第九章2 多元回归分析

合集下载

第九章 回归分析

第九章 回归分析

系数:
参数a、b的最小二乘估计
A good
line is one that minimizes the sum of squared differences between the points and the line.
根据推导,
a y bx
( x x )( y y ) b (x x)
Multiple Regression
R2adj - “adjusted R-square”
R2是一个受自变量个数与样本规模之比(k:n)影响的系数,一般是1:10 以上为好。当这个比值小于1:5时,R2倾向于高估实际的拟合的程度。 Takes into account the number of regressors in the model
X的变异
r2
Y的变异
Simple Regression
R2 - “Goodness of fit”
For simple regression, R2 is the square of the correlation coefficient
Reflects variance accounted for in data by the best-fit line
第九章 多元回归分析
浙江师范大学教育学院心理系
徐长江 xucj@
纲要
回归分析的基本原理
一元回归分析 多元回归分析
多元回归分析的方法 多元回归分析的实现
回归分析的目的
设法找出变量间的依存(数量)关系, 用函数 关系式表达出来
Example: Height vs Weight
Takes values between 0 (0%) and 1 (100%) Frequently expressed as percentage, rather than decimal

第九章:回归分析-30页文档

第九章:回归分析-30页文档
Regression Analysis
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High

多元回归分析的原理和应用

多元回归分析的原理和应用

多元回归分析的原理和应用1. 引言多元回归分析是统计学中一种常用的分析方法,用于研究多个自变量和一个因变量之间的关系。

它可以帮助我们理解多个变量对一个变量的影响程度,并通过建立数学模型来预测因变量的值。

2. 基本原理多元回归分析基于线性回归模型进行建模,其中一个因变量可以通过多个自变量的线性组合来描述。

该模型的数学表示为:Y = β0 + β1*X1 + β2*X2 + ... + βn*Xn + ε其中,Y是因变量的值,X1、X2、…、Xn是自变量的值,β0、β1、β2、…、βn是回归系数,ε是误差项。

3. 模型建立与评估在进行多元回归分析时,首先需要选择合适的自变量来建立模型。

可以通过观察变量之间的相关性、领域知识和实际经验来选择自变量。

然后,通过最小二乘法估计回归系数,使得模型在样本中的拟合误差最小化。

模型的拟合优度可以通过判定系数R2来评估。

R2越接近1,说明模型能够较好地解释因变量的变异;R^2越接近0,说明模型解释能力较差。

4. 样本数据分析多元回归分析通常需要一定量的样本数据来建立和验证模型。

样本数据应该具有代表性,并且满足一些基本假设,例如线性关系和误差项的独立性。

在分析样本数据时,可以使用统计软件如SPSS、R或Python等来实现多元回归分析。

这些软件提供了丰富的功能和工具,帮助研究者快速、准确地进行分析。

5. 应用领域多元回归分析在许多领域有着广泛的应用。

以下是一些常见的应用领域:5.1 经济学多元回归分析在经济学中用于研究经济变量之间的关系,如GDP、通货膨胀率、失业率等,帮助经济学家预测经济发展趋势、评估政策效果等。

5.2 社会科学在社会科学领域,多元回归分析被广泛应用于研究人类行为、社会问题等。

通过分析不同因素对社会现象的影响,可以帮助社会科学家理解社会现象的成因和解决途径。

5.3 健康科学多元回归分析在健康科学中用于研究健康影响因素,如疾病发生率、死亡率等。

通过分析各种生活方式、环境因素对健康的影响,可以帮助医生和公共卫生工作者制定合理的防控措施。

多元回归分析及其应用

多元回归分析及其应用

多元回归分析及其应用多元回归分析是一种统计分析方法,可以用来研究多个自变量对一个因变量的影响关系。

相比于简单回归分析,多元回归分析考虑了更多因素的影响,能够更准确地描述变量之间的关系。

本文将介绍多元回归分析的基本原理和应用,以及如何进行该分析的步骤和解读结果。

一、多元回归分析的基本原理多元回归分析建立在线性回归的基础上,使用线性方程来描述因变量与自变量之间的关系。

它的基本模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2...Xn表示自变量,β0、β1...βn表示模型的系数,ε表示误差项。

