二项式定理通项公式
二项式定理
在展开式C中 15x(x只 3)有 24才存x的 在项 , 其系数 C15为 324 240
方法3 (x2+3x+2)5=[x2+(3x+2)]5
在展开式C 中50(3只 x有 2)5才存x的 在项 , 其系数 C15为 324 240
( x1)6(2x1)5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
5、 的系数.
求 ( x1)6(2x1)5的展开式中 x 6 项
解:( x 1)6 的通项是 C 6 r( x)6rC 6 rx6 2r
(2 x 1)5 的通项是
C 5 s ( 2 x ) 5 s ( 1 ) s C 5 s ( 1 ) s 2 5 s x 5 s
( x1 )6(2x1 )5 的通项是
CC(1)2 x s r 56
s
5s
16r2s 2
课堂小结:
1、二项式定理、通项公式及二项式系数的性 质。
2、要区分二项式系数与展开式项的系数的异 同。
3、熟练求算二项展开式的Tr+1项、常数项、x 的r次方项等题型。
二项式定理的复习
1.二项展开式:
a bn
c n 0 a n c 1 n a n 1 b c n ra n rb r c n n b n
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
用(1-x)3 展开式中的一次项乘以(1+x)10 展开式中 的x4项可得到(-3x)(C104x4)=-3C104x5;
二项式定理
二项式定理一、基础知识1.二项式定理(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *)❶;(2)通项公式:T k +1=C k n an -k b k ,它表示第k +1项; (3)二项式系数:二项展开式中各项的系数为C 0n ,C 1n ,…,C n n ❷.2.二项式系数的性质(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n 的二项展开式中,第k +1项的二项式系数是C k n ,而该项的系数是C k n an -k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量 [例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. (2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3.(3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )rx 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k. 令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项; 第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n-r的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . (2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( ) A.0 B.1 C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a , 又0≤a <13,a ∈Z , 所以a =12. [答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( ) A.1 B.2 C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7·(-2)r ·x 14-3r.令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n ,由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8), 要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2.(3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r82-(r -1)C r -18=9-r 2r ≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x8-2r,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C nn 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1.5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。
二项式定理
二项式定理一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)❶;(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n❷.2.二项式系数的性质(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一 二项展开式中特定项或系数问题考法(一) 求解形如(a +b )n (n ∈N *)的展开式中与特定项相关的量[例1] (1)(优质试题·全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( ) A.10B.20C.40D.80(2)(优质试题·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________.(3)(优质试题·甘肃检测)已知⎝⎛⎭⎪⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝ ⎛⎭⎪⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40.(2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3. (3)⎝ ⎛⎭⎪⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎪⎫-a x r =C r 5(-a )r x 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1[解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r ,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量[例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( )A.-4B.-3C.3D.4(2)(优质试题·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n 2=1,得m +n =2,于是(1-x )6(1+x )4的展开式中x 的系数等于C 06·(-1)0·C 24+C 16·(-1)1·C 14+C 26·(-1)2·C 04=-3. 法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3. (2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25.[答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量[例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( )A.10B.20C.30D.60(2)将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝ ⎛⎭⎪⎫x +4x -43=⎝ ⎛⎭⎪⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎪⎫-2x k =(-2)k ·C k 6x 3-k .令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160[解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(优质试题·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝ ⎛⎭⎪⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝ ⎛⎭⎪⎫2x -1x 6的展开式的通项公式为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240. 2.(优质试题·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝ ⎛⎭⎪⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝ ⎛⎭⎪⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝ ⎛⎭⎪⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝ ⎛⎭⎪⎫125=6322. 答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63xB.4xC.4x 6xD.4x或4x 6x(2)若⎝ ⎛⎭⎪⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式中各项系数之和为2n ,即8<2n <32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎪⎫13x 2=63x . (2)⎝ ⎛⎭⎪⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝ ⎛⎭⎪⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8,在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28,又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,①令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,②①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可.2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中(1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2. (3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. [题组训练]1.(优质试题·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,①令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,②①+②,得2(a 4+a 2+a 0)=-242,即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244,即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9,令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9,又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39,∴(2+m )9·m 9=39,∴m (2+m )=3,∴m =-3或m =1.答案:-3或13.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考点三 二项展开式的应用[典例精析]设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A.0B.1C.11D.12[解析] 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1, 又13整除52,所以只需13整除1+a ,又0≤a <13,a ∈Z ,所以a =12.