浮阀塔设计示例
浮阀塔设计
mmax m01 m02 m03 m04 ma mw 126812
风载荷、风弯矩计算与地震弯矩计算
塔体因风压、地震会发生弯曲变形。按基本风压值 q0=300N/m2 、地震设防烈度为8度的设计条件,选取塔 设备薄弱部位截面0-0、1-1、2-2进行了计算。
二、各项应力校核 塔体圆筒稳定校核
塔设备质量载荷计算
将全塔分成6段,根据塔段长度、人孔与平台数、塔板数 等计算各质量载荷,得 m0 m01 m02 m03 m04 m05 ma 57096 全塔操作质量
全塔最小质量 水压试验时 最大质量
mmin m01 0.2m02 m03 m04 ma 35133
提馏段操作弹性=3.718
第三部分 塔设备的机械设计
设计条件
计算压力Pc=1.1MPa 基本风压值q0=300N/m2 地震设防烈度为8度 塔壳外表面保温层100mm 每隔十块塔板开设一个人孔,人孔数为4个
按计算压力计算塔体和封头厚度
经计算,塔体和封头厚度均取12mm,采用标准椭 圆形封头。
一、各项载荷计算
第二部分 塔板的流体力学计算
一、气相通过浮阀塔板的压降 二、淹塔 三、雾沫夹带验算 四、塔板负荷性能图 1、雾沫夹带线 2、液泛线 3、液相负荷上限 4、漏液线 5、液相负荷下限线
6、 操作性能负荷图
精馏段负荷性能图如下:
提馏段负荷性能图如下:
由图可以看出: ①操作点p(设计点)处 在适宜操作区内适中 位置; ②塔板的气相负荷上限完 全由雾沫夹带控制, 操作下限由漏液控制; ③ 精馏段操作弹性=3.224
hw how
H 0.45m, h 0.02m, h 0.04m, h 0.0566m h 0.052m, h 0.0134m, h 0.0180m
化工原理课程设计计算示例
化工原理壳程设计计算示例一浮阀塔工艺设计计算示例拟设计一生产酒精的板式精馏塔。
来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。
设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。
一、塔形选择及操作条件的确定1.塔形:选用浮阀塔2.操作条件:操作压力:常压;其中塔顶:1.013×105Pa塔底:[1.013×105+N(265~530)Pa]进料状态:饱和液体进料加热方式:用直接水蒸气加热热能利用:拟采用釜残液加热原料液二、工艺流程三、有关工艺计算首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由23971.1/H O kg m ρ=,3735/kg m ρ=乙醇参考资料(一),查出相应泡点温度及计算平均分子量。
同理求得0.779D x = 0.0002W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=⨯+-⨯=乙醇水同理求得:39.81/D M kg kmol =,18.1/D M kg kmol =1. 最小回流比及操作回流比的确定由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此,min(1)0.7790.5160.7690.5160.174D q q qx y R y x --===--又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得'0.55q x =,'0.678q y =,因此,'min(1)''0.7790.6780.7890.6780.55q q qD x y R y x --===--可见min min(2)0.789R R ==,操作回流比R=1(min / 1.27R R =在1.1~2.0的范围内)2. 塔顶产品量、釜残液量及加热蒸汽量的计算 取每年工作日300天,每天24小时计,进料量为:3480010299/3002422.3F kmol h ⨯==⨯⨯由全塔物料衡算方程写出:0V F D W +=+ 00(y =蒸汽)D=65.85kmol/h 00f D W V y Fx Dx Wx +=+ W=364.85kmol/h'W L L qF RD qF ==+=+ q=1(泡点) V 0 =131.7kmol/h3. 全凝器冷凝介质的消耗量塔顶全凝器的热负荷:(1)()c VD LD Q R D I I =+-由资料(一)可查出:1266/VD I kJ kg =,253.9/LD I kJ kg =故6(11)65.8539.81(1266253.9) 5.30610/c Q kJ h =+⨯⨯-=⨯取冷凝介质为水,其进出冷凝器的温度分别为25℃和35℃,那么在平均温度下水的比热为4.17/pc C kJ kg =℃,因此,冷却水的用量: 621 5.30610127120/() 4.174(3525)c c cp Q W kg h C t t ⨯===--4. 热能利用拟利用釜残液预热原料液,将原料液预热至泡点所需的热量为21()f f pf f f Q W C t t =-83.834564.42fm t +==℃ 进出预热器原料的平均温度64.4fm t =℃下,可查出其比热 4.275/.pf C kJ kg =℃,所以364800010 4.275(83.8345) 1.10710/30024f Q kJ h ⨯=⨯-=⨯⨯釜残液放出的热量:12()W W PW W W Q W C t t =-若将釜残液温度降至55℃,那么平均温度为99.835577.22fm t +==℃下其比热为 4.191/.pf C kJ kg =℃,因此 6364.8518.1 4.191(99.3855) 1.22810/W Q kJ h =⨯⨯-=⨯可见W f Q Q >,理论上可以将原料液加热到泡点。
