高中数学:几何概型 (6)
数学一轮复习第十章10.6几何概型学案理含解析
第六节几何概型【知识重温】一、必记2个知识点1.几何概型如果每个事件发生的概率只与构成该事件区域的①________(②________或③________)成比例,则称这样的概率模型为几何概率模型,简称为④________。
2.在几何概型中,事件A的概率的计算公式如下:P(A)=⑤______________________________________________________________________ __。
二、必明2个易误点1.计算几何概型问题的关键是怎样把具体问题(如时间问题等)转化为相应类型的几何概型问题.2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.()(2)几何概型定义中的区域可以是线段、平面图形或空间几何体.()(3)与面积有关的几何概型的概率与几何图形的形状有关.()(4)几何概型与古典概型中的基本事件发生的可能性都是相等的,其基本事件个数都有限.()二、教材改编2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()A.错误!B.错误!C。
错误!D。
错误!3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.错误!B.错误!C。
错误! D.错误!三、易错易混4.[2021·福建莆田质检]从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是()A.错误!B.错误!C。
错误!D。
错误!5.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.四、走进高考6.[2017·全国卷Ⅰ]如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A。
几何概型的定义
几何概型的定义
几何(Geometry)是数学的一个分支,也被称为几何学,是计算物体在空间中的位置,形状及大小的研究,看待空间结构。
它是研究物体形状及图形之间映射关系,主要研究内
容是图形,解析几何,计算几何,代数几何,向量几何。
几何概念复杂,也十分重要。
几何概念是数学中一个重要的组成部分,也是几何研究的核心概念。
几何概念涵盖了
物理或虚拟物体的形状和位置,以及它们之间的关系。
几何概念的定义可能很抽象,然而
它的用途十分广泛,从求解平面或空间的图形到建筑设计等都会用到。
几何概念定义了物体的基本性质。
物体通常可以用形状,大小,以及位置来进行描述,而几何概念则定义了物体之间相互关系。
map,投影变换也是几何概念中的内容。
几何概
念中的概念包含圆形,椭圆形,正多边形,矩形等几何形状;平面,曲面,螺线管等形状;测量距离,面积,体积等变量;和角度,圆心,半径,对称等几何线性关系。
几何概念的定义不仅可以用于表示物体,还可以用于非几何形状的描述。
举例来说,
在电路设计中,将采用多重连接技术用于表示多种复杂关系,比如多次相加,做出比例变换,以及更加复杂的操作。
几何概念也可以用于表示数学模型,比如决策树,时标图等,
用于解决具有复杂内容的数学问题。
因此,可以概括地说,几何概念是描述物体大小及位置,以及物体之间的关系的抽象
概念,它的定义涉及多个不同的领域,研究的内容不仅仅限于物体的形状及图形之间的映
射关系,还包括物体的大小,距离,位置,以及非几何形状的描述。
人教版高中数学必修3讲义 几何概型
3.3几何概型3.3.1几何概型1.理解几何概型的定义及特点.(重点)2.掌握几何概型的计算方法和求解步骤,准确地把实际问题转化为几何概型问题.(难点)3.与长度、角度有关的几何概型问题.(易混点)[基础·初探]教材整理1几何概型阅读教材P135~P136例1以上的部分,完成下列问题.1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.3.几何概型的概率公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).1.判断(正确的打“√”,错误的打“×”)(1)几何概型的概率与构成事件的区域形状无关.()(2)在射击中,运动员击中靶心的概率在(0,1)内.()(3)几何概型的基本事件有无数多个.()【答案】(1)√(2)×(3)√2.如图所示,有四个游戏盘,将它们水平放稳后,向上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()【解析】A中奖概率为38,B中奖概率为14,C中奖概率为13,D中奖概率为13,故选A.【答案】 A3.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.【解析】∵区间[-1,2]的长度为3,由|x|≤1得x∈[-1,1],而区间[-1,1]的长度为2,x取每个值为随机的,∴在[-1,2]上取一个数x,|x|≤1的概率P=23.【答案】2 3教材整理2均匀分布阅读教材P136例1及以下的部分,完成下列问题.当X为区间[a,b]上的任意实数,并且是等可能的,我们称X服从[a,b]上的均匀分布,X为[a,b]上的均匀随机数.X服从[3,40]上的均匀分布,则X的值不能等于()A.15B.25C.35 D.45【解析】由于X∈[3,40],则3≤X≤40,则X≠45.故选D.【答案】 D[小组合作型]与长度有关的几何概型某汽车站每隔15 min有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min的概率.【精彩点拨】乘客在上一辆车发车后的5 min之内到达车站,等车时间会超过10 min.【尝试解答】设上一辆车于时刻T1到达,而下一辆车于时刻T2到达,则线段T1T2的长度为15,设T是线段T1T2上的点,且T1T=5,T2T=10,如图所示.记“等车时间超过10 min”为事件A,则当乘客到达车站的时刻t落在线段T1T上(不含端点)时,事件A发生.∴P(A)=T1T的长度T1T2的长度=515=13,即该乘客等车时间超过10 min的概率是13.在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A的概率.[再练一题]1.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮;(2)黄灯亮;(3)不是红灯亮.【解】在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P=红灯亮的时间全部时间=3030+40+5=25.(2)P=黄灯亮的时间全部时间=575=115.(3)P=不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P=1-P(红灯亮)=1-25=35.与面积有关的几何概型设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm,现用直径等于2 cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.【精彩点拨】当且仅当硬币中心与格线的距离都大于半径1,硬币落下后与格线没有公共点,在等边三角形内作与正三角形三边距离为1的直线,构成小等边三角形,当硬币中心在小等边三角形内时,硬币与三边都没有公共点,所以硬币与格线没有公共点就转化为硬币中心落在小等边三角形内的问题.【尝试解答】设A={硬币落下后与格线没有公共点},如图所示,在等边三角形内作小等边三角形,使其三边与原等边三角形三边距离都为1,则等边三角形的边长为43-23=23,由几何概率公式得:P(A)=34(23)234(43)2=14.几何概型的特点是基本事件有无限多个,但应用数形结合的方法即可巧妙解决,即要构造出随机事件对应的几何图形,利用图形的几何量度来求随机事件的概率.[再练一题]2.