我家乡”摄影比赛,9位评委为17题089103518题19题20题参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.三、解答题21.(2013·合肥高一检测)在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17, 23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?22.(创新拓展)如图是一个样本的频率分布直方图,且在[15,18)内频数为8.(1)求样本容量;(2)若[12,15)一组的小长方形面积为0.06,求[12,15) 一组的频数;(3)求样本在[18,33)内的频率.23.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A配方的频数分布表指标值分组[90,94) [94,98) [98,102) [102,106) [106,110] 频数8 20 42 22 8指标值分组[90,94) [94,98) [98,102) [102,106) [106,110] 频数 4 12 42 32 10(1)(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=⎩⎪⎨⎪⎧-2,t<94,2,94≤t<102,4,t≥102.估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.24.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率;22题(2)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为100+1102=105.)作为这组数据的平均分,据此,估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.25.某制造商3月生产了一批乒乓球,随机抽取100个进行检查,测得每个球的直径(单位:mm ),将数据进行分组,得到如下频率分布表:(1)补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)若上述频率作为概率,已知标准乒乓球直径为40.00 mm ,试求这批乒乓球的直径误差不超过0.03 mm 的概率; (3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).26.某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45. 样本频率分布表:分组 频数 频率 [41,51) 2 230 [51,61) 1 130 [61,71) 4 430 [71,81) 6 630 [81,91) 10 1030 [91,101) [101,111]2230分组 频数 频率 [39.95,39.97) 10 [39.97,39.99) 20 [39.99,40.01) 50 [40.01,40.03] 20 合计10025题(1)完成频率分布表;(2)作出频率分布直方图; (3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.CBCCA BDCBD CD13. 144 24; 14. 11 6 5;15 60;16.①;17.乙 18. 解:_22222211(89101315)11,s [(811)(911)(1011)(1311)(1511)] 6.855x =++++==-+-+-+-+-= 19.解:平均数为x =90,则标准差为s =15[(89-90)2+(87-90)2+(90-90)2+(91-90)2+(93-90)2=2. 20.解:根据样本的频率分布直方图,成绩小于60分的学生的频率为(0.002+0.006+0.012)×10=0.20,所以可推测3 000名学生中成绩小于60分的人数为600名.21.解:x≥4时,89+89+92+93+92+91+947=6407≠91,∴x<4,则89+89+92+93+92+91+x +907=91,∴x=1.22.解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.23.解 (1)由图可知[15,18)一组对应的纵轴数值为475,且组距为3,则[15,18)一组对应的频率为475×3=425.又已知[15,18)一组的频数为8,所以样本容量n =8425=50.(2)[12,15)一组的小长方形面积为0.06,即[12,15)一组的频率为0.06,且样本容量为50,所以[12,15)一组的频数为50×0.06=3.(3)由(1)、(2)知[12,15)一组的频数为3,[15,18)一组的频数为8,样本容量为50,所以[18,33)内频数为50-3-8=39,所以[18,33)内的频率为3950=0.78.24.解析 (1)由试验结果知,用A 配方生产的产品中优质品的频率为22+8100=0.3,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32+10100=0.42,所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为1100×[4×(-2)+54×2+42×4]=2.68(元).25.解析 (1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3.(2)估计平均分为x=95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为60×0.15=9(人).[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m,n;在[120,130)分数段内抽取4人,并分别记为a,b,c,d;设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种.∴P(A)=915=3 5.26.解析(1)频率分布表如下:分组频数频率[39.95,39.97) 10 0.10[39.97,39.99) 20 0.20[39.99,40.01) 50 0.50[40.01,40.03] 20 0.20合计100 1频率颁布直方图如图:(2)误差不超过0.03 mm,即直径落在[39.97,40.03]内,其概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20=40.00(mm).27.解析(1)频率分布表:分组 频数 频率 [41,51) 2 230 [51,61) 1 130 [61,71) 4 430 [71,81) 6 630 [81,91) 10 1030 [91,101) 5 530 [101,111]2230(2)频率分布直方图:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115.有26天处于良的水平,占当月天数的1315.处于优或良的天数共有28天,占当有月数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.。
高一数学必修第二册 2019(A版)_【典型例题】用样本估计总体:频率分布直方图练习
![高一数学必修第二册 2019(A版)_【典型例题】用样本估计总体:频率分布直方图练习](https://img.taocdn.com/s3/m/6cd7d22ace2f0066f43322c2.png)
用样本估计总体:频率分布直方图
【例1】(2020·全国高三专题练习)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如表所示.