化工设备机械基础课程设计(浮阀塔)
北京理工大学珠海学院课程设计任务书2013~2014学年第2 学期学生姓名:专业班级:化工一班指导教师:工作部门:化工与材料学院一、课程设计题目浮阀塔的机械设计二、课程设计内容1.塔设备的结构设计包括:塔盘结构,塔底、塔顶空间,人孔数量及位置,仪表接管选择、工艺接管管径计算等。
2. 塔体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)计算危险截面的重量载荷、风载荷、地震载荷及偏心载荷;(3)计算危险截面的由各种载荷作用下的轴向应力;(4)计算危险截面的组合轴向拉应力和组合轴向压应力,并进行强度和稳定性校核。
3. 筒体和裙座水压试验应力校核4. 裙座结构设计及强度校核包括:裙座体、基础环、地脚螺栓5. 编写设计说明书一份6. 手工绘制3(A3)号装配图一张,Auto CAD绘3(A3)号图一张(换热器)。
三、设计条件1. 设备类型:自支承式塔设备(塔顶无偏心载荷);2. 设置地区环境:基本风压:q o=400N/㎡;设计地震烈度:7度(或8度);场地土:Ⅱ类。
地震加速度0.3g,地震系数根据自己的需要任取一组;3. 塔体及裙座的机械设计条件:(1)塔体内径Di=2200mm,塔高近似取H=45000mm(每隔一组数据不同,详见安排表);(2)计算压力Pc=1.0MPa(每组中各人的计算压力根据安排表中数据),设计温度t=250℃;(3)塔体装有N=75层浮阀塔盘,每块塔盘上存留介质层高度为hw=100mm,介质密度为ρ1=800kg/m3;(4)沿塔高每5m左右开设一个人孔,人数为8-10个,相应在人孔处安装半圆形平台8-10个,平台宽度为B=900mm,高度为1000mm。
(5)塔外保温层厚度为δs=120mm,保温材料密度为ρ2=300kg/m3;(6)塔体与裙座间悬挂一台再沸器,其操作质量为me=4000kg,偏心距e=2000mm;(7)塔体与封头材料在低合金高强度刚中间选用,并查出其参数。
(完整版)浮阀塔的设计示例
浮阀塔设计示例设计条件拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。
气相流量V s = 1.27m3/s;液相流量L s = 0.01m3/s;气相密度ρV = 3.62kg/m3;液相密度ρL = 734kg/m3;混合液表面张力σ= 16.3mN/m,平均操作压强p = 1.013×105Pa。
设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度。
适宜空塔速度u一般为最大允许气速u F的0.6~0.8倍即:u=(0.6~0.8)u F式中C可由史密斯关联图查得,液气动能参数为:取板间距H T=0.6m,板上液层高度h L=0.083m,图中的参变量值H T-h L=0.6-0.083 =0.517m。
根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20 =0.1。
由所给出的工艺条件校正得:最大允许气速:取安全系数为0.7,则适宜空塔速度为:由下式计算塔径:按标准塔径尺寸圆整,取D = 1.4m;实际塔截面积:实际空塔速度:安全系数:在0.6~0.8范围间,合适。
(二)溢流装置选用单流型降液管,不设进口堰。
1)降液管尺寸取溢流堰长l w=0.7D,即l w/D=0.7,由弓形降液管的结构参数图查得:A f/A T=0.09,W d/D=0.15因此:弓形降液管所占面积:A f=0.09×1.54=0.139(m2)弓形降液管宽度:W d=0.15×1.4=0.21(m2)验算液体在降液管的停留时间θ,由于停留时间θ>5s,合适。
2)溢流堰尺寸由以上设计数据可求出:溢流堰长l w=0.7×1.4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即溢流堰高:h w=h L-h ow =0.083-0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u0′= 0.228m/s;降液管底隙高度:浮阀数及排列方式:1)浮阀数初取阀孔动能因数F0 = 11,阀孔气速为:每层塔板上浮阀个数:(个)2)浮阀的排列按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。
化工机械设备课程设计浮阀塔的设计
摘要 (2)1 前言 (3)1.1 研究的现状及意义 (3)1.2 设计条件及依据 (6)1.3 设备结构形式概述 (7)2 设计参数及其要求 (9)2.1 设计参数 (9)2.2设计条件 (9)2.3设计简图 (10)3 材料选择 (11)3.1 概论 (11)3.2塔体材料选择 (11)3.3裙座材料的选择 (11)4 塔体结构设计及计算 (12)4.1塔体和封头厚度计算 (12)4.1.1 塔体厚度的计算 (12)4.1.2封头厚度计算 (12)4.2塔设备质量载荷计算 (12)4.3风载荷与风弯矩的计算 (14)4.4地震弯矩的计算 (17)4.4.1地震弯矩的计算 (17)4.4.2偏心弯矩的计算 (18)4.5各种载荷引起的轴向应力 (19)4.6塔体和裙座危险截面的强度与稳定校核 (20)4.6.1塔体的最大组合轴向拉应力校核 (20)4.6.2.塔体和裙座的稳定校核 (21)4.7塔体水压试验和吊装时的应力校核 (22)4.7.1水压试验时各种载荷引起的应力 (22)4.7.2水压试验时应力校核 (23)4.8基础环的设计 (24)4.8.1 基础环尺寸 (24)4.8.2基础环的应力校核 (24)4.8.3基础环的厚度 (25)4.9地脚螺栓计算 (25)4.9.1地脚螺栓承受的最大拉应力 (25)4.9.2地脚螺栓的螺纹小径 (26)符号说明 (27)小结 (30)参考文献 (30)谢辞....................................................................................................................................... 错误!未定义书签。