如图3-3-1,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M(图中白色部分).若在此三角形内随机取一点P,则点P落在区域M内的概率为________.图3-3-1【解析】 由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.【答案】 1-π4与体积有关的几何概型一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率.【精彩点拨】 利用体积之比求概率.【尝试解答】 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P =1333=127.与体积有关的几何概型问题的解决:(1)如果试验的全部结果所构成的区域可用体积来度量,则其概率的计算公式为:P(A)=构成事件A的体积试验的全部结果构成的体积.(2)解决此类问题一定要注意几何概型的条件,并且要特别注意所求的概率是与体积有关还是与长度有关,不要将二者混淆.[再练一题]3.本例条件不变,求这个蜜蜂飞到正方体某一顶点A的距离小于13的概率.【解】到A点的距离小于13的点,在以A为球心,半径为13的球内部,而点又必须在已知正方体内,则满足题意的A点的区域体积为43π×⎝⎛⎭⎪⎫133×18.所以P=43π×⎝⎛⎭⎪⎫133×1833=π2×37.[探究共研型]几何概型与古典概型的异同探究1【提示】相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的.不同点:古典概型要求随机试验的基本事件的总数必须是有限多个;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.探究2P(A)=0⇔A是不可能事件,P(A)=1⇔A是必然事件是否成立?【提示】(1)无论是古典概型还是几何概型,若A是不可能事件,则P(A)=0肯定成立;若A是必然事件,则P(A)=1肯定成立.(2)在古典概型中,若事件A的概率P(A)=0,则A为不可能事件;若事件A的概率P(A)=1,则A为必然事件.(3)在几何概型中,若事件A的概率P(A)=0,则A不一定是不可能事件,如:事件A对应数轴上的一个点,则其长度为0,该点出现的概率为0,但A并不是不可能事件;同样地,若事件A的概率P(A)=1,则A也不一定是必然事件.(1)在区间[-2,2]上任取两个整数x,y组成有序数对(x,y),求满足x2+y2≤4的概率;(2)在区间[-2,2]上任取两个实数x,y组成有序数对(x,y),求满足x2+y2≤4的概率.【精彩点拨】(1)在区间[-2,2]上任取两个整数x,y,组成有序数对(x,y)是有限的,应用古典概型求解;(2)在区间[-2,2]上任取两个实数x,y,组成有序数对(x,y)是无限的,应用几何概型求解.【尝试解答】(1)在区间[-2,2]上任取两个整数x,y组成有序数对(x,y),共计25个,其中满足x2+y2≤4的在圆上或圆内共计13个(如图所示),∴P=1325.(2)在区间[-2,2]上任取两个实数x,y组成有序数对(x,y),充满的区域是边长为4的正方形区域,其中满足x2+y2≤4的是图中阴影区域(如图所示),S阴=π×22=4π,∴P=4π16=π4.古典概型与几何概型的不同之处是古典概型的基本事件总数是有限的,而几何概型的基本事件总数是无限的,解题时要仔细审题,注意区分.[再练一题]4.下列概率模型中,几何概型的个数为()①从区间[-10,10]上任取一个数,求取到1的概率;②从区间[-10,10]上任取一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]上任取一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm的正方形内投一点,求点离中心不超过1 cm的概率.A.1B.2C.3D.4【解析】①中的概率模型不是几何概型,虽然区间[-10,10]上有无数个数,但取到“1”只是一个数字,不能构成区间长度;②中的概率模型是几何概型,因为区间[-10,10]和区间[-1,1]上都有无数个数,且在这两个区间上的每个数被取到的可能性相等;③中的概率模型不是几何概型,因为区间[-10,10]上的整数只有21个,是有限的;④中的概率模型是几何概型,因为在边长为4 cm的正方形和半径为1 cm的圆内均有无数个点,且这两个区域内的任何一个点被投到的可能性相同.【答案】 B1.转动图中各转盘,指针指向红色区域的概率最大的是()【解析】D中红色区域面积是圆面积的一半,其面积比A、B、C中要大,故指针指到的概率最大.【答案】 D2.一只蚂蚁在如图3-3-2所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后停留在黑色地板砖(阴影部分)上的概率是()图3-3-2A.13 B.23C.14 D.18【解】从题图中可以得到地板砖总数为12,其中黑色地板砖有4个,由此可知最后停留在黑色地板砖上的概率是412=1 3.【答案】 A3.在半径为1的圆中随机地投一个点,则点落在圆内接正方形中的概率是()A.1π B.2πC.2π D.3π【解析】点落在圆内的任意位置是等可能的,而落在圆内接正方形中只与面积有关,与位置无关,符合几何概型特征,圆内接正方形的对角线长等于2,则正方形的边长为 2.∵圆面积为π,正方形面积为2,∴P=2π.【答案】 B4.函数f(x)=-x2+2x,x∈[-1,3],则任取一点x0∈[-1,3],使得f(x0)≥0的概率为________.【解析】 依题意得,⎩⎪⎨⎪⎧-x 20+2x 0≥0,-1≤x 0≤3,解得0≤x 0≤2,所以任取一点x 0∈[-1,3],使得f (x 0)≥0的概率P =23-(-1)=12. 【答案】 12 5.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边长作一个正方形,求作出的正方形面积介于36 cm 2与81 cm 2之间的概率.【解】 如图所示,点M 落在线段AB 上的任一点上是等可能的,并且这样的点有无限多个.设事件A 为“所作正方形面积介于36 cm 2与81 cm 2之间”,它等价于“所作正方形边长介于6 cm 与9 cm 之间”.取AC =6 cm ,CD =3 cm ,则当M 点落在线段CD 上时,事件A 发生.所以P (A )=|CD ||AB |=312=14.学业分层测评(二十) 几何概型(建议用时:45分钟)[学业达标]一、选择题1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性【解析】 几何概型和古典概型是两种不同的概率模型,故选A.【答案】 A2.在圆心角为90°的扇形中,以圆心O为起点作射线OC,则使得∠AOC 和∠BOC都不小于30°的概率为()A.13 B.23C.14 D.34【解析】记M=“射线OC使得∠AOC和∠BOC都不小于30°”.如图所示,作射线OD,OE使∠AOD=30°,∠AOE=60°.当OC在∠DOE内时,使得∠AOC和∠BOC都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P(M)=3090=1 3.【答案】 A3.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为()A.0.008 B.0.004C.0.002 D.0.005【解析】设问题转化为与体积有关的几何概型求解,概率为2400=0.005.【答案】 D4.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是()A.14 B.12C.34 D.23【解析】如右图所示,在边AB上任取一点P,因为△ABC 与△PBC是等高的,所以事件“△PBC 的面积大于S 4”等价于事件“|BP ||AB |>14”.即P ⎝ ⎛⎭⎪⎫△PBC 的面积大于S 4=|PA ||BA |=34. 