第十六章 二次根式单元备课

合集下载

八年级数学下册第十六章《二次根式》教案

八年级数学下册第十六章《二次根式》教案

做二次根式,“”称为二次根号。

例题:当x 是怎样的实数时,2+x在实数范围内有意义?解:要使2+x在实数范围有意义,必须x+2≥0,∴x≥-2.∴当x≥-2时,2+x在实数范围内有意义。

当x 是怎样的实数时,2x在实数范围内有意义?3x呢?三、课堂练习及巩固练习1 指出下列哪些是二次根式?(1)5;(2)3-;(3)321;(4)21+x;(5))2(2≥-aa;(6)ba-(a<b)。

练习2 二次根式和算术平方根有什么关系?(二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式)练习3 a 取何值时,下列根式有意义?(1)1+a;(2)112-a;(3)21-a().解:(1)由a+1≥0,得a≥-1;(2)由1-2a>0,得a<1 2;(3)由21-a()≥0,得a为任何实数.师活动、学生活动、设计意图、技术应用等)一、复习导入(1)什么是二次根式,它有哪些性质?(2)二次根式52x有意义,则x 。

当a>0 时,a表示a 的算术平方根,因此a>0;当a =0 时,a表示0的算术平方根,因此a=0;这就是说,a(a≥0)是一个非负数。

二、探究新知探究:根据算术平方根的意义填空,并说出得到结论的依据。

把上述计算结论推广到一般,并用字母表示:2=a a()(a≥0)思考:你能说说依据吗?例题:计算下列各式:215.();(2)225()探究:填空把得到的结论推广到一般,并用含字母的22224213= == =()()()()________二次根式表示:2=a a (a ≥0)思考:你能说说依据吗? 计算下列各式:(1)16 ;(2)25-()回顾我们学过的式子,如5,a,a+b,-ab,这些式子有哪些共同特征?(1)含有表示数的字母; (2)用基本运算符号连接数或表示数的字母。

用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来得到的式子叫代数式。

三、课堂练习及巩固练习1 计算(1)218() ;(2) 20();(3)2748();(4)235();(5)9;(6)24-();练习2 对于性质 ,逆向思考可得: , 请根据这一结论完成填空:(1)22=();(2)23=( ) 练习3 根据性质2=a a (a ≥0),可得255-=()你认为当a <0时,2=a ___,并说明理由:练习4 性质 和 有什么区别和联系?师活动、学生活动、设计意图、技术应用等)一、创设情境,导入新课现有一块长7.5 dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?能截出两块正方形木板的条件是什么?能用数学式子表示吗?818+能否进一步计算?这是一种什么运算?能,两个二次根式的加法运算。

16章二次根式集体备课

16章二次根式集体备课

16.2 二次根式的乘除(1) 【学习内容】
a · b = ab (a≥0,b≥0),反之 ab = a · b (a≥0,b≥0)及其运用.
【学习目标】
理解 a · b = ab (a≥0,b≥0), ab = a · b (a≥0,b≥0),并利用它们进行计算和
化简 【学习过程】 (一)复习引入
__________.
2.已知 x 1 有意义,那么 x _______.
3.(- 3 )2=________.
(三)综合提高题(选做) 1.某工厂要制作一批体积为 1m3 的产品包装盒,其高为 0.2m,按设计需要,包装盒底面应做成 正方形,试问底面边长应是多少?
2.当 x 是多少时, 2x 3 +x2 在实数范围内有意义? x
2.当 x 是怎样的实数时, 2x 3 + 1 在实数范围内有意义? x 1
3.在实数范围内分解下列因式:
(1)x2-3 (2)x4-4
(3) 2x2-3
4.计算:(1)( x 1 )2(x≥0)
(2)( a2 )2
(3)( a2 2a 1 )2
(4)( 4x2 12x 9 )2
第一课时作业 (一)选择题
1、理解二次根式的概念.
2、理解 a (a≥0)的双重非负性和( a )2=a(a≥0),并利用它们进行计算和化简.
【学习过程】 一、自主学习 (一)、复习引入 请同学们独立完成下列三个问题: 问题 1:面积为 S 的正方形的边长为________; 问题 2:一个面积为 18cm2 的长方形,它的长宽之比为 2:3,则它的长是___________.
2.若 20m 是一个正整数,则正整数 m 的最小值是_______

