高三数学一轮复习资料
_第一章 集合 — 高三数学一轮复习备考
第一章 第一节 集合1.集合与元素(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,用符号∈或∈表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合的基本关系⎪⎩⎪⎨⎧⊂⊄⊆=⊆⊆⊆≠),,(),,()()1(B A A B B A B A A B B A B A 则若真包含则若相等包含其中,若B A ⊆,则称A 是B 的子集,若B A ≠⊂,则称A 是B 的真子集.(2)空集:不含任何元素的集合叫做空集,记为φ.规定:空集是任何集合的子集、空集是任何非空集合的真子集.(3)集合中元素个数与子集个数的关系:若有限集合A 中有n 个元素,则集合A 的子集个数为2n ,真子集个数为2n -1,非空真子集个数为2n -2. 3.集合的基本运算(1)并集的常考性质A ⊆A ∪B,B ⊆A ∪B. A ⊆B ⇔A ∪B=B. A ∪B=∅⇔A=B=∅. (2)交集的常考性质A ∩B ⊆A,A ∩B ⊆B. A ⊆B ⇔A ∩B=A. A ∩B=A ∪B ⇔A=B. (3)补集的常考性质A ∪(∁U A)=U A ∩(∁U A)=∅ ∁U (∁U A)=A ∁U (A ∩B)=(∁U A)∪(∁U B) ∁U (A ∪B)=(∁U A)∩(∁U B).考点1 集合的含义与表示1.已知集合A ={0,1,2},则集合B =中元素的个数是( ) A .1 B .3C .5D .92.若集合A ={−1,1},B ={0,2},则集合{z|z =x +y,x ∈A,y ∈B}中的元素的个数为( ) A .5 B .4 C .3 D .23.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x −y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .104.已知集合A ={(x,y)|x,y ∈N ∗,y ≥x},B ={(x,y)|x +y =8},则A ∩B 中元素的个数为( ) A .2 B .3C .4D .65.已知集合A ={(x,y)│x 2+y 2=1},B ={(x,y)│y =x},则A ∩B 中元素的个数为( ) A .3B .2C .1D .06.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4{}|,x y x A y A -∈∈7.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为( )A.4 B.3 C.2 D.18.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a= .9.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或410.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是( )A.{-1}B.{1}C.{-1,1}D.{-1,0,1}11.已知M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-112.设集合A={x|(x-a)2<1},且2∈A,3∉A,则实数a的取值范围为________.考点2 集合间关系1.若P={x|x<1},Q={x|x>−1},则( )A.P⊆Q B.Q⊆P C.C R P⊆Q D.Q⊆C R P2.已知集合A={x|x2-2x>0},B={x||x−2|≤5},则( )A、A∩B=B、A∪B=RC、B⊆AD、A⊆B3.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是( ) A.(−∞,−1] B.[1,+∞) C.[−1,1] D.(−∞,−1] ∪[1,+∞)4.已知集合M={0,1,2,3,4},N={1,3,4,5},P=M∩N,则P的真子集共有( ) (A)2个(B)4个(C)6个(D)7个5.已知集合A={x|x2−3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2 C.3 D.46.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A .∅B .SC .TD .Z7.已知集合∪B=A,则m= .8.若集合A={1,a,b},B={a,a 2,ab},且A ∪B=A ∩B,则实数a 的取值集合是 .9.已知a ∈R,b ∈R,若{ a,ln(b+1),1}={a 2,a+b,0},则a2018+b2018=________.考点3 集合间的基本运算1.已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A){1,4} (B){2,3} (C){9,16}(D){1,2}2.已知集合A ={x |x =3n +2,n ∈N},B ={6,8,10,12,14},则集合A ∩B 中的元素个数为( )(A) 5 (B)4 (C)3 (D)23.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则C U A ∩B =( ) A. {}1- B. {}0,1 C. {}1,2,3- D. {}1,0,1,3-4.已知全集U =R,A ={x|x ≤0},B ={x|x ≥1},则集合C U (A ∪B)=( ) A .{x|x ≥0} B .{x|x ≤1} C .{x|0≤x ≤1} D .{x|0<x <1}5.已知集合P ={x |x 2−2x ≥0},Q ={x |1<x ≤2},则(∁R P)∩Q =( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]6.设集合{}1,1,2,3,5A =-,{}2,3,4B = ,C ={x ∈R|1⩽x <3} ,则()A C B =( )A. {2}B. {2,3}C. {-1,2,3}D. {1,2,3,4}7.已知集合均为全集的子集,且C U (AUB )={4},,则A ∩C U B =( )A.{3} B .{4} C .{3,4}D .8.若全集U ={1,2,3,4,5,6},M ={2,3},N ={1,4},则集合{5,6}等于( ) A .M ∪N B .M ∩N C .(C n M )∪(C n N ) D .(C n M )∩(C n N )9.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩C I M =∅,则M ∪N =( )A .MB .NC .ID .∅10.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .411.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}12.设集合A ={x ∈Z||x+1|≤3},B ={x|32x ≤1},则A ∩B =( ) A .{﹣4,﹣3,﹣2,0,2} B .{2} C .{﹣4,﹣3,﹣2,﹣1,2} D .{1,2}13.已知集合104x A xx ⎧⎫-=<⎨⎬-⎩⎭,{}2230B x x x =--≥,则A B 等于( )A .(-1,1]B .(](),11,-∞-+∞C .[3,4)D .(][),13,-∞-+∞14.已知集合02xA x x ⎧⎫=≤⎨⎬+⎩⎭,集合{}0B x x =>,则A B =( )A .{}2x x ≥-B .{}2x x >-C .{}0x x ≥D .{}0x x >B A 、}4,3,2,1{=U {1,2}B =∅15.已知全集为,集合,,则( )A .B .{x|2≤x ≤4}C .D .16.设集合 则=( )A .B .C .D .17.设全集U=R,集合A={x|2x-x 2>0},B={y|y=e x +1},则A ∪B 等于( ) A.{x|x<2} B.{x|1<x<2} C.{x|x>1} D.{x|x>0}18.设集合A ={x||x −1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)19.设集合M ={x|x 2=x},N ={x|lg x ≤0},则M ∪N =( )A .[0,1]B .(0,1]C .[0,1)D .(−∞,1]20.已知全集为R,集合A={x|lgx ≤1},B={x|x 2-6x+8≤0},则A ∩(∁R B)= .21.已知U={y|y=log 2x,x>1}, P={y|y =1x ,x >2},则∁U P= ( )11A.[) B.(0,)221C.(0,)D. (,0][,)2+∞ +∞ -∞⋃+∞,22.已知集合A ={x |0<log 4x <1},B ={x |e x -2≤1},则A ∪B =( ) A .(﹣∞,4) B .(1,4)C .(1,2)D .(1,2]R 112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或2{|2,},{|10},x A y y x B x x ==∈=-<R A B (1,1)-(0,1)(1,)-+∞(0,)+∞。
高三数学一轮复习知识点详细
高三数学一轮复习知识点详细高三是整个中学生活的关键时期,对于将要面临高考的学生们来说,备考是最重要的任务之一。
而高考数学作为一门重要的科目,需要一轮复习提高自己的数学水平和应试能力。
本文将详细介绍高三数学一轮复习的知识点。
一、代数与函数在代数与函数中,我们需要重点复习的知识点有:1. 分式方程:包括分式的乘除与分式的方程与不等式;2. 二次函数:掌握二次函数的定义、性质以及相关的图像变换;3. 复杂函数的运算:包括函数的合并、分解、复合与反函数;4. 分式与整式的混合运算:理解分式与整式的加减及乘法与整式的除法运算;5. 二元一次方程组:熟悉二元一次方程组的解法;6. 等差数列与等比数列:掌握等差数列与等比数列的性质,并进行相关题目的解答;7. 幂指函数:理解幂函数与指数函数的图像变换与性质。
二、空间与几何在空间与几何中,我们需要重点复习的知识点有:1. 空间向量:包括向量的定义、加法、数量积与向量的共线与垂直关系;2. 圆锥曲线:掌握圆、椭圆、抛物线和双曲线的定义、相关性质与图像变换;3. 球与球面上的直线与平面:认识球与球面上直线与平面的性质、夹角、交点等;4. 空间几何体的体积与表面积:熟悉各种几何体的体积与表面积计算;5. 空间几何体的相交关系:包括平行与垂直关系、位似关系等。
三、数与统计在数与统计中,我们需要重点复习的知识点有:1. 随机事件与概率:理解随机事件的定义与基本性质,掌握概率的计算方法与相关公式;2. 二项式定理:掌握二项式展开的方法与应用;3. 组合数学与排列组合:了解排列组合计算的基本方法与公式,掌握应用技巧;4. 数据的整理与分析:学会收集数据、整理数据、制作统计图与分析统计结果。
四、解析几何在解析几何中,我们需要重点复习的知识点有:1. 平面直角坐标系与向量:理解平面直角坐标系的性质,掌握向量的加法、减法、数量积与向量的共线关系;2. 平面图形的方程:熟悉直线、圆、抛物线、双曲线及椭圆图形的方程;3. 几何变换:掌握平移、旋转、对称与放缩等几何变换的基本概念与性质。
数学高三一轮复习用书全套(1000页)
课堂过关第一章 集合与常用逻辑用语第1课时 集合的概念(对应学生用书(文)、(理)1~2页)了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;了解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义.① 学会区分集合与元素,集合与集合之间的关系. ② 学会自然语言、图形语言、集合语言之间的互化. ③ 集合含义中掌握集合的三要素.④ 不要求证明集合相等关系和包含关系.1. (必修1P 7第1题改编)集合{x ∈N |x<5}可以用列举法表示为________. 答案:{0,1,2,3,4}解析:∵ x<5且x ∈N ,∴ x =0,1,2,3,4,特别注意0∈N .2. (必修1P 7第4题改编)已知集合A ={(x ,y)|-1≤x ≤1,0≤y<2,x 、y ∈Z },用列举法可以表示集合A 为________.答案:{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}解析:用集合A 表示不等式组⎩⎪⎨⎪⎧-1≤x ≤1,x ∈Z ,0≤y<2,y ∈Z 确定的平面区域上的格点集合,所以用列举法表示集合A 为{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}.3. (必修1P 17第6题改编)已知集合A =[1,4),B =(-∞,a),A ⊆ B ,则a ∈________. 答案:[4,+∞)解析:在数轴上画出A 、B 集合,根据图象可知.4. (必修1P 7第4题改编)由x 2,x 组成一个集合A ,A 中含有2个元素,则实数x 的取值不可以是________.答案:0和1解析:由x 2=x 可解得.5. (必修1P 17第8题改编)已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A ,y ∈A ,x -y ∈A},则B 中所含元素的个数为________个.答案:10解析:x =5,y =1,2,3,4,x =4,y =1,2,3,x =3,y =1,2,x =2,y =1,共10个.1. 集合的含义及其表示(1) 集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2) 集合中元素的特征:确定性、互异性、无序性.(3) 集合的常用表示方法:列举法、描述法、V enn 图法.(4) 集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5) 常用数集及其记法:自然数集记作N ;正整数集记作N 或N +;整数集记作Z ;有理数集记作Q ;实数集记作R ;复数集记作C .2. 两类关系(1) 元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系. (2) 集合与集合之间的关系① 包含关系:如果集合A 中的每一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆ B 或B ⊇ A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”.② 真包含关系:如果A ⊆B ,并且A ≠B ,那么集合A 称为集合B 的真子集,读作“集合A 真包含于集合B ”或“集合B 真包含集合A ”.③ 相等关系:如果两个集合所含的元素完全相同,即A 中的元素都是B 中的元素且B 中的元素都是A 中的元素,则称这两个集合相等.(3) 含有n 个元素的集合的子集共有2n 个,真子集共有2n -1个,非空子集共有2n -1个,非空真子集有2n -2个.题型1 集合的基本概念例1 已知集合A ={x|ax 2-3x +2=0,a ∈R }. (1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来; (3) 若A 中至多有一个元素,求a 的取值范围.解: (1) 若A 是空集,则Δ=9-8a <0,解得a >98.(2) 若A 中只有一个元素,则Δ=9-8a =0或a =0,解得a =98或a =0;当a =98时,这个元素是43;当a =0时,这个元素是23.(3) 由(1)(2)知,当A 中至多有一个元素时,a 的取值范围是a ≥98或a =0.变式训练下列三个集合:① {x|y =x 2+1};② {y|y =x 2+1};③ {(x ,y)|y =x 2+1}. (1) 它们是不是相同的集合? (2) 它们的各自含义是什么? 解:(1) 它们是不相同的集合.(2) 集合①是函数y =x 2+1的自变量x 所允许的值组成的集合.因为x 可以取任意实数,所以{x|y =x 2+1}=R .集合②是函数y =x 2+1的所有函数值y 组成的集合.由二次函数图象知y ≥1,所以{y|y =x 2+1}={y|y ≥1}.集合③是函数y =x 2+1图象上所有点的坐标组成的集合.备选变式(教师专享)已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值.解:∵ -3∈A ,∴ -3=a -3或-3=2a -1.若-3=a -3,则a =0.此时集合A 含有两个元素-3,-1,符合题意;若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.题型2 集合间的基本关系例2 若集合A ={x|-2≤x ≤5},B ={x|m +1≤x ≤2m -1},且B ⊆ A ,求由m 的可取值组成的集合.解:当m +1>2m -1,即m<2时,B =∅,满足B ⊆A ;若B ≠∅ ,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,∴ 2≤m ≤3.故m<2或2≤m ≤3,即所求集合为{m|m ≤3}. 变式训练已知集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1,集合B ={a 2,a +b ,0},若A =B ,求a 2 014+b 2 015的值.