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图和频率分布折线图.
【举一反三】
1.(2020·全国高三专题练习)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
使用了节水龙头50天的日用水量频数分布表
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于3
0.35m的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
28_2 用样本估计总体(重点练)解析版
![28_2 用样本估计总体(重点练)解析版](https://img.taocdn.com/s3/m/ac6fc03e5e0e7cd184254b35eefdc8d376ee14f6.png)
28.2用样本估计总体(重点练)一、单选题1.(2019·重庆市育才中学九年级期中)为了调查红旗小学六年级学生的兴趣爱好,以下样本最具代表性的是()A.该年级书法社团的学生B.该年级部分女学生C.该年级跑步较快的学生D.从每个班级中,抽取学号为10的整数倍的学生【答案】D【分析】抽样调查中具有代表性是指具有随机性、大众性.【详解】A.书法社团的学生的兴趣爱好大多数是书法,不具代表性,故错误;B.部分女生没有考虑到男生的兴趣爱好,故错误;C.跑步较快的学生兴趣爱好偏向与运动,故错误;D.抽取学号为10的整数倍,具有随机性,故正确.【点睛】此题主要考察抽样调查样本的代表性.2.(2019·湖南望城·九年级期末)为了解我县七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本;⑤500名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个【答案】B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】这种调查方式是抽样调查;故①正确;总体是我市七年级6000名学生期中数学考试情况;故②错误;个体是每名学生的数学成绩;故③正确;样本是所抽取的500名学生的数学成绩,故④错误;样本容量是500,故⑤错误.故选B【点睛】本题考查了总体、个体与样本.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位,难度适中.3.(2020·山东烟台·二模)为了了解2018年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图.根据图中信息,下面3个推断中,合理的是______.①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中至少有一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的范围是60~120元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【答案】D【分析】①根据图中信息可得月均花费超过80元的有500人,故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60-120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,20%左右的人有200人,根据图形可得乘坐地铁的月均花费达到120元的人有200人可以享受折扣.【详解】解:①月均花费超过80元的有200+100+80+50+25+25+15+5=500人,小明乘坐地铁的月均花费是75元,∴所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60-120之间,估计平均每人乘坐地铁的月均花费的范围是60-120;故②正确;③∵1000×20%=200,而80+50+25+25+15+5=00,∴乘坐地铁的月均花费达到120元的人可享受折扣,③正确;故选D.【点睛】本题主要考查了频数分布直方图,抽样调查以及用样本估计总体等内容,准确识图并合理分析是解题的关键.二、填空题4.(2021·全国·九年级单元测试)为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅________只.【答案】200【分析】重新捕捉40只,数一数带有标记的天鹅有2只,说明在样本中,有标记的所占比例为240,而在总体中,有标记的共有10只,估计所占比例,即可解答.【详解】10240÷=200(只).故答案为200.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.5.(2019·全国·九年级单元测试)小新家今年4月份头6天用米量如表:估计小新家4月份用米量为________kg.【分析】先计算出这6天一共用米的量,再算出平均每天用米的量,从而计算出小新家4月份用米的总量.【详解】解根据题意得:(0.6+0.8⨯2+0.9⨯2+1.0)÷6=56 (kg),则小新家4月份用米量为: 56⨯30=25(kg);故答案为:25.;【点睛】本题考查的是通过样本去估计总体,总体平均数约等于样本平均数. 