多元回归分析的目标是通过拟合最佳的模型,得到各个自变量的系数,以及判断自变量对因变量的影响是否显著。

二、多元回归分析的步骤进行多元回归分析时,需要按照以下步骤进行:1. 数据收集与准备:收集与研究问题相关的数据,并进行数据清洗与整理,确保数据的准确性和完整性。

2. 模型设定:根据研究问题和数据特点,选择适当的模型。

根据自变量和因变量的关系类型,可以选择线性回归、多项式回归、对数回归等各种模型。

3. 模型拟合:使用统计软件进行多元回归分析,拟合出最佳模型。

统计软件会给出各个自变量的系数、截距项以及模型的可靠性指标。

4. 模型诊断:对模型进行诊断,检查模型的合理性和符合假设的程度。

可以通过观察残差图、相关系数矩阵、变量的显著性检验等方法来评估模型的质量。

5. 结果解读:根据模型的系数和统计指标,对结果进行解读。

判断自变量对因变量的影响是否显著,并分析各个自变量之间的相互影响。

三、多元回归分析的应用领域多元回归分析在各个学科和领域都有广泛的应用。

以下是其中几个具体领域的示例:1. 经济学:多元回归分析可以用来研究经济变量之间的关系,如GDP、失业率、通货膨胀率等。

2. 医学:多元回归分析可以帮助医学研究人员研究不同因素对疾病发展的影响,如药物剂量、生活方式等。

多元回归分析法介绍和具体应用

多元回归分析法介绍和具体应用

多元回归分析法介绍和具体应用Y=β0+β1X1+β2X2+...+βpXp+ε其中,Y是依变量,X1,X2,...,Xp是自变量,β0,β1,β2,...,βp 是回归系数,ε是误差项。