[答案] D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a =cr +b ,其中余数b ∈[0,r ),r 是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x 4+108x 3+54x 2+12x +1能被5整除的最小自然数x 为( )A.1B.2C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________.解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910,∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1.答案:1[课时跟踪检测]A 级1.(优质试题·河北“五个一名校联盟”模拟)⎝ ⎛⎭⎪⎫2x 2-x 43的展开式中的常数项为( )A.-32B.3 2C.6D.-6解析:选D 通项T r +1=C r 3⎝ ⎛⎭⎪⎫2x 23-r ·(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( ) A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝ ⎛⎭⎪⎫x 2+a x 7的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-280解析:选A 取x =1,得二项式⎝ ⎛⎭⎪⎫x 2+a x 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝ ⎛⎭⎪⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝ ⎛⎭⎪⎫-2x r =C r 7·(-2)r ·x 14-3r .令14-3r =2,得r =4.因此,二项式⎝ ⎛⎭⎪⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560. 4.(优质试题·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式。
二项式定理递推公式
二项式定理递推公式一、二项式定理内容回顾。
1. 二项式定理表达式。
- 对于(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,其中C_n^k=(n!)/(k!(n - k)!),n∈N^*。
2. 二项式展开式的通项公式。
- T_r + 1=C_n^ra^n - rb^r(r = 0,1,·s,n),它表示二项式展开式中的第r+1项。
二、二项式定理的递推公式推导。
1. 从(a + b)^n到(a + b)^n+1的递推关系。
- 我们知道(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k,(a + b)^n+1=(a + b)×(a +b)^n。
- 把(a + b)^n=∑_k = 0^nC_n^ka^n - kb^k代入(a + b)^n+1=(a + b)×(a + b)^n可得:(a + b)^n+1=(a + b)∑_k = 0^nC_n^ka^n - kb^k=∑_k = 0^nC_n^ka^n - k + 1b^k+∑_k = 0^nC_n^ka^n - kb^k+1。
- 在∑_k = 0^nC_n^ka^n - k + 1b^k中,令k = r;在∑_k = 0^nC_n^ka^n -kb^k+1中,令k=r - 1。
- 对于∑_k = 0^nC_n^ka^n - k + 1b^k,当k = n时,这一项为C_n^na^1b^n。
- 对于∑_k = 0^nC_n^ka^n - kb^k+1,当k = 0时,这一项为C_n^0a^n+1b^0。
- 则(a + b)^n+1=∑_r = 0^n + 1C_n+1^ra^n+1 - rb^r,其中C_n+1^r=C_n^r -1+C_n^r(r = 1,2,·s,n),C_n+1^0 = C_n^0 = 1,C_n+1^n+1=C_n^n = 1。
2. 递推公式的意义。
高中数理化公式大全
高中数理化公式大全数学公式:1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n)a^0b^n2. 三角函数的关系式:sin(a + b) = sin(a)cos(b) +cos(a)sin(b), cos(a + b) = cos(a)cos(b) - sin(a)sin(b), tan(a +b) = (tan(a) + tan(b))/(1 - tan(a)tan(b))3. 对数函数的性质:log(ab) = log(a) + log(b), log(a^n) = nlog(a), log(1/a) = -log(a)4.圆的周长和面积:C=2πr,A=πr^25. 三角形的边长和面积:a^2 = b^2 + c^2 - 2bccosA, A =(1/2)bh6.角度和弧度的转换:1弧度=180/π度,1度=π/180弧度7.等差数列通项公式:an = a1 + (n-1)d8.等比数列通项公式:an = a1 * r^(n-1)物理公式:1.牛顿第一定律:物体仅在外力作用下才会改变其运动状态2. 牛顿第二定律:F = ma,力的大小等于质量乘以加速度3.牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在不同的物体上4.动能定理:W=ΔK,功等于动能的增量5.万有引力定律:F=G(m1m2/r^2),两个物体间的引力等于G乘以两物体质量的乘积除以距离的平方6.电流定律:I=Q/t,电流等于电量除以时间7.电阻定律:U=IR,电压等于电流乘以电阻8.热传导定律:Q=kAtΔT/L,导热量等于热导率乘以传热面积乘以传热时间乘以温度差除以传热长度化学公式:1.摩尔质量公式:M=m/n,摩尔质量等于质量除以物质的摩尔数2.平衡常数公式:K=[C]^c[D]^d/[A]^a[B]^b,平衡常数等于反应物浓度的乘积除以生成物浓度的乘积3.摩尔浓度公式:C=n/V4.离子平衡公式:Kw=[H+][OH-],离子平衡常数等于氢离子浓度乘以氢氧根离子浓度5. 溶解度积公式:Ksp = [A+][B-],溶解度积常数等于阳离子浓度乘以阴离子浓度6.核反应速率公式:r=k[N]^a,核反应速率等于速率常数乘以核素浓度的幂次这些公式只是数理化领域的一部分,数学、物理、化学的公式非常庞大,但以上公式可以帮助高中学生加深对数理化知识的理解。
二项式定理(通项公式)(完整资料).doc
【最新整理,下载后即可编辑】二项式定理二项式知识回顾 1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k k n nn n n n x C C x C x C x +=+++++ ①0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n ;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=.(2)二项式系数k n C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的.当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC +相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1)⑶a0+a2+a4+a6……=2)1 ()1(-+ff⑷a1+a3+a5+a7……=2)1 ()1(--ff经典例题1、“n ba)(+展开式:例1.求4)13(xx+的展开式;【练习1】求4)13(xx-的展开式2.求展开式中的项例2.已知在n的展开式中,第6项为常数项.(1)求n;(2)求含2x的项的系数;(3)求展开式中所有的有理项.【练习2】若n展开式中前三项系数成等差数列.求:(1)展开式中含x的一次幂的项;(2)展开式中所有x的有理项.3.二项展开式中的系数例3.已知22x的展开式的二项式系数和比(31)n)nx-的展开式的二项式系数和大992,求21-的展开式中:(1)二项式系数最(2)nxx大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-,则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx 展开式中9x 的系数是 ;。
二项式定理(通项公式)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
二项式定理应用
二项式定理的应用一. 二项式定理的主要内容 1. 公式:通项:二项式展开式中第r+1项为 : (r=0,1, 2,n) 2. 两个特别容易混淆的概念:(1)二项式系数: ( i=0,1, 2,n)叫做二项式系数. (2)展开式中项的系数:展开式中某一项的系数。
3. 递推二项式定理的过程,即某一项的形成过程. 例如:b aC rr n r n -的形成过程:从n 个括号中取r 个括号中的b ,另外n-r 个括号中取a ,故得.二. 主要应用(除常规的展开外) 1. 递推过程的应用:例1.在(x+y+z)9中,求展开式中x 4y 3z 2的系数.解:由x 4y 3z 2的形成过程可知,在9个括号中取4个括号中的x ,剩下5个括号中取3个括号取y ,再剩下的两个括号中取z ,故得x 4y 3z 2系数为 =1260. 例2.在(1+x)(2+x)(3+x)∙∙ (19+x)(20+x)的展开式中,求x 18的系数.解:在20个括号中取出18个括号取x ,另外剩下两个括号取常数,由于各个常数不相等,故不能简单地用“组合数”计算,而应按实际数值计算。
即在1,2, 3,20中任取两个数求积(所取两数不能重复组合),再求出这些积的和. 如以“1”为准时,其积的和为:1⨯2+1⨯3+1⨯4+1⨯5++ 1⨯19+1⨯20=209; 以“2”为准时,其积的和为:2⨯3+2⨯4+2⨯5++ 2⨯19+2⨯20=414; ……以此类推,最后为19⨯20=380,故x 18的系数为这些和的和,即20615. 例3.求(1+2x)(1+22x)(1+23x)…(1+2n x)展开式中x 项的系数与x 2项的系数。
x 项的系数是221-+n 与x 2项的系数是2. 求特定的项或特定项的系数:例1.求(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5展开式中x 2项的系数.解:(方法一)可逐项分析:(x-1)中没有x 2项,-(x-1)2中x 2项的系数为C 02-,(x-1)3中x 2()b C b a C a C a C b a nn n n n n n n n n b ++++=--+ 222110()()()bCb a C a C a C b a nn nnn n n n n n n b 112222110)1(---+++-+=-- ()x C x C C x n n n n n n x ++++=+ 22111b a C T rr n r n r -+=1ba C a Cb C rrn rnrn rn r n rrn ----=212384++-+n n C C C 223549Cin项的系数为C 13-,-(x-1)4中x 2项的系数为C 24-,(x-1)5中x 2项的系数为C 35-,于是,展开式中x 2项的系数为:C02-C13-C24-C35-=-20.(方法二)原式可以看成是一个首项为(x-1),公比为(1-x)的等比数列之和, 于是,原式=()()()x x x --⎥⎦⎤⎢⎣⎡---111115=()()xx x -+-161∴展开式中x 2的系数即为(x-1)6的展开式中x 3的系数, ∴系数为()C1363-=-20.例2.求(1+x)6(1-x)4的展开式中x 3的系数.解:由乘法法则可知,展开式中x 3的项分别由(1+x)6中的项x 0, x, x 2, x 3与(1-x)4中的x 3, x 2,x, x 0项对应相乘合并而成,故得展开式中x 3的系数为C C C C C C C C 0436142624163406+-+- = -8.例3.求(1-x 3)(1+x)10的展开式中x 5的系数.解:同上例,可知展开式中x 5的项是由(1+x)10中的x 5项, x 2项分别与1-x 3相乘合并而成,故得x 5的系数为C C 210510-=207. 例4.已知⎪⎪⎭⎫ ⎝⎛-29x x a中x 3的系数是49,求a 的值. 解:()()xaCx x a C T rrrr rrrrrr 9239299912121----+-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-==令392r3=- 得r = 8故()x x CTa a 334898916921==--∴49a 169=∴a=43. 有关整除或求余数:例1.求2100除以9的余数. 