解:由于a ≠0,由ba=0,得b =0,则A ={a ,0,1},B ={a 2,a ,0}.由A =B ,可得a 2=1.又a 2≠a ,则a ≠1,则a =-1.所以a 2 014+b 2 015=1.备选变式(教师专享)若集合P ={x|x 2+x -6=0},S ={x|ax +1=0},且S ⊆P ,求由a 的可取值组成的集合. 解:P ={-3,2}.当a =0时,S =∅,满足S ⊆P ;当a ≠0时,方程ax +1=0的解为x =-1a ,为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求a 的取值的集合为⎩⎨⎧⎭⎬⎫0,13,-12.题型3 根据集合的关系求参数的取值范围例3 (2015·南通期末)已知集合A ={x|0<ax +1≤5},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x ≤2.若B ⊆A ,求实数a 的取值范围.解:当a =0时,显然B ⊆A ;当a<0时,若B ⊆A ,如图,则⎩⎨⎧4a ≤-12,-1a>2,∴ ⎩⎪⎨⎪⎧a ≥-8,a>-12, ∴ -12<a<0;当a>0时,如图,若B ⊆A ,则⎩⎨⎧-1a ≤-12,4a≥2,∴ ⎩⎪⎨⎪⎧a ≤2,a ≤2,∴ 0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.备选变式(教师专享)已知A ={-1,1},B ={x|x 2-ax +b =0}.若B ⊆A ,求实数a ,b 的值. 解:∵ B ⊆A ={-1,1},∴ B =∅或B ={-1}或B ={1}或B ={-1,1}. 若B =∅,则方程x 2-ax +b =0无实数根, 即Δ=(-a)2-4×1×b<0,此时a 2<4b.若B ={-1},则方程x 2-ax +b =0有且只有一个实数根-1,即Δ=(-a)2-4b =0,且(-1)2-a ×(-1)+b =0,此时a =-2,b =1.若B ={1}时,则方程x 2-ax +b =0有且只有一个实数根1, 即Δ=(-a)2-4b =0,且12-a ×1+b =0,若B ={-1,1},则方程x 2-ax +b =0有两个不相等的实数根-1,1,即(-1)2-a ×(-1)+b =0,12-a ×1+b =0,此时a =0,b =-1.综上所述,当a 2<4b 时,不论a ,b 取何值,A ⊆B ; 当⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =0,b =-1时,B ⊆A. 1. (2015·南京、盐城一模)设集合M ={2,0,x},集合N ={0,1},若N ⊆M ,则实数x 的值为________.答案:1解析:由N ⊆M 知1∈M ,则x =1. 2. (2015·南师附中模拟)若A ={a},B ={0,a 2},A ⊆B ,则A =________. 答案:{1}解析:若a =0,则a 2=0,B 中元素不满足互异性;若a =a 2,则a =0(舍)或a =1(满足互异性).3. 若x ∈A ,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.4. 已知集合M ⊆{2,3,5},且M 中至少有一个奇数,则这样的集合共有________个. 答案:6解析:当M 中奇数只有3时:{3},{2,3};当M 中奇数只有5时:{5},{2,5};当M 中奇数有3,5时:{3,5},{2,3,5},∴ 共有6个这样的集合.5. (2015·昌平期中)若a ,b ∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,求b -a 的值.解: 由{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b 可知a ≠0,则只能a +b =0,则有以下对应法则:⎩⎪⎨⎪⎧a +b =0,ba =a ,b =1① 或⎩⎪⎨⎪⎧a +b =0,b =a ,b a =1.②由①得⎩⎪⎨⎪⎧a =-1,b =1,符合题意;②无解.∴ b -a =2.1. (2015·浙江)已知集合A{x|x 2-x -2<0},B ={x|-1<x<1},则A 与B 的关系是________. 答案:B A解析:A ={x|-1<x<2},∴ B 真属于A. 2. (2015·佛山期中)若集合A ={-1,1},B ={0,2},则集合{z ︱z =x +y ,x ∈A ,y ∈B}中的元素的个数为________.答案: 3解析:容易看出x +y 只能取-1、1、3这三个数值.故共有3个元素.3. 已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ax -1x -a <0,且2∈A ,3∉ A ,则实数a 的取值范围是________.答案:⎣⎡⎭⎫13,12∪(2,3]解析:因为2∈A ,所以2a -12-a<0,即(2a -1)(a -2)>0,解得a >2或a <12.①若3∈A ,则3a -13-a<0,即(3a -1)(a -3)>0,解得a >3或a <13,所以3∉A 时,13≤a ≤3.②由①②可知,实数a 的取值范围为⎣⎡⎭⎫13,12∪(2,3].4. 若集合A 中有且仅有三个数1、0、a ,若a 2∈A ,求a 的值. 解:若a 2=0,则a =0,不符合集合中元素的互异性,∴ a 2≠0. 若a 2=1,则a =±1,∵ 由元素的互异性知a ≠1,∴ a =-1时适合.若a 2=a ,则a =0或1,由上面讨论知均不符合集合中元素互异性的要求. 综上可知a =-1.1. 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y =f(x)}、{y|y =f(x)}、{(x ,y)|y =f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2. 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A ⊆B ,则需考虑A =∅ 和A ≠∅两种可能的情况.3. 判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4. 已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、V enn 图帮助分析.请使用课时训练(A )第1课时(见活页).第2课时集合的基本运算(对应学生用书(文)、(理)3~4页)理解两个集合的交集与并集的含义;会求两个简单集合的交集与并集,理解给定集合的一个子集的补集的含义;会求给定子集的补集,会用韦恩图表示集合的关系及运算.①在给定集合中会求一个子集的补集,补集的含义在数学中就是对立面.②会求两个简单集合的交集与并集;交集的关键词是“且”,并集的关键词是“或”.③会使用韦恩图(Venn)表达集合的关系及运算;对于数集有时也可以用数轴表示.1. (必修1P13第3题改编)已知集合A={x|-2<x<2},B={x|x≤1},则A∩B=________.答案:(-2,1]解析:本题考查集合概念及基本运算.2. (必修1P13习题2题改编)已知集合A={x|x2-16=0},B={x|x2-x-12=0},则A∪B =________.答案:{-4,-3,4}解析:∵ A={-4,4},B={-3,4},∴A∪B={-4,-3,4}.3. (必修1P14习题10改编)已知全集U=R,集合A={1,2,3,4,5},B=[3,+∞),则图中阴影部分所表示的集合为________.答案:{1,2}解析:由题意,阴影部分表示A∩(∁U B).因为∁U B={x|x<3},所以A∩(∁U B)={1,2}.4. (必修1P13习题2题改编)设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(∁I B)=________.答案:{0,1,2}解析:I={-2,-1,0,1,2},∁I B={0,1},∴A∪(∁I B)={0,1,2}.5. (必修1P10习题4题改编)设集合A、B都是全集U={1,2,3,4}的子集,已知(∁U A)∩(∁U B)={2},(∁U A)∩B={1},A∩B= ,则A=________.答案:{3,4}解析:画出韦恩图,知A={3,4}.1. 集合的运算(1) 交集:由属于A且属于B的所有元素组成的集合,叫做集合A与B的交集,记作A∩B,即A∩B={x|x∈A且x∈B}.(2) 并集:由属于A或属于B的所有元素组成的集合,叫做集合A与B的并集,记作A∪B,即A∪B={x|x∈A或x∈B}.作一个全集,通常用U 来表示.一切所研究的集合都是这个集合的子集.(4) 补集:集合A 是集合S 的一个子集,由S 中所有不属于A 的元素组成的集合叫做A 的补集(或余集),记作∁S A ,即∁S A ={x|x ∈S ,但x ∉ A}.2. 常用运算性质及一些重要结论(1) A ∩A =A ,A ∩∅ =∅,A ∩B =B ∩A ; (2) A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A ; (3) A ∩(∁U A)=∅,A ∪(∁U A)=U ;(4) A ∩B =A ⇔ A ⊆B ,A ∪B =A ⇔B ⊆A ;(5) ∁U (A ∩B)=(∁U A)∪(∁U B),∁U (A ∪B)=(∁U A)∩(∁U B). [备课札记]题型1 集合的运算 例1 全集U ={1,2,3,4,5},A ={x|x 2-5x +m =0},B ={x|x 2+nx +12=0},且(∁U A)∪B ={1,3,4,5},则m +n 的值为________.答案:-1解析:∵ U ={1,2,3,4,5},(∁U A)∪B ={1,3,4,5},∴ 2∈A.又A ={x|x 2-5x +m =0},∴ 2是关于x 的方程x 2-5x +m =0的一个根,得m =6且A ={2,3},∴ ∁U A ={1,4,5}.而(∁U A)∪B ={1,3,4,5},∴ 3∈B.又B ={x|x 2+nx +12=0},∴ 3一定是方程x 2+nx +12=0的一个根,∴ n =-7且B ={3,4},∴ m +n =-1.变式训练设集合A ={x 2,2x -1,-4},B ={x -5,1-x ,9},若A ∩B ={9},求A ∪B. 解:由9∈A ,可得x 2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-8,-7,-4,4,9};当x =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9}与A ∩B ={9}矛盾,故舍去.综上所述,A ∪B ={-8,-7,-4,4,9}.题型2 根据集合的运算求参数的取值范围例2 设A ={x|a ≤x ≤a +3},B ={x|x<-1或x>5},当a 为何值时, (1) A ∩B ≠∅ ; (2) A ∩B =A ; (3) A ∪(∁R B)=∁R B.解:(1) A ∩B ≠∅,∵ 集合A 的区间长度为3, ∴ 由图可得a<-1或a +3>5,解得a<-1或a>2, ∴ 当a<-1或a>2时,A ∩B ≠∅.(2) ∵ A ∩B =A ,∴ A ⊆ B.由图得a +3<-1或a>5,即a<-4或a>5时,A ∩B =A.(3) 由补集的定义知∁R B ={x|-1≤x ≤5}, ∵ A ∪(∁R B)=∁R B ,∴ A ⊆∁R B.由图得⎩⎪⎨⎪⎧a ≥-1,a +3≤5,解得-1≤a ≤2.变式训练已知A ={x|ax -1>0},B ={x|x 2-3x +2>0}. (1) 若A ∩B =A ,求实数a 的取值范围; (2) 若A ∩∁R B ≠∅,求实数a 的取值范围.解:(1) 由于A ∩B =A 得A ⊆B ,由题意知B ={x|x>2或x<1}.若a>0,则x>1a≥2,得0<a ≤12;若a =0,则A =∅,成立;若a <0,则x <1a <1,根据数轴可知均成立.综上所述,a ≤12.(2) ∁R B ={x|1≤x ≤2},若a =0,则A =∅,不成立;若a <0,则x <1a<1,不成立;若a >0,则x >1a ,由1a <2得a >12.综上所述,a >12.备选变式(教师专享)已知集合A ={x|x 2-3x +2=0},B ={x|0≤ax +1≤3}.若A ∪B =B ,求实数a 的取值组成的集合.解:∵ A ∪B =B ,∴ A ∅B ,∴ ⎩⎪⎨⎪⎧0≤a +1≤3,0≤2a +1≤3,∴ ⎩⎪⎨⎪⎧-1≤a ≤2,-12≤a ≤1.∴ -12≤a ≤1.∴ 实数a 的取值组成的集合为⎣⎡⎦⎤-12,1. 题型3 集合的综合应用例3 设U =R ,集合A ={x|x 2+3x +2=0},B ={x|x 2+(m +1)x +m =0},若(∁U A)∩B =,求m 的值.解:A ={-2,-1},由(∁U A)∩B =∅,得B ⊆A , 当m =1时,B ={-1},符合B ⊆A ; 当m ≠1时,B ={-1,-m},而B ⊆A , ∴ -m =-2,即m =2. ∴ m =1或2.备选变式(教师专享)50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数有___________人.答案:25解析:全班分4类人:设两项测验成绩都及格的人数为x 人;仅跳远及格的人数为40-x 人;仅铅球及格的人数为31-x 人;两项测验成绩都不及格的人数为4人 .∴ 40-x +31-x +x +4=50,∴ x =25.题型4 集合运算有关的新定义问题例4 定义集合A 、B 的运算A*B ={x|x ∈A ,或x ∈B ,但x A ∩B},设A ={1,2,3,4},B ={1,2,5,6,7},则(A*B)*A =________.答案:{1,2,5,6,7}解析:A *B ={3,4,5,6,7},∴ (A *B)A ={1,2,5,6,7}. 备选变式(教师专享)(必修1P 14习题13改编)对任意两个集合M 、N ,定义:M -N ={x|x ∈M 且x ∉ N},M*N =(M -N)∪(N -M),设M ={y|y =x 2,x ∈R },N ={y|y =3sinx ,x ∈R },则M*N =________.答案:{y|y>3或-3≤y<0}解析:∵ M ={y|y =x 2,x ∈R }={y|y ≥0},N ={y|y =3sinx ,x ∈R }={y|-3≤y ≤3},∴M -N ={y|y>3},N -M ={y|-3≤y<0},∴ M*N =(M -N)∪(N -M)={y|y>3}∪{y|-3≤y<0}={y|y>3或-3≤y<0}.1. (2015·安徽)已知集合A ={0,2,4,6},∁U A ={-1,1,-3,3},∁U B ={-1,0,2},则集合B =________.答案:{1,4,6,-3,3}解析:∵ ∁U A ={-1,1,-3,3},∴ U ={-1,1,0,2,4,6,-3,3}.又∁U B ={-1,0,2},∴ B ={1,4,6,-3,3}.2. (2015·泰州调研)设全集U =R ,集合A ={x|x<-1或2≤x<3},B ={x|-2≤x<4},则(∁U A)∪B =________.答案:{x|x ≥-2}解析:由图1数轴得∁U A ={x|-1≤x<2或x ≥3},再由图2数轴得(∁U A)∪B ={x|x ≥-2}.图1图23. (2015·射阳中学期末)已知函数f(x)=x +1,g(x)=x 2,集合D =[-1,a](a>-1),集合A ={y|y =f(x),x ∈D}与集合B ={y|y =g(x),x ∈D}相等,则实数a 的值等于________.答案:0或1+52解析:一次函数f(x)=x +1,x ∈[-1,a](a>-1)是单调递增函数,∴ A =[0,a +1].而B 集合是指定了定义域的二次函数的值域,分如下三类情况讨论:① 若a ∈(-1,0),则g(x)单调递减,B =[a 2,1],不可能与集合A 相等;② 若a ∈[0,1],则B =[0,1],要与A 相等,须a +1=1,∴ a =0;③ 若a ∈(1,+∞),则B =[0,a 2],要与A 相等,须a +1=a 2,∴ a=1±52,但1-52<1,舍去.综上得a =0或1+52.4. (2015·淮阴中学期末)已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m =________. 答案:0或3 解析:因为A ∪B =A ,所以B A ,所以m =3或m =m.若m =3,则A ={1,3,3},B ={1,3},满足A ∪B =A.若m =m ,解得m =0或m =1.若m =0,则A ={1,3,0},B ={1,0},满足A ∪B =A.若m =1,A ={1,3,1},B ={1,1},显然不成立.综上m =0或m =3.5. (2015·宿迁中学期中)设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a +1)x +(a 2-5)=0}. (1) 若A ∩B ={2},则实数a 的值为________;(2) 若A ∪B =A ,则实数a 的取值范围为________. 答案:(1)-1或-3 (2)a ≤-3解析:(1) ∵ A ={1,2},A ∩B ={2},∴ 2∈B ,代入B 中的方程,得a 2+4a +3=0a =-1或a =-3.