1.收集数据:收集与研究对象相关的自变量和依变量数据。

2.建立模型:根据理论分析或经验,选择合适的自变量,并构建线性回归模型。

3.估计回归系数:利用最小二乘法等方法,估计模型中的回归系数。

4.检验回归模型的显著性:通过计算F统计量或t统计量,判断回归模型是否显著。

5.判断自变量的重要性:利用回归系数的显著性检验或变量的贡献度等指标,判断自变量对依变量的重要性。

6.检查模型的拟合度:通过分析残差、检验回归模型的假设条件等方法,检查模型的拟合度。

7.利用模型进行预测和推断:利用已建立的回归模型,进行依变量的预测和自变量的推断。

1.经济学:多元回归分析可用于研究宏观经济指标与影响因素之间的关系,如利率与货币供应量、GDP与投资、通胀率与产出等。

2.金融学:多元回归分析可用于分析影响股价、汇率、利率等金融变量的因素,帮助投资者制定合理的投资策略。

3.市场营销:多元回归分析可用于研究产品销售量与产品特征、价格、广告投入等之间的关系,为市场营销决策提供依据。

4.生物学:多元回归分析可用于研究生物学变量与环境因素之间的关系,如物种多样性与温度、植物生长与土壤养分等。

5.医学:多元回归分析可用于研究疾病发生与影响因素之间的关系,如心脏病与高血压、肥胖与糖尿病等。

6.社会科学:多元回归分析可用于研究社会科学变量与社会因素之间的关系,如教育水平与收入、犯罪率与失业率等。

总之,多元回归分析是一种重要的统计分析方法,可用于研究多个自变量对一个依变量的影响,并在各个领域中发挥重要作用,为决策提供科学依据。

在实际应用中,需要注意合理选择自变量、遵守回归模型的假设条件,并进行适当的模型检验和解释。

多元回归分析范文

多元回归分析范文

多元回归分析范文多元回归分析是一种统计分析方法,用于探究多个自变量与一个因变量之间的关系。

它是简单回归分析的扩展,可以更准确地预测因变量的值,并提供对自变量的影响程度的评估。

在本文中,将介绍多元回归分析的原理、步骤和应用,并将其与其他相关的统计分析方法进行比较。

Y=β0+β1X1+β2X2+β3X3+…+βnXn+ε其中,β0为常数项,β1,β2,β3为自变量的系数,ε为误差项。

多元回归分析的目标是通过估计自变量的系数,找到一个最佳的拟合线来预测因变量的值。

1.数据收集:收集包括因变量和自变量在内的相关数据。

2.数据预处理:处理缺失值、异常值等数据,进行变量转换和标准化等操作。

3.模型拟合:使用最小二乘法估计自变量的系数,并通过显著性检验确定哪些自变量对因变量有显著影响。

4.模型评价:通过诸如回归系数、拟合优度等指标评价模型的拟合效果。

5.模型预测:利用拟合好的模型进行因变量的预测。

多元回归分析的应用非常广泛。

在社会科学领域,可以用于预测人们的投票行为、消费行为等。

在经济学中,可以用于分析商品价格与销量之间的关系,以及其他经济因素对市场产生的影响。

在医学领域,可以用于分析多个因素对疾病发生的影响。

在工程领域,可以用于预测产品性能与各个因素之间的关系。

与其他统计分析方法相比,多元回归分析的优点在于可以同时考虑多个自变量对因变量的影响,提供更全面的预测能力。

它可以揭示多个自变量之间的相互作用效应和各自的独立影响,并通过系数的大小提供对各个自变量的相对重要性的评估。

此外,多元回归分析还可以控制其他变量,剔除掉与因变量无关的影响。

然而,多元回归分析也存在一些局限性,如对线性假设的依赖、需要满足一些基本假设(如线性无关性、同方差性等)等。

总之,多元回归分析是一种重要的统计分析方法,可应用于多个领域。

通过分析多个自变量与一个因变量之间的关系,可以提供更准确的预测和深入的解释。

然而,在应用多元回归分析时,需要注意对数据的收集和预处理,并且验证模型的拟合优度和假设的合理性。

多元回归分析

多元回归分析

( 1 , 2 , , n )
( 0 , 1 ,
T
, p )T
1 x11 1 x21 X 1 xn1
x12 x22 xn 2
x1 p x2 p xnp
矩阵 X 是一 n ( p 1) 阶矩阵,称 X 为回归设计矩阵或 资料矩阵。
二、多元线性回归模型的基本假定
为了方便地进行模型的参数估计,对回归方程(7.2)式有如 下一些基本假定。 1、解释变量 x1 , x2 , , x p 是确定性 变量,不是随机变量,而 且要求 rank ( X ) p 1 n 。
2、随机误差项具有0均值和等方差(高斯-马尔柯夫条件),即
2
7.2.3 参数估计量的性质 ˆ 为 的线性无偏估计,且 D( ˆ ) Var ( ˆ ) 2 ( X T X )1 1 、 ˆ ) 0, Cov( ˆ) 2( I H ) 2、 E ( 2 3 、(Gauss-Markov定理)在假定 E (Y ) X , D(Y ) I n 的任一线性函数 T 的最小方差线性无偏估计(BLUE)为 时, ˆ ,其中 为 p 1维向量, 为 ˆ 的最小二乘估计。 T
在回归分析中,因变量y是随机变量,自变量x可以是随机变 量,也可以是非随机的确定变量;而在相关分析中,变量x和变 量y都是随机变量。 相关分析是测定变量之间的关系密切程度,所使用的工具是 相关系数;而回归分析则是侧重于考察变量之间的数量变化规律, 并通过一定的数学表达式来描述变量之间的关系,进而确定一个 或者几个变量的变化对另一个特定变量的影响程度。
ˆ) 0 X T (Y X
二、误差方差 2的估计
ˆ HY 为 Y 的拟合值(估计值),其中 ˆ X 1、设Y ˆ ( I H )Y , H X ( X T X )1 X T ,此时残差向量 ˆ Y Y n 满足以下结论: (1) H 与I n H 都是 n 阶对称幂等矩阵; T ˆ T ˆ 0 ,Y ˆ 0 ,( I n H ) X 0 ; (2) X ˆT ˆ T ( I n H ) (4)

多元回归分析

多元回归分析

Multi Regression
22
Adjusted R2
在迴歸分析中,如果自變項的個數很多,有時 候就要用調整後的判定係數代替原先的判定係 數,因為增加新的自變項後,均會使R2變大。
「Adjusted R2」為調整後的判定係數:
SSE 2 2 n k 1 1 n 1 (1 R 2 ) Adjusted R R a 1 SST n k 1 n 1
平均平方和MS SSR MSR k SSE MSE n k 1
F F MSR MSE
ˆ Note: 殘差 ei yi yi ,i 1, 2,, n
K為預測變數個數(不含β0)
Multi Regression 18
模式檢定(1)
迴歸分析之假說檢定包括總檢定與邊際檢定兩種。 總檢定: – 目的在探討迴歸模式中的所有斜率係數是否全部 為0。 – 當斜率係數不全為0時,Y與(X1,X2,…,XK)才具有 某種程度的函數關係 。 – 總檢定之虛無假說與對立假說可列示如下: H0: j=0,對所有j H1: j0,對某些j (j=1,2,…,K) – 檢定統計量: F=MSR/MSE
2 iid

Y1 1 X11 X1k 0 1 Y2 1 X21 X2k 1 2 Yn 1 Xn1 Xnk k n
Yn1 Xn(k1)β(k1)1 ε n1
Multi Regression
17
迴歸分析 ―變異數分析表
變異來源 迴歸 隨機 總和 平方和SS
ˆ ˆ SSR y 2 (Y Y ) 2
SSE e 2 (Y Y ) 2

多元回归分析

多元回归分析

多元回归分析引言多元回归分析是一种统计方法,用于探究自变量对因变量的影响程度。

它通过建立一个数学模型,分析多个自变量与一个因变量之间的关系,以预测因变量的变化。

本文将介绍多元回归分析的基本原理、应用场景和步骤。

基本原理多元回归分析建立了一个包含多个自变量的线性回归方程,如下所示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、…、Xn为自变量,β0、β1、β2、…、βn为回归系数,ε为误差项。