【答案】 C5.如图3-3-3,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )图3-3-3A .1-2πB.12-1πC.2πD.1π【解析】 设OA =OB =r ,则两个以r 2为半径的半圆的公共部分面积为2⎣⎢⎡⎦⎥⎤14π·⎝ ⎛⎭⎪⎫r 22-12×⎝ ⎛⎭⎪⎫r 22=(π-2)r 28,两个半圆外部的阴影部分面积为14πr 2-⎣⎢⎡⎦⎥⎤12π⎝ ⎛⎭⎪⎫r 22×2-(π-2)r 28=(π-2)r 28,所以所求概率为2×(π-2)r 2814πr2=1-2π. 【答案】 A二、填空题6.如图3-3-4,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.图3-3-4【解析】记“射线OA落在∠xOT内”为事件A.构成事件A的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P(A)=60°360°=16.【答案】167.如图3-3-5,长方体ABCD-A1B1C1D1中,有一动点在此长方体内随机运动,则此动点在三棱锥A-A1BD内的概率为________.图3-3-5【解析】设长、宽、高分别为a,b,c,则此点在三棱锥A-A1BD内运动的概率P=16abcabc=16.【答案】168.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.【解析】记事件A=“打篮球”,则P(A)=π×⎝ ⎛⎭⎪⎫142π×12=116.记事件B=“在家看书”,则P(B)=π×⎝ ⎛⎭⎪⎫122π×12-P(A)=14-116=316.故P(B)=1-P(B)=1-316=1316.【答案】1316三、解答题9.一海豚在水池中自由游弋,水池为长30 m,宽20 m的长方形,求此刻海豚嘴尖离岸边不超过2 m的概率.【解】如图,四边形ABCD是长30 m、宽20 m的长方形.图中的阴影部分表示事件A:“海豚嘴尖离岸边不超过2 m”.问题可化为求海豚嘴尖出现在阴影部分的概率.∵S长方形ABCD=30×20=600(m2),S长方形A′B′C′D′=(30-4)×(20-4)=416(m2),∴S阴影部分=S长方形ABCD-S长方形A′B′C′D′=600-416=184(m2),根据几何概型的概率公式,得P(A)=184600=2375≈0.31.[能力提升]1.面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为()A.13 B.12C.14 D.16【解析】向△ABC内部投一点的结果有无限个,属于几何概型.设点落在△ABD内为事件M,则P(M)=△ABD的面积△ABC的面积=12.【答案】 B2.假设你在如图3-3-6所示的图形上随机撒一粒黄豆,则它落到阴影部分(等腰三角形)的概率是________.图3-3-6【解析】设A={黄豆落在阴影内},因为黄豆落在图中每一个位置是等可能的,因此P(A)=S△ABCS圆,又△ABC为等腰直角三角形,设⊙O的半径为r,则AC=BC=2r,所以S△ABC=12AC·BC=r2,S⊙O=πr2,所以P(A)=r2πr2=1π.【答案】1π3.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图3-3-7所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.图3-3-7乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?【解】如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积πR2(R为圆盘的半径),阴影区域的面积为4×15πR2360=πR26.∴在甲商场中奖的概率为P1=πR26πR2=16.如果顾客去乙商场,记盒子中3个白球为a1,a2,a3,3个红球为b1,b2,b3,记(x,y)为一次摸球的结果,则一切可能的结果有:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3),(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种.摸到的2球都是红球的情况有(b1,b2),(b1,b3),(b2,b3),共3种.∴在乙商场中奖的概率为P2=315=1 5.∵P1<P2,∴顾客在乙商场中奖的可能性大.。
【全程复习方略】2013版高中数学 (主干知识+典例精析)11.6几何概型课件 理 新人教B版
(3)在集合A={m|关于x的方程x2+mx+ 3 m+1=0无实根}中随
4
机地取一元素m,恰使式子lgm有意义的概率为__________.
【解析】(1) P 0.1 1 0.05
2 20
(2)如图:区域F表示边长为4的正方形
ABCD的内部(含边界),区域E表示单位
12 圆及其内部,因此 P 4 4 16
用几何图形的度量来求随机事件的概率,根据实际问题的具体
情况,合理设置参数,建立适当的坐标系,在此基础上将试验 的每一个结果一一对应于该坐标系的点,便可构造出度量区域.
【提醒】当基本事件受两个连续变量控制时,一般是把两个连
续变量分别作为一个点的横坐标和纵坐标,这样基本事件就构
成了平面上的一个区域,即可借助平面区域解决.
【例3】(2012·临沂模拟)两人约定在20:00到21:00之间相见,
并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自
独立的,在20:00至21:00各时刻相见的可能性是相等的,求两人
在约定时间内相见的概率. 【解题指南】两人不论谁先到都要等迟到者40分钟,即23小 时,设两人分别于x时和y时到达约见地点,要使两人在约定的 时间范围内相见,当且仅当- 2 ≤x-y≤ 2 ,因此转化为面积问
在家看书”为事件C.
1 2 1 ( ) ( )2 2 1 1 3, P B 4 1, PA 1 1 4 4 1 16
P C P A P B 3 1 13 . 4 16 16
答案:
13 16
【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以
【例1】(1)在半径为1的圆内的一条直径上任取一点,过这个点
几何概型
G
E G
EG
E
A
H
B
A
H
B
A
H
B
3.某人午休醒来 发觉表停了, 某人午休醒来, 例3.某人午休醒来,发觉表停了,他打开收音机想听电 台整点报时,求他等待的时间不多于于10分钟的概率. 10分钟的概率 台整点报时,求他等待的时间不多于于10分钟的概率.
分析: 分析:在哪个时间段打开收音机的概率只与该时间段的长度 有关,而与该时间段的位置无关,这符合几何概型的条件, 有关,而与该时间段的位置无关,这符合几何概型的条件, 由于收音机每一小时报一次, 由于收音机每一小时报一次,可以认为此人打 开收音机的时间正处于两次报时之间, 开收音机的时间正处于两次报时之间,即处于 [0,60]的任意一点 的任意一点, [0,60]的任意一点,于是概率等于等待时间 段的长度与两个整点之间长度的比. 段的长度与两个整点之间长度的比.
等待的时间小于10分钟”为事件A 10分钟 解:记“等待的时间小于10分钟”为事件A, 打开收音机的时刻位于[50 60]时间段内 [50, 打开收音机的时刻位于[50,60]时间段内 则事件A发生. 则事件A发生. 由几何概型的求概率公式得 10 1 P( A) = = 60 6 1 等待报时的时间不多于10分钟” 10分钟 答:等待报时的时间不多于10分钟”的概率为 .
6
变式训练2 某路公共汽车5 变式训练2:某路公共汽车5分钟一班准时到 达某车站,求某一人在该车站等车时间少于3 达某车站,求某一人在该车站等车时间少于3 分钟的概率(假定车到来后每人都能上) 分钟的概率(假定车到来后每人都能上).