二次根式集体备课

二次根式集体备课

初二数学 集体备课资料(八年级下册)第十六章 二次根式一、 本部分知识结构二、教学目标解读1.理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围。

2.理解并掌握二次根式的性质和最简二次根式的概念,并灵活运用它们进行二次根式的运算。

通过学习和练习,体验由特殊到一般再到特殊的数学推理思想,培养严谨的思维和一丝不苟的学习习惯。

三、教材重点与难点的确定1. 重点二次根式的化简和运算。

2. 教学难点正确理解二次根式的性质和运算法则的合理性。

四、学情分析1. 教学内容分析二次根式是《数学课程标准》中“数与代数”领域的重要内容,它与已学内容“实数”“整式”紧密联系,同时也是以后学习“勾股定理”“一元二次方程”和“二次函数”等内容的重要基础。

本章通过对二次根式的概念、性质和运算法则、运算规律等内容的学习探究,培养和提高学生的运算能力,促进学生的思维能力,发展学生认识事物一般规律的能力。

2. 教学对象分析针对八年级学生学习热情高,有一定观察、分析、认识问题能力的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习打下坚实的基础。

五、教学方法建议(1) 教学中要注意加强知识间的纵向联系,要对“有理数的运算律和运算法则在实数范围内仍然成立”有所体验,逐步体会运算法则和运算律在数的扩充过程中的一致性。

(2)教学中注意应用类比的方法展开学习,要及时对整式的加减及乘除进行必要的复习。

同时要加强有关二次根式的练习,为后续学习打好基础。

六、教学重难点和解决的策略本章的重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。

学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据。

二次根式的性质和运算法则较多,在学习中要充分的发挥学生自主学习的作用,通过经历、观察、思考、讨论等探究活动得出结论,感受数学再发现的过程,突出它们的数学本质。

十六章二次根式单元备课

十六章二次根式单元备课

二次根式单元备课一、教材分析本章是在学习了平方根、算术平方根以及实数概念的基础上安排的。

主要内容是二次根式的概念、性质和运算。

二次根式是最基本、最常用的无理式。

学习本章后,把式的范围由有理式扩展到代数式。

因此,二次根式的运算既与实数及二次根式的概念、性质有关,又与前的整式、分式的运算有紧密联系。

整式、分式的计算是二次根式运算的基础,它们的运算法则、性质对二次根式也成立,学习本章也为以后学习打基础。

二、教学目标1、记住二次根式、最简二次根式、同类二次根式的概念,会识别二次根式、最简二次根式、同类二次根式;2、能说出二次根式的性质,并会用它们进行化简;3、能说出二次根式的运算法则,并会进行计算。

三、重难点、关键二次根式的化简和计算是重难点;二次根式的概念和性质是关键。

四、学情分析上学期我从事八年级一班的数学教学,从上学期期末考试成绩来看,大部分学生的成绩还算可以,但还是有少数学生成绩相当糟糕,分析其原因,主要是练习的量太少,所以这学期的主要突破口是加大学生的练习力度。

在学习能力上,一些学生课外主动获取知识的能力较差,向深处学习知识的能力没有得到培养,学生的逻辑推理、逻辑思维能力,计算能力需要进一步加强,以提升学生的整体成绩;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去。

在教学方面,平时对学生的练习抓的不够紧,以至有少数同学一学期基本没做几次作业,作业的数量也不够。

五、教学措施1、注重在复习旧知识的基础上使学生的学习形成正迁移;如学习二次根式的概念,先复习算术平方根;学习同类二次根式,先复习同类项等;2、注意对学生基本技能的培养,特别是运算能力。