图纸....................................................................................................................................... 错误!未定义书签。
浮阀塔的设计示例
浮阀塔的设计示例浮阀塔是一种常见的化工设备,用于气体和液体之间的质量传递,尤其是在蒸馏和萃取过程中。
下面是一个浮阀塔的设计示例,重点介绍了它的结构和操作原理。
1.设计目标:本浮阀塔的设计目标是实现高效的质量传递,提高分离效果和产品纯度。
同时,保证设备的安全和可靠性,减少设备的能耗和维护成本。
2.结构设计:该浮阀塔采用垂直立式结构,内部分为多个塔板,每个塔板上安装有浮阀。
塔板之间通过气体和液体的穿孔连接。
在塔顶设置有进料口和出料口,而在塔底则设置有底流液收集器。
此外,还设计了塔壳和塔盖,用于保证设备的结构完整性。
3.操作原理:浮阀塔的操作原理基于浮阀的作用。
浮阀由一个密封球和一个杆连接组成。
当从塔底喷射的气体或液体经过塔板时,浮阀的球会被上升的气体或液体推起,从而打开通道,使气体或液体通过浮阀孔进入上方的塔板。
当上方的塔板上积聚足够的液体时,浮阀球会被液体推下,关闭通道,使液体停留在上方的塔板上。
通过不断重复这个过程,气体和液体之间的质量传递就得以实现。
4.浮阀的设计:浮阀的设计关键是选择合适的密封球和杆的材料,并确定其尺寸和重量。
一般来说,密封球和杆的材料要具有耐腐蚀和耐高温的特性,以满足不同工艺的要求。
此外,密封球的尺寸和重量需要根据气体和液体的流速和密度来确定,以保证浮阀的正常运行。
5.设备的操作与维护:为了确保浮阀塔的高效运行,需要进行定期的检查和维护工作。
首先,要检查浮阀是否正常工作,如有必要,需要更换损坏的浮阀。
其次,要及时清理塔板上的沉积物,以保证通道的畅通。
此外,还需要定期检查塔壳和塔盖的密封性,以防止气体或液体的泄漏。
6.设备的优化改进:针对该浮阀塔的优化改进措施主要包括以下几个方面:一是改善塔板的结构,增加塔板的布置密度,减小气液间的传质距离,从而提高质量传递效果。
二是采用节能技术,如加热和冷凝剂回收,减少能耗和环境污染。
三是引入自动控制系统,实现设备的自动化运行和监控,提高生产效率和安全性。
(完整版)浮阀塔的设计示例
浮阀塔设计示例设计条件拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算.气相流量 Vs = 1.27m3/s;液相流量 Ls= 0。
01m3/s;气相密度ρV = 3.62kg/m3;液相密度ρL= 734kg/m3;混合液表面张力σ= 16.3mN/m,平均操作压强 p = 1.013×105Pa.设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度.适宜空塔速度u一般为最大允许气速uF的0.6~0.8倍即: u=(0.6~0.8)uF式中C可由史密斯关联图查得,液气动能参数为:取板间距HT =0。
6m,板上液层高度hL=0。
083m,图中的参变量值HT-hL=0。
6-0。
083 =0.517m。
根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20=0.1。
由所给出的工艺条件校正得:最大允许气速:取安全系数为0。
7,则适宜空塔速度为:由下式计算塔径:按标准塔径尺寸圆整,取D = 1.4m;实际塔截面积:实际空塔速度:安全系数: 在0。
6~0。
8范围间,合适.(二) 溢流装置选用单流型降液管,不设进口堰。
1)降液管尺寸取溢流堰长lw =0.7D,即lw/D=0。
7,由弓形降液管的结构参数图查得:Af/AT=0。
09,Wd/D=0。
15因此:弓形降液管所占面积:Af=0.09×1.54=0.139(m2)弓形降液管宽度:Wd=0.15×1.4=0。
21(m2)验算液体在降液管的停留时间θ,由于停留时间θ>5s,合适。
2)溢流堰尺寸由以上设计数据可求出:溢流堰长 lw=0。
7×1。
4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即溢流堰高:hw =hL-how=0。
083—0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速u′= 0。
228m/s;降液管底隙高度:浮阀数及排列方式:1)浮阀数初取阀孔动能因数F= 11,阀孔气速为:每层塔板上浮阀个数:(个)2)浮阀的排列按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。
浮阀塔
例7-1拟建一浮阀塔以分离苯——甲苯混合物,决定采用F1型浮阀(重阀),试根据以下条件作出浮阀塔的设计计算。
气相流量;液相流量;气相密度;液相密度;物系表面张力。