当a =-1时,B ={x|x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x|x 2-4x +4=0}={2},满足条件.综上,a 的值为-1或-3.(2) 对于集合B ,Δ=4(a +1)2-4(a 2-5)=4(2a +6), ∵ A ∪B =A ,∴ B ⊆A.① 当Δ<0,即a<-3时,B =∅ ,满足条件; ② 当Δ=0,即a =-3时,B ={2},满足条件; ② 当Δ>0,即a>-3时,B =A ={1,2}.由韦达定理得⎩⎪⎨⎪⎧1+2=-2(a +1),1×2=a 2-5⇒ ⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤- 3.1. 已知A 、B 均为集合U ={1,2,3,4,5,6}的子集,且A ∩B ={3},(∁U B)∩A ={1},(∁U A)∩(∁U B)={2,4},则B ∩(∁U A)=________.答案:{5,6}解析:依题意及韦恩图可得,B ∩(∁U A)={5,6}.2. (2015·山东)已知集合A ={x||x -1|<2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -b x +2<0.若A ∩B ≠∅ ,则实数b 的取值范围是________.答案:(-1,+∞)解析:A ={x|-1<x<3},B ={x|(x -b)(x +2)<0}.因为A ∩B ≠∅,所以b>-1. 3. (2015·无锡期中)已知A ={x||x -a|<4},B ={x||x -2|>3}. (1) 若a =1,求A ∩B ;(2) 若A ∪B =R ,求实数a 的取值范围.解:(1) 当a =1时,A ={x|-3<x<5},B ={x|x<-1或x>5}. ∴ A ∩B ={x|-3<x<-1}.(2) ∵ A ={x|a -4<x<a +4},B ={x|x<-1或x>5},且A ∪B =R , ∴ ⎩⎪⎨⎪⎧a -4<-1,a +4>51<a<3. ∴ 实数a 的取值范围是(1,3).4. 某校高一年级举行语、数、英三科竞赛,高一(2)班共有32名同学参加三科竞赛,有16人参加语文竞赛,有10人参加数学竞费,有16人参加英语竞赛,同时参加语文和数学竞赛的有3人,同时参加语文和英语竞赛的有3人,没有人同时参加全部三科竞赛,问:同时参加数学和英语竞赛的有多少人?只参加语文一科竞赛的有多少人?解:设所有参加语文竞赛的同学组成的集合用A 表示,所有参加数学竞赛的同学组成的集合用B 表示,所有参加英语竞赛的同学组成的集合用C 表示,设只参加语文竞赛的有x 人,只参加数学竞赛的有y 人,只参加英语竞赛的有z 人,同时参加数学和英语竞赛的有m 人.根据题意,可作出如图所示Venn 图,则有⎩⎪⎨⎪⎧x +3+3+y +m +z =32,x +3+3=16,y +m +3=10,z +m +3=16,解得x =10,y =3,z =9,m =4.答:同时参加数学和英语竞赛的有4人,只参加语文一科竞赛的有10人.1. 集合的运算结果仍然是集合.进行集合运算时应当注意:(1) 勿忘对空集情形的讨论;(2) 勿忘集合中元素的互异性;(3) 对于集合A的补集运算,勿忘A必须是全集的子集;(4) 已知两集合间的关系求参数或参数范围问题时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、Venn 图化抽象为直观.还要注意“回代检验”,从而对所求数值进行合理取舍.2. 在集合运算过程中应力求做到“三化”(1) 意义化:首先明确集合的元素的意义,它是怎样的类型的对象(数集、点集,图形等)?是表示函数的定义域、值域,还是表示方程或不等式的解集?(2) 具体化:具体求出相关集合中函数的定义域、值域或方程、不等式的解集等;不能具体求出的,也应力求将相关集合转化为最简形式.(3) 直观化:借助数轴、直角坐标平面、韦恩图等将有关集合直观地表示出来,从而借助数形结合思想解决问题.请使用课时训练(B)第2课时(见活页).[备课札记]第3课时简单的逻辑联结词、全称量词与存在量词(对应学生用书(文)、(理)5~6页)了解命题的逆命题、否命题与逆否命题的意义;理解必要条件、充分条件、充要条件的意义;了解逻辑联结词“或”“且”“非”的含义;了解全称量词与存在量词的意义;了解含有一个量词的命题的否定的意义.①会分析四种命题的相互关系.②会判断必要条件、充分条件与充要条件.③能用“或”“且”“非”表述相关的数学内容(真值表不做要求).④能用全称量词与存在量词叙述简单的数学内容.⑤能正确地对含有一个量词的命题进行否定.1. (课本习题改编)命题“若x=3,y=5,则x+y=8”的逆命题是________.答案:若x+y=8,则x=3,y=5解析:将原命题的条件和结论互换,可得逆命题.2. (课本习题改编)命题“当AB=AC时,△ABC为等腰三角形”以及它的逆命题、否命题、逆否命题中,真命题的个数是________.答案:2解析:当AB=AC时,△ABC为等腰三角形为真,故逆否命题为真,逆命题:△ABC 为等腰三角形,则AB=AC为假,故否命题为假.3. (课本习题改编)已知a,b,c,d为实数,且c>d,则“a>b”是“a-c>b-d”的________条件.答案:必要而不充分解析:由a-c>b-d变形为a-b>c-d,因为c>d,所以c-d>0,所以a-b>0,即a>b,所以a-c>b-d a>b.而a>b并不能推出a-c>b-d,所以a>b是a-c>b-d的必要而不充分条件.4. (课本习题改编)若命题p:2是偶数;命题q:2是3的约数,则下列结论中正确的是________.(填序号)①“p∨q”为假;②“p∨q”为真;③“p∧q”为真.答案:②解析:命题p为真命题,命题q为假命题,故“p∨q”为真命题.5. (课本习题改编)命题p:∀x>1,log2x>0,则⌝p是________.答案:x>1,log2x≤0解析:全称命题的否定是存在性命题.1. 四种命题及其关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 充分条件与必要条件(1) 如果p⇒q,那么称p是q的充分条件,q是p的必要条件.(2) 如果p⇒q,且q⇒p,那么称p是q的充要条件,记作p⇒q.(3) 如果p⇒q,q⇒/p,那么称p是q的充分不必要条件.(4) 如果q⇒p,p⇒/q,那么称p是q的必要不充分条件.(5) 如果p⇒/ q,且q⇒/ p,那么称p是q的既不充分也不必要条件.3. 简单的逻辑联结词(1) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3) 一个命题p的否定记作⌝p,读作“非p”或“p的否定”.(4) 命题p∧q,p∨q,⌝p的真假判断p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.4. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“x”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“x”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.5. 含有一个量词的命题的否定命题命题的否定x∈M,p(x) ∃x∈M,⌝p(x)∃x∈M,p(x) ∀x∈M,⌝p(x)题型1四种命题及其相互关系例1写出下列命题的逆命题、否命题、逆否命题,并分别判断其真假.(1) 如果两圆外切,那么两圆的圆心距等于两圆半径之和;(2) 奇数不能被2整除.解:(1) 逆命题:如果两圆的圆心距等于两圆半径之和,那么两圆外切,真;否命题:如果两圆不外切,那么两圆心距不等于两圆半径之和,真;逆否命题:如果两圆心距不等于两圆半径之和,那么两圆不外切,真.(2) 逆命题:不能被2整除的数是奇数,假;否命题:不是奇数的数能被2整除,假;逆否命题:能被2整除的数不是奇数,真.变式训练判断命题“已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则判断a≥1”的逆否命题的真假.解:原命题:已知a,x为实数,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1.逆否命题:已知a,x为实数,如果a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.判断如下:抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7.∵a<1,∴4a-7<0,即抛物线y=x2+(2a+1)x+a2+2与x轴无交点,∴关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集,故逆否命题为真.备选变式(教师专享)设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明它们的真假.解:逆命题:已知a、b为实数,若a、b都是无理数,则a+b是无理数.如a=2,b=-2,a+b=0为有理数,故为假命题.否命题:已知a、b是实数,若a+b不是无理数,则a、b不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a、b是实数,若a、b不都是无理数,则a+b不是无理数.如a=2,b=2,则a+b=2+2是无理数,故逆否命题为假.题型2充分条件和必要条件例2 证明:“方程ax2+bx+c=0有一根为1”的充要条件是“a+b+c=0”.证明:充分性:∵a+b+c=0,∴c=-a-b,∴ax2+bx+c=ax2+bx-a-b=0,∴a(x-1)(x+1)+b(x-1)=0,∴(x-1)[a(x+1)+b]=0,∴x=1或a(x+1)+b=0,∴x=1是方程ax2+bx+c=0的一个根.必要性:∵x=1是方程ax2+bx+c=0的一个根,∴a+b+c=0.综上,命题得证.备选变式1(教师专享)不等式x 2-2mx -1>0对一切1≤x ≤3都成立,求m 的取值范围. 解:令f(x)=x 2-2mx -1.要使x 2-2mx -1>0对一切1≤x ≤3都成立,只需f(x)=x 2-2mx -1在[1,3]上的最小值大于0即可. 当m ≤1时,f(x)在[1,3]上是增函数, f(x)min =f(1)=-2m>0,解得m<0, 又m ≤1,∴ m<0;当m ≥3时,f(x)在[1,3]上是减函数,f(x)min =f(3)=8-6m>0,解得m<43,又m ≥3,∴ 此时不成立; 当1<m<3时,f(x)min =f(m)=-m 2-1=-(m 2+1)>0不成立. 综上所述,m 的取值范围为m<0. 备选变式2(教师专享)下列各题中,p 是q 的什么条件? (1) p :x =1;q :x -1=x -1.(2) p :-1≤x ≤5;q :x ≥-1且x ≤5.(3) p :三角形是等边三角形;q :三角形是等腰三角形. 解:(1) 充分不必要条件.当x =1时,x -1=x -1成立; 当x -1=x -1时,x =1或x =2.(2) 充要条件.-1≤x ≤5x ≥-1且x ≤5.(3) 充分不必要条件.等边三角形一定是等腰三角形,而等腰三角形不一定都是等边三角形.题型3 逻辑联结词例3 命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,q :函数f(x)=(3-2a)x 是增函数,若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.解:设g(x)=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴ 函数g(x)的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴ -2<a<2.∵ 函数f(x)=(3-2a)x 是增函数, ∴ 3-2a>1, ∴ a<1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧-2<a<2,a ≥1,∴ 1≤a<2;若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a<1,∴ a ≤-2.综上可知,所求实数a 的取值范围为1≤a<2,或a ≤-2. 备选变式1(教师专享)已知p :⎝⎛⎭⎫x -432≤4,q :x 2-2x +1-m 2≤0(m>0),若“⌝ p ⇒ ⌝q ”为假命题,“⌝q ⇒⌝p ”为真命题,求m 的取值范围.解:设p ,q 分别对应集合P ,Q ,则P ={x|-2≤x ≤10},Q ={x|1-m ≤x ≤1+m}, 由⌝q ⇒⌝p 为真,⌝p ⇒⌝q 为假,得P ⊆ Q ,∴ ⎩⎪⎨⎪⎧1-m ≤-2,1+m>10,m>0或⎩⎪⎨⎪⎧1-m<-2,1+m ≥10,m>0,解得m ≥9. 备选变式2(教师专享)已知命题p :|x 2-x|≥6,q :x ∈Z ,若“p ∧q ”与“⌝q ”都是假命题,求x 的值. 解:非q 假.∴ q 真. 又p 且q 假,∴ p 假.∴ ⎩⎪⎨⎪⎧|x 2-x|<6,x ∈Z ,即⎩⎪⎨⎪⎧-6<x 2-x<6,x ∈Z , ∴ ⎩⎪⎨⎪⎧-2<x<3,x ∈Z , ∴ x =-1、0、1、2.题型4 全称命题与存在命题例4 已知命题p :“x ∈R ,m ∈R 使4x -2x +1+m =0”,若命题⌝p 是假命题,则实数m 的取值范围为________.答案:m ≤1解析:命题⌝p 是假命题,即命题p 是真命题,也就是关于x 的方程4x -2x +1+m =0有实数解,即m =-(4x -2x +1),令f(x)=-(4x -2x +1),由于f(x)=-(2x -1)2+1,所以当x ∈R 时f(x)≤1,因此实数m 的取值范围是m ≤1.备选变式1(教师专享) 写出下列命题的否定.(1) 所有自然数的平方是正数;(2) 任何实数x 都是方程5x -12=0的根; (3) 对任意实数x ,存在实数y ,使x +y>0; (4) 有些质数是奇数.解:(1) 有些自然数的平方不是正数. (2) 存在实数x 不是方程5x -12=0的根. (3) 存在实数x ,对所有实数y ,有x +y ≤0. (4) 所有的质数都不是奇数. 备选变式2(教师专享)若命题“∃ x ∈R ,有x 2-mx -m<0”是假命题,则实数m 的取值范围是________. 答案:-4≤m ≤0解析:“∃x ∈R ,有x 2-mx -m<0”是假命题,则“∀ x ∈R 有x 2-mx -m ≥0”是真命题,即Δ=m 2+4m ≤0,∴ -4≤m ≤0.1. (2015·徐州期中)命题“若a +b ≥2,则a 、b 中至少有一个不小于1”及其逆否命题的真假情况是________.答案:真解析:因为原命题“若a +b ≥2,则a 、b 中至少有一个不小于1”的逆否命题为“若a 、b 都小于1,则a +b<2”,显然为真,所以原命题为真.2. (2015·盐城三模)若函数f(x)=2x -(k 2-3)·2-x ,则k =2是函数f(x)为奇函数的________(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)条件.答案:充分不必要解析:由k =2,得f(x)=2x -2-x ,f(-x)=-f(x),则f(x)为奇函数;反之,f(x)为奇函数,f(-x)=-f(x),得k 2=4,则k =±2,而不是k =2.故k =2是函数f(x)为奇函数的充分不必要条件.3. (2015·南京三模)记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a)的定义域为集合B.若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________.答案:(-∞,-3]解析:由A =(-3,2),B =(a ,+∞),AB ,则a ∈(-∞,-3].4. (2015·芜湖调研)命题p :ax +b>0的解集为x>-ba;命题q :(x -a)(x -b)<0的解为a<x<b.则p ∧q 是________(填“真”或“假”)命题.答案:假解析:命题p 与q 都是假命题.5. (2015·山东)若“∀x ∈⎣⎡⎦⎤0,π4,tanx ≤m ”是真命题,则实数m 的最小值为________.答案:1解析:若“∀x ∈⎣⎡⎦⎤0,π4,tanx ≤m ”是真命题,则m 大于或等于函数y =tanx 在⎣⎡⎦⎤0,π4的最大值.因为函数y =tanx 在⎣⎡⎦⎤0,π4上为增函数,所以函数y =tanx 在⎣⎡⎦⎤0,π4上的最大值为1,所以m ≥1,即实数m 的最小值为1.1. (2015·南通二调)命题“x ∈R ,2x >0”的否定是“________”.答案: ∀x ∈R ,2x ≤0解析:含有量词的命题否定要将存在换成任意,p 改成非p. 2. (2015·象山中学调研)“b =c =0”是“二次函数y =ax 2+bx +c 的图象经过原点”的________条件.答案:充分不必要解析:若b =c =0,则二次函数y =ax 2+bx +c =ax 2经过原点;若二次函数y =ax 2+bx +c 过原点,则c =0.3. 已知命题p :x 2-5x +6≥0;命题q :0<x<4.若p 是真命题,q 是假命题,求实数x 的取值范围.解:由x 2-5x +6≥0得x ≥3或x ≤2. ∵ 命题q 为假, ∴ x ≤0或x ≥4.则{x|x ≥3或x ≤2}∩{x|x ≤0或x ≥4}={x|x ≤0或x ≥4}. ∴ 满足条件的实数x 的范围为(-∞,0]∪[4,+∞). 4. (2015·无锡期中)已知命题“非空集合M 的元素都是集合P 的元素”是假命题,那么下列说法:① M 的元素都不是P 的元素; ② M 中有不属于P 的元素; ③ M 中有P 的元素;④ M 中元素不都是P 的元素. 其中正确的个数为________个. 答案:2解析:结合韦恩图可知②④正确.1. 在判断四个命题间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性与等价性,判断四种命题真假的关键是熟悉四种命题的概念与互为逆否命题是等价的,即“原命题与逆否命题同真同假,逆命题与否命题同真同假”,而互逆命题、互否命题是不等价的,当一个命题直接判断不易进行时,通常可转化为判断其等价命题的真假;而判断一个命题为假命题只需举出反例即可.2. 充要条件的三种判断方法(1) 定义法:根据p⇒q,q⇒p进行判断;(2) 集合法:根据p、q成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.3. 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1) 把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2) 要注意区间端点值的检验.4. 含有逻辑联结词的命题真假的判断规律(1) p∨q:p、q中有一个为真,则p∨q为真,即有真为真;(2) p∧q:p、q中有一个为假,则p∧q为假,即有假即假;(3) 綈p:与p的真假相反,即一真一假,真假相反.5. 要写一个命题的否定,需先分清其是全称命题还是存在性命题,对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判断存在性命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立.请使用课时训练(A)第3课时(见活页).[备课札记]。