解:()+-+-==- 3331329821009911001000100100100C C CC C C C C 100100991002981003971004961003_333++-+=139)(991009810039710010033+-+-+C C C =)27(971001003C -+ +9⨯4950-300+1 ∵)27(C397100100-+ 能被9整除,故余数由9⨯4950-300+1确定,而9⨯4950-300+1=44251=4916⨯9+7 故余数为7例2.设n ∈N n ≠1求证33n-26n-1能被676整除证明: 33n -26n-1=27 n -26n-1=(26+1)n-26n –1 =CCC C C n nn nn nn n n n n++++++----26122221126262626 -26n-1=)(23122262626C C n n n n n ---+++ =676)(23122626C C n n n n n ---+++而)(23122626C C n n n n n ---+++ 为整数故33 n-26n-1能被676整除. 4. 求有理项或求最大项系数; 例1.求⎪⎭⎫ ⎝⎛+32110x x 展开式中项系数最大的项及展开式中的有理项. 解:()xxCx x CTrr rr rrr r 3210101010122113--+==⎪⎭⎫⎝⎛ =xC r rr 630102--(1)设第r+1项系数最大,则210rr C -≥2)1(110+-+r r C 210r rC -≥2)1(110---r r C解第一个不等式得r ≥ 解第二个不等式得r ≤ 因为r 为正整数,故r=3.∴项系数最大的项是第4项,这一项为:. (2)要使展开式为有理项,须6r 30-为整数∵0≤r ≤10 故r=0或r=6即第一项和第七项为有理项,它们分别是:T 1=x 5, T 7=32105x 4.38311x x T 4415=例2.当(1+x+Px 2)4的展开式中x 4的系数取到最小值时,求P 的值. 解:(1+x+Px 2)4=[1+(x+Px 2)4()()xP C C x P xC C xP x C Tkr k k rr kkr k rr rr r +-+===+444122令r+k=4 ∵0≤r ≤4, 0≤k ≤r则r, k 的值可能是(4,0), (3,1), (2,2)故展开式中的系数为P C C C C C C 2222413340444P ++=1+12P+6P 2当x 4的系数取到最小值时P= -1(此时最小值是-5)5. 证明有关组合数的等式:例1.求证:2132132-∙=++++n n n n n n n n C C C C证明:(方法一)∵k )!()!1(!)!(!!k n k n k n k n kC kn --=-==C k n n k n k n n 11)]!1()1[()!1()!1(--=----- (k=1, 2,n)故 左边=n C C C C n n n n n n n n 11211101-----++++ =n 21-∙n =右边(方法二)右边=n()C C Cn n n n1110--+++ =C C C n n n n n n n 111101----+++=n ∙1+n ∙ (n-1)+n ∙++∙-- 21)2)(1(n n n 123)2)(1(123)2)(1(⋅⋅--⋅⋅--∙n n n n=C C C C C nn n n n n n n n +-++++-1321)1(32 =左边(方法三)令=s n C C C C Cnn n n n n nn n +-++++-1321)1(32 ①则C C C C C s nn n n nn n n n n n n +-++++=---1321)1(32 ②两式相加①+②得2=s n C C C C n n n n n n n n n n 121]1)1[()]2(2[)]1(1[-+-++-++-++ +n C n n=2121nnn n n n n n n n n n n n C C C C C ∙=+++++- 故=snn 21-⋅n例2.求证2<⎪⎭⎫ ⎝⎛+n n11<3 n ∈N, n ≥2 证明:⎪⎭⎫ ⎝⎛+n n11=1+n C n C C n nn n n n111221+++=1+1+nCnCnn nn1122++ >2.nn n i i n n n n i n i n nnCiii n⋅⋅⋅⋅⋅+---=-=321)1()2)(1()!(!!1<i3211 ⋅⋅<22211 ⋅⋅ =211-i (i= 2n)=1+nC nC C nnnnnn111221+++ <1+1+22121121-+++n=2+1-21n<3. ∴2<⎪⎭⎫ ⎝⎛+n n11<3 例3.求证:C C C C n nn n n n 11312121+++++ =()11121-++n n .证明:右边=)1(1111111-++++++++C C C n n n n n =)(11112111CCCn n n n n ++++++++=∑∑==++--++++=+ni ni i n i n i n n n C 0011)!11()!1()!1(1111=∑∑==+=-+ni i nni Ci i n i n i 011)!(!!11=CC C C n nn n n n 11312121+++++=左边6. 有关数列的计算;例1.已知(2x+3)4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4, 求(a 0+a 2+a 4)2-(a 1+a 3)2的值. 解:令x=1得a 0+a 1+a 2+a 3+a 4=(2+3)4⎪⎭⎫ ⎝⎛+n n11令x= -1得a 0-a 1+a 2-a 3+a 4=(2-3)4∴(a 0+a 2+a 4)2-(a 1+a 3)2= (a 0+a 1+a 2+a 3+a 4) (a 0-a 1+a 2-a 3+a 4) = (2+3)4(2-3)4=1例2.若(1-3x)8= a 0+a 1x ++ a 8x 8 , 求|a 0|+|a 1|+|a 2|++ |a 8|的值 解:由已知a 1,a 3,a 5,a 7得均小于0而a 0,a 2,a 4,a 6,a 8均大于0∴|a 0|+|a 1|+|a 2|++ |a 8|=a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7+a 8故可令x=-1即得|a 0|+|a 1|+|a 2|++ |a 8|=a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7+a 8=48例3.求1-2()CC C C n nnn n n 232184-++-+ 的值解:倒用二项式定理可得: 1-2()CC C C n nnn n n 232184-++-+ =())2(22210)2(--+++-+nnn nn n C C C C=(1-2)n =(-1)n例4.已知(2x 2+4x+3)6= a 0+ a 1(x+1)2+ a 2 (x+1)4++ a 6 (x+1)12求:a 0 +a 2 +a 4 +a 6的值. 解:由已知得(2x 2+4x+3)6= [1+2(x+1)2]6=a 0+ a 1(x+1)2+ a 2 (x+1)4++ a 6 (x+1)12令x=0得a 0+ a 1+ a 2+ a 3+ a 4+ a 5+ a 6 = 36= 729 令(x+1)2= -1(事实上是令x = i-1)则得a 0- a 1+ a 2- a 3+ a 4- a 5 + a 6 =(-1)6=1 两式相加得2(a 0 +a 2 +a 4 +a 6)=730 故a 0 +a 2 +a 4 +a 6=365例5.设a n =1+q+q 2+q 3++ q n-1 (n ∈N + , q ≠±1)A n =a C a C a C n nn n n +++ 2211(1)求证:())1/(][12q q A nnn --=+(2)若b 1+b 2+b 3++ b n =A n /2n ,求证:﹛b n ﹜为等比数列 (1)证明:由已知得a i =1+q+q 2++ q i-1=qqi--11 (i=1, 2n)∴∑∑∑==-⎪⎭⎫ ⎝⎛--=--==ni iin ni ii nni iinnqC qCaC Aq q 11111111=⎥⎦⎤⎢⎣⎡--∑∑==ni iinni i nqC Cq 1111=)]1(1[112212-++++---q C q C C C nnn n n n nq q=()][1112q nnq+--(2)证明:∵b 1+b 2+b 3++ b n =A n /2n ,∴ b 1+b 2+b 3++ b n-1=A n-1/2n-1,∴b n = A n /2n -A n-1/2n-1 b n-1= A n-1/2n-1 -A n-2/2n-2故AAA A A A A A bb n n n nn n n n n n nn n n42222222112211111------------=--==()()()()][114][112][112][1112121212221111q q q q n n n n n n nnqqq q ++++--------∙---∙--∙--- =()()()()q q q q n nn nn nnn++++---+--+--12121212211422=2q 1+∵q ≠±1 故2q 1+为常数 ∴﹛b n ﹜为等比数列,公比为2q 1+.例6:求证:25010010081006100410021001-=+-+-+-C C C C C 证明:构造二项式展开式:()xC xC C x x 100100100221001100211++++=+令x=i 则x 2=i 2=-1, x 3=i 3=-i, x 4=i 4=1 于是得()C C C C C C i i i i 1001005100410031002100110010011+-++--+=+ ①令x= -i 则x 2=(-i)2=-1, x 3=(-i)3=i, x 4=(-i)4=1 于是得()C C C C C C i i i i 1001005100410031002100110010011+--++--=- ②把①+②得()()()CCCCi i 1001006100410021001001001211++-+-=+-+而()()+=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+4sin 4cos 211100100100ππi i i⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-4sin 4cos 2100ππi=2100(cos25л+ i sin25л)+2100〔cos (-25л)+ i sin(-25л)〕=250·(cos25л+cos25л) =250·(-1-1)= -2·250∴25010010081006100410021001-=+-+-+-C C C C C7.有关“杨辉三角”的研究:例1.有一个数列:1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,…… 求第100项的值.解: 设以每个1开头的一段数的个数排成的数列为{}a n ,即a 1=1a 2=2a 3=3a 4=4,则n n s n 21+=,令10021=+=n n s n ,即得n 2+n-200=0∵n=13时,有n 2+n-200=-18<0,当n=14时,有n 2+n-200=10>0 故S 13<0,而S 14>0 ∴数列1,1,2,1,2,3,1,2,3,4,1,2,3中a 14的第9项,所以第100项为9例2.如图,它满足:(1)第n 行的首尾两数均为n ; (2)表中的递推关系类似杨辉三角. 则第n 行的第2个数是多少?解:设第n 行的第2个数是a n ,则a n =(n-1)+a n-1 于是可求得例3.数列:1,2,4,3,9,27,81,4,16,64,256, 1024,4096,16374,65496,………。
二项式定理(通项公式).(优选.)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;最新文件---------------- 仅供参考--------------------已改成word 文本 --------------------- 方便更改。
二项式定理通项公式-二项定理通项公式