解:1.塔板工艺尺寸计算(1)塔径欲求塔径应先求出空塔气速u,而依式知,式中C可由史密斯关联图查出,横标的数值为:取板间距,取板上液层高度,则图中参数值为:根据以上数值,由史密斯关联图查得,因物系表面张力,很接近20mN/m,故无需校正,即:则取安全系数为0.6,则空塔气速为:塔径按标准塔径圆整为则塔截面积空塔气速(2)溢流装置选用单溢流弓形降液管,不设进口堰。
各项计算如下:①堰长,取堰长,即:②出口堰高依式知:采用平直堰,堰上液层高度可依式计算,即近似取,则可由列线图查出值。
因,由该图查得则③弓形降液管宽度和面积,用图求取和,因为:由该图查得:,则依式验算液体在降液管中停留时间,即:停留时间θ>5s,故降液管尺寸可用。
④降液管底隙高度依式可知:取降液管底隙处液体流速,则:,取(3)塔板布置及浮阀数目与排列取阀孔动能因子,用式求孔速,即:依式求每层塔板上的浮阀数,即:取边缘区宽度泡沫区宽度依式计算塔板上的鼓泡区面积,即:浮阀排列方式采用等腰三角形叉排。
取同一横排的孔心距,则可按式估算排间距,即:考虑到塔的直径较大,必须采用分块式塔板,而各分块的支承与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用80mm,而应小于此值,故取。
按,以等腰三角形叉排方式作图(见本例附图1),排得阀数228个。
按重新核算孔速及阀孔动能因数:阀孔动能因数变化不大,仍在9~12范围内。
2.塔板流体力学验算(1)气相通过浮阀塔板的压强降可根据下式计算塔板压强降,即:①干板阻力由下式计算,即:或因,故按下式计算干板阻力,即:②板上充气液层阻力本设备分离苯和甲苯混合液,即液相为碳氢化合物,可取充气系数,依式计算:③液体表面张力所造成的阻力此阻力很小,忽略不计。
因此,气体流经一层浮阀塔板的压强降所相当的液柱高度为:(单板压降)(2)淹塔为了防止淹塔现象的发生,要求控制降液管中清液层高度。
分离苯—苯乙烯混合液的浮阀塔工艺设计
化工原理课程设计分离苯—苯乙烯混合液的浮阀塔工艺设计课程设计任务书苯-苯乙烯混合液的常压连续蒸馏塔设计一、工艺要求:日处理原料量80吨,一天按20小时工作时计算。
原料液中轻组分含量41%,要求塔顶馏出液中轻组分含量不低于96%,釜液中重组分含量不低于96%(以上均为质量含量)。
二、设计条件1、操作压力:常压2、进料热状况自选3、回流比自选三、塔板类型:浮阀塔设计任务1、精馏塔的物料衡算2、塔板数的确定3、精馏塔的工艺条件及有关数据的计算4、精馏塔的塔体工艺尺寸计算5、塔板主要工艺尺寸的计算6、塔板的流体力学验算7、塔板负荷性能图8、精馏塔接管尺寸计算9、绘制工艺流程图10、对设计过程的评述和有关问题的讨论目录第一部分概述1.1设计目标 (4)1.2设计任务 (4)1.3设计条件 (5)1.4设计内容 (5)1.5工艺流程图 (5)第二部分工艺设计计算一、设计方案的确定 (7)二、精馏塔的物料衡算 (7)2.1原料液及塔顶、塔底产品的摩尔分数 (7)2.2原料液及塔顶、塔底产品的平均摩尔质量和质量分数 (7)2.3物料衡算原料处理量 (7)三、塔板数的确定 (8)N的求取 (9)3.1理论板层数T3.2相对挥发度 (9)3.3进料状态参数 (9)3.4最小回流比 (9)四、精馏塔的工艺条件及有关物性数据的计算 (11)4.1操作压强计算 (11)4.2操作温度计算 (12)4.3平均摩尔质量计算 (12)4.4平均密度计算 (13)4.5液相平均表面张力计算 (14)五、精馏塔的塔体工艺尺寸计算 (15)5.1精馏段塔径的计算....................................... - 14 -5.2精馏塔的有效高度的计算 (17)六、塔板主要工艺尺寸的计算 (17)6.1溢流装置计算 (17)6.2塔板布置 (21)6.3筛孔数n与开孔率 (23)七、筛板的流体力学验算 (24)7.1气体通过干板压降....................................... - 23 -e的验算 (26)7.2雾沫夹带量V7.3液泛验算 (27)八、塔板负荷性能图 (28)8.1漏液线 (28)8.2雾沫夹带线 (29)8.3液相负荷下限线 (29)8.4液相负荷上限线 (30)8.5液泛线 (30)九、接头管设计 (33)9.1接管尺寸 (33)9.2回流管管径 (34)9.3塔底进气管 (34)9.4加料管管径 (34)9.5料液排出管管径 (34)十一、有关问题的讨论 (36)设计一览表 (38)操作方案的说明: (38)总结 (38)参考文献 (39)第一部分概述1.1设计目标分离苯与苯乙烯混合液的浮阀式精馏塔设计1.2设计任务日处理原料量80吨,一天按20小时工作时计算。
化工原理课程设计---浮阀塔设计
化⼯原理课程设计---浮阀塔设计设计条件:常压:p=1atm处理量:50000t/y进料组成:馏出液组成:釜液组成:(以上均为质量分数)塔顶全凝器:泡点回流每年实际⽣产天数:330天(⼀年中有⼀个⽉检修)精馏塔塔顶压强:4kPa加热⽅式:间接加热第⼀章塔板⼯艺计算1.基础物性数据表1-1 苯、甲苯的粘度表1-2 苯、甲苯的密度表1-3 苯、甲苯的表⾯张⼒表1-4 苯、甲苯的摩尔定⽐热容表1-5 苯、甲苯的汽化潜热2物料衡算2.1 塔的物料衡算(1)苯的摩尔质量:78.11A M /kg kmol甲苯的摩尔质量:B M =92.13/kg kmol(2)原料液及塔顶、塔底产品的摩尔分数塔顶易挥发组分质量分数,摩尔分数釜底易挥发组分质量分数,,摩尔分数原料液易挥发组分质量分数,摩尔分数料液流量F=50000*1000/(330*24)=6313.13kg/h=80.82kmol/h 由公式:F=D+W ,F =D +W代⼊数值有:塔顶产品(馏出液)流量D=45.12 kmol/h ;釜底产品(釜液)流量W=35.70 kmol/h 。