因本章的重点是二次根式的运算,所以在进行二次根式的运算教学时,要让学生记住运算法则,在运算过程中,要让学生能说出每步计算的根据。

3、为大面积提高学生成绩,注重平时的辅导及作业的面批;课堂上设计有层次性的练习题组,进行强化训练。

六、课时安排二次根式及其性质3课时二次根式的加减法1课时二次根式的乘除法2课时复习与训练2课时七、测试测试与讲评2课时。

人教版2019八年级(下册)数学第十六章二次根式整章教案

人教版2019八年级(下册)数学第十六章二次根式整章教案

第十六章二次根式16.1 二次根式(1)一、教学目标:认知:1、根据算术平方根的意义了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

能力:先提出问题,让学生探讨、分析问题,师生共同归纳得出概念。

情感:经过探索二次根式的重要结论,发展学生观察、发现问题的能力及研究问题的严谨性。

二、教学重难点:教学重点:理解二次根式的概念教学难点:明确二次根式有意义的条件,并运用其解决具体问题。

三、教学法:1.教法:五环节教学法2.学法:自学与小组合作学习相结合的方法四、教学具准备:教学课件五、教学过程:(一)复习引入:1、已知一个正数x,满足x2 = a,x是a的________, 记为______, a一定是_______数。

2、(1) 4的算术平方根为_______ ,用式子表示为 __________;(2) 16的算术平方根是_______,用式子表示为 __________;(3) 0 的算术平方根是_______;(4)正数a的算术平方根为_______,(5)-7_______算术平方根。

归纳:_______和_______都有算术平方根;_______没有算术平方根(二)出示学习目标:1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

(三)探索新知、提出问题思考:用带有根号的式子填空1、面积为3的正方形的边长是_______,面积为S的正方形的边长是_______。

2、一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为_______米。

3、一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为_______.很明显:所得的结果都表示一些正数的算术平方根。

像这样一些非负数的算术平方根的式子,我们就把它称二次根式。

一般地,我们把形如a(a≥0)的式子叫做二次根式(学生举例巩固)(四)议一议1、-1有算术平方根吗?2、0的算术平方根是多少?3、当a<0时,有意义吗?点评:1、表示非负数a 的算术平方根。

二次根式单元教案

二次根式单元教案

二次根式单元教案【篇一:新人教版第16章二次根式全章教案】二次根式单元备课教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是数与代数中重要内容之一.前面学生较系统地学习了有理数及其运算;学习了平方根和算术平方根、立方根的概念、用根号表示数的平方根、立方根;知道了开方与乘方互为逆运算,会用平方运算和立方运算求某些非负数的平方根以及某些数的立方根. 教学目标1.知识与技能(1)理解二次根式的概念.(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),2a=a(a≥0).(a≥0,b0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.?再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵. a(a≥0)是一个非负数;(a)2=a (a≥0);2a=a(a≥0)及其运用.2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算.教学难点1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及2a=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需9课时,具体分配如下:16.1 二次根式2课时16.2 二次根式的乘法3课时16.3 二次根式的加减2课时数学活动、习题课、小结 2课时第十六章二次根式第1课时16.1 二次根式(1)教学目标1、知识与技能:理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、过程与方法:提出问题,根据问题给出概念,应用概念解决实际问题.经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。

人教版数学八年级下册16章《二次根式》单元整体教学设计

人教版数学八年级下册16章《二次根式》单元整体教学设计
3.互动评价:鼓励学生互相批改、评价,共同进步。
(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。

【人教版】初中数学八下数学第16章《二次根式》全章教学案(含解析)

【人教版】初中数学八下数学第16章《二次根式》全章教学案(含解析)