6.(2020·北京·九年级专题练习)小明调查了他所在年级三个班学生的身高,并进行了统计,列出如下频数分布表:155cm”可能性最大.【答案】1班【分析】先计算出三个班中身高不低于155cm 的人数占总人数的比例,分别进行比较大小即可.【详解】解:1班中身高不低于155cm 的人数占总人数的比例为3940;2班中身高不低于155cm 的人数占总人数的比例为3040;3班中身高不低于155cm 的人数占总人数的比例为3540;通过比较大小可得,抽到1班的身高不低于155cm 可能性最大.故答案为1班. 【点睛】本题考查的可能性的大小.准确计算概率是解题的关键.7.(2020·广东·东莞市长安雅正学校九年级月考)田大伯从鱼塘捞出200条鱼做上标记再放入池塘,经过一段时间后又捞出300条,发现有标记的鱼有20条,田大伯的鱼塘里鱼的条数约是_____________. 【答案】3000【分析】设鱼塘中估计有鱼条,第一次捞出200条,并将每条鱼做上记号再放入水中,当做了记号完全混于鱼群中,又捞出300条,发现带有记号的鱼有20条,由此根据样本估计总体的思想可以列出方程300:20:200x ,解方程即可求解. 【详解】解:∵20÷300=115∴200÷115=3000.故答案为:3000【点睛】本题考查的是概率问题,利用样本估计总体的思想,理解题意找到相等关系是解题关键. 三、解答题8.(2021·全国·九年级课时练习)为了顾及鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n 条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a 条鱼,如果在这a 条中有b 条鱼是有记号的,那么估计鱼塘中鱼的条数为anb,你认为这种估计方法有道理吗?为什么? 【答案】有道理,理由见解析.【分析】首先求出有记号的b 条鱼在a 条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a 条鱼,发现其中带标记的鱼有b 条,∴有标记的鱼占b a. ∵共有n 条鱼做上标记,∴鱼塘中估计有n ÷b a=nab(条),∴这种说法有道理. 【点睛】本题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.9.(2021·河南省淮滨县第一中学九年级期末)一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?【答案】(1)小明可估计口袋中的白球的个数是6个.(2)需准备720个红球.试题分析:(1)用白球的个数:(白球的个数+红球的个数)=40:100,列方程求解;(2)用彩球的总数乘以10040100,即可得到红球的个数.试题解析:(1)解:设白球的个数为x个,根据题意得:解得:x=6小明可估计口袋中的白球的个数是6个.(2)1200×=720.答:需准备720个红球.点睛:本题主要考查了用样本估计总体,其本质是利用概率相等来解决问题,如口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,随机摸出一个,摸出白球的概率与重复100次摸到40次白球的概率相同,从而列方程求解.10.(2018·安徽·宣城市第六中学九年级月考)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.【答案】(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.【分析】(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;【详解】(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为a=10,b=0.28,c=50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).11.(2019·全国·九年级单元测试)小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.【答案】(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.【分析】(1)根据15——40岁的居民所占百分比求出总人数,再得各段的百分比,从而求出a,b 的值,(2)见下图,(3)根据年龄在0~14岁的居民所占比重求出总人数,乘以年龄在15~59岁的居民的占比即可.【详解】解:(1)根据题意得:144÷48%=300(名),a=60÷300×100%=20%,b=36÷300×100%=12%,(2)41~59岁的居民有300×20%=60(人),补图如下:(3)根据题意得:总人数:1500÷20%=7500(人),7500×(20%+48%)=5100(人).【点睛】本题考查了统计图的实际应用,用样本估计总体,中等难度,从统计图中得到有用信息是解题关键.12.(2019·山西·九年级专题练习)晋剧(山西梆子)是我国北方的一个重要戏剧剧种,也叫中路戏,是国家级非物质文化遗产.