a a+2 a+5
设上一班车离站时刻为a, 解:设上一班车离站时刻为a, 则某人到站的一切可能时刻为Ω=(a,a+5), 则某人到站的一切可能时刻为Ω=(a,a+5), 等车时间少于3分钟”为事件A 记“等车时间少于3分钟”为事件A, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻 中的任一时刻, 则他到站的时刻只能为µ=(a+2,a+5)中的任一时刻,
高中数学几何概型
3.3几何概型3.3.1几何概型【知识提炼】1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度( 面积或体积) 成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型的特点(1)试验中所有可能出现的基本事件有无限多个 .(2)每个基本事件出现的可能性相等 .3.几何概型的概率公式P(A)=________________________________________【即时小测】1.思考下列问题:(1)几何概型的概率计算一定与构成事件的区域形状有关?提示:几何概型的概率只与它的长度(面积或体积)有关,而与构成事件的区域形状无关.(2)在射击中,运动员击中靶心的概率是在(0,1)内吗?提示:不是.根据几何概型的概率公式,一个点的面积为0,所以概率为0.2.如图所示,在地面上放置着一个等分为8份的塑料圆盘,若将一粒玻璃球丢在该圆盘中,则玻璃球落在A区域内的概率是()A. B. C. D.1【解析】选A.玻璃球丢在该圆盘内,玻璃球落在各个区域内是随机的,并且落在该圆盘内的任何位置是等可能的,因此该问题是几何概型.由于A区域占整个圆形区域面积的,所以玻璃球落入A区域的概率为.3.在1000mL水中有一个草履虫,现从中随机取出3 mL水样放到显微镜下观察,则发现草履虫的概率是.【解析】由几何概型知,P=.答案:4.利用计算机产生0~1之间的均匀随机数a,则事件“3a-1<0”发生的概率为.【解析】由题意,得0<a<,所以根据几何概型的概率计算公式,得事件“3a-1<0”发生的概率为.答案:5.在{(x,y)|0≤x≤1,0≤y≤1}中,满足y>x的事件的概率为.【解析】由0≤x≤1且0≤y≤1得到的正方形面积为S=1,而y=x恰把其面积二等分,故P= .答案:【知识探究】知识点几何概型的概念及公式观察图形,回答下列问题:问题1:几何概型与古典概型有何区别?问题2:如何求得几何概型中事件A发生的概率?【总结提升】几何概型与古典概型的异同点类型古典概型几何概型异同一次试验的所有可能不同点(基本一次试验的所有可能出现的结果出现的结果(基本事件事件的个数) (基本事件)有无限多个)有有限个类型古典概型几何概型异同相同点(基本事件每一个试验结果(即基本事件)发生的可能性大小相等发生的等可能性)【题型探究】类型一与长度有关的几何概型【典例】1.取一根长为5m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2m的概率为 ()A. B. C. D.2.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A. B. C. D.【解题探究】1.典例1中,剪得两段的长都不小于2m,应将绳子几等分?提示:五等分2.典例2中如何确定点P的位置?提示:在矩形ABCD中,分别以A,B为圆心,以AB长为半径作弧交CD分别于E,F,点P在线段EF上时满足题意.【解析】1.选D.如图所示.记“剪得两段绳长都不小于2m”为事件A.把绳子五等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的,所以事件A发生的概率P(A)= .2.选D.如图,在矩形ABCD中,分别以B,A为圆心,以AB长为半径作弧交CD分别于点E,F,当点P在线段EF上运动时满足题设要求,所以E,F为CD的四等分点,设AB=4,则DF=3,AF=AB=4,在直角三角形ADF中,所以【方法技巧】求解与长度有关的几何概型的步骤(1)找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,(2)找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A的概率.(3)利用几何概型概率的计算公式P=计算.【变式训练】平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任一条平行线相碰的概率.【解析】设事件A:“硬币不与任一条平行线相碰”.为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,这样线段OM长度(记作|OM|)的取值范围是[0,a],只有当r<|OM|≤a时,硬币不与平行线相碰,其长度范围是(r,a].所以答案:类型二与面积有关的几何概型【典例】1.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()2.(2015·蚌埠高一检测)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是.【解题探究】1.典例1中要求质点落在以AB为直径的半圆内的概率,需要先求什么?提示:需要求长方形ABCD的面积及以AB为直径的半圆的面积. 2.典例2中,如何求阴影部分的面积?提示:利用“割补法”.【解析】1.选B.由题意AB=2,BC=1,可知长方形ABCD的面积S =2×1=2,以AB为直径的半圆的面积故质点落在以AB为直径的半圆内的概率2.如图所示,设OA=OB=r,则两个以为半径的半圆的公共部分面积为两个半圆外部的阴影部分面积为所以所求概率为答案:【方法技巧】处理面积型几何概型的策略设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上的概率为【变式训练】(2015·福建高考)如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()【解题指南】求出点C和点D的坐标,转化成面积型几何概型的概率计算.【解析】选B.因为四边形ABCD为矩形,B(1,0)且点C和点D分别在直线y=x+1和形的面积上,所以C(1,2)和D(-2,2),所以阴影部分三角S矩形=3×2=6,故此点取自阴影部分的概率【补偿训练】(2015·衡水调研)在面积为S的矩形ABCD内随机取一点P,则△PAB的面积不大于的概率是_________.【解析】如图,作PE⊥AB,设矩形的边长AB=a,BC=b,PE=h,由题意得,所以由几何概型的概率计算公式得所求概率答案:类型三与体积有关的几何概型【典例】1.(2015·成都高一检测)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1.称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()2.有一个底面圆的半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为.【解题探究】1.典例1中,满足题意的区域是什么?提示:满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.2.典例2中,求解与体积有关的几何概型关键是什么?提示:解与体积有关的几何概型关键是确定基本事件构成的体积与所求基本事件构成的体积.【解析】1.选C.依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1,所以满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为2.先求点P到点O的距离小于1或等于1的概率,圆柱的体积V圆柱=π×12×2=2π,以O为球心,1为半径且在圆柱内部的半球的体积则点P到点O的距离小于1或等于1的概率为:故点P到点O的距离大于1的概率为:答案:【延伸探究】1.(改变问法)若典例1中条件不变,求这个蜜蜂飞到正方体某一顶点A的距离小于的概率.【解析】到A点的距离小于的点,在以A为球心,半径为的球内部,而点又必须在已知正方体内,则满足题意的A点的区域体积为所以2.(变换条件)若典例2中的条件变为在棱长为2的正方体ABCD-- A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,结果如何?【解析】与点O距离等于1的点的轨迹是一个半球面,半球体积为:“点P与点O距离大于1”事件对应的区域体积为则点P与点O距离大于1的概率是【方法技巧】1.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为2.解决与体积有关的几何概型的关键点解决此类问题的关键是注意几何概型的条件,分清所求的概率是与体积有关还是与长度有关,不要将二者混淆.【补偿训练】正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取点M,则使四棱锥M-ABCD的体积小于的概率为________.【解析】正方体ABCD-A1B1C1D1中,设M-ABCD的高为h,则又S=1,四边形ABCD所以h=若体积小于则h<即点M在正方体的下半部分,所以答案:【补偿训练】(2015·临沂高一检测)如图所示,A是圆上一定点,在圆上其他位置任取一点A′,连接AA′,得到一条弦,则此弦的长度小于或等于半径长度的概率为()【解析】选C.如图所示,要使弦的长度小于或等于半径长度,只要点A′在劣弧A′1A′2上.AA′1=AA2′=R,所以∠AOA1′=∠AOA2′=故由几何概型的概率公式得。
概率统计§11.6 几何概型(教案)
l ,x+l-x-y>y 2
⇒ y<
l l ,y+l-x-y>x ⇒ x< .故所求结果构成集合 2 2 l⎫ ⎬ .由图可知,所求概率为 2⎭
l l ⎧ A= ⎨( x, y ) | x + y > , y < , x < 2 2 ⎩
P(A)=
A的面积 = Ω的面积
1 ⎛l⎞ •⎜ ⎟ 2 ⎝ 2⎠
µ A 0.1 1 = = =0.05. µΩ 2 20
4.在圆心角为 90°的扇形 AOB 中,以圆心 O 为起点作射线 OC,求使得∠AOC 和∠BOC 都不小于 30°的概率. 解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记 A 为
“在扇形 AOB 内作一射线 OC,使∠AOC 和∠BOC 都不小于 30°” ,要使∠AOC 和∠BOC 都不小于 30°, 则 OC 就落在∠EOF 内, ∴P(A)= 30� 90 解
380
事件 A 中包含 9 个基本事件,事件 A 发生的概率为 P(A)=
9 3 = . 12 4
(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.构成事件 A 的区域为
3× 2 −
{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为 P(A)=
1 × 22 2 2 = . 3× 2 3
答案
1 5
3.当你到一个红绿灯路口时,红灯的时间为 30 秒,黄灯的时间为 5 秒,绿灯的时间为 45 秒,那么你看 到黄灯的概率是 答案 1 16 .