第十六章二次根式1.理解二次根式的概念.2.理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).3.掌握·=(a≥0,b≥0),=·(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).4.了解最简二次根式的概念,并能灵活运用其对二次根式进行加减.1.通过先提出问题,让学生探讨、分析问题,师生共同归纳得出概念,再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.2.让学生用具体数据探究规律,采用不完全归纳法得出二次根式的乘(除)法法则,并运用法则进行计算.3.让学生利用逆向思维,得出二次根式的乘(除)法法则的逆向等式,并运用它们进行化简.4.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,让学生对被开方数相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.1.培养学生利用二次根式的性质和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.2.经过探索二次根式的重要结论和二次根式的乘除法法则,发展学生观察、分析、发现问题的能力.二次根式是新课标中数与代数领域的重要内容,它是在前面平方根、立方根的基础上进行学习的,是对代数式及实数等内容的延伸与补充.同时,也是后继学习勾股定理、一元二次方程的求根公式及三角形的边角关系等内容的学习基础.因此,本章的相关知识对于整个初中阶段学习数与代数有着承前启后的重要意义.本章内容分为三节,第一节主要学习二次根式的概念和性质;第二节是二次根式的乘法和除法运算,主要研究二次根式的乘除法运算法则和二次根式的化简;第三节是二次根式的加法和减法运算,主要研究二次根式的加减法运算法则和二次根式的化简.【重点】1.对(a≥0)是一个非负数的理解和对()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式乘除法的法则及其运用.3.最简二次根式的概念.4.二次根式的加减运算.【难点】1.对(a≥0)是一个非负数的理解和对等式()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.1.通过前面的学习,我们已经知道了平方根、立方根的概念和求法,实数的有关概念和运算,对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受.因此,本章应充分注意与已有经验的联系.同时,本章内容与整式也有着密切的联系.由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,所以整式的运算法则和公式在二次根式的运算中仍然适用.因此本章强调了与整式相关内容的联系.2.对于一些重要结论,要注意经历观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于二次根式的乘法法则,首先利用二次根式的概念和性质进行具体的计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,再归纳得出二次根式的乘法运算法则.这个过程实际上就是反映了一个由特殊到一般的认识过程.要通过这样的探究活动来发展我们的思维能力,有效改变学生的学习方式.3.熟练掌握二次根式的概念和运算需要一定的训练,可以适当增加练习,以便较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础.16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时单元概括整合1课时16.1二次根式1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.[设计意图]将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).[设计意图]以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念思路一[过渡语](针对导入二)让我们一起来看下面的问题:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.[设计意图]让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0. [设计意图]加深对二次根式的理解,进一步明确二次根式的非负性.2.例题讲解[过渡语]二次根式的定义怎样理解?让我们一起来学习几个例题.下列各式中,哪些是二次根式?并指出二次根式中的被开方数.,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.[解题策略]①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.[易错分析]容易产生只考虑到x+1≥0,而忽略了x≠0的错误.[设计意图]通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.[知识拓展](1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3×,-表示-×,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.师生共同回顾本节课所学主要内容:知识要点关键点注意事项二次根式的概念形如≥0(a≥0)的式子叫做二次根式,其中被开方数是a被开方数也可以是含有字母的单项式、多项式、分式等二次根式有意义的条件被开方数必须是非负数求解二次根式中字母的取值范围,要注意根号下的式子整体不小于零1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014·南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数.(2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数.(3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数.(4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015·遵义中考)使二次根式有意义的x的取值范围是.【能力提升】5.当x时,+在实数范围内有意义.6.(2015·攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=·,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a·2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3 cm,宽取2 cm.2.解:(1)当a-1≥0,即a≥1时,有意义.(2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义.(4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2×(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2×(-3)=-8.所以x+2y的值是-4或-8.[解题策略]根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.[解题策略]本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.[设计意图]以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质. [设计意图]复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一1.二次根式的性质1:()2=a(a≥0)[过渡语]我们先来探究性质1:()2=a(a≥0).提问:你能解释下列式子的含义吗?()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2.是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22×()2=4×5=20.[解题策略]把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4×3=12.[知识拓展]形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2.二次根式的性质2:=a(a≥0)[过渡语]我们再来探究一下性质2:=a(a≥0).提问:你能解释下列式子的含义吗?,,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.[知识拓展](1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=.(2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.[设计意图]学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2×()2=25×2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22×()2=44,(3)2=32×()2=45,又∵44<45,且2>0,3>0,∴2<3.师生共同回顾本节课所学主要内容:知识要点关键点注意事项()2=a(a≥0)任何非负数的算术平方根的平方,其结果仍然是它本身被开方数a是非负数=|a|= 任何实数的平方的算术平方根是它的绝对值底数a可以是任何实数代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3.+的值是.解析:+=2+2=4.故填4.4.(1)当x时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9.(2)(2)2=22×()2=12.(3)=(-2)2×=2.(4)(-)2=(-1)2×()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015·杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n3+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-[-(a+b)]=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数m的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1).(2)宽:3;长:5.8.解:(1)=.(2)(3)2=32×()2=18.(3)=(-2)2×=.(4)-=-=-3π.(5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3.(2)(3)2=32×()2=9×2=18.2.解:(1)=0.3.(2)=.(3)-=-π.(4)=10-1=.。