回归系数表示自变量对因变量的影响程度。

多元回归分析可以通过最小二乘法估计回归系数,即找到使误差项平方和最小的系数值。

在得到回归系数后,可以通过对自变量的设定值,预测因变量的值。

应用场景多元回归分析广泛应用于各个领域,例如经济学、社会科学和工程学等。

以下是一些常见的应用场景:1.经济学:多元回归分析可以用于预测经济指标,如国内生产总值(GDP)和通货膨胀率。

通过分析多个自变量,可以了解各个因素对经济发展的影响程度。

2.社会科学:多元回归分析可以用于研究社会现象,如教育水平和收入水平之间的关系。

通过分析多个自变量,可以找出对收入水平影响最大的因素。

3.工程学:多元回归分析可以用于预测产品质量,如汽车的油耗和引擎功率之间的关系。

通过分析多个自变量,可以找到影响产品质量的关键因素。

分析步骤进行多元回归分析时,以下是一般的步骤:1.收集数据:收集自变量和因变量的数据,并确保数据的可靠性和有效性。

2.数据预处理:对数据进行清洗和转换,以消除异常值和缺失值的影响。

3.变量选择:根据实际问题和领域知识,选择合适的自变量。

可以使用相关性分析、变量逐步回归等方法来确定自变量。

4.拟合模型:使用最小二乘法估计回归系数,建立多元回归模型。

5.模型评估:通过检验残差分布、解释变量的显著性和模型的拟合程度等指标,评估多元回归模型的质量。

6.预测分析:使用已建立的多元回归模型,对新的自变量进行预测,得到因变量的预测值。

多元回归分析

多元回归分析

多元回归分析在经济学、社会学、心理学、医学等领域的实证研究中,多元回归分析是一种重要的统计方法。

它能够帮助研究者建立模型,估计各个变量的影响力,并对研究问题作出预测。

本文将介绍多元回归分析的概念、基本假设、模型建立、参数估计、模型诊断和解释结果等方面。

一、概念多元回归分析是一种用来研究因变量与多个自变量之间关系的统计方法。

在多元回归分析中,我们以因变量为被解释变量,以自变量为解释变量,建立一个多元线性回归模型,然后用样本数据估计各个系数,进而对总体进行推断。

通常,我们所研究的因变量与自变量之间是存在着某种联系的。

这种联系可以是线性关系,也可以是非线性关系。

我们可以通过多元回归模型来表达和解释完整的联系。

二、基本假设在进行多元回归分析时,我们需要基于以下三个基本假设:1.线性假设:多元回归模型中,因变量与自变量之间的关系是线性的。

2.独立假设:所有观测量之间都是相互独立的。

3.常态假设:模型的误差项服从正态分布。

三、模型建立建立一个多元回归模型通常有以下几个步骤:1.选择自变量:确定那些自变量对目标变量具有影响。

2.确定函数形式:使用线性函数或者非线性函数建立多元回归模型。

3.估计参数:使用样本数据来估计函数中的系数。

4.模型检验:验证模型是否可以拟合样本数据以及是否可以推广到总体。

五、参数估计在确定自变量和函数形式之后,我们需要使用已有数据来估计模型中的系数。

在多元线性回归中,一般采用最小二乘法对模型中的系数进行估计。

最小二乘法会尝试选择一组系数,使得用这组系数确定的模型与观测值之间的残差平方和最小。

残差平方和表示由于模型和观测值之间的差异而产生的差异的度量。

六、模型诊断模型的诊断是一个非常重要的步骤,用于检查多元回归模型的各种假设是否得到满足。

模型诊断的两个步骤:1.检查多元回归模型的基本假设是否得到满足。

这包括线性假设、独立假设和常态假设。

2.分析模型的残差以检查模型是否存在某种偏差。

如果存在偏差,可能会导致模型不准确,预测不可信。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

第九章 时间序列预测法和回归分析预测法全面版

第九章 时间序列预测法和回归分析预测法全面版
和不规则变动(I)的值。 根据自变量在预测其的数量变化来预测因变量,关系大多表现为相关关系。
事情的过去会延续到未来这个假设前提包含两层含义: 过去和当前的现象可能表明现在和将来活动的发展变化趋向。
利用时间序列资料求出长期趋势、季节变 过去和当前的现象可能表明现在和将来活动的发展变化趋向。
因此时间序列分析法,对短期、近期的预测比较显著。 求时间序列的长期趋势变动(T)、季节变动(S)和不规则变动(I)的值。
第九章 时间序列预测法 和
回归分析预测法
9.1 时间序列预测法
9.1.1 时间序列预测法概述 1、概念
时间序列,也叫时间数列、 复数或动态数列,是将 某种统计指标的数值,按时间先后顺序排列所形 成的数列。
该方法通过编制和分析时间序列,根据时间序列所 反映出来的发展过程、方向和趋势,进行类推或 延伸,借以预测下一段时间或以后若干年内可能 达到的水平。