4.如图为一半径为 2 的扇形(其中扇形中心角为 90°) ,在其内部随机地撒一粒黄豆,则它落在阴影部分 的概率为 .
(第 4 题) 答案 12 π
高中数学面试试讲真题《几何概型》教案、教学设计
高中数学面试试讲真题《几何概型》教案、教学设计一、教学目标【知识与技能】初步体会几何概型的意义,掌握几何概型的计算公式并能进行简单应用。
【过程与方法】在通过几何概型特点概括出几何概型计算公式的过程中,进一步发展合情推理能力,学会运用数形结合的思想解决概率的计算问题。
【情感、态度与价值观】通过贴近生活的素材,激发学习数学的兴趣,体会用科学的态度、辩证的思想去观察、分析、研究客观世界。
二、教学重难点【重点】几何概型的意义及计算公式。
【难点】几何概型问题计算公式的推导。
三、教学过程(一)引入新课复习计算随机事件发生的概率的方法(一是通过频率估算概率,二是用古典概型公式来计算事件发生的概率),说明有时候试验的所有可能结果有无穷多个,无法利用之前的方法进行计算。
引出课题。
(二)讲解新知举例感知:(1)一个人到单位的时间可能是8:00~9:00之间任一时刻;(2)往一方格中投一个石子。
请学生说说此人到达单位的时间点以及石子落在方格的哪个位置,会不会到达的某一时间点或所落在的某一位置概率比较大,由此初步感知此类随机事件的基本特点:(1)基本事件有无限多个;(2)基本事件发生是等可能的。
结合问题说明相应概率的求法:如图,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜。
请学生思考在两种情况下甲获胜的概率分别是多少。
(三)课堂练习练习:某人到单位的时间可能是8:00~9:00之间,问此人8:15之前到达单位的概率是多少?(四)小结作业小结:回顾几何概型的特点以及计算公式。
作业:总结古典概型与几何概型各自的特点及计算方法;完成书上相应练习题。
四、板书设计。
2020版高考数学一轮复习专用精练:第6讲 几何概型_含解析
第6讲 几何概型一、选择题1.在区间[-2,3]上随机选取一个数x ,即x ≤1,故所求的概率为( ) A.45B.35C.25D.15解析 在区间[-2,3]上随机选取一个数x ,且x ≤1,即-2≤x ≤1,故所求的概率为P =35. 答案 B2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( ) A.π3B.πC.2πD.3π解析 设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率,得S S ′=13,则S =3π.答案 D3.(2015·山东卷)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34B.23C.13D.14解析 由-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1,得12≤x +12≤2,解得0≤x ≤32,所以事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为322=34,故选A. 答案 A4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π×121×2=π4. 答案 B5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12B.1-π12C.π6D.1-π6解析 设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.答案 B6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16B.13C.12D.23解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.答案 C7.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4B.π-22C.π6D.4-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到原点距离大于2的区域,易知该阴影部分的面积为4-π,因此满足条件的概率是4-π4.故选D.答案 D8.(2017·华师附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A.14B.316C.916D.34解析 由x ,y ∈[0,4]知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16, S 阴影=(2+4)×42=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.答案 D9.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( ) A.78B.34C.12D.14解析 当点P 到底面ABC 的距离小于32时, V P -ABC <12V S -ABC .由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.答案 A10.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12πB.12+1πC.12-1πD.14-12π解析 因为复数z =(x -1)+y i(x ,y ∈R )且|z |≤1,所以|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,即点(x ,y )在以(1,0)为圆心、1为半径的圆及其内部,而y ≥x表示直线y =x 左上方的部分(图中阴影弓形),所以所求概率为弓形的面积与圆的面积之比,即P =14·π·12-12×1×1π·12=14-12π. 答案 D 二、填空题11.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析 由|x |≤m ,得-m ≤x ≤m .当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m -(-2)6=56,解得m =3. 答案 312.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.解析 因为VA -A 1BD =VA 1-ABD =13AA 1×S △ABD =16×AA 1×S 矩形ABCD =16V 长方体,故所求概率为VA -A 1BD V 长方体=16. 答案 1613.(2016·山东卷)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x-5)2+y 2=9相交”发生的概率为________.解析 直线y =kx 与圆(x -5)2+y 2=9相交的充要条件是圆心(5,0)到直线y =kx 的距离小于3.则|5k -0|k 2+1<3,解之得-34<k <34,故所求事件的概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.答案 3414.(2017·唐山模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为________.解析 顺次连接星形的四个顶点,则星形区域的面积等于(2)2-4⎝ ⎛⎭⎪⎫14×π×12-12×12=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1.答案4π-1 15.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35解析 由2x -x 2≥14,得-1≤x ≤2.又-1≤x ≤4. ∴所求事件的概率P =2-(-1)4-(-1)=35.答案 D16.如图,“天宫一号”运行的轨迹是如图的两个类同心圆,小圆的半径为2 km ,大圆的半径为4 km ,卫星P 在圆环内无规则地自由运动,运行过程中,则点P 与点O 的距离小于3 km 的概率为( ) A.112B.512C.13D.15解析 根据几何概型公式,小于3km 的圆环面积为π(32-22)=5π;圆环总面积为π(42-22)=12π,所以点P 与点O 的距离小于3 km 的概率为P (A )=5π12π=512. 答案 B17.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( ) A.12B.13C.23D.34解析 由题设知,区域D 是以原点为中心的正方形,根据图形的对称性知,直线y =kx 将其面积平分,如图,故所求概率为12.答案 A18.(2017·长春质检)在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为( ) A.1πB.2πC.13D.23解析 由0≤sin x ≤12,且x ∈[0,π], 解之得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.答案 C19.(2017·成都诊断)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ) A.117B.217C.317D.417解析 ∵大正方形的面积是34,∴大正方形的边长是34,由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4,∴小花朵落在小正方形内的概率为P =434=217. 答案 B20.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.23B.13C.89D.π4解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13,故点P 到O 的距离大于1的概率为23. 答案 A21.(2015·湖北卷)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( ) A.p 1<p 2<12 B.p 2<12<p 1 C.12<p 2<p 1D.p 1<12<p 2解析 (x ,y )构成的区域是边长为1的正方形及其内部,其中满足x +y ≤12的区域如图1中阴影部分所示,所以p 1=12×12×121×1=18,满足xy ≤12的区域如图2中阴影部分所示,所以p 2=S 1+S 21×1=12+S 21>12,所以p 1<12<p 2,故选D.答案 D22.在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为( ) A.1-π8 B.1-π4 C.1-π2D.1-3π4解析 由函数f (x )=x 2+2ax -b 2+π2有零点,可得Δ=(2a 2)-4(-b 2+π2)≥0,整理得a 2+b 2≥π2,如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π},其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2},即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4. 答案 B23.(2017·安徽江南名校联考)AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点M 作垂直于直径AB 的弦,则弦长大于3的概率是________. 解析 依题意知,当相应的弦长大于3时,圆心到弦的距离小于12-⎝ ⎛⎭⎪⎫322=12,因此相应的点M 应位于线段AB 上与圆心的距离小于12的地方,所求的概率等于12. 答案 1224.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.解析 由已知条件,可知蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型,可得蜜蜂“安全飞行”的概率为P =1333=127. 答案 12725.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析 ∵去看电影的概率P 1=π×12-π×(12)2π×12=34, 去打篮球的概率P 2=π×(14)2π×12=116, ∴不在家看书的概率为P =34+116=1316. 答案 131626.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________.解析 由0<y <2ax -x 2(a >0). 得(x -a )2+y 2<a 2. 因此半圆域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.1 2+1π答案。
高三数学几何概型试题答案及解析
高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。
高中数学《几何概型》课件
剪断,那么剪得两段的长度都不小于3米的概率
是多少?