人教版八年级数学下册第十六章二次根式集体备课优秀教学案例

人教版八年级数学下册第十六章二次根式集体备课优秀教学案例
在教学设计上,我们注重启发式教学,鼓励学生主动思考、积极参与,以培养学生的创新意识和实践能力。同时,我们也关注学生的个体差异,针对不同学生的学习需求,设计了多层次、多样化的教学内容,以确保每个学生都能在课堂上得到有效的学习和提升。
二、教学目标
(一)知识与技能
1.理解二次根式的定义,掌握二次根式的性质,能够正确进行二次根式的运算。
3.组织学生进行自我评价、同伴评价,培养学生的评价能力和自我认知能力。
(五)作业小结
1.布置具有针对性、层次性的作业,让学生在课后巩固所学知识,提高学生的实践能力。
2.教师及时批改作业,给予学生反馈,帮助学生纠正错误,提高学生的学习效果。
3.教师根据作业情况,调整教学策略,为下一节课的教学做好准备。
3.小组合作:组织学生进行小组讨论,共同探究二次根式的性质。教师在小组合作过程中关注学生的个体差异,给予每个学生充分的指导和关爱,确保每个学生都能在小组合作中得到有效的学习和提升。这种教学方式培养了学生的团队协作能力和沟通能力。
4.反思与评价:教师引导学生对学习过程进行反思,让学生认识到自己在学习二次根式中的优点和不足。通过反思与评价,学生能够感受到数学学习的乐趣,激发学习数学的积极性,培养自主学习的能力。
3.设计具有挑战性和实际意义的课题,让学生在小组合作中,运用二次根式解决实际问题,提高学生的实践能力。
(四)总结归纳
1.教师引导学生对学习过程进行反思,让学生认识到自己在学习二次根式中的优点和不足,培养学生自主学习的能力。
2.教师对学生的学习成果进行评价,关注学生的个体差异,给予每个学生充分的肯定和鼓励,提高学生的自信心。
(二)问题导向
1.设计具有挑战性和启发性的问题,引导学生独立思考,激发学生学习二次根式的兴趣。

第十六章二次根式单元备课

第十六章二次根式单元备课

第十六章二次根式单元备课教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是数与代数中重要内容之一.前面学生较系统地学习了有理数及其运算;学习了平方根和算术平方根、立方根的概念、用根号表示数的平方根、立方根;知道了开方与乘方互为逆运算,会用平方运算和立方运算求某些非负数的平方根以及某些数的立方根.教学目标1.知识与技能(1)理解二次根式的概念.(2)理解a(a≥0)是一个非负数,(a)2=a(a≥0),2a=a(a≥0).(3)掌握a·b=ab(a≥0,b≥0),ab=a·bab=ab(a≥0,b>0),ab=ab (a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.二次根式(a≥0)的内涵.a(a≥0)是一个非负数;(a)2=a (a≥0);2a=a(a≥0)及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对a(a≥0)是一个非负数的理解;对等式(a)2=a(a≥0)及2a=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需9课时,具体分配如下:16.1二次根式2课时16.2二次根式的乘法3课时16.3二次根式的加减2课时数学活动、习题课、小结2课时。