9.2 回归分析预测法
回归分析预测法,是在分析市场现象自变量和因变量 自检相关关系的基础上,建立变量之间的回归方程, 并将回归方程作为预测模型,根据自变量在预测其的 数量变化来预测因变量,关系大多表现为相关关系。 1、一元线性回归分析预测法
是在考虑预测对象发展变化本质的基础上,分 析因变量随一个自变量变化而变化的关联形态,借助 回归分析建立它们之间因果关系的回归方程,描述它 们之间的平均变化数量关系,据此进行预测或控制 。
事情的过去会延续到未来这个假设前提包含两层含义:
3、时间序列预测法的基本特征 ⑴ 时间序列分析法
① 事情的过去会延续到未来这个假设前提包含两层 含义:
② 不会发生突然的跳跃变化,是以相对小的步伐前 进;
③ 过去和当前的现象可能表明现在和将来活动的发 展变化趋向。

第九章方差分析及回归分析

第九章方差分析及回归分析
的点估计及均值差的置信水平为0.95的置信 区间。
解:2 SE /(n r) 0.000016
1 x1 0.242, 2 x2 0.256, 3 x3 0.262 x 0.253
1 x1 x 0.011, 2 x2 x 0.003
2019/11/8
1
例1 设有三台机器,用于生产规格相同的铝 合金薄板。取样,测量薄板的厚度精确至千 分之一厘米。得结果如下表所示。
铝合金板的厚度
机器1
机器2
机器3
0.236
0.257
0.258
0.238
0.253
0.264
0.248
0.255
0.259
0.245
0.254
0.267
0.243
0.261
SE ( X i1 X1)2
( X is X s )2
i 1
i 1
nj
(Xij X j )2 / 2 ~ 2 (nj 1)
i1
由 2分布的可加性知
s
SE / 2 ~ 2 ( (nj 1)) j 1
SE / 2 ~ 2(n s)
因F0.05(2,12) 3.89 32.92,
故在水平0.05下拒绝H0 , 认为各台机器生产的 薄板厚度有显著差异。
2019/11/8
23
(五)未知参数的估计
不管H0是否为真,ˆ 2

SE nr

2的无偏估计。
拒绝还是接受H0,需要作出两总体N (i , 2)和N (k , 2),
( Xij Xi.)( Xi. X )
i1 j1
i1

第9章 回归分析

第9章 回归分析
9.1.2 多元线性回归
1. 多元线性回归模型 设随机变量 y 与 m (m ≥ 2) 个自变量 x1 , x2 , ⋅⋅⋅, xm 之间存在相关关系,且有
y= a + b1 x1 + b2 x2 + ⋅⋅⋅ + bm xm + ε 2 ε ~ N (0, σ )
其中 a, b1 , b2 , ⋅⋅⋅, bm , σ 是与 x1 , x2 , ⋅⋅⋅, xm 无关的未知参数, ε 是不可观测的随机变量.称上式
= F
SR ~ F (1, n − 2) , Se /(n − 2)
168
对于给定的显著性水平 α ,拒绝域为 = F
SR ≥ Fα (1, n − 2) . Se /(n − 2)
Se
2
t 检验法: ˆ ~ N (b, 由b
此得到
σ2
lxx
) 知,
ˆ−b b
σ
lxx ~ N (0,1) .又由
σ
=
= i 1
n
ˆ ( x − x )x ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1
n n
n
= i 1
ˆ ( x − x )( x − x + x ) ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1 n n n
=
= i 1
ˆˆ ( x − x ) 2 − b ∑ xi yi − y ∑ xi − b ∑ i
当原假设 H 0 为真时, (3) F 检验法
σ
SR
2
~ χ 2 (m) ,且 S R 与 Se 相互独立.
SR / m , 当 H 0 为真时, F ~ F ( m, n − m − 1) . 因此 ,对于给定 Se / (n − m − 1) 的显著性水平 α ,拒绝域为 F ≥ Fα (m, n − m − 1) .