解:记“剪得两段彩带都不小于3m” 为事件A.
把彩带三等分,于是当剪断位置处在中间一段上时,
事件A发生.由于绳子上各点被剪断是等可能的,且中间
一段的长度等于彩带的 1 . 即P A 1
3
3
PA
构成事件 A的区域长度 试验的全部结果所构成 的区域长度
问题2 某列岛周围海域面积约为17万平方公里,
如果在此海域里有面积达0.1万平方公里的大 陆架蕴藏着石油,假设在这个海域里任意选 定一点钻探,则钻出石油的概率是多少?
解:记“钻出石油”为事件A,则
PA 0.1 1
17 170
P
A
构成事件 A的区域面积 试验的全部结果所构成 的区域面积
问题3 有一杯1升的水, 其中含有1个细菌, 用
P(A) ACC 60 2 2 ACB 90 3 3
答:这时AM小于AC的概率为 .
练习题:
1.在等腰直角△ABC中,过直角顶点C任作一
条射线L与斜边AB交于点M,求AM小于AC的
概率.
3
4
2.在等腰直角△ABC中,在斜边AB上任取一点
M,求使△ACM为钝角三角形的概率. 1
2
3.在等腰直角△ABC中,在斜边AB上任取一点
p
A
m A m
数学理论:
古典概型的本质特征: 1、样本空间中样本点个数有限, 2、每一个样本点都是等可能发生的. 将古典概型中的有限性推广到无限性,而保留等
可能性,就得到几何概型.
几何概型的本质特征: 1、有一个可度量的几何图形S;
2、试验E看成在S中随机地投掷一点;
3、事件A就是所投掷的点落在S中的可度量图形A中.
高中数学 第十一章11.3 几何概型
基础知识 题型分类 思想方法 练出高分
题型分类·深度剖析
题型二 与面积有关的几何概型
思维启迪 解析 探究提高
【例 2】 设有关于 x 的一元二次方 程 x2+2ax+b2=0. (1)若 a 是从 0,1,2,3 四个数中任取 的一个数,b 是从 0,1,2 三个数中 任取的一个数, 求上述方程有实根 的概率; (2)若 a 是从区间[0,3]任取的一个 数,b 是从区间[0,2]任取的一个 数,求上述方程有实根的概率.
由 lg m 有意义知 m>0, 即使 lg m 有意义的范围是(0,4),
4-0 4 故所求概率为 P= = . 4--1 5
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 与长度有关的几何概型
【例 1】 在集合 A={m|关于 x 的 思维启迪 解析 答案 探究提高 3 2 方程 x +mx+ m+1=0 无实 由 Δ=m2-43m+1<0 得-1<m<4. 4 4
题型一 与长度有关的几何概型
【例 1】 在集合 A={m|关于 x 的 思维启迪 解析 答案 探究提高 3 解答几何概型问题的关键在于弄 2 方程 x +mx+ m+1=0 无实 4 清题中的考察对象和对象的活动 根}中随机地取一元素 m,恰使 范围.当考察对象为点,点的活 4 5 式子 lg m 有意义的概率为___. 动范围在线段上时,用线段长度 比计算;当考察对象为线时,一
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三 与角度、体积有关的几何概型
思维启迪 解析
高中数学六种概率模型
高中数学六种概率模型高中数学中,概率是一个重要的概念。
它用来描述事件发生的可能性大小。
在概率论中,有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
下面将逐个介绍这六种概率模型。
一、等可能概型:等可能概型是指每个基本事件发生的可能性相等。
比如抛硬币,硬币正面和反面出现的概率都是1/2。
再比如掷骰子,每个点数出现的概率都是1/6。
在等可能概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
二、几何概型:几何概型是指在几何空间中进行概率计算。
比如说,我们可以通过几何概型来计算平面内的点落在某个区域的概率。
在几何概型中,我们可以通过计算区域的面积或体积与几何空间的大小来求解概率。
三、排列概型:排列概型是指在排列问题中的概率计算。
比如说,从n个元素中取出r个元素进行排列,那么排列的个数就是n个元素的全排列数,即n!。
在排列概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
四、组合概型:组合概型是指在组合问题中的概率计算。
比如说,从n个元素中取出r个元素进行组合,那么组合的个数就是n个元素的组合数,即C(n,r)。
在组合概型中,我们可以通过计算事件的个数与样本空间的大小来求解概率。
五、条件概型:条件概型是指在已知某些条件下的概率计算。
比如说,已知某个事件A发生的条件下,另一个事件B发生的概率。
在条件概型中,我们可以通过计算事件A与事件B同时发生的概率与事件A发生的概率之比来求解概率。
六、分布概型:分布概型是指在统计分布中的概率计算。
比如说,正态分布、泊松分布、二项分布等等。
在分布概型中,我们可以通过计算随机变量的取值与概率密度函数或概率质量函数之间的关系来求解概率。
高中数学中的概率有六种常见的概率模型,它们分别是等可能概型、几何概型、排列概型、组合概型、条件概型和分布概型。
每种概率模型都有其独特的应用场景和计算方法。
熟练掌握这些概率模型,有助于我们更好地理解和应用概率论的知识,解决实际生活和工作中的问题。
高中数学_几何概型
几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。
高中数学-几何概型知识点
(1)几何概型:几何概型知识点一般地,一个几何区域D 中随机地取一点,记事件“该点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为P(A)=_________(一般地,线段的测度为该线段的长度;平面多边形的测度为该图形的面积;立体图像的测度为其体积 ) (2)几何概型的基本特点:① ____________ ② _______________例题精选例1. 如图,在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求<AM AC 的概率? 【分析】点M 随机的落在线段AB 上,故线段AB 为区域D ,当点M 位于如图的AC '内时<AM AC ,故线段 AC '即为区域d解: 在AB 上截取'=AC AC ,于是P AM AC P AM AC AC AB AC AB <=<===''()22)(【变式训练】如图,在等腰直角三角形ABC 中,在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,求<AM AC 的概率?解:在∠ACB 内的射线是均匀分布的,所以射线CM 作在任何位置都是等可能的,在AB 上截取'=AC AC ,则ACC '67.5∠=︒ ,故满足条件的概率为=67.5900.75例2. 