某校在传统文化活动周期间拟向同学们推介晋剧,并就“你想要听哪部晋剧曲目”调查了部分学生,选择曲目有:A.《打金枝》,B.《战宛城》,C.《杀宫》,D.《火焰驹》,E,《双锁山》,每个学生只能选择一部,根据统计结果绘制了如下不完整的统计图.请根据以上信息,解答下列问题:(1)请补全条形统计图;(2)在扇形统计图中,扇形A的圆心角是多少度?(3)若该校共有2000名学生,请你估计想听《战宛城》的学生有多少人?(4)要从这些被调查的学生中随机抽取一人进行访谈,那么正好抽到想听《火焰驹》的学生的概率是多少?【答案】(1)补图见解析;(2)54°;(3)500人;(4)15【分析】(1)根据E 的特征,结合两种统计图求出总人数,进而求出B,D 组对应的人数即可; (2)先求出A 组所占的百分比,再乘以360°即可; (3)用2000乘以B 组所占百分比即可; (4)根据概率=D 组人数÷总人数即可解题. 【详解】解:(1)补全条形统计图如解图;调查学生的总人数为2430%80÷=(人),选择B 的人数为8025%20⨯=(人),选择D 的人数为80122082416----=(人),据此补全条形统计图. (2)选择A 的人数所占百分比为12100%15%80⨯=, ∴扇形A 所对应扇形的圆心角度数为3601554%︒︒⨯=.(3)200025%500⨯=(人),∴估计想听《战宛城》的学生有500人;(4)共有80人,其中想听《火焰驹》的有16人,P ∴(正好抽到想听《火焰驹》的学生)161805==, ∴随机抽取一人正好抽到想听《火焰驹》的学生的概率是15【点睛】本题考查了统计与概率,用样本信息估计总体信息,属于简单题,找到两种统计图之间的信息关联是解题关键,主要失分原因是: ①找不到扇形统计图和条形统计图中的对应关系;②补全条形统计时作图不规范;③在计算概率时发生错误.13.(2020·江苏吴江·一模)苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.(1)a=,b=;(2)补全频数分布直方图;(3)请估计该校1500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.【答案】(1)12;0.2;(2)见解析;(3)975人【分析】(1)首先求得总人数,然后根据频率的定义求得a和b的值;(2)根据(1)即可直接补全直方图;(3)利用总人数乘以对应的频率即可求解.【详解】解:(1)调查的总人数是:4÷0.1=40(人),则a=40×0.3=12(人),b=8÷40=0.2,故答案是:12,0.2;(2)根据(1)求出的频数,补全统计图如下:(3)根据题意得:1500×(0.1+0.3+0.25)=975(人),答:该校1500名初中学生中,约有975名学生在1.5小时以内完成家庭作业.【点睛】此题考查了统计表及频数分布直方图,读懂统计图表.,会计算部分的数量,根据部分的百分比求总体的数量,从统计图中得到必要的信息是解决问题的关键. 14.(2021·山东巨野·一模)2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在-----范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.【答案】(1)85~90(2)24人(3)1/3【详解】解:(1)由条形图可知,分数段在85~90范围的人数最多为10人,故答案为85~90;(2)全校参加比赛的人数=5+10+6+3=24人;(3)上衣和裤子搭配的所有可能出现的结果如图所示,共有9总搭配方案,其中,上衣和裤子能搭配成同一种颜色的有3种,上衣和裤子能搭配成同一种颜色的概率为:31 93(1)由条形图可直接得出人数最多的分数段;(2)把各小组人数相加,得出全校参加比赛的人数;(3)利用“树形图法”,画出搭配方案,由此可求上衣和裤子能搭配成同一种颜色的概率15.(2020·北京市第十三中学九年级开学考试)某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x,y,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y低于0.4的有人;②将20名患者的指标x的平均数记作1x,方差记作21s,20名非患者的指标x的平均数记作2x,方差记作22s,则1x2x,21s22s(填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x低于0.3的大约有人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.【答案】(1)①9;②<,>;(2)100;(3)0.25【分析】(1)①直接统计指标y低于0.4的有人的个数即可;②通过观察图表估算出指标x、y的平均数,然后再进行比较即可确定平均数的大小;根据点的分散程度可以确定方差的大小关系.(2)先估算出样本中未患这种疾病的人中指标x低于0.3的概率,然后500乘以该概率即可;(3)通过观察统计图确定不在“指标x低于0.3,且指标y低于0.8”范围内且患病的人数,最后用概率公式求解即可.