多元回归分析

多元回归分析

基本介绍
Hale Waihona Puke 通常影响因变量的因素有多个,这种多个自变量影响一个因变量的问题可以通过多元回归分析来解决。例如, 经济学知识告诉我们,商品需求量Q除了与商品价格P有关外,还受到替代品的价格、互补品的价格,和消费者收 入等因素,甚至还包括商品品牌Brand这一品质变量(品质变量不能用数字来衡量,需要在模型中引入虚拟变量) 的影响。多元回归分析应用的范围更加广泛。由于线性回归分析比较简单和普遍,下面首先介绍多元线性回归, 在线性分析基础上,逐步引入虚拟变量回归和一类能够变换成线性回归的曲线回归模型 。
多元回归分析
数理统计方法
目录
01 基本介绍
03 引进虚拟变量
02 多元回归模型 04 曲线回归
多元回归分析(Multiple Regression Analysis)是指在相关变量中将一个变量视为因变量,其他一个或 多个变量视为自变量,建立多个变量之间线性或非线性数学模型数量关系式并利用样本数据进行分析的统计分析 方法。另外也有讨论多个自变量与多个因变量的线性依赖关系的多元回归分析,称为多元多重回归分析模型(或 简称多对多回归)。
感谢观看
当虚拟变量的引入形式只影响回归方程的截距,我们称为加法模型。引入虚拟变量的另外一种形式是乘法模 型,这时引入虚拟变量后并不影响模型的截距,而是影响了斜率。当然,在模型设定时也可能同时引入加法和乘 法,同时改变模型的截距和斜率。
曲线回归
前面我们在模型中都假定Y和之间是线性关系,从广义的线性角度来讲,下面所讲的曲线模型是通过变量替换 而转化成线性的模型。表1列出了常用的可以通过变量替换而转化成线性的曲线模型 。
多元回归模型
多元回归模型的数学形式 设因变量为Y,影响因变量的k个自变量分别为,假设每一个自变量对因变量Y的影响都是线性的,也就是说, 在其他自变量不变的情况下,Y的均值随着自变量的变化均匀变化,这时我们把 称为总体回归模型,把称为回归参数。回归分析的基本任务是: 任务1:利用样本数据对模型参数作出估计。 任务2:对模型参数进行假设检验。 任务3:应用回归模型对因变量(被解释变量)作出预测。 模型的基本假定 为了保证多元回归分析的参数估计、统计检验以及置信区间估计的有效性,与一元线性回归分析类似,我们 需要对总体回归模型及数据作一些基本假定。 假定1:随机误差项的概率分布具有零均值,即。 假定2:随机误差项的概率分布对于不同的自变量表现值而言,具有同方差。

多元回归分析2

多元回归分析2
p 0.0000.
p 0.05,回归模型 y 16.0730 0.7194x成立.
一元多项式回归
1.确定多项式系数,用命令: [p,S]=polyfit(x,y,m)
x ( x1 , x2 ,, xn ), y ( y1 , y2 ,, yn ). p (a1,a2 ,,am1 ) 确定多项式 y a1 xm a2 xm1 am x am1, S是一个矩阵,用来估计预测误差. 也可使用命令:polytool(x,y,m) 结果产生一个交互式的画面, 画面中有拟合曲 线和 y 的置信区间, 左下方的 Export 可以输出参数.
化简可得
n
b0n b1
xi1 b2
n
xi2 bp
n
xip
n
yi ,
i 1
i 1
n
n
n
i 1
i 1 n
b0
xi1 b1
xi21 b2
xi1xi2 bp
xi1
xip
i 1
i 1
i 1
n
i 1
xi1 yi ,
i 1
n
n
n
n
b0
i 1
xip
b1
i 1
( x1 , x2 ,, x p )
Y 关于 x 的回归函数
( x1, x2 ,, x p )是x1, x2 ,, x p的线性函数.
Y b0 b1 x1 bp x p , ~N (0, 2 ). b0 ,b1 ,,bp , 2是与x1 ,, x p无关的未知参数.
多元线性回归模型
二、数学模型的分析与求解
与前面的结果一致.
多元二项式回归 rstool(x,y,’model’,alp

第九章 REG-多元线性回归

第九章 REG-多元线性回归

多重共线性的处理方法
• • • • 剔除不重要的自变量; 增大样本容量; 把横截面数据与时间序列数据结合起来使用; 当样本资料来自时间序列时,可以对回归模型进 行差分,然后拟合差分后的模型; • 岭回归方法; • 主成分回归。
岭回归 自变量间存在多重共线性时
X 0,因此给 X 加上一个 k I(k 0), 那么 X X X k I接近奇异的程度会降低 X
K=0.02对应的岭回归方程为: import=-8.9277+0.057gdp+0.59542save+0.127consume 且三个变量的VIF都小于10,多重共线性不明显。
• • • • •
proc reg data=imports outest=result1 outvif; model import=gdp save consume/pcomit=1; run; proc print data=result1; 主成分回归 run;
2 ˆ ˆ 从而使 的方差阵 D ( ) (X )1对角线上的元素很大, X ˆ 也 var( ) 很大 i
多重共线性的判断
(1)方差膨胀因子VIF:
1 VIFj 1 R2 j
其中R 2为第j个自变量对模型中其余自变量进行线性回 j 归所得到的拟合优度。
一般来说,VIFj 10,表明自变量间存在高度共线性。
outest=result:要求把岭回归估计值输出到数据集result中 Outvif: 要求把岭回归估计的VIF输出到数据集result中 ridge=0.0 to 0.1 by 0.01 0.2 0.3 0.4 0.5;指定一组岭迹参数 Plot/ridgeplot; 要求绘制岭迹图

第九章多元回归与多项式回归

第九章多元回归与多项式回归
第九章 多元回归与多项式回归

学习要求
了解多元回归、偏相关系数、通径分析、多项式回归的概念;理解多 元回归、多项式回归关系的显著性检验及准确度测定的意义;掌握正 规方程组求解求逆紧凑法的步骤及建立最优回归方程、通径分析方法。