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k kn nn n n n a b C a C a b C a b C b --+=+++++,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项.(请同学完成下列二项展开式)0111()(1)(1)n n n k k n k kn n n n n n n a b C a C a b C a b C b ---=-++-++-,1(1)k k n k kk n T C a b -+=-01(1)n k kn nn n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++1110n n n k n n n k a x a x a x a x a ----=+++++ ②① 式中分别令x=1和x=-1,则可以得到 012n n n n n C C C +++=,即二项式系数和等于2n;偶数项二项式系数和等于奇数项二项式系数和,即021312n n n n n C C C C -++=++=② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n mn n C C -=.(2)二项式系数kn C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴ a 0+a 1+a 2+a 3……+a n =f(1)⑵ a 0-a 1+a 2-a 3……+(-1)na n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2)1()1(-+f f⑷ a 1+a 3+a 5+a 7……=2)1()1(--f f经典例题1、“n b a )(+展开式:例1.求4)13(xx +的展开式;【练习1】求4)13(xx -的展开式2.求展开式中的项例2.已知在n 的展开式中,第6项为常数项.(1) 求n ; (2)求含2x 的项的系数;(3)求展开式中所有的有理项.【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项.3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)nx -的展开式的二项式系数和大992,求21(2)nx x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()n n N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项.4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是 ;5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是 ;6、求中间项例6求(103)1xx -的展开式的中间项;例7 103)1(xx -的展开式中有理项共有 项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是 ;(2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是 ;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+, 则2312420)()(a a a a a +-++的值为 ;【练习1】若2004221020042004...)21(x x a x a a x ++++=-, 则=++++++)(...)()(200402010a a a a a a ;【练习2】设0155666...)12(a x a x a x a x ++++=-, 则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是 ;。
二项式定理公式常用结论
二项式定理公式常用结论二项式定理可是咱数学里相当重要的一块儿内容!咱先来说说二项式定理公式到底是啥。
这公式啊,简单来说就是$(a+b)^n=\sum_{r=0}^n C_n^r a^{n-r}b^r$ 。
这里面的$C_n^r$ 叫组合数,算起来就是 $C_n^r = \frac{n!}{r!(n-r)!}$ 。
那这二项式定理公式有啥常用结论呢?比如说,二项式展开式的通项公式$T_{r+1}= C_n^r a^{n-r}b^r$ ,通过这个通项,咱能方便地找到展开式里的任意一项。
再比如说,二项式系数之和为 $2^n$ 。
这个结论很有用哦!我想起之前给学生们讲这部分内容的时候,有个学生特别有意思。
当时我在黑板上写了一道题:求$(x + 2)^5$ 的展开式中$x^3$ 的系数。
我刚写完题目,就看见这个学生皱着眉头,嘴里还嘟囔着:“这可咋整啊?”我就引导他们先写出通项公式,然后再找$x^3$ 的系数。
等我讲完这道题,再问大家有没有明白,那个学生眼睛一下子亮了,大声说:“老师,我懂啦!”看着他那兴奋的样子,我心里也特别开心。
还有啊,二项式展开式中奇数项系数之和等于偶数项系数之和,都等于 $2^{n-1}$ 。
这个结论有时候能让一些复杂的计算变得简单不少。
在解题的时候,咱们得灵活运用这些结论。
比如说,让你求二项式展开式中某一项的系数,或者让你证明一些和二项式系数相关的等式,这时候这些常用结论就能派上大用场啦。
咱再来说说二项式定理在实际生活中的应用。
你别觉得这只是数学课本里的枯燥知识,其实在很多领域都能看到它的影子。
比如说在概率统计里,计算某些事件发生的概率可能就会用到二项式定理。
还有啊,在计算机算法里,二项式定理也能帮助优化一些计算过程。
就像咱们平时用手机、电脑,背后的程序运行说不定就有它的功劳呢。
总之,二项式定理公式的常用结论虽然看起来有点复杂,但只要咱们多做几道题,多琢磨琢磨,就能熟练掌握,让它成为咱们解决数学问题的有力工具。
二项式定理(通项公式) (2)
二项式定理二项式知识回顾1. 二项式定理0111()n n n k n k k n nn n n n a b C a C a b C a b C b --+=+++++L L ,以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k kk n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式)0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++-L L ,1(1)k k n k kk n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++L L ①1110n n n k n n n k a x a x a x a x a ----=+++++L L ②① 式中分别令x=1和x=-1,则可以得到012nn n n n C C C +++=L ,即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即021312n n n nn C C C C -++=++=L L ② 式中令x=1则可以得到二项展开式的各项系数和.2. 二项式系数的性质(1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=.(2)二项式系数k n C 增减性与最大值: 当12n k +<时,二项式系数是递增的;当12n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2nnC 取得最大值.当n 是奇数时,中间两项12n nC -和12n nC+相等,且同时取得最大值.3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )=a 0+a 1x +a 2x 2+a 3x 3……+a n x n⑴a 0+a 1+a 2+a 3......+a n =f(1) ⑵a 0-a 1+a 2-a 3......+(-1)n a n =f(-1) ⑶a 0+a 2+a 4+a 6 (2)1()1(-+f f ⑷a 1+a 3+a 5+a 7……=2)1()1(--f f 经典例题1、“n b a )(+展开式: 例1.求4)13(xx +的展开式; 【练习1】求4)13(xx -的展开式2.求展开式中的项 例2.已知在n 的展开式中,第6项为常数项.(1) 求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项. 【练习2】若n 展开式中前三项系数成等差数列.求:(1)展开式中含x 的一次幂的项;(2)展开式中所有x 的有理项. 3.二项展开式中的系数例3.已知22)n x 的展开式的二项式系数和比(31)n x -的展开式的二项式系数和大992,求21(2)n x x-的展开式中:(1)二项式系数最大的项;(2)系数的绝对值最大的项[练习3]已知*22)()nn N x∈的展开式中的第五项的系数与第三项的系数之比是10:1.(1)求展开式中含32x 的项;(2)求展开式中系数最大的项和二项式系数最大的项. 4、求两个二项式乘积的展开式指定幂的系数例4.72)2)(1-+x x (的展开式中,3x 项的系数是; 5、求可化为二项式的三项展开式中指定幂的系数例5(04安徽改编)3)21(-+xx 的展开式中,常数项是;6、求中间项例6求(103)1xx -的展开式的中间项;例7103)1(xx -的展开式中有理项共有项;8、求系数最大或最小项(1) 特殊的系数最大或最小问题例8(00上海)在二项式11)1(-x 的展开式中,系数最小的项的系数是; (2) 一般的系数最大或最小问题 例9求84)21(xx +展开式中系数最大的项;(3) 系数绝对值最大的项例10在(7)y x -的展开式中,系数绝对值最大项是;9、利用“赋值法”及二项式性质3求部分项系数,二项式系数和例11.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为;【练习1】若2004221020042004...)21(x x a x a a x ++++=-,则=++++++)(...)()(200402010a a a a a a;【练习2】设0155666...)12(a x a x a x a x ++++=-,则=++++6210...a a a a ;【练习3】92)21(xx -展开式中9x 的系数是;。
第三节二项式定理
第三节二项式定理[知识梳理] 1.二项式定理(1)二项式定理:(a+b)nC0n a n C1n a n-1C k n n-k k C n n b n*(2)通项公式:T k+1=C k n a n(3)(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.2.二项式系数的性质[常用结论]若二项展开式的通项为T r+1=g(r)·x h(r)(r=0,1,2,…,n),g(r)≠0,则有以下常见结论:(1)h(r)=0⇔T r+1是常数项.(2)h(r)是非负整数⇔T r+1是整式项.(3)h(r)是负整数⇔T r+1是分式项.(4)h (r )是整数⇔T r +1是有理项.[基础自测]一、走进教材1.(选修2-3P 37A 组T 5(2)改编)⎝⎛⎭⎫x +12x 8的展开式中常数项为________,是第________项.解析:二项展开式的通项为T k +1=C k 8(x )8-k⎝⎛⎭⎫12x k =⎝⎛⎭⎫12k C k 8x 4-k ,令4-k =0,解得k =4,所以T 5=⎝⎛⎭⎫124C 48=358.答案:35852.(选修2-3P 35练习T 1(2)改编)化简:C 12n +C 32n +…+C 2n -12n=________. 解析:因为C 02n +C 12n +C 22n +…+C 2n 2n =22n ,所以C 12n +C 32n +…+C 2n -12n =12(C 02n +C 12n +…+C 2n 2n )=22n -1. 答案:22n -13.(选修2-3P 41B 组T 5改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.解析:令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.答案:8 二、走出误区常见误区:①混淆“二项式系数”与“系数”致误;②配凑不当致误.4.在二项式⎝⎛⎭⎫x 2-2x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:由题意得2n =32,所以n =5.令x =1,得各项系数的和为(1-2)5=-1. 答案:-15.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________.解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项为T r +1=(-1)r 210-r ·C r 10(1-x )r,令r =8,得a 8=4C 810=180.答案:1806.(x +1)5(x -2)的展开式中x 2的系数为________.解析:(x +1)5(x -2)=x (x +1)5-2(x +1)5,展开式中含有x 2的项为-20x 2+5x 2=-15x 2,故x 2的系数为-15.答案:-15[题组练透]1.二项式⎝⎛⎭⎫x 2-2x 10的展开式中,x 项的系数是( )A.152 B .-152C .15D .