2.2 分段物料衡算根据相平衡曲线,泡点进料时q=1有,1.38由梯形图可知,全回流下最少理论板8。
有理论板得捷算法有根据兰吉利图,选取不同的R值,计算值,吉利兰图找到对应点,⾃此引铅垂线与曲线相交,由于此交点相应的纵标值,可以做出以下图像:曲率变化最⼤的点是在R=2.15,N=14.4915处,即理论板是15块所以精馏段液相质量流量*45.12=97kmol/h,精馏段⽓相质量流量 3.15*45.12=142.13kmol/h,精馏段操作线⽅程,即=+0.307,因为泡点进料,所以进料热状态q=1,所以,提馏段液相质量流量L'=L+qF=177.8kmol/h,提馏段⽓相质量流量V'= V-(1-q)F=142.13kmol/h,所以,提馏段操作线⽅程,即=-0.006, 画出的梯形图如下:总板数=13-1=12,,进料板为第7块。
化工原理课程设计---浮阀塔设计
设计条件:常压:p=1atm处理量:50000t/y进料组成:馏出液组成:釜液组成:(以上均为质量分数)塔顶全凝器:泡点回流每年实际生产天数:330天(一年中有一个月检修)精馏塔塔顶压强:4kPa加热方式:间接加热第一章塔板工艺计算1.基础物性数据表1-1 苯、甲苯的粘度表1-2 苯、甲苯的密度表1-3 苯、甲苯的表面张力表1-4 苯、甲苯的摩尔定比热容表1-5 苯、甲苯的汽化潜热2物料衡算2.1 塔的物料衡算(1)苯的摩尔质量:78.11A M /kg kmol甲苯的摩尔质量:B M =92.13/kg kmol(2)原料液及塔顶、塔底产品的摩尔分数 塔顶易挥发组分质量分数,摩尔分数 釜底易挥发组分质量分数,,摩尔分数原料液易挥发组分质量分数,摩尔分数料液流量F=50000*1000/(330*24)=6313.13kg/h=80.82kmol/h 由公式:F=D+W ,F =D +W代入数值有:塔顶产品(馏出液)流量D=45.12 kmol/h ; 釜底产品(釜液)流量W=35.70 kmol/h 。
2.2 分段物料衡算根据相平衡曲线,泡点进料时q=1有,1.38由梯形图可知,全回流下最少理论板8。
有理论板得捷算法有根据兰吉利图,选取不同的R值,计算值,吉利兰图找到对应点,自此引铅垂线与曲线相交,由于此交点相应的纵标值,可以做出以下图像:曲率变化最大的点是在R=2.15,N=14.4915处,即理论板是15块所以精馏段液相质量流量*45.12=97kmol/h,精馏段气相质量流量 3.15*45.12=142.13kmol/h,精馏段操作线方程,即=+0.307,因为泡点进料,所以进料热状态q=1,所以,提馏段液相质量流量L'=L+qF=177.8kmol/h,提馏段气相质量流量V'= V-(1-q)F=142.13kmol/h,所以,提馏段操作线方程,即=-0.006, 画出的梯形图如下:总板数=13-1=12,,进料板为第7块。
[工学]化工原理浮阀塔设计
[工学]化工原理浮阀塔设计[工学]化工原理浮阀塔设计北京理工大学珠海学院课程设计北京理工大学珠海学院课程设计任务书2011~2012学年第一学期学生姓名:*** 专业班级:09化工1班指导教师:*** 工作部门:化工与材料学院一、课程设计题目:乙醇和正丙醇物系分离系统的设计二、课程设计内容(含技术指标)1.设计条件生产能力:25000吨/年(每年按300天生产日计算)原料状态:乙醇含量45%(wt%);温度:25℃;压力:100kPa;泡点进料;分离要求:塔顶馏出液中乙醇含量99%(wt%);塔釜乙醇含量2%(wt%)操作压力:100kPa 其它条件:塔板类型:浮阀塔板;塔顶采用全凝器;R=1.9Rmin 2.具体设计内容和要求(1)设计工艺方案的选定(2)精馏塔的工艺计算(3)塔板和塔体的设计(4)水力学验算(5)塔顶全凝器的设计选型(6)塔釜再沸器的设计选型(7)进料泵的选取(8)绘制流程图(9)编写设计说明书(10)答辩年处理量25000吨乙醇-正丙醇连续精馏浮阀塔设计摘要本设计对年处理量为25000吨乙醇-正丙醇的浮阀连续精馏塔进行了设计。
通过查表得各组分物性数据后,再用试差法计算出特定组成的乙醇-正丙醇混合液的泡点温度、密度、表面张力以及粘度;用安托因方程求出相对挥发度;用最小回流比的方法求出精馏塔适宜操作回流比为 3.306;通过逐板计算法用Excel快速计算出理论塔板数为18块,并进一步确定精馏塔的实际塔板数为36块;分别对此精馏塔的精馏段及提馏段的塔体工艺尺寸进行了设计,并对设计之后的浮阀板进行了流体力学的验算;绘制出塔板负荷性能图,从而得出精馏段的操作弹性为3.000,提馏段的操作弹性为2.969;并对输送各股物流的管径进行了设计,确定了塔顶全凝器冷却水的用量以及塔底再沸器中加热蒸汽的用量,结果表明,本设计合理。