重点与难点

重点:涉及本章统计量的含义,建立最优回归方程及通径分析方法 难点:求解求逆紧凑法的应用
(9—4)
(9—5)
3b1 5b2 26 例1. 5b1 2b2 18
3 2 5 3 2 5 当需要解三元或三元以上方程组时,则用以下计算方法。目前最为流行的是求 解求逆紧凑法。 2.消元法 消元法求解的原理是利用乘或除法使方程组中两方程式的同一项具 有相同的系数,然后将此两式相加或相减使该项系数为零,从而消去一元。逐次 消元,最后得一方程及各元之解(略)。
这些方程用矩阵的形式表示为:
10 7 4 7 7 3 4 3 4 b1 4 b 4 2 b3 3
a13 10 7 4 a 23 7 7 3 a 33 4 3 4
式中: l —变换的次数,a(l+1)—变换 l 次后的元素,a(l)—变换 l 次时的元素, k—每次变换的主行列标号,akk—变换行主单元的元素,i—元素a的行标,j—元 素a的列标。9.1式用于变换主行(k)主元素的变换;9.2式用于变换主行除主元 素外其它元素的变换;9.3式用于变换主列(k)除主元素外其它元素的变换; 9.4式用于除变换主行主列元素外其它各元素的变换。
2 2
b1
26 2 5 18
2
b2
3 18 5 26
4
以上两种方法都无求逆过程,而逆矩阵元素是偏回归系数显著性检验所不可缺 少的。故以上两种方法不常用。 3.矩阵法 正规方程组的求解可用矩阵法来进行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M od e l 1
(Constant) x1 x2
B .488 .576 4.769
Std. Error 2.218 .136 1.983
x3
-2.145
1.016
a. Dependent Variable: y
Stan d a rd i ze d Co effi ci e nts
Beta
.803 .470 -.416
yi yi 2 yi yˆi 2 yˆi y2
TSS RSS ESS
❖ 例2中,方差分析表为:Residual-残差:预测值与实测值的差
ANOVAb
M od e l
1
Re gre ssi o n
Sum of Squares 803.816
Re si du a l
204.734
Total
C oe f fi c ie n tsa
Unstandardized Coefficients
Model
B
Std. Error
1
(Constant) -1353.546
162.576
X1
.544
.075
X2
1.207
.217
a. Dependent Variable: Y
Standardized Coefficients
E( ξ i)=0 var(ξ i)=E(ξ i -E(ξ i))2=E(ξ i)2=σ2 3. 随机误差项在不同样本点之间是相互独立的,不存在 序列相关
cov(ξ i, ξ j)=0 i≠j i,j=1,2,…n cov(ξ i, ξ j)=E((ξ i -E(ξ i)(ξ j -E(ξ j))
=E(ξ i ξ j) =E(ξ i )E(ξ j) =0
1 x11 x21 … xp1 x= 1 x12 x22 … xp2
1 x1n x2n … xpn
ξ1 ξ2 e= …
bp
ξn
❖ 则 Y=XB+e
一、多元线性回归模型的基本假定
1. 解释变量x1,x2,…,xp是确定性变量,不是随机变量, 而且解释变量之间互不相关
2. 随机误差项具有零均值和同方差
若︱t︱<t α /2,则接受原假设.
❖ 如果一次t检验后,模型中存在多个不重要变量,一般是 将t值最小的变量删除掉,再重新进行检验,每次只剔除1 个变量.
Fi
bi2 aii
RSS n p 1
❖ aii是(X`X)-1主对角线上第i+1个元素
六、复相关系数和偏相关系数
复相关系数R是由ESS和TSS构造的统计量,用 来表示回归方程对原有数据拟合程度的好坏, 衡量作为一个整体的x1,x2,…,xp与y的线性关系 的大小。
如果解释变量对被解释变量的影响不显著,应从模型中删除,如果 解释变量对被解释变量的影响显著,应保留在模型中.
利用t统计量进行参数显著性检验的步骤如下:
(1) 假设: H0: bi=0 (2)构造统计量:
(3)检验
t bi sbi
sbi
s2y
xi xi 2
对给定α,若︱t︱>t α /2,说明拒绝原假设
❖ Yi= b0+b1x1i+b2x2i+…+bpxpi+ξi Y1=b0+b1x11+b2x21+…+bpxp1+ ξ1 Y2=b0+b1x12+b2x22+…+bpxp2+ ξ2 …
Yn=b0+b1x1n+b2x2n+…+bpxpn+ ξn
❖令 y1
❖ Y= y2
yn
b0 b1 ❖ B= …
❖ 回归统计量
(1)estimates:显示回归系数及相关的指标 (2)confidence intervals:显示未标准化回 归系数的置信区间
(3)covariance matrix: 未标准化回归系数 的方差—协方差矩阵 (4)model fit:模型检验
❖ 回归统计量
(5)R squared change:每引进一个x引起 的回归 (6)descriptive:显示变量的均值、标准差等 (7)Part and partial correlations:偏相关 (8)collinearity diagnostics:共线性诊断 (9)Durbon_waston:D.w.检验统计量
t .220 4.245 2.404 -2.111
Si g. .829 .001 .029 .051
Y=0.488+0.576x1+4.769x2-2.145x3 (4.245) (2.404) (-2.111)
Coefficientsa
Un stan d ard i ze d Co effi ci e nts
rp1 rp2 rpp
r11 r12 r1p r1y r21 r22 r2 p r2 y rp1 rp2 rpp rpy ry1 ry2 ryp ryy
r ij .12 i1i1 j 1 j 1 p
ij ii jj
r yi.12 i1i1 p
iy ii yy
❖ 简单相关系数只是一种表面上的数量的相关系数,而 并非本质的东西。偏相关系数才真正反映两个变量的 本质联系。
1008.550
a. Predictors: (Constant), x3, x1, x2
b. Dependent Variable: y
df 3 16 19
Mean Square 267.939 12.796
F 20.939
Si g. .000a
❖ 1.方程显著性检验(F检验)
❖ F检验是以方差分析为基础,对回归总体线性关系是否显著的一 种假设检验,是解释模型中被解释变量与所有解释变量之间的线 性关系在总体上是否显著的方法
检验的判定时,一般采用调整的R2,以消除自变量的个数以及
样本量的大小对R2的影响。
R2 ESS 1 RSS
TSS
TSS