-15解析:选B ⎝⎛⎭⎫x 2-2x 10的二项展开式的通项为T r +1=C r 10⎝⎛⎭⎫x 210-r ⎝⎛⎭⎫-2x r =(-1)r 22r -10C r10x 23- 5r,令5-3r 2=12,得r =3,所以x 项的系数是(-1)3·2-4·C 310=-152.故选B. 2.(2019·天津高考)⎝⎛⎭⎫2x -18x 38的展开式中的常数项为________. 解析:⎝⎛⎭⎫2x -18x 38的通项为T r +1=C r 8()2x 8-r ·⎝⎛⎭⎫-18x 3r =C r 828-r ⎝⎛⎭⎫-18r ·x 8-4r . 令8-4r =0,得r =2,∴ 常数项为T 3=C 2826⎝⎛⎭⎫-182=28. 答案:283.(2019·浙江高考)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.解析:由二项展开式的通项公式可知T r +1=C r 9·(2)9-r ·x r ,r ∈N,0≤r ≤9, 当项为常数项时,r =0,T 1=C 09·(2)9·x 0=(2)9=16 2. 当项的系数为有理数时,9-r 为偶数,可得r =1,3,5,7,9,即系数为有理数的项的个数是5. 答案:162 54.(一题多解)⎝⎛⎭⎫ax +1x 6的展开式的常数项为160,则实数a =________. 解析:法一:⎝⎛⎭⎫ax +1x 6的展开式的通项T r +1=C r 6(ax )6-r ·⎝⎛⎭⎫1x r =C r 6a 6-r x 6-2r ,令6-2r =0,得r =3,所以C 36a 6-3=160,解得a =2.法二:⎝⎛⎭⎫ax +1x 6=⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ⎝⎛⎭⎫ax +1x ,要得到常数项,则需ax 与1x 的个数相同,各为3个,所以从6个因式中选择3个ax 的系数,即C 36a 3=160,解得a =2.答案:2[解题技法]求二项展开式中的项的方法求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).[例1] (1)(2020·合肥模拟)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6的展开式中所有项系数之和为( )A .-1B .1C .32D .64(2)若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=( ) A .0 B .1 C .32D .-1(3)在(1+x )n (x ∈N *)的二项展开式中,若只有x 5的系数最大,则n =________.[解析] (1)由二项展开式的通项公式可知x 4项的系数为C 26a 4b 2,x 5项的系数为C 16a 5b ,则由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得a +b =±2,故(ax +b )6的展开式中所有项的系数之和为(a +b )6=64.(2)由(1-x )5的展开式的通项T r +1=C r 5(-x )r =C r 5(-1)r x r,可知a 1,a 3,a 5都小于0.则|a 0|-|a 1|+|a 2|-|a 3|+|a 4|-|a 5|=a 0+a 1+a 2+a 3+a 4+a 5.在原二项展开式中令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=0.(3)二项式中仅x 5的系数最大,其最大值必为C n 2n ,即得n2=5,解得n =10.[答案] (1)D (2)A (3)10[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第n +12+1项的二项式系数相等并最大.[跟踪训练]1.若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A .63x B.4xC .4x 6xD.4x或4x 6x 解析:选A 令x =1,可得⎝ ⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x .2.(2020·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A .1B .243C .121D .122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.3.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1. 答案:-3或14.已知(1+3x )n 的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n -2n +C n -1n +C n n =121,则12n ·(n -1)+n +1=121,即n 2+n -240=0,解得n =15(舍去负值),所以展开式中二项式系数最大的项为T 8=C 715(3x )7和T 9=C 815(3x )8.答案:C 715(3x )7和C 815(3x )8考向(一) 几个多项式和展开式中特定项(系数)问题[例2] 在1+(1+x )+(1+x )2+(1+x )3+(1+x )4+(1+x )5的展开式中,含x 2项的系数是( )A .10B .15C .20D .25[解析] 含x 2项的系数为C 22+C 23+C 24+C 25=20.[答案] C[解题技法]对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.考向(二) 几个多项式积展开式中特定项(系数)问题[例3] (1)(2019·全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20D .24(2)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)(1+x )4的二项展开式的通项为T k +1=C k 4x k(k =0,1,2,3,4),故(1+2x 2)(1+x )4的展开式中x 3的系数为C 34+2C 14=12.故选A.(2)(ax +1)6的展开式中x 2的系数为C 46a 2,x 的系数为C 56a ,因为(x -1)(ax +1)6的展开式中含x 2项的系数为0,所以-C 46a 2+C 56a =0,解得a =0或a =25.因为a 为正实数,所以a =25. [答案] (1)A (2)25[解题技法]对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.考向(三) 三项式展开式中特定项(系数)问题[例4] ⎝⎛⎭⎫x +1x +25的展开式中x 2的系数是________. [解析] 在⎣⎡⎦⎤⎝⎛⎭⎫x +1x +25的展开式中,含x 2的项为2C 15⎝⎛⎭⎫x +1x 4,23C 35⎝⎛⎭⎫x +1x 2,所以在这几项的展开式中x 2的系数和为2C 15C 14+23C 35C 02=40+80=120.[答案] 120[解题技法](a +b +c )n 展开式中特定项的求解方法[跟踪训练]1.在⎝⎛⎭⎫x +1x -16的展开式中,含x 5项的系数为( ) A .6 B .-6 C .24D .-24解析:选B 由⎝⎛⎭⎫x +1x -16=C 06⎝⎛⎭⎫x +1x 6-C 16⎝⎛⎭⎫x +1x 5+C 26⎝⎛⎭⎫x +1x 4-…-C 56⎝⎛⎭⎫x +1x +C 66,可知只有-C 16⎝⎛⎭⎫x +1x 5的展开式中含有x 5,所以⎝⎛⎭⎫x +1x -16的展开式中含x 5项的系数为-C 05C 16=-6,故选B.2.⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5的展开式中常数项为( ) A .-30 B .30 C .-25D .25解析:选C ⎝⎛⎭⎫x 2-3x +4x ⎝⎛⎭⎫1-1x 5=x 2⎝⎛⎭⎫1-1x 5-3x ⎝⎛⎭⎫1-1x 5+4x ⎝⎛⎭⎫1-1x 5,⎝⎛⎭⎫1-1x 5的展开式的通项T r +1=C r 5(-1)r ⎝⎛⎭⎫1x r,易知当r =4或r =2时原式有常数项,令r =4,T 5=C 45(-1)4⎝⎛⎭⎫1x 4,令r =2,T 3=C 25(-1)2·⎝⎛⎭⎫1x 2,故所求常数项为C 45-3×C 25=5-30=-25,故选C.[课时过关检测]A 级——夯基保分练1.⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A .10 B .20 C .40D .80解析:选C T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫2x r =C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40. 2.⎝⎛⎭⎫1x 2+4x 2+43展开式的常数项为( ) A .120 B .160 C .200D .240解析:选B 因为⎝⎛⎭⎫1x 2+4x 2+43=⎝⎛⎭⎫1x +2x 6,其展开式的通项为T r +1=C r 6·⎝⎛⎭⎫1x 6-r ·(2x )r =C r 62r x 2r -6,令2r -6=0,可得r =3,故展开式的常数项为C 36·23=160.3.已知(x +2)(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 0+a 2+a 4=( ) A .123 B .91 C .-120D .-152解析:选D 法一:因为(2x -1)5的展开式的通项T r +1=C r 5(2x )5-r ·(-1)r (r =0,1,2,3,4,5),所以a 0+a 2+a 4=2×C 55×20×(-1)5+[1×C 45×21×(-1)4+2×C 35×22×(-1)3]+[1×C 25×23×(-1)2+2×C 15×24×(-1)1]=-2-70-80=-152,故选D.法二:令x =1,得a 0+a 1+a 2+a 3+a 4+a 5+a 6=3 ①,令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6=-243 ②,①+②,得a 0+a 2+a 4+a 6=-120.又a 6=1×25=32,所以a 0+a 2+a 4=-152,故选D.4.在⎝⎛⎭⎫x -ax 5的展开式中,x 3的系数等于-5,则该展开式的各项的系数中最大值为( ) A .5 B .10 C .15D .20解析:选B ⎝⎛⎭⎫x -a x 5的展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫-a x r =(-a )r C r 5x 5-2r ,令5-2r =3,则r =1,所以-a ×5=-5,即a =1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为C 25=10,选B.5.若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C .1D .2解析:选D 由题意得⎝⎛⎭⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝⎛⎭⎫1x k =C k 10x 10-2k ,⎝⎛⎭⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.6.(x 2+x +y )5的展开式中,x 5y 2项的系数为( ) A .10 B .20 C .30D .60解析:选C 法一:利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2.其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2项的系数为C 25C 13=30.故选C.法二:利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.7.(多选)已知(a +b )n 的展开式中第5项的二项式系数最大,则n 的值可以为( ) A .7 B .8 C .9D .10解析:选AB ∵已知(a +b )n 的展开式中第5项的二项式系数C 4n 最大,则n =7或8.故选A 、B.8.(多选)已知(3x -1)n =a 0+a 1x +a 2x 2+…+a n x n ,设(3x -1)n 的展开式的二项式系数之和为S n ,T n =a 1+a 2+…+a n ,则( )A .a 0=1B .T n =2n -(-1)nC .n 为奇数时,S n <T n ;n 为偶数时,S n >T nD .S n =T n解析:选BC 由题意知S n =2n ,令x =0,得a 0=(-1)n ,令x =1,得a 0+a 1+a 2+…+a n =2n ,所以T n =2n -(-1)n ,故选B 、C.9.