第16章二次根式二次根式的乘除与提高(教案)

第16章二次根式二次根式的乘除与提高(教案)
3.重点难点解析:在讲授过程中,我会特别强调二次根式乘除法则和分母有理化这两个重点。对于难点部分,我会通过具体的例题和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式乘除相关的实际问题,如计算不同形状的图形面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算,演示二次根式乘除的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式乘除的基本概念。二次根式乘除是指含有根号的数进行乘法和除法的运算。它在解决几何问题、简化数学表达式等方面具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个长为√3,宽为√2的长方形的面积,展示二次根式乘除在实际中的应用,以及它如何帮助我们解决问到二次根式乘除运算对学生来说是一个较为困难的知识点。在教学过程中,我发现以下几个方面值得反思和改进:
1.对于二次根式乘除法则的讲解,我意识到需要更直观、生动的教学方法。在今后的教学中,我可以尝试运用多媒体动画或实物演示,让学生更直观地理解法则的原理。此外,通过设置不同难度的例题,让学生逐步掌握法则的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式乘除的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式乘除的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.在教学难点部分,我发现学生在理解最简二次根式和分母有理化方面存在一定的困难。针对这个问题,我考虑在今后的教学中,可以多设置一些具有代表性的练习题,让学生反复练习,以便熟练掌握。同时,在讲解过程中,要注意举例的多样性和梯度,帮助学生更好地消化吸收。

人教版八年级数学下册第16章二次根式(教案)三

人教版八年级数学下册第16章二次根式(教案)三
-难点解析与教学策略:
a.难点一:学生在运用乘除法则时,容易忽视根号内数的正负性。教学时需通过举例强调,如\(\sqrt{-1} \times \sqrt{1}\)并不等于\(\sqrt{-1}\),因为根号内不能存在负数。
-教学策略:通过正例和反例的对比,让学生直观感受乘除法则的限制条件。
b.难点二:在混合运算中,学生可能不知道先进行乘法还是除法。教师需要明确运算顺序,并教授简化运算的技巧。
人教版八年级数学下册第16章二次根式(教案)三
一、教学内容
人教版八年级数学下册第16章《二次根式》教案三:
1.章节内容:16.3二次根式的乘除法
-二次根式的乘法法则及应用
-二次根式的除法法则及应用
-二次根式的乘除混合运算
2.知识点:
-理解并掌握二次根式乘法法则
-理解并掌握二次根式除法法则
-能够运用乘除法则进行二次根式的乘除混合运算
-教学策略:使用具体的例子,如\(\frac{3\sqrt{2} \times \sqrt{18}}{\sqrt{8}}\),先简化\(\sqrt{18}\)为\(3\sqrt{2}\),再进行乘法,最后进行除法。
c.难点三:将实际问题抽象为二次根式的乘除运算问题。学生可能难以理解问题中的数量关系。
四、教学流程
(一)导入新课
同学们,今天我们将要学习的是《二次根式的乘除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”(如计算长方形面积或圆柱体积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式乘除法的奥秘。
c.二次根式的乘除混合运算:例如\(\frac{3\sqrt{2} \times \sqrt{18}}{\sqrt{8}}\),需教授学生如何先将乘法运算简化,再进行除法运算。

人教版八年级数学下册第十六章 二次根式(全章)教案

人教版八年级数学下册第十六章  二次根式(全章)教案

16.1 二次根式[学习目标]理解二次根式的概念,并利用(a≥0)的意义解答具体题目.教学重点:形如(a≥0)的式子叫做二次根式的概念教学难点:利用“(a≥0)”解决具体问题.教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法、2、阅读的方法、3、分组讨论法4、练习法[学习过程]一、板书课题(一)讲述:同学们,我们来学习 16.1 二次根式二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解二次根式的概念,并利用(a≥0)的意义解答具体题目.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P2全部内容:1.思考“思考1、2”中的问题,完成思考1中的问题,理解二次根式的概念及二次根式有无意义的条件。