高三数学第一轮基础知识复习资料
高三数学一轮基础知识复习第一部分 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。
4.φ是任何集合的子集,是任何非空集合的真子集。
第二部分 函数与导数12⑤换元法 法3(1① 若f(x)解出 ② 若 (2); ③根据“45⑵)(x f 是奇函数f(-x)=-f(x);是偶函数f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ;⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x <;②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有12()()f x f x >;⑵单调性的判定定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分)③复合函数法;④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性(1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。
如没有特别说明,遇到的周期都指最小正周期。
高中数学高考高三理科一轮复习资料第1章 1.8 对数与对数函数
性 质
4.反函数 28__________互为反函数,它 指数函数 y=ax 与对数函数○ 29__________对称. 们的图象关于直线○
答案: ①ax=N(a>0 且 a≠1) ②x=logaN ③a ④N ⑤ logaN ⑥ 10 ⑦ lgN ⑧ e ⑨ lnN ⑩ N ⑪ N ⑫ logbN = logaN logab ⑬logad ⑭logaM+logaN ⑮logaM-logaN ⑯nlogaM 210 ○ 22y>0 ○ 23y<0 ○ 24y ⑰(0, +∞) ⑱R ⑲(1,0) ⑳1 ○ 25y>0 ○ 26增函数 ○ 27减函数 ○ 28y=logax ○ 29y=x <0 ○
续表 a>1 0<a<1 (1)定义域:⑰__________ (2)值域:⑱__________ 21____ (3)过点⑲____,即 x=⑳____时,y=○ 24 (4)当 x>1 时,○ 22______ (4)当 x>1 时,○ ______ 23______ 25 当 0<x<1 时,○ 当 0<x<1 时,○ ______ (5)是(0,+∞)上的 26____ (5)是(0,+∞)上的○ 27____ ○
考点自测 1.设 a=log54,b=(log53)2,c=log45,则( A.a<c<b B.b<c<a C.a<b<c D.b<a<c
)
ቤተ መጻሕፍቲ ባይዱ
解析:∵log 1 b<log 1 a>log 1 C,∴b>a>c, ∴2b>2a>2c.故应选 A. 答案:A
2 2 2
1 2.函数 f(x)= 的定义域为( 2 log2-x +4x-3 A.(1,2)∪(2,3) B.(-∞,1)∪(3,+∞) C.(1,3) D.[1,3]
高三数学第一轮复习知识点
高三数学第一轮复习知识点高三数学第一轮复习知识点第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何解析几何是比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,这一类题有以下五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的.内容。
考生应该掌握它的通法,第二类是动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时计算量十分大。
第七:压轴题考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
考试最后如果考题实在想不出头绪,可以将相关公式写在试卷上,这是一个得分点。
最后,祝你考得好成绩。
高三数学第一轮复习 高三数学第一轮复习(9篇)
高三数学第一轮复习高三数学第一轮复习(9篇)复习应结合自己的实际,基本知识是学习的基础,复习阶段就不能只满足会背诵会证明,复习过程中特别注意对重点知识的掌握与解题方法的锻炼。
那么怎么规划好复习计划呢?以下是编辑给大家整编的9篇高三数学一轮复习,欢迎阅读,希望对大家有所帮助。
高三数学一轮复习计划篇一一。
背景分析近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。
数学试卷充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注意考查进入高校继续学习的潜能。
在前二年命题工作的基础上做到了总体保持稳定,深化能力立意,积极改革创新,兼顾了数学基础、思想方法、思维、应用和潜能等多方面的考查,融入课程改革的理念,拓宽题材,选材多样化,宽角度、多视点地考查数学素养,多层次地考查思想能力,充分体现出湖南卷的特色:1 试题题型平稳突出对主干知识的考查重视对新增内容的考查2 充分考虑文、理科考生的思维水平与不同的学习要求,体现出良好的层次性3 重视对数学思想方法的考查4 深化能力立意,考查考生的学习潜能5 重视基础,以教材为本6 重视应用题设计,考查考生数学应用意识二、教学计划与要求新课已授完,高三将进入全面复习阶段,全年复习分两轮进行。
一轮为系统复习(一学期),此轮要求突出知识结构,扎实打好基础知识,全面落实考点,要做到每个知识点,方法点,能力点无一遗漏。
在此基础上,注意各部分知识点在各自发展过程中的纵向联系,以及各个部分之间的横向联系,理清脉络,抓住知识主干,构建知识网络。
在教学中重点抓好各中通性、通法以及常规方法的复习,是学生形成一些较基本的数学意识,掌握一些较基本的数学方法。
同时有意识进行一定的综合训练,先小综合再大综合,逐步提高学生解题能力。
高三数学第一轮复习讲义
高三数学第一轮复习讲义一、函数与方程1. 函数的定义与性质函数是数学中非常重要的概念之一。
在高中数学中,我们常常遇到各种各样的函数问题,理解函数的定义与性质对于解决这些问题至关重要。
1.1 函数的定义函数是一个集合与集合之间的映射关系,它可以将一个自变量的值映射到一个唯一的因变量的值上。
通常表示为:f(x),其中f表示函数名,x表示自变量,f(x)表示函数的值。
1.2 函数的性质•定义域:函数的自变量所能取到的值的集合。
•值域:函数的因变量所能取到的值的集合。
•单调性:函数在整个定义域内的增减关系。
•奇偶性:函数的对称性质。
2. 一元二次方程一元二次方程是高中数学中常见的一种方程类型,它的一般形式为ax2+bx+c=0。
解一元二次方程的方法有因式分解、配方法、求根公式等。
2.1 因式分解法当一元二次方程可以因式分解为两个一次因式的乘积时,我们可以通过解两个一次方程来求解原方程。
例如:x2−5x+6=0可以分解为(x−2)(x−3)=0,解方程得x=2或x=3。
2.2 配方法当一元二次方程的一次项系数为 2 或 -2 时,可以采用配方法来求解方程。
例如:2x2−7x−3=0。
我们可以通过将2x2−7x−3=0看作(ax+b)x+ c=0的形式,其中a、b、c分别表示方程的系数。
然后,我们将x的系数−7分解为两个数,使得这两个数相乘等于ac,即2∗(−3)=−6,并且这两个数的和等于b,即−7。
在这个例子中,可以写成−3和2。
然后将方程改写为(2x−3)(x+ 1)=0,解得 $x=\\frac{3}{2}$ 或x=−1。
2.3 求根公式当一元二次方程无法通过因式分解或配方法来求解时,我们可以使用求根公式来求解方程。
一元二次方程的求根公式为:$x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$。
通过代入方程的系数a、b、c到公式中,就可以得到方程的解。
3. 三角函数三角函数是解决与角相关问题的数学工具,广泛应用于物理、工程、计算机图形学等领域。
高三第一轮复习数学 充分条件与必要条件
高三第一轮复习数学---充分条件与必要条件一、教学目标:掌握充分必要条件的意义,能够判定给定的两个命题的充要关系.二、教学重点:充要条件关系的判定.三、教学过程:(一)主要知识:(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。
2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必A⇒要条件。
B3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。
(二)充要条件的判断A⇒成立则A是B成立的充分条件,B是A成立的必要条件。
1若BA⇒且B A,则A是B成立的充分且不必要条件,B是A成立必要且非充分条2.若B件。
A⇔成立则A、B互为充要条件。
3.若B证明A是B的充要条件,分两步:(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。
(三)给定两个命题,p、q, 可以考虑集合A={x︱x满足p},B={x︱x满足q},则有1.若A⊆B,则p 是q的充分条件。
2.若A⊇B,则p 是q的必要条件。
3.若A=B,则p 是q的充要条件。
记住:小范围能推出大范围,大范围不能推出小范围。
(二)主要方法:1.判断充要关系的关键是分清条件和结论;⇒是否正确的本质是判断命题“若p,则q”的真假;2.判断p q3.判断充要条件关系的三种方法:①定义法;②利用原命题和逆否命题的等价性;③用数形结合法(或图解法).4.说明不充分或不必要时,常构造反例.(三)例题分析:例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?(1)在△ABC中,p:A>B q:BC>AC;(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;(3)在△ABC中,p:SinA>SinB q:tanA>tanB;(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0解:(1)p是q的充要条件(2)p是q的充分不必要条件(3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是(C )A、x<0B、x<0或x>4C、│x-1│>1D、│x-2│>3例2.填空题qq⌝⇒若pp⌝是;______)1(条件的则;______00,_______00)2(条件的是条件的是≥≥>>ba ab b a ab (3)若A 是B 的充分条件,B 是C 的充要条件,D 是C 的必要条件,则A 是D 的 条件. 答案:(1)必要条件 (2)充要、必要不充分 (3)A => B <=> C => D 故填充分不必要。
高三数学第一轮知识点:直线与方程
高三数学第一轮知识点:直线与方程第1篇:高三数学第一轮知识点:直线与方程导语:直线与方程就是直线的方程,在几何问题的研究中,我们常常直接依据几何图形中点,直线,平面间的关系研究几何图形的*质。
以下是小编整理高三数学第一轮知识点的资料,欢迎阅读参考。
(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。
当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴未完,继续阅读 >第2篇:高三数学一轮直线与方程的知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
当时,。
当时,;当时,不存在。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与p1、p2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高三一轮复习资料数学目录
高三一轮复习资料数学目录高三一轮复习资料数学目录随着高考的临近,高三学生们开始进入紧张的备考阶段。
在众多科目中,数学往往是学生们最为头疼的一门。
为了帮助同学们更好地备考数学,本文将为大家提供一份高三一轮复习的数学资料目录,希望能够对同学们的备考有所帮助。
1. 数学公式手册数学公式手册是高考数学备考的基础,它包含了各个章节的重要公式和定理,帮助同学们快速回忆和掌握知识点。
同学们可以在学习过程中经常翻阅,加深对公式的理解和记忆。
2. 习题集习题集是巩固知识和提高解题能力的重要工具。
同学们可以根据章节内容选择相应的习题进行练习,同时也可以参考习题集中的解析,了解解题思路和方法。
建议同学们尽量多做一些难度适中的习题,既可以巩固基础知识,又可以提高解题能力。
3. 历年高考试题历年高考试题是了解高考考点和考题形式的重要途径。
同学们可以通过分析历年试题,了解高考命题的特点和重点,有针对性地进行复习。
同时,历年试题也可以帮助同学们熟悉考试的时间分配和解题技巧。
4. 知识点总结数学知识点总结是复习的重要参考资料。
同学们可以将各个章节的重点内容进行总结,形成自己的知识框架。
在复习过程中,可以经常回顾和修改知识点总结,加深对知识的理解和记忆。
5. 解题方法总结解题方法总结是提高解题能力的关键。
同学们可以将各个章节的常见解题方法进行总结,形成自己的解题思路。
在复习过程中,可以通过解题方法总结来巩固和拓展解题能力。
6. 知识点串联练习知识点串联练习是检验综合能力的重要方式。
同学们可以选择一些综合性的题目,将不同章节的知识点进行组合,进行综合练习。
这样可以帮助同学们加强知识的联系和应用能力。
7. 模拟考试模拟考试是检验备考效果的重要手段。
同学们可以选择一些模拟试卷进行模拟考试,模拟真实考试的环境和时间,检验自己的备考水平。
通过模拟考试,同学们可以了解自己的薄弱环节,并有针对性地进行复习。
总之,高三一轮复习的数学资料目录包括数学公式手册、习题集、历年高考试题、知识点总结、解题方法总结、知识点串联练习和模拟考试。
高三数学第一轮复习知识点