(一题两空)若⎝⎛⎭⎪⎫3x -13x 2m的展开式中二项式系数之和为128,则m =________,展开式中1x3的系数是________.解析:由题意可知2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r·⎝⎛⎭⎪⎫-13x 2r =C r 737-r(-1)r x 7-5r 3,令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21. 答案:7 2110.(2020·合肥模拟)(x -2)3(2x +1)2的展开式中x 的奇次项的系数之和为________. 解析:依题意得,(x -2)3(2x +1)2=(x 3-6x 2+12x -8)·(4x 2+4x +1)=4x 5-20x 4+25x 3+10x 2-20x -8,所以展开式中x 的奇次项的系数之和为4+25-20=9.答案:911.若⎝⎛⎭⎫x +12x n (n ≥4,n ∈N *)的二项展开式中前三项的系数依次成等差数列,则n =________.解析:⎝⎛⎭⎫x +12x n 的展开式的通项T r +1=C r n x n -r ⎝⎛⎭⎫12x r =C r n 2-r x n -2r ,则前三项的系数分别为1,n 2,n (n -1)8,由其依次成等差数列,得n =1+n (n -1)8,解得n =8或n =1(舍去),故n =8.答案:812.已知(a 2+1)n 展开式中的二项式系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的二项式系数最大的项等于54,则正数a 的值为________.解析:⎝⎛⎭⎫165x 2+1x 5展开式的通项为T r +1=C r 5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =C r 5⎝⎛⎭⎫1655-r x 20-5r 2. 令20-5r =0,得r =4, 故常数项T 5=C 45×165=16, 又(a 2+1)n 展开式中的二项式系数之和为2n ,由题意得2n =16,∴n =4.∴(a 2+1)4展开式中二项式系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3. 答案:3B 级——提能综合练13.设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A .0B .1C .11D .12解析:选D 由于51=52-1,512 018=(52-1)2 018=C 02 018522 018-C 12 018522 017+…-C 2 0172 018521+1,又13整除52, 所以只需13整除1+a ,又0≤a <13,a ∈Z ,所以a =12.14.若⎝⎛⎭⎫x +a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中的常数项为( ) A .10B .20C .30D .40解析:选D 令x =1,得(1+a )(2-1)5=1+a =2,所以a =1.因此⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5的展开式中的常数项为⎝⎛⎭⎫2x -1x 5的展开式中x 的系数与1x的系数的和.⎝⎛⎭⎫2x -1x 5的展开式的通项T r +1=C r 5(2x )5-r ⎝⎛⎭⎫-1x r =C r 525-r x 5-2r ·(-1)r . 令5-2r =1,得r =2,因此⎝⎛⎭⎫2x -1x 5的展开式中x 的系数为C 2525-2×(-1)2=80; 令5-2r =-1,得r =3,因此⎝⎛⎭⎫2x -1x 5的展开式中1x的系数为C 3525-3×(-1)3=-40,所以⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5的展开式中的常数项为80-40=40. 15.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.16.(一题两空)在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则n =________,展开式中常数项的值为________.解析:在二项式⎝⎛⎭⎫x +3x n 的展开式中,令x =1得各项系数之和为4n ,即A =4n ,二项展开式中的二项式系数之和为2n ,即B =2n .∵A +B =72,∴4n +2n =72,解得n =3,∴⎝⎛⎭⎫x +3x n =⎝⎛⎭⎫x +3x 3的展开式的通项为T r +1=C r 3(x )3-r ⎝⎛⎭⎫3x r =3r C r 3x 3-3r 2,令3-3r 2=0,得r =1,故展开式中的常数项为T 2=3×C 13=9.答案:3 9。
二项式定理考点与题型归纳
二项式定理考点与题型归纳一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)❶;(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n❷.2.二项式系数的性质(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量[例1] (1)(2018·全国卷Ⅲ)⎝⎛⎭⎫x 2+2x 5的展开式中x 4的系数为( ) A.10 B.20 C.40D.80(2)(2019·合肥调研)若(2x -a )5的二项展开式中x 3的系数为720,则a =________. (3)(2019·甘肃检测)已知⎝⎛⎭⎫x -a x 5的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =________.[解析] (1)⎝⎛⎭⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40.(2)(2x -a )5的展开式的通项公式为T r +1=(-1)r ·C r 5·(2x )5-r ·a r =(-1)r ·C r 5·25-r ·a r ·x 5-r ,令5-r =3,解得r =2,由(-1)2·C 25·25-2·a 2=720,解得a =±3. (3)⎝⎛⎭⎫x -a x 5的展开式的通项公式为T r +1=C r 5x 5-r ·⎝⎛⎭⎫-a x r =C r 5(-a )r x 5-32r .由5-32r =5,得r =0,由5-32r =2,得r =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.[答案] (1)C (2)±3 (3)±1 [解题技法]求形如(a +b )n (n ∈N *)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r +1=C r n an -r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r ;第三步,把r 代入通项公式中,即可求出T r +1,有时还需要先求n ,再求r ,才能求出T r +1或者其他量.考法(二) 求解形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量 [例2] (1)(1-x )6(1+x )4的展开式中x 的系数是( ) A.-4 B.-3 C.3D.4(2)(2019·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.[解析] (1)法一:(1-x )6的展开式的通项为C m 6·(-x )m =C m 6(-1)m x m 2,(1+x )4的展开式的通项为C n 4·(x )n =C n 4x n 2,其中m =0,1,2,…,6,n =0,1,2,3,4. 令m 2+n2=1,得m +n =2, 于是(1-x )6(1+x )4的展开式中x 的系数等于C 06 ·(-1)0·C 24+C 16 ·(-1)1·C 14+C 26·(-1)2·C 04=-3.法二:(1-x )6(1+x )4=[(1-x )(1+x )]4(1-x )2=(1-x )4(1-2x +x ).于是(1-x )6(1+x )4的展开式中x 的系数为C 04·1+C 14·(-1)1·1=-3.(2)(ax +1)6的展开式中含x 2项的系数为C 46a 2,含x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. [答案] (1)B (2)25[解题技法]求形如(a +b )m (c +d )n (m ,n ∈N *)的展开式中与特定项相关的量的步骤 第一步,根据二项式定理把(a +b )m 与(c +d )n 分别展开,并写出其通项公式; 第二步,根据特定项的次数,分析特定项可由(a +b )m 与(c +d )n 的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量. 考法(三) 求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量 [例3] (1)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A.10 B.20 C.30D.60(2)将⎝⎛⎭⎫x +4x -43展开后,常数项是________. [解析] (1)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30.(2)⎝⎛⎭⎫x +4x -43=⎝⎛⎭⎫x -2x 6展开式的通项是C k 6(x )6-k ·⎝⎛⎭⎫-2x k =(-2)k ·C k 6x 3-k .令3-k =0,得k =3.所以常数项是C 36(-2)3=-160.[解析] (1)C (2)-160 [解题技法]求形如(a +b +c )n (n ∈N *)的展开式中与特定项相关的量的步骤 第一步,把三项的和a +b +c 看成是(a +b )与c 两项的和; 第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r相乘得到的;第四步,把相乘后的项合并即可得到所求特定项或相关量.[题组训练]1.(2018·洛阳第一次统考)若a =∫π0 sin x d x ,则二项式⎝⎛⎭⎫a x -1x 6的展开式中的常数项为( )A.-15B.15C.-240D.240解析:选D 由a =∫π0 sin x d x =(-cos x )|π0=(-cos π)-(-cos 0)=1-(-1)=2,得⎝⎛⎭⎫2x -1x 6的展开式的通项公式为T r +1=C r 6(2x )6-r ⎝⎛⎭⎫-1x r =(-1)r C r 6·26-r ·x 3-32r ,令3-32r =0,得r =2,故常数项为C 26·24=240.2.(2019·福州四校联考)在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)解析:二项展开式中,含x 5的项是C 562x 5-x 3C 2624x 2=-228x 5,所以x 5的系数是-228.答案:-2283.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________.解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,得r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322.答案:6322考点二 二项式系数的性质及各项系数和[典例精析](1)若⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A.63x B.4x C.4x 6xD.4x或4x 6x (2)若⎝⎛⎭⎫x 2-1x n 的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解析] (1)令x =1,可得⎝ ⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x .(2)⎝⎛⎭⎫x 2-1x n 的展开式的通项公式为T r +1=C r n (x 2)n -r ·⎝⎛⎭⎫-1x r =C r n (-1)r x 2n -3r , 因为含x 的项为第6项,所以r =5,2n -3r =1,解得n =8, 在(1-3x )n 中,令x =1,得a 0+a 1+…+a 8=(1-3)8=28, 又a 0=1,所以a 1+…+a 8=28-1=255.(3)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5,② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂项的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3.