2.注意例题1的格式和步骤。

3.讨论回答思考2中的问题。

.如有疑问,可请教同桌或举手问老师.5分钟后,比谁能做对与例题类似的题.四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难.(二)过渡语:同学们,看完的请举手?懂了的请举手?好,下面就比一比,看谁能正确做出检测题.(三)检测 : P.3 练习1、2题。

学生练习,教师巡视。

(收集错误进行二次备课)五、后教教师引导学生评议、订正。

归纳小结:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.五、当堂训练:一、选择题1.下列各式中①;②;③;④;⑤;⑥一定是二次根式的有()个。

A . 1 个 B. 2个 C. 3个 D. 4个2. 若,则b的值为()A.0 B.0或1 C.b≤3 D.b≥33.已知一个正方形的面积是5,那么它的边长是()A .5BC D.以上皆不对二、填空题1.形如________的式子叫做二次根式. 2.面积为a的正方形的边长为________. 3.负数________平方根.三、综合提高题1.若+有意义,则=_______.2.使式子有意义的未知数x有()个.A.0 B.1 C.2 D.无数3.当x是多少时,+在实数范围内有意义?4. 已知y=++5,求的值.教学反思:16.1 二次根式(2)[学习目标]理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.教学重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.教学难点:导出(a≥0)是一个非负数;•用探究()2=a(a≥0).教法:1、引导发现法: 2、讲练结合法:学法:1、类比的方法2、阅读的方法3、分组讨论法4、练习法[学习过程]一、板书课题:16.1 二次根式(2)讲述:同学们,我们来学习16.1 二次根式(2)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影:(二)屏幕显示学习目标理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.三、指导自学(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学.(二)出示自学自导自学指导认真看课本P.3“探究”至例2结束。