高中数学一轮复习知识点第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求:1理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.2理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法集合化简、简易逻辑三部分:二、知识回顾:(一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A=B. 如果C A C B B A ⊆⊆⊆,那么,. 注:①Z ={整数}√②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.×例:S=N ;A=+N ,则C s A={0} ③空集的补集是全集.④若集合A =集合B ,则C B A =∅,C A B =∅C S C A B =D 注:C A B =∅. 3.①{x,y |xy =0,x ∈R ,y ∈R }:坐标轴上的点集. ②{x,y |xy <0,x ∈R ,y ∈R}:二、四象限的点集.③{x,y |xy >0,x ∈R ,y ∈R }:一、三象限的点集.注:①对方程组解的集合应是点集. 例:⎩⎨⎧=-=+1323y x y x 解的集合{2,1}.②点集与数集的交集是φ.例:A={x ,y |y =x +1}B={y |y =x 2+1}则A ∩B =∅4.①n 个元素的子集有2n个.②n 个元素的真子集有2n-1个.③n 个元素的非空真子集有2n-2个. 5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a =2且b =3,则a+b =5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x+y =3x=1或y =2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补. 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A ==分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φA ∪C U A =UC U U =φC U φ=U反演律:C U A ∩B=C U A ∪C U B C U A ∪B=C U A ∩C U B6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为cardA 规定card φ=0.基本公式:(3) card U A =cardU-cardA二含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法根轴法零点分段法①将不等式化为a 0x-x 1x-x 2…x-x m >0<0形式,并将各因式x 的系数化“+”;为了统一方便 ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点为什么;④若不等式x 的系数化“+”后是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.自右向左正负相间 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例①一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+bx+c>0a>0解的讨论.2.分式不等式的解法 1标准化:移项通分化为)()(x g x f >0或)()(x g x f <0;)()(x g x f ≥0或)()(x g x f ≤0的形式, 2转化为整式不等式组⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f 3.含绝对值不等式的解法1公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.2定义法:用“零点分区间法”分类讨论.3几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0a ≠01根的“零分布”:根据判别式和韦达定理分析列式解之.2根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. 三简易逻辑1、命题的定义:可以判断真假的语句叫做命题;2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题;构成复合命题的形式:p 或q 记作“p ∨q ”;p 且q 记作“p ∧q ”;非p 记作“┑q ”;原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互3、“或”、“且”、“非”的真值判断1“非p ”形式复合命题的真假与F 的真假相反; 2“p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假;3“p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P 则q ;逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p; 1交换原命题的条件和结论,所得的命题是逆命题; 2同时否定原命题的条件和结论,所得的命题是否命题;3交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 5、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:原命题⇔逆否命题 ①、原命题为真,它的逆命题不一定为真; ②、原命题为真,它的否命题不一定为真; ③、原命题为真,它的逆否命题一定为真;6、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件; 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p q.7、反证法:从命题结论的反面出发假设,引出与已知、公理、定理…矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法;高中数学第二章-函数考试内容:映射、函数、函数的单调性、奇偶性. 反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数. 对数.对数的运算性质.对数函数. 函数的应用.考试要求:1了解映射的概念,理解函数的概念.2了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.3了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.4理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.5理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.6能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.§02.函数知识要点一、本章知识网络结构: 二、知识回顾: (一) 映射与函数 1. 映射与一一映射2.函数:函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.3.反函数:反函数的定义:设函数))((A x x f y ∈=的值域是C,根据这个函数中x,y 的关系,用y 把x表示出,得到x=ϕy.若对于y 在C 中的任何一个值,通过x=ϕy,x 在A 中都有唯一的值和它对应,那么,x=ϕy 就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕyy ∈C 叫做函数))((A x x f y ∈=的反函数,记作)(1y fx -=,习惯上改写成)(1x f y -=二函数的性质 ⒈函数的单调性定义:对于函数fx 的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1<x 2时,都有fx 1<fx 2,则说fx 在这个区间上是增函数; ⑵若当x 1<x 2时,都有fx 1>fx 2,则说fx 在这个区间上是减函数.若函数y=fx 在某个区间是增函数或减函数,则就说函数y=fx 在这一区间具有严格的单调性,这一区间叫做函数y=fx 的单调区间.此时也说函数是这一区间上的单调函数. 2.函数的奇偶性 7.奇函数,偶函数: ⑴偶函数:)()(x f x f =-设b a ,为偶函数上一点,则b a ,-也是图象上一点. 偶函数的判定:两个条件同时满足①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f . ⑵奇函数:)()(x f x f -=-设b a ,为奇函数上一点,则b a --,也是图象上一点. 奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f . 8.对称变换:①y =fx )(轴对称x f y y -=−−−→−②y =fx )(轴对称x f y x -=−−−→−③y =fx )(原点对称x f y --=−−−→−9.判断函数单调性定义作差法:对带根号的一定要分子有理化,例如:在进行讨论. 10.外层函数的定义域是内层函数的值域. 例如:已知函数fx =1+xx-1的定义域为A ,函数ffx 的定义域是B ,则集合A 与集合B 之间的关系是. 解:)(x f 的值域是))((x f f 的定义域B ,)(x f 的值域R ∈,故R B ∈,而A {}1|≠=x x ,故A B ⊃. 11.常用变换:①)()()()()()(y f x f y x f y f x f y x f =-⇔=+. 22122212122222121)()()(b x b x x x x x b x b x x f x f x ++++-=+-+=-)(A B ⊃证:)()(])[()()()()(y f y x f y y x f x f x f y f y x f -=+-=⇔=- ②)()()()()()(y f x f y x f y f x f y xf +=⋅⇔-=证:)()()()(y f yxf y y x f x f +=⋅=12.⑴熟悉常用函数图象:例:||2x y =→||x 关于y 轴对称.|2|21+⎪⎭⎫⎝⎛=x y →||21x y ⎪⎭⎫ ⎝⎛=→|2|21+⎪⎭⎫ ⎝⎛=x y|122|2-+=x x y →||y 关于x 轴对称.⑵熟悉分式图象: 例:372312-+=-+=x x x y ⇒定义域},3|{R x x x ∈≠,对数函数=a 的图象和性质:⑴对数运算:以上10且...a a ,a 1,c 0,c 1,b 0,b 1,a 0,a 0,N 0,M n 21≠≠≠≠ 注⑴:当0, b a 时,)log()log()log(b a b a -+-=⋅.⑵:当0 M 时,取“+”,当n 是偶数时且0 M 时,0 n M ,而0 M ,故取“—”. 例如:x x x a a a log 2(log 2log 2 ≠中x >0而2log x a 中x ∈R. ⑵x a y =1,0≠a a 与x y a log =互为反函数.当1 a 时,x y a log =的a 值越大,越靠近x 轴;当10 a 时,则相反.四方法总结⑴.相同函数的判定方法:定义域相同且对应法则相同.⑵.函数表达式的求法:①定义法;②换元法;③待定系数法.⑶.反函数的求法:先解x,互换x 、y,注明反函数的定义域即原函数的值域.⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.⑸.函数值域的求法:①配方法二次或四次;②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.⑹.单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定fx1与fx2的大小;③作差比较或作商比较.⑺.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f-x与fx之间的关系:①f-x=fx为偶函数;f-x=-fx为奇函数;②f-x-fx=0为偶;fx+f-x=0为奇;③f-x/fx=1是偶;fx÷f-x=-1为奇函数.⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.高中数学第三章数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:1理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.3理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题.§03.数列知识要点①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a 2≥n ③b kn a n +=k n ,为常数. ⑶看数列是不是等比数列有以下四种方法:①)0,,2(1≠≥=-且为常数q n q a a n n ②112-+⋅=n n na a a 2≥n ,011≠-+n n n a a a ① 注①:i.acb =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.ii.ac b =ac >0→为a 、b 、c 等比数列的充分不必要. iii.ac b ±=→为a 、b 、c 等比数列的必要不充分. iv.ac b ±=且0 ac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =q c ,为非零常数.④正数列{n a }成等比的充要条件是数列{n x a log }1 x 成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n nn注:①()()d a nd d n a a n -+=-+=111d 可为零也可不为零→为等差数列充要条件即常数列也是等差数列→若d 不为0,则是等差数列充分条件.②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛=+=22122→2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.不是非零,即不可能有等比数列2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ②若等差数列的项数为2()+∈Nn n ,则,奇偶nd S S =-1+=n n a a SS 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇得到所求项数到代入12-⇒n n .3.常用公式:①1+2+3…+n =()21+n n②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n注:熟悉常用通项:9,99,999,…110-=⇒n n a ;5,55,555,…()11095-=⇒nn a . 4.等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题.例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1.其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:⑵银行部门中按复利计算问题.例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元.因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率. 5.数列常见的几种形式:⑴n n n qa pa a +=++12p 、q 为二阶常数→用特证根方法求解.具体步骤:①写出特征方程q Px x +=22x 对应2+n a ,x 对应1+n a ,并设二根21,x x ②若21x x ≠可设n n n x c x c a 2211.+=,若21x x =可设nn x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵r Pa a n n +=-1P 、r 为常数→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a 公式法,21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1( r r P a P n n +++⋅+=--Pr 211 .③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:Pr P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6.几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0 d 时,有最大值.如何确定使n S 取最大值时的n 值,有两种方法: 一是求使0,01 +≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值. ⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和.例如:, (2)1)12,...(413,211n n -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2.判断和证明数列是等差等比数列常有三种方法:1定义法:对于n ≥2的任意自然数,验证)(11---n n n n a a a a 为同一常数;2通项公式法;3中项公式法:验证212-++=n n n a a a N n a a a n n n ∈=++)(221都成立;3.在等差数列{n a }中,有关S n 的最值问题:1当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值.2当1a <0,d>0时,满足⎩⎨⎧≥≤+01m m a a 的项数m 使得m s 取最小值;在解含绝对值的数列最值问题时,注意转化思想的应用;三、数列求和的常用方法1.公式法:适用于等差、等比数列或可转化为等差、等比数列的数列;2.裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等;3.错位相减法:适用于{}n n b a 其中{n a }是等差数列,{}n b 是各项不为0的等比数列;4.