[答案] (1)A (2)255 (3)3[解题技法]1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如:(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可.(2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.[题组训练]1.(2019·包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A.1B.243C.121D.122解析:选B 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.2.若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.解析:令x =0,则(2+m )9=a 0+a 1+a 2+…+a 9, 令x =-2,则m 9=a 0-a 1+a 2-a 3+…-a 9, 又(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 9)(a 0-a 1+a 2-a 3+…+a 8-a 9)=39, ∴(2+m )9·m 9=39,∴m (2+m )=3, ∴m =-3或m =1.答案:-3或13.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为________.解析:由已知得C n-2n +C n-1n+C n n=121,则12n·(n-1)+n+1=121,即n2+n-240=0,解得n=15(舍去负值),所以展开式中二项式系数最大的项为T8=C715(3x)7和T9=C815(3x)8.答案:C715(3x)7和C815(3x)8考点三二项展开式的应用[典例精析]设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解析]由于51=52-1,512 018=(52-1)2 018=C02 018522 018-C12 018522 017+…-C2 0172 018521+1,又13整除52,所以只需13整除1+a,又0≤a<13,a∈Z,所以a=12.[答案]D[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.[题组训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4解析:选C ∵81x 4+108x 3+54x 2+12x +1=(3x +1)4,∴上式能被5整除的最小自然数为3.2.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数为________. 解析:∵1-90C 110+902C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910, ∴8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数为1. 答案:1[课时跟踪检测]A 级1.(2019·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( )A.-32B.32C.6D.-6解析:选D 通项T r +1=C r 3⎝⎛⎭⎫2x 23-r·(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-90121解析:选C 由二项式定理,得a 1=-C 1524=-80,a 2=C 2523=80,a 3=-C 3522=-40,a 4=C 452=10,所以a 2+a 4a 1+a 3=-34. 3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A.560 B.-560 C.280D.-280解析:选A 取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7 ·(x 2)7-r ·⎝⎛⎭⎫-2x r =C r 7 ·(-2)r ·x 14-3r .令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560.4.(2018·山西八校第一次联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A.29B.210C.211D.212解析:选A 由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.5.二项式⎝⎛⎭⎫1x -2x 29的展开式中,除常数项外,各项系数的和为( ) A.-671 B.671 C.672D.673解析:选B 令x =1,可得该二项式各项系数之和为-1.因为该二项展开式的通项公式为T r +1=C r 9⎝⎛⎭⎫1x 9-r ·(-2x 2)r =C r 9(-2)r ·x 3r -9,令3r -9=0,得r =3,所以该二项展开式中的常数项为C 39(-2)3=-672,所以除常数项外,各项系数的和为-1-(-672)=671.6.(2018·石家庄二模)在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A.-5 B.-15 C.-25D.25解析:选B 由题意含x 4项的系数为-2C 35+C 45=-15.7.(2018·枣庄二模)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B.12 C.1D.2解析:选D ⎝⎛⎭⎫x +1x 10的展开式的通项公式为T r +1=C r 10·x 10-r ·⎝⎛⎭⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310.令10-2r =6,解得r =2,所以x 6项的系数为C 210.所以(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为C 310-a C 210=30,解得a =2. 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3B.-3C.1D.1或-3解析:选D 令x =0,得a 0=(1+0)6=1.令x =1,得(1+m )6=a 0+a 1+a 2+…+a 6.∵a 1+a 2+a 3+…+a 6=63,∴(1+m )6=64=26,∴m =1或m =-3.9.(2019·唐山模拟)(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)解析:(2x -1)6的展开式中,二项式系数最大的项是第四项,系数是C 3623(-1)3=-160.答案:-16010.(2019·贵阳模拟)⎝⎛⎭⎫x +ax 9的展开式中x 3的系数为-84,则展开式的各项系数之和为________.解析:二项展开式的通项T r +1=C r 9x 9-r ⎝⎛⎭⎫a x r =a r C r 9x 9-2r ,令9-2r =3,得r =3,所以a 3C 39=-84,解得a =-1,所以二项式为⎝⎛⎭⎫x -1x 9,令x =1,则(1-1)9=0,所以展开式的各项系数之和为0.答案:011.⎝⎛⎭⎫x +1x +15展开式中的常数项为________. 解析:⎝⎛⎭⎫x +1x +15展开式的通项公式为T r +1=C r 5·⎝⎛⎭⎫x +1x 5-r .令r =5,得常数项为C 55=1,令r =3,得常数项为C 35·2=20,令r =1,得常数项为C 15·C 24=30,所以展开式中的常数项为1+20+30=51.答案:5112.已知⎝⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项; (3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n , 由已知得2×12C 1n =C 0n +14C 2n ,解得n =8(n =1舍去). (2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4(r =0,1,…,8),要求有理项,则4-3r 4必为整数,即r =0,4,8,共3项,这3项分别是T 1=x 4,T 5=358x ,T 9=1256x 2. (3)设第r +1项的系数a r +1最大,则a r +1=2-r C r 8,则a r +1a r =2-r C r 82-(r -1)C r -18=9-r 2r≥1, a r +1a r +2=2-r C r 82-(r +1)C r +18=2(r +1)8-r ≥1, 解得2≤r ≤3.当r =2时,a 3=2-2C 28=7,当r =3时,a 4=2-3C 38=7,因此,第3项和第4项的系数最大,B 级1.在二项式⎝⎛⎭⎫x -1x n 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A.35B.-35C.-56D.56解析:选C 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x 8-2r ,令8-2r =2,得r =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.2.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C n n 的值等于( )A.64B.32C.63D.31解析:选C 因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63.3.(2019·济南模拟)⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中含x 4项的系数为________.解析:令x =1,可得⎝⎛⎭⎫x -a x ⎝⎛⎭⎫2x -1x 5的展开式中各项系数的和为1-a =2,得a =-1,则⎝⎛⎭⎫x +1x ⎝⎛⎭⎫2x -1x 5展开式中含x 4项的系数即是⎝⎛⎭⎫2x -1x 5展开式中的含x 3项与含x 5项系数的和.又⎝⎛⎭⎫2x -1x 5展开式的通项为T r +1=C r 5(-1)r ·25-r ·x 5-2r ,令5-2r =3,得r =1,令5-2r =5,得r =0,将r =1与r =0分别代入通项,可得含x 3项与含x 5项的系数分别为-80与32,故原展开式中含x 4项的系数为-80+32=-48.答案:-484.设复数x =2i 1-i(i 是虚数单位),则C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=( ) A.iB.-iC.-1+iD.-i -1解析:选D 因为x =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,所以C 12 019x +C 22 019x 2+C 32 019x 3+…+C 2 0192 019x 2 019=(1+x )2 019-1=(1-1+i)2 019-1=i 2 019-1=-i -1. 5.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A.39B.310C.311D.312解析:选D 对(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312.6.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6展开式中的常数项为________. 解析:a =⎠⎛01 2x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r =(-1)r C r 6x 12-3r ,令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15. 答案:15。
二项式定理--通项公式
练习3.知四有一:
(6)课本P:31 例2
(7)(2009年全国Ⅰ) (x y)10的展开式中,x7 y3 的系数
与 x3 y7 的系数之和等于_________
析:
因
Tr 1
(1)r
C
r 10
x 10r
y
r
故有 C130 (C170 ) 2C130 240
特殊幂
① a0
1②
an
1 an
⑦ an bn (当n 2,3时,背诵之)
⑧
(a b)n
当 当nn
42时,3时, 二,项背式诵定之理
⑨ (a b)n an bn
m
⑥ a n n am
同底幂
⑩
( a )n b
an bn
异底幂
§248 二项式定理——通项公式
Tr1 Cnr anrbr
注2. 常用的排列数: An0 1 An1 n Ann n!