关键词:连续精馏浮阀精馏塔精馏塔设计乙醇正丙醇V 目录北京理工大学珠海学院课程设计任务书Ⅰ摘要Ⅱ目录Ⅲ1 绪论1 1.1前言1 1.2设计任务3 1.3设计方案说明3 1.3.1设计方案的确定3 1.3.2 塔体工艺尺寸的计算4 1.3.3 塔板工艺尺寸的计算4 1.3.4 简易工艺流程图5 2 精馏塔全塔物料衡算7 2.1物料衡算7 2.1.1 原料液及塔顶、塔底产品的质量分数及摩尔分数换算7 2.1.2 全塔物料衡算7 3 精馏段和提馏段的工艺条件及有关物性数据的计算9 3.1操作温度计算9 3.2平均密度计算10 3.3混合液体平均表面张力计算13 3.4混合液体平均粘度计算14 3.5液体平均相对挥发度计算15 4 理论塔板数的计算17 4.1最小回流比及操作回流比17 4.2精馏塔的气液相负荷17 4.3操作线方程17 4.4逐板计算法求理论塔板层数18 4.5全塔效率和实际板层数19 5 塔径计算21 5.1精馏段、提馏段气液相体积流量计算21 5.2空塔气速的计算22 5.3溢流装置24 5.4塔板分布、浮阀数目与排列25 6 塔板流体力学计算27 6.1气相通过浮阀塔板的压降27 6.1.1精馏段浮阀塔板的流体力学验算27 6.1.2提馏段浮阀塔板的流体力学验算27 6.2淹塔(液泛)28 6.2.1精馏段计算28 6.2.2提馏段计算29 6.3雾沫夹带29 6.3.1精馏段计算30 6.3.2提馏段计算30 6.4塔板负荷性能图31 6.4.1雾沫夹带线31 6.4.2液泛线32 6.4.3 液相负荷上限32 6.4.4漏液线33 6.4.5液相负荷下限线33 7 塔附件设计37 7.1精馏塔塔体工艺尺寸的确定37 7.1.1 筒体工艺尺寸的确定37 7.1.2 封头工艺尺寸的确定[11]37 7.1.3 裙座工艺尺寸的确定37 7.1.4 塔体人孔工艺尺寸的确定37 7.2接管工艺尺寸的确定38 7.2.1进料管38 7.2.2回流管39 7.2.3塔底出料管39 7.2.4塔底蒸气出料管39 7.2.5塔底进气管40 8 塔总体高度的设计41 8.1塔的顶部空间高度41 8.2塔的底部空间高度41 8.3塔总体高度41 9 热量衡算42 9.1塔顶冷凝器的热量衡算42 9.1.1冷凝器的热负荷42 9.1.2冷凝器的选择43 9.2全塔热量衡算44 9.2.1比热容44 9.2.2塔顶上升气体及塔顶、进料、塔底馏出液的热量45 9.2.3再沸器的热负荷(全塔范围列衡算式)46 9.2.4加热蒸气的用量46 9.2.5再沸器的选择46 9.2.6冷凝水消耗量47 结语48 参考文献49 符号说明50 附录52 附录1 浮阀孔排布图52 附录2工艺流程图52 后记53 致谢54 1 绪论 1.1前言工业上,精馏是应用最为广泛的传质分离操作。
浮阀塔的设计
3.6.F1型浮阀塔板设计3.6.1溢流装置选用单溢流方形降液管,不设进口堰,各项计算如下: 3.6.1.1.堰长l w :取堰长l w =0.66D=0.66×0.8=0.528 3.6.1.2.出口堰高h w :h w =h L -h ow ,2'32.84()1000h ow wL h E l = ,近似取E=1,L h =Ls ×3600=0.0022×3600=7.92m 3/s 因为l w =0.528,故h ow =0.015m 则 h w =h L -h ow =0.07-0.015=0.055m3.6.1.3弓形降液管宽度W d 和面积A f :由l w /D =0.528/0.8=0.66,查弓形降液管的宽度和面积图可得,A f /A T =0.0721,W d /D=0.124故A f =0.0721×0.502=0.0362m 2,W d =0.124×0.8=0.0992m 验算液体在降液管中的停留时间:s L H A h T f 40.7)0022.03600/(45.00362.03600/3600=⨯⨯⨯=⨯=θ s 5>θ故降液管尺寸可用。
3.6.1.4降液管底隙高度h o'00s w L h l u = 可取降液管底隙处液体流速取u o '=0.13m/s 则 h o =0.0022/(0.66*0.13) =0.0256mw o h h >合理同理可得出其他回流比的各项计算,总结果如下表:表3-17 溢流装置参数表R堰上液层高度h 0w /m堰长l w /m出口堰高h w /m降液管宽度W d /m降液管的面积A f /m 2停留时间θ/S 底隙高度h o /mR 1 0.0150.528 0.0550.09920.03627.40 0.0256R 2 0.017 0.792 0.053 0.145 0.0815 11.83 0.030 R 30.0180.7920.0520.1450.081510.790.0333.6.2塔板布置及浮阀数目与排列选用F1型重阀,阀孔直径d 0=39mm ,底边孔中心距t=75mm取阀孔动能因子F 0=10 ,孔速s m F u V /99.401.4/10/00===ρ每一层塔板上的浮阀数N :8.91)99.4*039.0*4/14.3/(547.0)*4//(2020===u d V N s π取边缘区域宽度W c =0.06m W s =0.10m塔板上的鼓泡面积2222arcsin 180a x A x R x R R π⎡⎤=-+⎢⎥⎣⎦R=D/2-W c ==0.5-0.05=0.45m x=D/2-(W d +W s )=0.5-(0.0992+0.10)=0.3008m 把数据代入得Aa=0.4978浮阀排列方式采用等腰三角形叉排,取同一排的孔心距t=75mm=0.075m 则估算排间距mm t N Aa t 73)075.0*8.91/(4978.0)*/('=== 考虑到塔的直径较大,必须采用分块式塔板,而各分块版的支撑与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用73mm ,而应小于此值。
化工原理课程设计——筛板和浮阀精馏塔设计(2013)
导热油:进口温度260℃,出口温度250℃
总体要求: 绘制带控制点工艺流程图,完成精馏塔工艺设计以及有关附
属设备的计算与选型。绘制塔板结构简图,编制设计说明书。 1. 精馏塔工艺设计内容:全塔物料恒算、确定回流比;确定塔
0.76
2. 确定操作回流比R 由Fenske方程计算最小理论板数Nmin
N m in
lg
1
xD xD
1 xw xw
lg m