第十六章二次根式教案

第十六章二次根式教案

第十六章二次根式教案教案标题:第十六章二次根式教案目标:1. 了解二次根式的定义和性质。

2. 掌握二次根式的化简和运算方法。

3. 能够解决与二次根式相关的实际问题。

教学重点:1. 二次根式的定义和性质。

2. 二次根式的化简和运算方法。

教学难点:1. 解决与二次根式相关的实际问题。

教学准备:1. 教材《数学》第十六章相关内容。

2. 教学投影仪或白板。

3. 学生练习册。

教学过程:Step 1:导入新知(5分钟)引入二次根式的概念,通过提问和实例引发学生对二次根式的思考,激发学生的学习兴趣。

Step 2:概念讲解(15分钟)1. 定义二次根式:引导学生理解二次根式的定义,即形如√a的表达式,其中a 为非负实数。

2. 二次根式的性质:介绍二次根式的性质,如二次根式的值是非负实数,二次根式与平方互为逆运算等。

Step 3:化简和运算(20分钟)1. 化简二次根式:讲解化简二次根式的方法,如将根号内的因式分解、提取因式等。

2. 二次根式的运算:介绍二次根式的加减乘除运算法则,并通过例题进行讲解和练习。

Step 4:实际问题解决(15分钟)设计一些实际问题,要求学生运用二次根式的知识解决,如计算房间的地板面积、计算圆形花坛的面积等。

Step 5:课堂练习(15分钟)布置练习题,要求学生独立完成,检验他们对二次根式的理解和掌握程度。

Step 6:小结与反馈(5分钟)对本节课所学内容进行小结,并针对学生的问题进行解答和指导,鼓励学生提出自己的疑问和观点。

教学延伸:1. 鼓励学生自主学习,通过阅读相关教材和练习册的习题加深对二次根式的理解和掌握。

2. 提供更多的实际问题,让学生将二次根式应用于实际生活中,培养他们的数学建模能力。

教学评估:1. 教师观察学生的课堂参与度和学习态度。

2. 批改学生的课堂练习和作业,评估他们对二次根式的掌握情况。

3. 针对学生的问题进行解答和指导,及时纠正他们的错误,帮助他们提高。

教学资源:1. 教材《数学》第十六章相关内容。

二次根式单元整体教学设计

二次根式单元整体教学设计

二次根式单元整体教学设计
3.单元(或主题)整体教学设计思路(教学结构图)
1.引入与基本概念(1-2课时):这部分内容主要包括二次根式的引入、定义、基本性质等。

教师
可以通过讲解、举例等方式帮助学生建立正确的数学概念,为后续学习打下基础。

2.二次根式的运算(2-3课时):这部分内容主要包括二次根式的加法、减法、乘法、除法等运算。

教师可以通过例题演示、学生练习等方式,帮助学生逐步掌握二次根式的运算规则和方法。

3.二次根式的化简(2-3课时):这部分内容主要包括二次根式的化简技巧和方法。

教师可以通过
讲解、示范、练习等方式,帮助学生掌握二次根式的化简技巧,提高学生的运算能力和解决问题的能力。

人教版八年级下册数学第十六章《二次根式》教案

人教版八年级下册数学第十六章《二次根式》教案

16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。

重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。

难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。

教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。

新人教第16章二次根式全章教案

新人教第16章二次根式全章教案

( 3) 2
(3) ( 0.5 ) 2
(4) (
1 2 ) 3
根据计算结果,你能得出结论: ( a ) 2 ________ ,其中 a 0 , 4、由公式 ( a ) 2 a(a 0) ,我们可以得到公式 a = ( a ) 2 ,利用此公式可 以把任意一个非负数写成一个数的平方的形式。 如( 5 ) =5;也可以把一个非负数写成一个数的平方形式,如 5=( 5 ) .
( 0 .2 ) 2
4 ( ) 2 5
( 20 ) 2
五 、 教 学 过 程 设 计
2 观察其结果与根号内幂底数的关系,归纳得到:当 a 0时, a
3、计算:
02
当 a 0时,
a2
1、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的 性质:
4 × 9 __ 4 9
16 × 25 __
16 25
五 、 教 学 过 程 设 计
(3) 100 × 36 =___, 100 36 =___.
100 × 36 __
100 36
1、 学生交流活动总结规律. 2、一般地,对二次根式的乘法规定为
a · b = ab . (a≥0,b≥0 反过来:
a0 a a a 0 0 a a0
2
2、化简下列各式: (1) 、 0.32 = ( a 0)
2
2 2 (2) 、 ( 0.5) (3) 、 ( 6)
(4) 、 2a
2
3、请大家思考、讨论二次根式的性质 ( a ) 2 a(a 0) 与 a a 有什么
3 , 16 , 3 4 , 5 , a (a 0) , x 2 1 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章二次根式
教材内容
本单元教学的主要内容:
二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.
教学目标
1.知识与技能
(1)理解二次根式的概念.
(2a≥0)是一个非负数,)2=a(a≥0)(a≥0).
(3a≥0,b≥0);
a≥0,b>0)(a≥0,b>0).
(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.
2.过程与方法
(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.
(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.
(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.
(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.
3.情感、态度与价值观
通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.
教学重点
1a≥0a≥0)是一个非负数;2=a
(a≥0)(a≥0)•及其运用.
2.二次根式乘除法的规定及其运用.
3.最简二次根式的概念.
4.二次根式的加减运算.
教学难点
1.a≥0)是一个非负数的理解;对等式2=a(a≥0)
(a≥0)的理解及应用.
2.二次根式的乘法、除法的条件限制.
3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分
本单元教学时间约需11课时,具体分配如下:
16.1 二次根式 3课时
16.2 二次根式的乘法 3课时
16.3 二次根式的加减 3课时
教学活动、习题课、小结 2课时。

相关文档
最新文档