调整的R2
R 2 1 n 1 RSS
n p 1 TSS
❖ 其它变量被固定后,计算任意两个变量之间的 相关系数,这种相关系数称为偏相关系数。
r11 r12 r1p r21 r22 r2 p
yi yi 2 yi yˆi 2 yˆi y2 2yi yˆi yˆi y yi yˆi yˆi y ei yˆi y ei yˆi ei y
ei bˆ0 bˆ1x1i bˆp xpi bˆ0 ei bˆ1 ei x1i bˆp ei xpi 0
❖令
(最小二乘法)
Q
2 i
Q bˆ
0
Q 即 bˆ0
2
yi bˆ0 bˆ1x1i bˆp x pi 0
Q
bˆ1
2
yi bˆ0 bˆ1x1i bˆp x pi x1i 0
Q
bˆp
2
yi bˆ0 bˆ1x1i bˆp x pi x pi 0
4. 随机误差项与解释变量之间不相关
cov(xi, ξ i)=0 5. 随机误差项服从零均值,同方差的正态分布 ξ i~N(0,σ2 )
❖ 二、建立回归方程
❖设
Yˆ i bˆ 0 bˆ1x1i bˆ 2x2i bˆ pxpi
i yi yˆi yi bˆ 0 bˆ1x1i bˆ 2x2i bˆ pxpi
第九章 回归问题
❖ 第一节 一元线性回归 ❖ 第二节 多元线性回归 ❖ 第三节 可化为多元线性回归的问题 ❖ 第四节 曲线回归
§2 多元回归分析
❖ 一元线性回归只是回归分析中的一种特例。 ❖ 若某公司管理人员要预测来年该公司的销售额y时,
研究认为影响销售额的因素不只是广告宣传费x1,还 有消费人群个人可支配收入x2,价格x3,研究与发展 费用x4,各种投资x5,销售费用x6. ❖ ————多元回归问题。
0
xe 0
Y XB e X Y X XB X e
X XB X Y
Bˆ X X 1 X Y
❖ 三、多元线性回归模型的建模方法 ❖ 1.打开文件或新建文件
❖ 2.Analyze
regression
linear 3.建模方法
(1)enter:强迫进入法—如果因子数不多且符合多项回归条件 (2)stepwise:逐步选择法 (3)remove:强迫消除法 (4)backward:向后剔除法 (5)forward:向前引入法
R
ESS TSS
yˆi y2 yi y2
❖ 回归方程的拟合优度检验就是要检验样本数据点聚集在回归直 线周围的密集程度,从而评价回归方程对样本数据的代表程度。
由决定系数R2(有称复相关系数)来实现。
❖ 实际中,随着自变量个数的不断增加,必然会使得R2不断变化, 于是出现的问题是,R2变化是由于数学习性决定的,还是确实 是由于引入了好的变量进入方程而造成的。因此在作拟合优度
Beta
1.804 -.149 .913 1.062 -2.644 .182
t -2.634 3.292
-.416 2.341 2.703 -2.932 2.595
Si g. .039 .017 .692 .058 .035 .026 .041
Y=-13534.1+0.209x1-0.06x2+0.763x3+0.141x40.855x5+0.227x6
M od e l
B
Std. Error
1
(Constant) -13534.1 5138.920
x1
.209
.063
x2
-.060
.144
x3
.763
.326
相关文档
最新文档