【详解】解:(1)①经统计指标y低于0.4的有9人,故答案为9;②观察统计图可以发现,1x大约在0.3左右,2x大约在0.6左右,故1x<2x;观察图表可以发现,x指标的离散程度大于y指标,故21s>22s;故答案为<、>;(2)由统计图可知:在20名未患病的样本中,指标x低于0.3的大约有4人,则概率为420;所以的500名未患这种疾病的人中,估计指标x低于0.3的大约有500×420=100人.故答案为100;(3)通过统计图可以发现有五名患病者没在“指标x低于0.3,且指标y低于0.8”,漏判;则被漏判的概率为520=0.25.答:被漏判的概率为0.25.【点睛】本题考查概率的求法,平均数、方差的估计等基础知识,从统计图中获取信息、估计平均数和方差是解答本题的关键.16.(2021·浙江湖州·九年级月考)感恩节即将来临,小王调查了初三年级部分同学在感恩节当天将以何种方式对帮助过自己的人表达感谢,他将调查结果分为如下四类:A类——当面表示感谢、B类——打电话表示感谢、C类——发短信表示感谢、D类——写书信表示感谢.他将调查结果绘制成了如图所示的扇形统计图和条形统计图.请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有4人来自同一班级,其中有2人主持过班会.现准备从他们4人中随机抽出两位同学主持感恩节主题班会课,请用树状图或列表法求抽出1人主持过班会而另一人没主持过班会的概率.【答案】(1)见解析;(2)2 3【分析】(1)联系扇形统计图和条形统计图的信息分别求出调查的学生总数、C类人数和B 类人数,然后画图即可;(2)先采用列表法或树状图法列出所有机会均等的结果,然后求出抽出1人主持过班会而另一人没主持过班会的概率.【详解】(1)调查的学生总数为510÷%50=(人),C类人数为1085015360⨯=(人),B类人数为505151218---=(人),条形统计图为:(2)设主持过班会的两人分别为1A 、2A ,另两人分别为1B 、2B ,填表如下:所以P (抽出1人主持过班会而另一人没主持过班会)82123==. 【点睛】此题主要考查关联扇形统计图与条形统计图、通过列表法与树状图法求概率,解题关键是正确读懂统计图的信息.17.(2021·山东中区·一模)加强劳动教育是学校贯彻“五育并举”的重要举措.为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项: A .1小时以下 B .1~2小时(不包含2小时) C .2~3小时(包含2小时) D .3小时以上图①、图②是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)填空:本次问卷调查一共调查了______名学生; (2)请将图①的条形统计图补充完整; (3)并求出图②中D 部分所对应的圆心角度数;(4)若该校共有1800名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)?【答案】(1)200;(2)见解析;(3)18︒;(4)估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时)【分析】(1)根据B 选项人数及其占被调查人数的比例计算即可得出答案. (2)用总人数减去其他选项的人数求出D 选项的人数,即可补全统计图; (3)用360︒乘以D 部分所占的百分比即可得出D 部分所对应的圆心角度数;(4)用该校的总人数乘以每周在家参加家务劳动的时间在2小时以上(包含2小时)的人数所占的百分比即可.【详解】解:(1)本次问卷调查一共调查的学生数是:10050%200÷=(名) 故答案为:200;(2)劳动的时间在3小时以上的人数有:200601003010---=(名),补全统计图如下:(3)D 部分所对应的圆心角度数是1036018200⨯=︒︒; (4)根据题意得:30101800360200+⨯=(名), 答:估计全校可能有360名学生每周在家参加家务劳动的时间在2小时以上(包含2小时). 【点睛】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,学会用样本估计总体的思想解决问题,属于基础题,中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节用样本估计总体
时间:45分钟分值:75分
一、选择题(本大题共6小题,每小题5分,共30分)
1.(2013·重庆卷)如下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()
A.0.2 B.0.4
C.0.5 D.0.6
解析由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为4
=0.4,故选B.
10
答案 B
2.(2013·陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()
A.0.09 B.0.20
C.0.25 D.0.45
解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.