倒序相加法:类似于等差数列前n 项和公式的推导方法.5.常用结论1:1+2+3+...+n=2)1(+n n 21+3+5+...+2n-1=2n 32333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n4)12)(1(613212222++=++++n n n n 5111)1(1+-=+n n n n )211(21)2(1+-=+n n n n6)()11(11q p qp p q pq <--= 高中数学第四章-三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin ωx+φ的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法. 考试要求:1理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.2掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.3掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式. 4能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.5理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin ωx+φ的简图,理解A.ω、φ的物理意义.6会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx 表示. 7掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.8“同角三角函数基本关系式:sin2α+cos2α=1,sin α/cos α=tan α,tan αcos α=1”.§04.三角函数知识要点 1.①与α0°≤α<360°终边相同的角的集合角α与角β的终边重合:{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合:{}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2.角度与弧度的互换关系:360°=2π180°=π1°==°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 弧度与角度互换公式:1rad =π180°≈°=57°18ˊ.1°=180π≈rad3、弧长公式:r l⋅=||α.扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取异于原点的一点Px,yP与原点的距离为r,则ry =αsin ;rx=αcos ;x y =αtan ;yx =αcot ;x r=αsec ;.yr =αcsc .5、三角函数在各象限的符号:一全二正弦,三切四余弦6、三角函数线正弦线:MP;余弦线:OM;正切线:AT.SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域7.三角函数的定义域:8、同角三角函数的基本关系式:αααtan cos sin =αααcot sin cos =9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限” 三角函数的公式:一基本关系 公式组二公式组三公式组四公式组五公式组六 二角与角之间的互换 公式组一公式组二公式组三公式组四公式组五42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan-== ,3215cot 75tan +==正弦、余弦、正切、余切函数的图象的性质:若)(x f y =在],[b a 上递增减,则)(x f y -=在],[b a 上递减增.②x y sin =与x y cos =的周期是π.()()[]()()[]βαβαβαβαβαβα--+=-++=sin sin 1sin cos sinsin 21cos sin③)sin(ϕω+=x y 或)cos(ϕω+=x y 0≠ω的周期ωπ2=T .2tanx y =的周期为2ππωπ2=⇒=T T ,如图,翻折无效.④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x Z k ∈,对称中心0,πk ;)cos(ϕω+=x y 的对称轴方程是πk x =Z k ∈,对称中心0,21ππ+k ;)tan(ϕω+=x y 的对称中心0,2πk . ⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则 )cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.×只能在某个单调区间单调递增.若在整个定义域,x y tan =为增函数,同样也是错误的.⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.奇偶性的两个条件:一是定义域关于原点对称奇偶都要,二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-奇偶性的单调性:奇同偶反.例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.定义域不关于原点对称奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .x ∉0的定义域,则无此性质⑨x y sin =不是周期函数;x y sin =为周期函数π=T ;x y cos =是周期函数如图;x y cos =为周期函数π=T ;212cos +=x y 的周期为π如图,并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩abb a b a y =+++=+=ϕϕαβαcos )sin(sin cos 22有y b a ≥+22. 11、三角函数图象的作法: 1、几何法:2、描点法及其特例——五点作图法正、余弦曲线,三点二线作图法正、余切曲线. 3、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y =Asin ωx +φ的振幅|A|,周期2||T πω=,频率1||2f T ωπ==,相位;x ωϕ+初相ϕ即当x =0时的相位.当A >0,ω>0时以上公式可去绝对值符号,由y =sinx 的图象上的点的横坐标保持不变,纵坐标伸长当|A|>1或缩短当0<|A|<1到原来的|A|倍,得到y =Asinx 的图象,叫做振幅变换或叫沿y 轴的伸缩变换.用y/A 替换yy=|cos2x +1/2|图象由y =sinx 的图象上的点的纵坐标保持不变,横坐标伸长0<|ω|<1或缩短|ω|>1到原来的1||ω倍,得到y =sin ωx 的图象,叫做周期变换或叫做沿x 轴的伸缩变换.用ωx 替换x由y =sinx 的图象上所有的点向左当φ>0或向右当φ<0平行移动|φ|个单位,得到y =sinx +φ的图象,叫做相位变换或叫做沿x 轴方向的平移.用x +φ替换x由y =sinx 的图象上所有的点向上当b >0或向下当b <0平行移动|b |个单位,得到y =sinx +b 的图象叫做沿y 轴方向的平移.用y+-b 替换y由y =sinx 的图象利用图象变换作函数y =Asin ωx +φA >0,ω>0x ∈R 的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x 轴量伸缩量的区别; 4、反三角函数: 函数y =sin x ,⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-∈22ππ,x 的反函数叫做反正弦函数,记作y =arcsin x ,它的定义域是-1,1,值域是⎥⎦⎤⎢⎣⎡22ππ,-. 函数y =cos x ,x ∈0,π的反应函数叫做反余弦函数,记作y =arccos x ,它的定义域是-1,1,值域是0,π.函数y =tan x ,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-∈22ππ,x 的反函数叫做反正切函数,记作y =arctan x ,它的定义域是-∞,+∞,值域是⎪⎭⎫ ⎝⎛-22ππ,.函数y =ctg x ,x ∈0,π的反函数叫做反余切函数,记作y =arcctg x ,它的定义域是-∞,+∞,值域是0,π.II.竞赛知识要点一、反三角函数.1.反三角函数:⑴反正弦函数x y arcsin =是奇函数,故x x arcsin )arcsin(-=-,[]1,1-∈x 一定要注明定义域,若()+∞∞-∈,x ,没有x 与y 一一对应,故x y sin =无反函数注:x x =)sin(arcsin ,[]1,1-∈x ,⎥⎦⎤⎢⎣⎡-∈2,2arcsin ππx .⑵反余弦函数x y arccos =非奇非偶,但有ππk x x 2)arccos()arccos(+=+-,[]1,1-∈x . 注:①x x =)cos(arccos ,[]1,1-∈x ,[]π,0arccos ∈x .②x y cos =是偶函数,x y arccos =非奇非偶,而x y sin =和x y arcsin =为奇函数. ⑶反正切函数:x y arctan =,定义域),(+∞-∞,值域2,2ππ-,x y arctan =是奇函数,x x arctan )arctan(-=-,∈x ),(+∞-∞. 注:x x =)tan(arctan ,∈x ),(+∞-∞.⑷反余切函数:x arc y cot =,定义域),(+∞-∞,值域2,2ππ-,x arc y cot =是非奇非偶. ππk x arc x arc 2)cot()cot(+=+-,∈x ),(+∞-∞. 注:①x x arc =)cot cot(,∈x ),(+∞-∞.②x y arcsin =与)1arcsin(x y -=互为奇函数,x y arctan =同理为奇而x y arccos =与x arc y cot =非奇非偶但满足]1,1[,2)cot(cot ]1,1[,2arccos )arccos(-∈+=-+-∈+=+-x k x arc x arc x k x x ππππ. ⑵正弦、余弦、正切、余切函数的解集:a 的取值范围解集a 的取值范围解集①a x =sin 的解集②a x =cos 的解集a >1∅a >1∅a =1{}Z k a k x x ∈+=,arcsin 2|πa =1{}Z k a k x x ∈+=,arccos 2|π a <1(){}Zk a k x x k∈-+=,arcsin 1|πa <1{}Z k a k x x ∈±=,arccos |π③a x =tan 的解集:{}Z k a k x x ∈+=,arctan |π ③a x =cot 的解集:{}Z k a k x x ∈+=,cot arc |π 二、三角恒等式. 组一组二 组三三角函数不等式x sin <x <)2,0(,tan π∈x x xxx f sin )(=在),0(π上是减函数 若π=++C B A ,则C xy B xz A yz z y x cos 2cos 2cos 2222++≥++高中数学第五章-平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移.考试要求:1理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2掌握向量的加法和减法.3掌握实数与向量的积,理解两个向量共线的充要条件.4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.§05.平面向量知识要点1.本章知识网络结构2.向量的概念1向量的基本要素:大小和方向.2向量的表示:几何表示法AB ;字母表示:a ;坐标表示法a =xi+yj =x,y. 3向量的长度:即向量的大小,记作|a |. 4特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.ααααααcos 3cos 43cos sin 4sin 33sin 33-=-=()()αββαβαβα2222cos cos sin sin sin sin -=-+=-ααααααsin 22sin 2cos ...4cos 2cos cos 11++=n n n5相等的向量:大小相等,方向相同x1,y1=x2,y2⎩⎨⎧==⇔2121y y x x6相反向量:a =-b ⇔b =-a ⇔a +b =07平行向量共线向量:方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. 3.向量的运算 运算类型 几何方法坐标方法运算性质向量的 加法 1.平行四边形法则 2.三角形法则向量的 减法三角形法则AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ= 2.λ>0时,a a λ与同向;λ<0时,a a λ与异向; λ=0时,0a λ=.向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,4.重要定理、公式1平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a =λ1e 1+λ2e 2.2两个向量平行的充要条件a ∥b ⇔a =λbb ≠0⇔x 1y 2-x 2y 1=O. 3两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. 4线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则OP =λ+111OP +λ+112OP 线段的定比分点的向量公式⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x 线段定比分点的坐标公式 当λ=1时,得中点公式:OP =211OP +2OP 或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x 5平移公式设点Px ,y 按向量a =h,k平移后得到点P ′x ′,y ′,则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =fx 按向量a =h,k平移后所得的曲线的函数解析式为:y -k=fx -h6正、余弦定理 正弦定理:.2sin sin sin R CcB b A a === 余弦定理:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 7三角形面积计算公式:设△ABC 的三边为a,b,c,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R,r . ①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P ---海伦公式 ⑥S △=1/2b+c-ar a 如下图=1/2b+a-cr c =1/2a+c-br b注:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图: 图1中的I 为S △ABC 的内心,S △=Pr图2中的I 为S △ABC 的一个旁心,S △=1/2b+c-ar a 附:三角形的五个“心”; 重心:三角形三条中线交点. 外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c 注:s 为△ABC 的半周长,即2cb a ++ 则:①AE=a s -=1/2b+c-a ②BN=b s -=1/2a+c-b ③FC=c s -=1/2a+b-c综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边如图4.AB Oa cI A BC D EF IABC D E Fr arar abc a a b c ACNE F特例:已知在Rt △ABC,c 为斜边,则内切圆半径r =cb a abc b a ++=-+2如图3. ⑹在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论⑺在△ABC 中,D 是BC 上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有 B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC 中,由余弦定理有 BC AB AC BC AB B ⋅-+=2cos 222②,②代入①,化简可得,DC BD BCBCAB BD AC AD ⋅-+=222斯德瓦定理①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p 为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A+∠B=2π2c <⇔+22b a △ABC 为钝角△⇔∠A+∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A+∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.空间向量1.空间向量的概念:具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(3共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b 记作b a //.DACB图5。