注3.常用的组合数: Cn0 1 Cn1 n Cnn 1
两理两数四原则 十大题型递推法
排列与组合的关联:
① 排列有序,组合无序,可用特值法来验证有无顺序
② 先组后排:排列可以看作是先取组合,再做全排列
Anm Cnm m!
两理两数四原则 十大题型递推法
(1)条型域:
如图,1 2 3 … n ,用k种颜色染n块区域,相邻
区域不能同色, 则共有 tn k(k 1)n1 种染法
注1:染色基础是条型 方法多多随爱好 从头到尾逐个染 乘法原理显神功
注2:隐含了颜色有剩余
2.环型域: ①无心环型域: 如图,用k种不同的颜色,涂圆中n块区域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3:计算0.99710 的近似值。精确到0.001
解:0.99710 1 0.00310
c100 110 c110 19 0.003 c120 18 0.003 2
根据精确度的要求,从第三项起的各项都可以省去,所以
0.997 10 110 0.003 45 1 0.000009
a b0 1
a b1 1 1
a b2 1 2 1 a b3 1 3 3 1 a b4 1 4 6 4 1 a b5 1 5 10 10 5 1 a b6 1 6 15 20 15 6 1
表中每行两端都是1,而且除1以外的每 一个数都等于它肩上两数的和.
通项公式的应用:Tk+1=Cnkan-kbk
3
(2) 求展开式中含x2 的项。
(3) 求展开式中系数最大的项和系数
最小的项。
例 的系5. 数已与知第( 三x -项x的22 )系n (数n∈的N比)的为展10开:1。式(中1)第求五展项开
3
式各项系数的和;(2) 求展开式中含 x 2的项。 (3) 求展开式中系数最大的项和系数最小的项。
分析:要灵活、正确的应用二项展开 式的 通项公式。 (1) 先根据通项公式得到第五项与第 三项 的系数,再由已知条件求出n的 值。由“赋值法”求各项系数的和。
通项公式:TK+1=Cnkan-kbk
2.二项展开式的特点 (1) 项数: 展开式有共n+1项 (2) 系数 : 都是组合数,
依次为Cn0,Cn1,Cn2,Cn3,…Cnn (3) 指数的特点 :
1) a的指数 由n 0 (降幂) 2) b的指数由0 n (升幂) 3) a和b的指数和为n
3.二项式定理的几个变式:
8
通项公式:
Tk 1 C8k
1 2k
163k
x4
k=0,1,2…,8
TK+1为有理项,16-3k是4的倍数,∴k=0,4,8, 有理项有三项,依次为:T1=x4,T5=35x/8,T9=1/256x2
例5. 已知(
x
-
2 x2
)
n
(n∈N)的展开式
中第五项的系数与第三项的系数的
比为10:1。
(1) 求展开式各项系数的和;
一.利用二项式定理和展开式的通项公式可以求某些 特殊项,如含某个幂的项、常数项、有理项、最大项 等问题。在这里要分清
①二项展开式中的各项的“二项式系数”与“系数” 的区别,这是两个不同的概念,“二项式系数”仅指 Cn0、Cn1、…Cnr…Cnn这些组合数而言,不包括字母a、 b所表示式子中的系数。
②通项Cnkan-kbk是展开式中的第k+1项,而不是第k项。
例 的系5. 数已与知第( 三x -项x的22 )系n (数n∈的N比)的为展10开:1。式(中1)第求五展项开 式各项系数的和
解:∵( x -x22 )n展开式中的通项为 Tk+1=Cnk( x )n-k(-x22 )k=(-2)kCnk( x )n-5k
∴T5=T4+1=24Cn4x
n 2
-10
二项式定理的复习
1.二项展开式:
a bn
cn0an c1nan1b cnranrbr
cnnbn
这个公式叫做二项式定理,等号后面的 式子叫做(a+b)n的二项展开式,其中 Cnk(k=0,1,2,…,n)叫做二项式系数。
二项展开式中的第k+1项为Cnkan-kbk
叫做二项展开式的通项,
a b n cn0a
(a-b)n
an Cn1an1b Cn2a b n1 2 ... (1)n Cnk ankbk ... (1)n bn
(1+x)n
=1+Cn1x+Cn2x2+…+Cnkxk+…+Cnnxn
4. 扬辉三角:
例1:求(1-2x)7的展开式中 , 第四项的二 项式系数和第四项的系数。
解: 在(1-2x)7的展开式中 , 第四项为 T4=C73(-2x)3=-280x3,
第四项的二项式系数是C73=35; 第四项的系数是C73(-2)3=-280 .
注意某项的二项式系数和项的系数的区别。
例2:求
x
1 x
成等差数列,求展开式中的所有有理项。
解:二项展开式的通项公式是:
Tk 1 Cnk (
x )nk ( 1 )k 24 x
Cnk
1 2k
2 n 3k
x4
前三项的r=0,1,2,
得系数为:t1=1, t2=
1 2
Cn1
1n 2
,t3=
1 4
Cn2
1 n(n 1) 8
由已知得:t1+t3=2t2,
1+ 1 n(n 1) n, 得n=8.
1 0.030 0.970
则0.997 10 0.970 .
n
例4:在二项式
x
1 24 x
的展开中式,
前三项系数成等差数列,求展开式中所 有的有理项。
分析:本例是典型的特定项的问题, 涉及到前三项和有理项,可以用通 项公式来解决。
n
例4:在二项式
x
2
1
4
x
的展开中式,前三项系数
例 的系5. 数已与知第( 三x -项x的22 )系n (数n∈的N比)的为展10开:1。式(中1)第求五展项开
3
式各项系数的和;(2) 求展开式中含 x 2的项。 (3) 求展开式中系数最大的项和系数最小的项。
3
(2) 根据通项公式先出求含x2 的项是展开 式中的第几项,然后把它代入通项公式。
(3) 这个二项展开式在奇数项系数是正的, 偶数项系是负的,所以只须考虑系数的绝 对值最大。
9
的展开式中x3的系数。
解:展开式的通项是
Tr1
C9r x9r
1 x
r
1
r
.
C9r x92r
根据题意,得 9 – 2r = 3 r = 3
因此,x3的系数是13 C93 84
注意:展开式中第 r + 1 项的二项式 系数 与第 r + 1项的系数不同。
在实际应用过程中,a bn这个公式很有作用,我们
T3=T2+1=22Cn2x
n 2
-5
∴第五项的系数与第三项的系数分别为
24Cn4、22Cn2;
例 的系5. 数已与知第( 三x -项x的22 )系n (数n∈的N比)的为展10开:1。式(中1)第求五展项开 式各项系数的和
由题意得:24Cn4∶22Cn2=10∶1
∴n2-5n-24=0;
解得 n=8 或 n=-3 (舍)。