答案 D
3.(2013·四川卷)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()
解析由茎叶图知,各组频数统计如下表:
分组
区间
[0,5)[5,10)
[10,
15)
[15,
20)
[20,
25)
[25,
30)
[30,
35)
[35,
40) 频数
统计
1142433 2
答案 A
4.(2014·河南郑州预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,下图是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()
A.甲B.乙
C.甲乙相等D.无法确定
解析由茎叶图可知甲数据比较集中,所以甲地浓度的方差小,选A.
答案 A
5.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:
最佳人选是( )
A .甲
B .乙
C .丙
D .丁
解析 由题目表格中数据可知,丙平均环数最高,且方差最小,说明丙技术稳定,且成绩好,选C.
答案 C
6.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ),若样本(x 1,x 2,…,x n ,y 1,y 2,…y m )的平均数z =αx +(1-α)y ,其中0<α<1
2,则n ,m 的大小关系为( )
A .n <m
B .n >m
C .n =m
D .不能确定
解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y , x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y ,
所以n x +m y =(m +n )αx +(m +n )(1-α)y .
所以⎩⎨
⎧
n =(m +n )α,m =(m +n )(1-α).
于是有n-m=(m+n)[α-(1-α)]
=(m+n)(2α-1).
,所以2α-1<0.
因为0<α<1
2
所以n-m<0,即n<m.
答案 A
二、填空题(本大题共3小题,每小题5分,共15分)
7.某校举行2014年元旦汇演,九位评委为某班的节目打出的分数(百分制)如茎叶统计图所示,去掉一个最高分和一个最低分后,所剩数据的中位数为________.
解析根据茎叶图,去掉一个最高分和一个最低分后,得到的数据为七个,中位数为85.
答案85
8.(2014·武汉调研)
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并
将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].则
(1)图中的x =________;
(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有________名学生可以申请住宿.
解析 由频率分布直方图知20x =1-20×(0.025+0.006 5+0.003+0.003),解得x =0.012 5.上学时间不少于1小时的学生频率为0.12,因此估计有0.12×600=72人可以申请住宿.
答案 0.012 5 72
9.(2014·安徽联考)已知x 是1,2,3,x,5,6,7这七个数据的中位数,且1,3,x ,-y 这四个数据的平均数为1,则1
x +y 的最小值为__________.
解析 由已知得3≤x ≤5,1+3+x -y
4=1, ∴y =x ,
∴1x +y =1x +x ,又函数y =1
x +x 在[3,5]上单调递增,∴当x =3时取最小值10
3.
答案 103
三、解答题(本大题共3小题,每小题10分,共30分) 10.(2014·衡阳调研)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出的次品数分别是:
10天生产中出次品的平均数较小?出次品的波动较小?
解x甲=1
10×(0×3+1×2+2×3+3×1+4×1)=1.5,
x乙=1
10×(0×2+1×5+2×2+3×1)=1.2,
s2甲=1
10×[(0-1.5)
2+(1-1.5)2+(0-1.5)2+…+(2-1.5)2+(4-
1.5)2]=1.65,
s22=1
10×[(2-1.2)
2+(3-1.2)2+(1-1.2)2+…+(0-1.2)2+(1-
1.2)2]=0.76.
从结果看乙台机床10天生产中出次品的平均数较小,出次品的波动也较小.
11.(2013·新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(1)将T 表示为X 的函数;
(2)根据直方图估计利润T 不少于57 000元的概率. 解 (1)当X ∈[100,130)时,T =500X -300(130-X ) =800X -39 000.
当X ∈[130,150]时,T =500×130=65 000.
所以T =⎩⎨
⎧
800X -39 000,100≤X <130,
65 000,130≤X ≤150.
(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150. 由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.
12.(2013·安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2, 估计x 1-x 2的值.
解 (1)设甲校高三年级学生总人数为n . 由题意知,30
n =0.05,即n =600.
样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=5
6.
(2)设甲、乙两校样本平均数分别为x ′1,x ′2.
根据样本茎叶图可知,30(x ′1-x ′2)=30x ′1-30x ′2=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.
因此x ′1-x ′2=0.5.故x 1-x 2的估计值为0.5分.。