高考数学一轮复习知识点(精选5篇)
高考数学一轮复习知识点(精选5篇)高考数学一轮复习知识点篇11、基础不牢,地动山摇。
数学想考高分,基础是最重要的,这也是很多学生数学成绩一直不好的核心原因,牢记基本公式和基本定理,根据课本目录,能熟练回忆出课本上所有知识点,真正打牢基础,你才有学好数学的可能。
2、从基础题由浅入深进行练习。
不少人对数学学习彻底失去了信心,甚至感觉自己就不是学习数学的料,其实都是平时不会选题,基础差还总爱做难题,最后被打击的自信心全无。
正确的做法是从最基础的题目开始做,先完成老师布置的作业,然后再每天给自己准备一定数量的题目,题目的选择应该从浅入深,基础不好就先做简单的题目,一点一点加深难度。
3、不要怕问。
数学想考满分,你的知识体系必须非常完美,知识没有任何漏洞才行。
遇到问题千万不要放弃,一定要多问多想,遇到不会的难题,不要硬靠自己,要敢于走出去找老师解答,在这个过程中,你可以体会老师的解题方法和老师的解题思想,更有效地利用做题时间。
4、错题本必须要有。
有人经常说,数学学霸们的学习方法并不适合所有人,但错题本学习法确实是人人都应该掌握的一个高效学习法。
如果不想错题一错再错,错题本是必须要有的。
最重要的是经常出错的题要多看,也可以的错题进行归类,不然你整理再多错题作用也不大。
高考数学一轮复习知识点篇2越是容易的题要越小心,因为这样的题很可能有陷阱。
出现怪异的答案的题要小心,因为很有可能计算错误。
任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。
最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。
高考数学一轮复习知识点篇3三角函数或数列数列是高中数学的重要内容,也是学习高等数学的基础。
是高考数学必考题型。
高考对其的考查比较全面,等差数列、等比数列的考查每年都不会遗漏。
近几年来,高考关于数列方面的命题有以下三个方面。
高三数学第一轮复习知识点
高三数学第一轮复习知识点高三数学第一轮复习集合知识点一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的`一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.相等关系(55,且55,则5=5)实例:设A={x|x2-1=0}B={-1,1}元素相同结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB={x|xA,且xB}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
高三数学全程复习(一轮).doc
高三数学全程复习(一轮)课时08 函数的值域【考点指津】1.理解函数值域的概念,掌握求函数值域的各种方法.函数的值域就是函数值的集合,它取决于函数的定义域和对应法则.求函数值域的基本方法有:数形结合法、反函数法、配方法、判别式法等,应弄清各方法所适用的函数类型.2.掌握常见函数的最值的求法.函数的最值就是函数的最大值或最小值.若函数的最大值与最小值分别为M 与m ,则函数的值域为[m ,M ]或它的真子集.解决函数最大(小)值问题的依据有:函数的性质、不等式的性质、函数与几何图象的性质.求函数的最值方法包括单调性法、基本不等式法、换元法、配方法、图象法等. 【知识在线】 1.函数844)(2++-=x x x f 的值域为 .2.已知函数y = log 2(x 2-2)的值域是[1,log 214],则此函数的单调减区间为 . 3.函数]4,6[),sin 1(log )sin 1(log 22ππ-∈-++=x x x y 的值域为 ( ) A .[-1,0] B .(-1,0) C .[-1,0] D .[0,1]4.已知集合A ={y ︱y =2x , x ∈R } B ={y ︱y =x 2 ,x ∈R }则 ( )A . A ∩B ={2 ,4} B . A ∩B ={4 ,16}C . A =BD .A ⊆B 5.定义域为R 的函数y = f (x )的值域为[a ,b ],则f (x +a )的值域为 ( ) A .[2a ,a +b ] B .[0,b -a ] C .[a ,b ] D .[-a ,a +b ] 【讲练平台】 例1 求下列函数的值域:(1)3212)(22-+--=x x x x x f ;(2)12+-=x x xy ;(3)x x y --=1.分析 (1)先对表达式进行化简,后利用反函数法或观察法求值域;(2)将其转化为含有参数y 的关于x 的方程,利用“判别式”法求解;(3)先换元,得到新变量的一元二次函数,再求其值域,或利用函数的单调性求值域.解 (1) 312)3)(1()12)(1()(++=+-+-=x x x x x x x f (x ≠1).解法一(反函数法) 由函数y =312++x x ,得y y x --=213.解不等式y y --213≠1,且yy --213≠ -3,得y ≠34,且y ≠2. 故函数的值域为{y |y ∈R ,且y ≠34,y ≠2}解法二(观察法) y =312++x x 352+-=x . 由于x ≠1,且x ≠ -3,故x +3≠4,且x +3≠0,从而,y ≠34,且y ≠2.故函数的值域为{y |y ∈R ,且y ≠34,y ≠2}(2)由12+-=x x x y ,得yx 2-(y +1)x +y =0,这是一个关于x 的方程. 当y =0时,解得x =0,方程有解;当y ≠0时,为使关于x 的二次方程有解,必须△= (y +1)2- 4y 2≥0,解得31-≤y ≤1(y ≠0). 综合得,函数的值域是[31-,1].(3)解法一 令t =x -1,得 x =1-t 2,于是y = g (t )=1-t 2-t (t ≥0). 配方,得 y = g (t ) = - (t +21)2+45,它在),0[+∞为减函数,故最大值为g (0)=1,于是,所求函数的值域是(-∞,1 ].解法二 易知函数的定义域为(-∞,1 ],而且该函数在定义域内为减函数,故最大值为f (1) = 1,从而所求函数的值域为(-∞,1 ) .点评 (1)求函数值域有很多方法,每种方法又各有其适用类型,要根据函数式的特征准确选用相应的方法:上述各小题的解法分别使用了反函数法(反函数的定义域就是原函数的值域)、观察法(形如b ax d cx y ++=(a ≠0)的函数的值域为{y |y ∈R ,且y ≠ac})、判别式法及换元法与单调性法;(2)在用判别式法求值域时,如果得到的关于x 的方程的二次项系数中含有字母y ,则应分情况讨论.例如,求函数112+-=x x y 的值域,变形得到方程yx 2-yx +(y -1)=0,易见,当y =0时,方程无解;当y ≠0时,由△≥0,解得 0≤y ≤34(y ≠0).故值域为,0(34],而不是[0,34];(3)利用换元法解题时,必须注意变量的等价性,如题(3)中新变量t 的取值范围为t ≥0,若忽视了这一点,可能导致错误的答案为y ≤45; (4)函数(2)亦可用不等式法求值域.当x = 0时,y = 0;当x ≠0时, y =111-+xx ,因11-+x x ≥1,或11-+x x ≤-3,故31-≤y ≤1(y ≠0).于是,函数的值域为[31-,1] .变题 已知函数y = 1822+++x b x ax 的值域为[1,9],试求函数y =b x ax ++82的值域. 提示:将y = 1822+++x b x ax 变形为(y – a )x 2–8x + y – b =0,利用“△≥0”可得y 2 – (a +b )y +ab -16≤0.它与不等式(y -1)(y -9) ≤0,即y 2-10y +9≤0等价,比较系数得a =b = 5.y =5852++x x =59)54(52++x ≥553.例2 已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是 .(注:min 表示最小值)分析 这是一道信息题,应将表达式f (x )*g (x )=min{f (x ),g (x )}进行展开,得到分段函数后,画出图像,根据图像得出所求的最大值.解 y =f (x )*g (x )⎩⎨⎧>≤=)()(),()()(),(x g x f x g x g x f x f .画出上述函数的图像,如图1的实线部分,由图易知,图中的最高点A 的纵坐标即为所求.解方程组⎩⎨⎧=-=xy x y 22,得(x ,y ) = (1,1)或(-2,-2). 于是所求的最大值为1.点评 (1)分段函数的最值一般均用图像法画出各分段函数的图像,然后观察(求)出它们在各段图像上的最值点,并比较它们最值的大小;(2)容易误认为所求的最大值就是函数f (x )的最大值或g (x )的最大值; (3)不能认为 –2是的最小值.变题 已知函数f (x )=2-x 2,g (x )=x .若F (x )= f (x )*g (x )= m a x {f (x ),g (x )},那么F (x )是否存在最小值.请说明理由.答案:不存在最小值.(注:只存在极小值1,极大值2)例3 已知函数f (x )=),1[,22+∞∈++x xax x . (1)当a =0.5时,求函数f (x )的最小值; (2)当a = 4时,求函数f (x )的最小值.分析 这是一个带有定义域的分式函数求最值问题,能否使用算术几何平均值不等式求最值,要视a 的取值而定.因为用算术几何平均值求最值的条件是“一正二定三相等”,这里的相等条件能否成立是一个关键.解 (1)当a =0.5时,f (x )=x +x21+2, ),1[+∞∈x . 任设1≤x 1<x 2,则 f (x 1) - f (x 2) =( x 1+121x +2)-( x 2+221x +2)=2121212)12)((x x x x x x --因1≤x 1<x 2,故x 1- x 2<0,且x 1x 2>1,于是x 1x 2>0,2x 1x 2-1>0,从而f (x 1) - f (x 2)<0,即f (x 1) < f (x 2),故f (x )在),1[+∞上是增函数,所以f (x )在),1[+∞上的最小值是f (1)=27.(2)24)(++=xx x f ≥6242=+⋅x x ,当且仅当xx 4=,即x =2∈[1,+∞)时,取“=”, 故函数的最小值为6.点评 (1)求函数值域(最值)方法很多,单调性法是重要方法之一.当诸多方法失效时,单调性法往往奏效;(2)对于题(1),不能用判别式法求最小值.事实上,由y =x +x21+2得2x 2-2(y -2)x +1=0,由△= 4(y -2)2-8≥0得 y ≥2+2(因y >0,故y ≤2-2,不合,舍去.).这时若认为y min =2+2那就错了.因为当y =2+2时,2x 2-22x +1=0,解得x =),1[22+∞∉;也不能用算术几何平均值不等式求最值.事实上,y =x +x21+22212+⋅≥x x =2+2,取等号的条件是x =x21,即x =22,但),1[22+∞∉,故该法也是失效的.变题1 求函数f (x )=),1[,22+∞∈++x xax x 的最小值,其中a 为常数,且a >0.答案:f min (x ) = ⎩⎨⎧2a +2,a ≥1,a +3,0<a <1.变题2 求函数xax x x f ++=2)(2(a 为正常数)的最小值.答案:]22,(),22[a a --∞+∞+ .例4 已知函数f (x )=123log 222+++mx nx x m ,n ∈R . (1)若m ∈N *,x ∈R , 且f (x )的值域为[1,2],求m ,n 的值; (2)若n = -1,且f (x )的值域为R ,求m 的取值范围.分析 (1)先“脱”去对数符号,即变为一个分式函数的值域为[2,4],可利用“判别式”法及根与系数的关系,求m ,n 的值;(2)对数函数的值域为R ,等价于真数能取遍一切正实数,即真数的最小值应为非正数,同样也可以使用“判别式”法加以求解.解 (1)设y =12322+++mx nx x , 由已知,得2≤y ≤4.将分式变形为 myx 2+y =3x 2+2x +n , 即 (3-my )x 2+2x +n -y =0. 故 △=4-4(n -y )(3-my )≥0, 即 my 2-(3+mn )y +3n -1≤0 . 因 2≤y ≤4,故 ⎪⎩⎪⎨⎧=-=+.813,63mn m mn解得 m =1,n =3.(m =89,n = 310,不合,舍去.) (2)①m =0时,f (x )=]34)31(3[log )123(log 2222-+=-+x x x ∈R ;②m ≠0时,要使f (x )∈R ,只须12322+++mx nx x 的值域包含(0,+∞),即),0(}0,123|{22+∞⊇≠+++=m mx nx x y y .设y =112322+-+mx x x ,即(3-my )x 2+2x -1-y =0,从而 △= -4[my 2-(3-m )y -4]≥0,即 my 2-(3-m )y -4≤0.要使函数的值域包含(0,+∞),只须m <0时,且方程0432=---my m m y 有两个负根(相等或不等),故⎩⎨⎧△≥0,x 1+ x 2<0,x 1x 2≥0,m <0.⇒ ⎩⎨⎧( 3-m m )2+ 16m ≥0,m <3,m <0.⇒m ≤-9 或-1≤m <0. 综上所述,m 的取值范围为:m ≤-9 或-1≤m <0.点评 函数f (x ) = log a g (x )的值域为R (其中x ∈R ,g (x ) = mx 2+nx +p ,m ≠0,m 、n 、p ∈R ,a ∈(0,1)∪(1,+∞))⇔(0,+∞)⊆{g (x )| x ∈R } ⇔函数g (x )的最小值不大于0⇔存在x 0∈R ,使得g (x 0) ≤0⇔△≥0,且m >0. 【知能集成】 1.设函数f (x )存在最大值M 与最小值m ,λ为待求常数.(1)若对定义域内的任一x ,都有λ≥f (x ),则λ≥M ; (2)若对定义域内的任一x ,都有λ≤f (x ),则λ≤m ; (3)若存在x 0,使得f (x 0) ≥λ,则λ≤M ; (4)若存在x 0,使得f (x 0) ≤λ,则λ≥m . 2.掌握函数与方程的思想.函数与方程的思想就是,先构造函数,把给定问题转化为所构造函数的性质研究后,得出所需的结论.方程思想,就是把对数学问题的认识,归纳为对方程或方程组的认识. 【训练反馈】 1.函数y =5-2x -x 2的值域是 .2.若函数y =f (x )的值域是[-2,3],则函数y =∣f (x )∣的值域是 ( ) A .[-2,3] B .[2,3] C .[0,2] D .[0,3]3.函数y =x +2x -1的值域是 ( )A .{y |y ≥12}B .{y |y ≤12} C .{y |y ≥0} D .{y |y ≤0}4.下列函数中,值域是(0,+∞)的是 ( ) A .y =2x +1(x >0) B .21xy =C .y = x 2 +x +1D .y =1+x5.凸函数的性质定理为:如果函数f (x )在区间D上是凸函数,则对于区间D内的任意x 1,x 2,……,x n ,有n x f x f x f n )()()(21+++ ≤f (nx x x n+++ 21).已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B+sin C 的最大值为______.6.当|x |≤1时,函数f (x )=ax +2a +1的值有正也有负,则实数a 的取值范围为 . 7.已知函数f (x )的值域为[161,16],求函数g (x )= f (x )+2)(x f 及h (x ) = f (x ) -2)(x f 的值域.8.设周长为a (a >0)的等腰三角形,其腰长为x ,底边长为y ,试将y 表示为x 的函数,并求出这个函数的定义域和值域. 9.求下列函数的值域:(1) y = 2x +1x +1;(2)y = x 2-1x 2+1;(3)y = xx 2+x +1;(4)y =x +21-x .10.若函数23212+-=x x y 的定义域和值域都是[1,b ] (b >1),求b 的值. 11.在区间⎥⎦⎤⎢⎣⎡2,21上,函数1)()(22+=++-=x xx g q px x x f 与在同一点取得相同的最大值,求f (x )在区间⎥⎦⎤⎢⎣⎡2,21上的最小值.12.已知函数862++-=m mx mx y 的定义域为R ;(1)求实数m 的取值范围;(2)当m 变化时,若y 的最小值为f (m ),求函数f (m )的值域.参考答案:【知识在线】1. [0,3 ] 2. [-4,-2] 3.A 4.D 5.C 【训练反馈】1.[0,6] 2.D 3.A 4.B 5.提示:sin A +sin B+sin C ≤3sin(3CB A ++)=3sin60º=233 6.提示:显然a ≠0,故函数为单调函数,从而f (-1)·f (1)<0,解得:-1<a <- 13 . 7.提示:令t = f (x ),则g (x ) = G (t )= t +2t ,G (t )在[161,16]上为增函数,值域为[169,24].h (x ) = H (t ) = t - 2t = (t - 1)2 –1∈[-1,8]. 8.y = a – 2x ,定义域为(4a ,2a ),值域为(0,2a). 9.提示:(1)利用观察法或分式变形可得,{y ∣y≠2};(2)求出x 2关于y 的表达式,解不等式x 2≥0得,{y |-1≤y <1};(3)去分母后利用判别式法可得,[-1,13];(4)利用换元法化为一元二次函数,再利用配方法可得,{y |y ≤2}. 10.提示:由函数图象的对称轴方程为x =1,得函数在[1,b ]上为增函数,故有f (1)=1,f (b )=b ,解得b =3(b =1不合,舍去) 11.提示:g (x )=2112111=⋅≤+xx xx ,当且仅当x =1∈⎥⎦⎤⎢⎣⎡2,21时,函数g (x )取得最大值12.故f (x ) = - (x -1)2+21,于是当x =2时,f (x )有最小值为21-. 12.(1)当m =0时,x ∈R ;当m ≠0时,m >0且△≤0,解得:0<m ≤1,故实数m 的取值范围为0≤m ≤1.(2)当m =0时,f (0)=22;当0<m ≤1时,因m x m y 88)3(2-+-=,故f (m ) = m 88-(0<m ≤1).于是,f (m ) = m 88-(0≤m ≤1),其值域为[0,22].。