1
3.9(不包括塔釜)
利用吉利兰关联图,计算NT ~ R如下:
R 0.863 0.988 1.140 1.292 1.444 1.520
NT 14.7 11.8 10.7 9.9 9.3 9.0
0.025
0.099
4.28
176.4
0.050
0.186
4.34
173.8
0.075
0.263
4.40
171.3
0.100
i
yi xi
1 xi 1 yi
0.333
4.49
m
1 39
i
说明:平均相对挥发度为 5.62
3.2 绘制t-x-y图及x-y图 在坐标纸上绘图,上大小要求t-x-y图为10×10cm, x-y图为 20×20cm
缺点:气泡夹带现象比较严重。
舌形塔板:
Ⅰ 50
Ⅱ α=
Ⅲ
Ⅰ三面切口舌片; Ⅱ拱形舌片; Ⅲ50×50mm定向舌片的尺寸和倾角
(5)斜孔塔板
10
15
4.7
3
精馏塔(浮阀塔)的设计(可编辑修改word版)
课程设计(论文)浮阀精馏塔的工艺设计说明书题目名称苯—甲苯溶液精馏装置精馏塔设计课程名称化工原理学生姓名雷素兰学号1040902009系专业生化系2010 级化学工程与工艺指导教师胡建明2012 年12 月25 日目录一、设计任务书 (3)二、概述 (4)三、设计方案的确定和流程说明 (4)四、物料衡算 (5)1.设计条件 (5)2.全塔物料衡算 (6)五、设备设计与选型 (7)1.精馏塔工艺设计 (7)2.塔内气液负荷 (11)3.计算塔径、确定板间距 (13)六、塔板结构设计 (14)1.溢流装置 (14)2.塔板布置 (15)七、浮阀塔流体力学验算 (17)1.塔板压降 (17)2.塔板负荷性能 (19)八、精馏塔结构尺寸设计 (23)九、参考文献 (26)十、总结 (27)十一、致谢 (27)十二、附工程图纸 (28)概述塔设备是化学工业,石油化工,生物化工,制药等生产过程中广泛采用的传质设备。
根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。
板式塔为逐级接触式气液传质设备,塔内设置一定数量的塔板,气体以鼓泡形式或喷射形式通过塔板上的液层,正常条件下,气相为分散相,液相为连续相,气相组成呈阶梯变化,它具有结构简单,安装方便,压降低,操作弹性大,持液量小等优点,被广泛的使用。
本设计的目的是分离苯—甲苯的混合液,故选用板式塔。
设计方案的确定和流程说明1.塔板类型:精馏塔的塔板类型共有三种:泡罩塔板,筛孔塔板,浮阀塔板。
浮阀塔板具有结构简单,制造方便,造价低等优点,且开孔率大,生产能力大,阀片可随气流量大小而上下浮动,故操作弹性大,气液接触时间长,因此塔板效率较高。
本设计采用浮阀塔板。
2.加料方式:加料方式共有两种:高位槽加料和泵直接加料。
采用泵直接加料,具有结构简单,安装方便等优点,而且可以引入自动控制系统来实时调节流量及流速。
故本设计采用泵直接加料。
3.进料状况:进料方式一般有两种:冷液进料及泡点进料。
浮阀塔设计解析
根据 ET =0.49 L -0.245
得 N P精 41块 N P提 8块
全塔所需实际塔板数:
N P
N P精
N P提
41 8
49块
全塔效率:
ET
NT NP
24 1 46.94% 49
加料板位置在第42块塔板
hw how
Hd
ho
RT 0.45m, ho 0.02m, ho 0.04m, hw 0.0566m hw 0.052m, h 0.0134m,
提馏段
浮阀数以等 腰三角形排列, 孔心距t=75mm, 板间距t′=80mm ,排得浮阀数为 276个。重新核算 阀孔功能因数、 塔板开孔率,均 符合要求。
第二部分 塔板的流体力学计算
一、气相通过浮阀塔板的压降 二、淹塔
三、雾沫夹带验算
四、塔板负荷性能图
1、雾沫夹带线
2、液泛线
3、液相负荷上限 4、漏液线
通过对操作或非操作时的各种轴向应力的计算,求
出最大组合轴向拉应力,得出
22 max
K t,满足要求
00 max
cr
min KB, K t
满足要求
11 max
cr
min KB, K t
满足要求
22 max
cr
min KB, K t
满足要求
塔体水压试验和吊装时的应力校核
ow
how 0.0180m
D 2.0m
Wd Ws
x
D
lw 1.3m W d 0.248 m
三、塔板布置及浮阀数目与排列
1. 塔板直径D=2.0m,采用分块式塔板,分五块。 2. 浮阀数目与排列 精馏段
浮阀以等腰 三角形排列,孔 心距为t=75mm, 排间距t′=65mm, 排得阀数为348个。 重新核算阀孔功 能因数、塔板开 孔率,均符合要 求。
完整版浮阀塔的设计示例
浮阀塔设计示例设计条件拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。
气相流量V s = 1.27m3/s;液相流量L s = 0.01m3/s;气相密度p V = 3.62kg/m3;液相密度p L = 734kg/m3;混合液表面张力(T = 16.3mN/m,平均操作压强p = 1.013X105p&设计计算过程(一)塔径欲求出塔径应先计算出适宜空塔速度。
适宜空塔速度U —般为最大允许气速U F的0.6〜0.8倍即:u =( 0.6 〜0.8 ) U F式中C可由史密斯关联图查得,液气动能参数为:根据以上数值由图可得液相表面张力为20mN/m 时的负荷系数C20 =0.1。
由所给出的工艺条件校正得:S —=0.1 —= 0.096汽20丿I噩丿最大允许气速:取板间距H T =0.6m ,板上液层高度h L =0.083m 图中的参变量值H「h L=0.6-0.083 =0.517m取安全系数为0.7,则适宜空塔速度为:」m.G —实际塔截面积:—尹=尹心如安全系数:如"偌/I •知°期在0.6〜0.8范围间,合适。