如图,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为( ) A.-π24 B.-π44C.-π22D.-π42【解析】设正方形的边长为2,则1片阴影部分的面积为⎝⎭⎪--⋅⨯=-⎛⎫ππ42111211222,所以阴影部分的面积⎝⎭⎪=-=-⎛⎫ππS A 24124,=-πP A 22)(,故选C.课堂练习与作业1.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ). A .B .C .D .2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A .31B .π2C .21D .323.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .1614.如图,在边长为 3 的正方形内有区域 A (阴影部分所示),张明同学用随机模拟的方法求区域 A 的面积.若每次在正方形内随机产生 10000 个点,并记录落在区域 A 内的点的个数.经过多次试验,计算出落在区域 A 内点的个数的平均值为 6600 个,则区域 A 的面积约为 ( ) A. 5B. 6C. 7D. 85. 如图,矩形 ABCD 中,点 A 在 x 轴上,点 B 的坐标为(1,0),且点 C 与点 D 在函数 f (x )={x +1,x ≥0−12x +1,x <0 的图象上.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率等于 ( )A. 16 B. 14C. 38D. 126. 如图,在半径为 2R ,弧长为 4π3R 的扇形 OAB 中,以 OA 为直径作一个半圆.若在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是 ( )51525354A. 38B. 58C. 34D. 787.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过 10 分钟的概率是 ( )A. 13B. 12C. 23D. 348.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61B .31C .21D .329.在棱长为 2 的正方体 ABCD −A 1B 1C 1D 1 中,点 O 为底面 ABCD 的中心,在正方体 ABCD −A 1B 1C 1D 1 内随机取一点 P ,则点 P 到点 O 的距离大于 1 的概率为 ( )A. π12B. 1−π12C. π6D. 1−π610. 在区间 [−2,1] 上随机取一个实数 x ,则 x 使不等式 ∣x −1∣≤1 成立的概率为 .11.已知函数f (x )=log 2x , x ∈,在区间上任取一点x 0,使f (x 0)≥0的概率为 .参考答案1.解析:区域Ω为[-2,3],子区域A 为(1,3],而两个区间的长度分别为5,2.选B2.解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使的值介于0到之间,需使-≤x ≤-或≤x ≤,两区间长度之和为,由几何概型知的值介于0到之间的概率为=.故选A.3.解析:所求概率为=.故选D4.B 【解析】设区域 A 的面积约为 S ,根据题意有 660010000=S3×3, 所以,S =5 94,所以区域 A 的面积约为 6.⎥⎦⎤⎢⎣⎡221 ,⎥⎦⎤⎢⎣⎡221 ,cos x 212π3π3π2π3πcos x 21π3π31224π1π⨯⨯ 1615. B 【解析】易知点 C 的坐标为 (1,2),点 D 的坐标为 (−2,2),所以矩形 ABCD 的面积为 6,阴影部分的面积为 32,故所求概率为 14.6.B 【解析】阴影部分的面积为 S 1=12×4π 3×2R −12R 2=5π6R 2,扇形 OAB 的面积为S 2=4π3R 2,所以在扇形 OAB 内随机取一点,则此点取自阴影部分的概率 P =S S==58.7. B 【解析】解法一:7:30的班车小明显然是坐不到的.当小明在7:50之后8:00之前到达,或者8:20之后8:30之前到达时,他等车的时间将不超过 10 分钟,故所求概率为10 1040=12.解法二:当小明到达车站的时刻超过8:00,但又不到8:20时,等车时间将超过 10 分钟,7:50~8:30的其他时刻到达车站时,等车时间将不超过 10 分钟,故等车时间不超过 10 分钟的概率为 1−2040=12.8.解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比.选A9.B 【解析】点 P 到点 O 的距离大于 1 的点位于以 O 为球心,以 1 为半径的半球的外部.记点 P 到点 O 的距离大于 1 为事件 A ,则 P (A )=2 − ××12=1−π12.10.【解析】因为 ∣x −1∣≤1⇔−1≤x −1≤1⇔0≤x ≤2,所以在区间 [−2,1] 上使不等式 ∣x −1∣≤1 成立的 x 的范围为 x [0,1],故所求概率 P =1−01−(−2)=13.11.解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2].答案:.32。
高考数学复习:几 何 概 型
()
(4)与面积有关的几何概型的概率与几何图形的形状有
关. ( )
提示:(1)√.这是几何概型与古典概型的区别. (2)√.这是几何概型与古典概型的共同点. (3)×.从区间[1,10]内任取一个数,取到1的概率是0. (4)×.无论长度、角度、面积、体积、“测度”只与大 小有关,而与形状和位置无关.
3
6
=6 . 1
3
2
【规律方法】 长度、角度等测度的区分方法 (1)如果试验的结果构成的区域的几何度量可用长度表 示,则把题中所表示的几何模型转化为长度,然后求解. 解题的关键是构建事件的区域(长度).
(2)当涉及射线的转动、扇形中有关落点区域问题时, 应以角度的大小作为区域度量来计算概率,且不可用线 段的长度代替,这是两种不同的度量手段.
【题组练透】
1.(2019·西宁模拟)函数f(x)=2x(x<0),其值域为D,在
区间(-1,2)上随机取一个数x,则x∈D的概率是 ( )
A. 1
B. 1
C. 1
D. 2
2
3
4
3
【解析】选B.函数f(x)=2x(x<0)的值域为(0,1),即
D=(0,1),则在区间(-1,2)上随机取一个数x,则x∈D的
【解析】以A为圆心,以AD=1为半径作圆弧 DB 交 AC,AP,AB分别为C′,P′,B′.
依题意,点P′在 B上D任何位置是等可能的,且射线AP
与线段BC有公共点,则事件“点P′在 B上C”发生.
又在Rt△ABC中,易求∠BAC=∠B′AC′= .
故所求事件的概率P=BA=C
BAD
答案: 1
=75(s)的时间长度.根据几何概型的概率公式 可得,事件A发生的概率P(A)= 40 = 8 .