(二) 溢流装置选用单流型降液管,不设进口堰。
1) 降液管尺寸取溢流堰长l w =0.7D ,即l w /D=0.7,由弓形降液管的结构参数图查得:A 〃A T =0.09,W d /D=0.15因此:弓形降液管所占面积:A f =0.09 X l.54=0.139(m 2)弓形降液管宽度:W d =0.15 X l.4=0.21(m2)验算液体在降液管的停留时间B,0.01V PvP34-3.62 q3^2实际空塔速度:二L%開= 0 825财张按标准塔径尺寸圆整,取 D = 1.4m ;由于停留时间B> 5s,合适。
2)溢流堰尺寸由以上设计数据可求出:溢流堰长l w=0.7 x l.4=0.98m采用平直堰,堰上液层高度可依下式计算,式中E近似取1,即2.84 2.84 - (001x3600^____ ^]x _______________1UOO I 0.98 丿溢流堰高:h w=h L-h ow =0.083-0.033=0.05m液体由降液管流入塔板不设进口堰,并取降液管底隙处液体流速U0‘= 0.228m/s ;降液管底隙高度:0.010198x0.2280.045^浮阀数及排列方式1)浮阀数初取阀孔动能因数F0 = 11,阀孔气速为:呦——ll/xfj. 62 —5.78m I £每层塔板上浮阀个数:1.27x4 (个)2)浮阀的排列按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。
化工机械设备课程设计浮阀塔的设计
摘要 (2)1 前言 (3)1.1 研究的现状及意义 (3)1.2 设计条件及依据 (6)1.3 设备结构形式概述 (7)2 设计参数及其要求 (9)2.1 设计参数 (9)2.2设计条件 (9)2.3设计简图 (11)3 材料选择 (11)3.1 概论 (11)3.2塔体材料选择 (12)3.3裙座材料的选择 (12)4 塔体结构设计及计算 (13)4.1塔体和封头厚度计算 (13)4.1.1 塔体厚度的计算 (13)4.1.2封头厚度计算 (13)4.2塔设备质量载荷计算 (13)4.3风载荷与风弯矩的计算 (15)4.4地震弯矩的计算 (18)4.4.1地震弯矩的计算 (18)4.4.2偏心弯矩的计算 (19)4.5各种载荷引起的轴向应力 (20)4.6塔体和裙座危险截面的强度与稳定校核 (21)4.6.1塔体的最大组合轴向拉应力校核 (21)4.6.2.塔体和裙座的稳定校核 (22)4.7塔体水压试验和吊装时的应力校核 (23)4.7.1水压试验时各种载荷引起的应力 (23)4.7.2水压试验时应力校核 (24)4.8基础环的设计 (25)4.8.1 基础环尺寸 (25)4.8.2基础环的应力校核 (25)4.8.3基础环的厚度 (26)4.9地脚螺栓计算 (26)4.9.1地脚螺栓承受的最大拉应力 (26)4.9.2地脚螺栓的螺纹小径 (27)符号说明 (28)小结 (31)参考文献 (31)谢辞................................................................... 错误!未定义书签。
图纸................................................................... 错误!未定义书签。
摘要塔设备是化工、石油化工和炼油等生产中最重要的设备之一。
在塔设备中完成的常见单元操作有:精馏、吸收、解吸和萃取等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浮阀塔设计示例
设计条件
拟建一浮阀塔用以分离某种液体混合物,决定采用F1型浮阀(重阀),试按下述条件进行浮阀塔的设计计算。
V s = 1.27m3/s;液相流量L s = 0.01m3/s;
ρV = 3.62kg/m3;液相密度ρL = 734kg/m3;
σ= 16.3mN/m,平均操作压强p = 1.013×105Pa。
设计计算过程
(一)塔径
u一般为最大允许气速u F的0.6~0.8倍
u=(0.6~0.8)u F
C可由史密斯关联图查得,液气动能参数为:
H T =0.6m,板上液层高度h L =0.083m,图中的参变量值H T-h L=0.6-0.083 =0.517m。
根据以上数值由图可得液相表面张力为20mN/m时的负荷系数C20 =0.1。
由所给出的工艺条件校正得:
取安全系数为0.7,则适宜空塔速度为:
D = 1.4m;
在0.6~0.8范围间,合适。
(二)溢流装置
1)降液管尺寸
l w=0.7D,即l w/D=0.7,由弓形降液管的结构参数图查得:A f/A T=0.09,W d/D=0.15
因此:弓形降液管所占面积:A f=0.09×1.54=0.139(m2)
弓形降液管宽度:W d=0.15×1.4=0.21(m2)
5s,合适。
2)溢流堰尺寸
由以上设计数据可求出:
l w =0.7×1.4=0.98m
采用平直堰,堰上液层高度可依下式计算,式中E 近似取1,即
溢流堰高:h w =h L -h ow =0.083-0.033=0.05m
u 0′= 0.228m/s ;
降液管底隙高度: 浮阀数及排列方式: 1)浮阀数
初取阀孔动能因数F 0 = 11,阀孔气速为:
每层塔板上浮阀个数
:
(个)
2)浮阀的排列
按所设定的尺寸画出塔板,并在塔板的鼓泡区内依排列方式进行试排,确定出实际的阀孔数。
W d = 0.21m ,选取无效边缘区宽区
W C = 0.05m 、破沫区宽度W S =0.075m ,由下。