辽宁省大连市第二十四中学高三数学复习课件:《几何概型》
引例2:在转盘上有8个面积相等的扇形,转动转盘,求转
盘停止转动时指针落在阴影部分的概率。
与面积有关:面积比
引例3: 在500ml的水中有一只草履虫,现从中随机取出 2ml水样放到显微镜下观察,求发现草履虫的概率。
与体积有关:体积比
第五页,编辑于星期日:二十点 三十分。
例1、(1)在区间[0,1]上任取一数,则这个数大于0.25
的概率为 ( D)
一维:长度
A.0.25 B.0.5 C.0.6 D.0.75
(2)在(0,1)中随机取两个数,求两数之和小于1.2的
概率.
二维:面积
(3)在(-1,1)中随机取三个数,求三个数的平方和小
于1的概率.
三维:体积
第六页,编辑于星期日:二十点 三十分。
(2)在(0,1)中随机取两个数,求两数之和小于1.2的
特点:
(1)无 限 性:试验中所有可能出现的结果(基本事件) 有无限多个.
(2)等可能性:每个基本事件出现的可能性相等.
二、几何概型中,事件A的概率计算公式:
ΩA
第四页,编辑于星期日:二十点 三十分。
引例1:取一根长度为3米的绳子,拉直后在任意位置
剪断.剪得两段的长都不小于1米的概率.
与长度有关:长度比
概率.
y
1.2
1
O
1 1.2 x
第七页,编辑于星期日:二十点 三十分。
(3)在(-1,1)中随机取三个数,求三个数的平方和小 于1的概率.
第八页,编辑于星期日:二十点 三十分。
与长度有关的几何概型
A
P• B
C
第九页,编辑于星期日:二十点 三十分。
与面积有关的几何概型
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设事件 A 为两人同乘一辆车,
y
事件 A 构成区域 A= x, y x y 0.25 , 2
A
即图中的阴影部分,面积为
S
A
7 16
.
这是一个几何概型,P A
SA S
7 16
1
O
1
2x
方法小结1:
1、先对问题进行判断,基本事件是否等可能, 确定概率模型;
2、通过观察,寻找所有基本事件构成的区域Ω, 再确定随机事件A构成的区域A;
乙到达时间
x0, y0
甲到达时间
x y 0.25(小时)
O
1 x0 2 x
二、碰面问题探究:
例 1:甲、乙两人相约于下午 1:00—2:00 之间 到某车站乘车外出,他们到达车站的时间是随机的, 两人约定先到者等候另一个人 15 分钟,过时即可 自行乘车离去,求两人一起乘车的概率
y
2
x
如何表示 x y 0.25 ? 1
自行乘车离去,求两人一起乘车的概率
思考:
y
1.甲、乙到达时间是否互相影响?2 甲、乙到达时间是否等可能?
乙到达时间
2.问题中基本事件是什么?
3.两人如何才能一起乘车?
1
甲到达时间
O
1
2x
二、碰面问题探究:
例 1:甲、乙两人相约于下午 1:00—2:00 之间
到某车站乘车外出,他们到达车站的时间是随机的,
3、利用相应的几何概型概率公式计算.
例 1 变式:
甲、乙两人相约于下午 1:00—2:00 之间
到某车站乘车,他们到达车站时间是随机的,
并且在 1:00—2:00 之间有四班客车开出,
开车时间分别是 1:15,1:30,1:45,2:00,
解:若设两甲到人达约时刻定为先x到,乙达到的达时人刻见为车y,便乘,
总结:
1、理解几何概型的基本概念; 2、根据问题建立相应的数学模型,
用数学语言、图形语言表述条件; 3、Monte Carlo方法是以概率统计理论为指导
的一类非常重要的数值计算方法,在当今的 金融工程学,宏观经济学,计算物理学等领 域应用非常广泛。
谢谢!
两人约定先到者等候另一个人 15 分钟,过时即可
自行乘车离去,求两人一起乘车的概率
思考:
y
1.甲、乙到达时间是否互相影响2?
21.甲问 x题、中乙2,基到1 本达y事时 件间2 是是什否么等?可能?y0
3每.两组人(x如0,何y0)才为能一一个起基乘本车事?件 1
甲、乙同车 到达时间差在 15 分钟以内
构成事件A 的区域长度面积或体积 试验全部结果构成的区域长度 面积或体积
mA P( A)
m
m(A)表示问题对应集 合的某种度量,通常 代表:长度、面积、 体积、角度等…
二、碰面问题探究:
例 1:甲、乙两人相约于下午 1:00—2:00 之间
到某车站乘车外出,他们到达车站的时间是随机的,
两人约定先到者等候另一个人 15 分钟,过时即可
对两类几何概型问题的 进一步探究
一、温故:
• 如果每个事件发生的概率只与构成该 事件区域的长度(面积或体积)成比 例,则称这样的概率模型为几何概型.
• 几何概型有哪两个基本特征?
(1)可能出现的结果有无限多个; (2)每个结果发生的可能性相等.
一般地,在几何概型中事件A发生的概率 计算公式为:
P A
x0, y0
O
1y 2 x
二、碰面问题探究:
例 1:甲、乙两人相约于下午 1:00—2:00 之间
到某车站乘车外出,他们到达车站的时间是随机的,
两人约定先到者等候另一个人 15 分钟,过时即可
解:两自人行到乘达时车间离的去所,有求情况两构人成一正起方乘形区车域的:概率
= x, y 1 x 2,1 x 2,面积为 S 1,
可得求1≤两x≤人2,能1≤y乘≤2,同一班车的概率.y
记事件 A 为:甲乙同乘一辆车,则:
★A 如乘果一x, y有班11三车n 个xy个的11人..人概2255等或等率车11车是..2255多 xx 少 11..5?5或
2
1.75 1.5
1.25Biblioteka 1.5 1.5x y1.75 1.75
或
1.75 1.75
y 轴围成的封闭图形的概率.
D
C
A
B
用Geogebra实现随机模拟程序框图
(2)生成基本事件对应 区域中的随机数
(1)设置随机投点次数
(4)估算概率(面积)
(3)模拟并统计目标 区域中的点数
小组探究:开局一个圆,求 π 靠投点
请结合有关面积的几何概型问题, 设计一个估算圆周率 π 的方法, 并尝试用图形计算器实现随机模拟.
x y
2 2
1
故 P A
SA S
1 4
.
O
1 2 x 1.25 1.5 1.75
例 1 变式 2: 在上一题的条件下, 若两人约定最多等待一班车, 求两人能乘同一班车的概率
y
2
1.75 1.5 1.25
1
O
1 2 x 1.25 1.5 1.75
方法小结2:
1.对于较为复杂的问题,一般先根据问题建立 相应的数学模型,用数学语言表述条件;
2.解决问题的关键,在于确定问题中的基本事件 是什么,如何将事件表示在相应的一维、二维 或三维空间中?
进一步思考:
几何概型中还有其他求概率的方法吗?
三、利用随机模拟近似计算面积:
例 2:计向算下抛图物正线方形y AxB2C与D直中线任y投一1个点, 求该点及落y入轴抛围物成线的y封闭x图2 形与的直面线积y S. 1及