高三数学第一轮复习——数列(知识点很全)
高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数 列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n n qa a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n qa a mn m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n nS n T n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
高三第一轮数学复习知识点
高三第一轮数学复习知识点在高三数学的学习过程中,第一轮复习是非常关键的一步。
在这个阶段,学生们要回顾并巩固自己在之前学习中所掌握的数学知识,同时要注意查漏补缺,填平知识漏洞,为接下来的复习打下坚实的基础。
一、函数与方程函数与方程是高三数学的基础。
在这一部分中,学生们需要掌握函数的概念、性质以及基本的图像变换知识。
此外,还需要了解常见的一次函数、二次函数、指数函数、对数函数等函数的性质与特点,并能熟练解决相关的题目。
在方程的学习中,需要掌握一元一次方程、一元二次方程等常见方程的解法,并能灵活应用于实际问题的解决过程中。
二、数列与数列的求和数列是高中数学中的重点知识,也是数学建模的基础。
在数列的学习中,学生们需要了解等差数列、等比数列、斐波那契数列等常见数列的概念、性质以及特点,并能运用差分法、通项公式等方法解决数列的相关问题。
此外,数列的求和也是数学学习中的重点内容,学生们需要学会通过列式法、分组求和法等方法求解数列的和,并能理解这些方法的推导过程。
三、几何图形与几何推理几何学是数学学科的基础,也是高三数学复习中不可或缺的一部分。
在几何图形的学习中,学生们需要掌握平面几何和立体几何相关的基本概念、性质以及定理,并能够灵活运用这些知识解决相关的几何问题。
在几何推理的学习中,学生们需要理解各种推理方法的基本原理,并能通过逻辑推理解决几何问题。
四、概率与统计概率与统计是高中数学中的实际应用部分。
在概率的学习中,学生们需要了解基本概率的概念、性质以及计算方法,并能够应用概率理论解决生活中的实际问题。
在统计的学习中,学生们需要熟悉数据的收集、整理、分析等基本方法,并能够通过统计理论解决实际问题。
五、解析几何与立体几何解析几何是数学学科的重要分支之一,立体几何是几何学的重要内容之一。
在解析几何的学习中,学生们需要掌握坐标系的建立与运用、直线与曲线的方程等相关内容,并能熟练解决相关的几何问题。
在立体几何的学习中,学生们需要了解空间几何中的基本概念、性质以及相关定理,并能运用这些知识解决实际问题。
高三数学第一轮的复习讲义
高三数学第一轮的复习讲义一.复习目标:1.了解相互独立事件的意义,会求相互独立事件同时发生的概率;2.会计算事件在次独立重复试验中恰好发生次的概率.二.知识要点:1.相互独立事件的概念: .2.是相互独立事件,则 .3.次试验中某事件发生的概率是,则次独立重复试验中恰好发生次的概率是 .三.课前预习:1.下列各对事件 (1)运动员甲射击一次,“射中环”与“射中环”, (2)甲、乙二运动员各射击一次,“甲射中环”与“乙射中环”, (3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与,“甲、乙都没有射中目标”, (4)甲、乙二运动员各射击一次,“至少有一人射中目标”与,“甲射中目标但乙没有射中目标”,是互斥事件的有 (1),(3) .相互独立事件的有 (2) .2.某射手射击一次,击中目标的概率是,他连续射击次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第次击中目标的概率是;②他恰好击中目标次的概率是; ③他至少击中目标次的概率是,其中正确结论的序号①③ .3.件产品中有件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是、.4.三个互相认识的人乘同一列火车,火车有节车厢,则至少两人上了同一车厢的概率是 ( )5.口袋里装有大小相同的黑、白两色的手套,黑色手套只,白色手套只,现从中随机地取出两只手套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( )甲多乙多一样多不确定四.例题分析:例1.某地区有个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设个工厂均选择星期日停电的事件为.则.(2)设个工厂选择停电的时间各不相同的事件为.则,至少有两个工厂选择同一天停电的事件为,. 小结:个工厂均选择星期日停电可看作个相互独立事件.例2.某厂生产的产品按每盒件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒件产品中任抽件进行检验,若次品数不超过件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒产品中有件次品.(1)求该盒产品被检验合格的概率;(2)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.解: (1)从该盒件产品中任抽件,有等可能的结果数为种,其中次品数不超过件有种,被检验认为是合格的概率为.(2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出该盒产品合格的概率均为,故“两次检验得出的结果不一致”即两次检验中恰有一次是合格的概率为答:该盒产品被检验认为是合格的概率为;两次检验得出的结果不一致的概率为.例3.假定在张票中有张奖票(),个人依次从中各抽一张,且后抽人不知道先抽人抽出的结果,(1)分别求第一,第二个抽票者抽到奖票的概率,(2)求第一,第二个抽票者都抽到奖票的概率.解:记事件:第一个抽票者抽到奖票,记事件:第一个抽票者抽到奖票,则(1),,(2)小结:因为≠,故A与B是不独立的.例 4. 将一枚骰子任意的抛掷次,问点出现(即点的面向上)多少次的概率最大?解:设为次抛掷中点出现次的概率,则,∴,∵由,得,即当时,,单调递增,当时,,单调递减,从而最大.五.课后作业:1.将一颗质地均匀的骰子(它是一种各面上分别标有点数的正方体玩具)先后抛掷次,至少出现一次点向上的概率是 ( )2.已知盒中装有只螺口与只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第次才取得卡口灯炮的`概率为: ( )3.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是,这位司机遇到红灯前,已经通过了两个交通岗的概率是 ;4.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.求该题被乙独立解出的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
一、利用空间向量表示平行、垂直问题 1.若直线l∥平面α,直线l的方向向量为s、平面α的法向量为n,
则下列结论正确的是(
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
二、空间位置关系的向量表示
山 东 金 太 阳 书 业 有 限 公 司
菜 单 隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
三、利用空间向量求空间角 1.求两条异面直线所成的角
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
(1)解法一 令 n=(x,y,z)为平面 PAD 的一个法向量, 1 z = →· 2y, -y+2z=0, n=0, DP 则 即 ∴ → 2 3 x + 3 y = 0 , n=0, DA· x=- 3y, 2 令 y=2,得 n=(- 3,2,1). → =- 3× 3+2×0+1×3=0, ∵n· CM 2 2 → ,又 CM⊄平面 PAD,∴CM∥平面 PAD. ∴n⊥CM
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
二、空间向量求空间角
3.判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)若两直线的方向向量不平行,则两直线不平行.( (2)若两平面的法向量平行,则两平面平行.( ) )
(3)两直线的方向向量所成的角就是两条直线所成的角.(
)
A.s=(-1,0,2),n=(1,0,-1) B.s=(-1,0,1),n=(1,2,-1) C.s=(-1,1,1),n=(1,2,-1) D.s=(-1,1,1),n=(-2,2,2) 解析:直线与平面平行,直线的方向向量和平面的法向量垂直, 经检验只有选项C中s·n=0,故选C. 答案:C 山 东 金 太 阳 书 业 有 限 公 司
菜 单Leabharlann 隐 藏高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
1. 如 图 所 示 , 在 多 面 体 ABCDEF 中 , 四 边 形 ABCD 是 正 方 形 , EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H是BC的中 点. (1)求证:FH∥平面EDB; (2)求证:AC⊥平面EDB. 山 东 金 太 阳 书 业 有 限 公 司
1.通常取直线上两个特殊点构成直线的方向向量;当直线平行于 x轴、y轴或z轴时,直线的方向向量可分别取i=(1,0,0),j=(0,1,0),k= (0,0,1). 2.一个平面的法向量有无数多个,任意两个都是共线向量. 3.若能找出平面的垂线,则垂线上取两个特殊点可构成平面的一 个法向量. 山 东 4.若通过解三元一次方程组(仅两个方程组成)求平面的法向量时, 金 太 不妨取z=1. 阳 5.利用空间向量证明平行垂直关系的关键是确定直线的方向向量 书 业 及平面的法向量.同时要结合图形根据要证的平行式垂直关系转化为 有 限 直线方向向量与平面的法向量之间的关系. 公 司
菜 单 隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
6.异面直线所成的角、直线和平面所成的角、二面角都可以转化成 空间向量的夹角来求. 7.空间向量的夹角与所求角的范围不一定相同,如两向量的夹角范
山 东 金 8.用平面的法向量求二面角时,二面角的大小与两平面法向量的夹 太 阳 书 角有相等和互补两种情况. 业 有 限 公 司
设a,b分别是两异面直线l1,l2的方向向量,则
山 东 金 太 阳 书 业 有 限 公 司
菜 单 隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
2.求直线与平面所成的角 设直线 l 的方向向量为 a,平面 α 的法向量为 n,直线 l 与平面 α 所
菜 单 隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
证明:∵四边形ABCD为正方形,∴AB⊥BC. 又∵EF∥AB,∴EF⊥BC. 又∵EF⊥FB,∴EF⊥平面BFC.∴EF⊥FH, ∴AB⊥FH. 又∵BF=FC,H为BC的中点,∴FH⊥BC. ∴FH⊥平面ABC. 山 东 金 太 阳 书 业 有 限 公 司
|a· n| |a||n| |cos<a,n>| =____________. 成的角为 θ,则 sin θ=____________
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
3.求二面角的大小 (1)若 AB,CD 分别是二面角 α lβ 的两个面内与棱 l 垂直的异面直 → 与CD → 向量AB 线,则二面角的大小就是______________ 的夹角.
(2)设n1,n2分别是二面角α -l -β的两个面α,β的法向量,则向量 二面角的平面角的大小 n1与n2的夹角(或其补角)的大小就是 ______________________( 如图②
③).
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
3 3 4,0),P(0,0,2),M ,0, , 2 2 3 3 → → → ∴DP=(0,-1,2),DA=(2 3,3,0),CM= ,0, , 2 2
研考向 考 点 探 究 提素能 高 效 训 练
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
高考总复习 A 数学
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
第七节
最新考纲展示
立体几何中的向量方法
2.能用向量语言表述
1.理解直线的方向向量及平面的法向量.
线线、线面、面面的平行和垂直关系.
山 东 何中有关线面位置关系的一些简单定理 (包括三垂线定理). 4.能用向 金 量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题, 太 阳 书 了解向量方法在研究立体几何问题中的应用. 业 有 限 公 司
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
2.设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若 α⊥β,则t=( A .3 C.5 答案:C ) B.4 D.6 山 东 金 太 阳 书 业 有 限 公 司
解析:∵α⊥β,则u·v=-2×6+2×(-4)+4t=0,∴t=5.
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
规律方法
(1)恰当建立坐标系,准确表示各点与相关向量的坐标,
是运用向量法证明平行和垂直的关键. (2)证明直线与平面平行,只需证明直线的方向向量与平面的法向 量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量 共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为 向量运算. (3)证明直线与直线垂直,只需要证明两条直线的方向向量垂直, 而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明. 山 东 金 太 阳 书 业 有 限 公 司
在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上, PB=4PM,PB与平面ABCD成30°的角. 山 东 金 太 阳 书 业 有 限 公 司
(1)求证:CM∥平面PAD;
(2)求证:平面PAB⊥平面PAD.
菜 单 隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
解析 以 C 为坐标原点,CB 所在直线为 x 轴,CD 所在直线为 y 轴, CP 所在直线为 z 轴建立如图所示的空间直角坐标系 C xyz. ∵PC⊥平面 ABCD, ∴∠PBC 为 PB 与平面 ABCD 所成的角,∴∠PBC=30° . ∴PC=2,∴BC=2 3,PB=4.∴D(0,1,0),B(2 3,0,0),A(2 3,
研考向 考 点 探 究 提素能 高 效 训 练
→ =(- 3,2,1). (2)取 AP 的中点 E,则 E( 3,2,1),BE ∵PB=AB,∴BE⊥PA. →· → =(- 3,2,1)· 又∵BE DA (2 3,3,0)=0, → ⊥DA → ,∴BE⊥DA,又 PA∩DA=A. ∴BE ∴BE⊥平面 PAD,又∵BE⊂平面 PAB, ∴平面 PAB⊥平面 PAD.
山 东 金 太 阳 书 业 有 限 公 司
菜 单
隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
→ =(0,1,-2),PA → =(2 3,4,-2), 解法二 ∵PD → =xPD → +yPA → ,则 令CM 3 2 =2 3y, 0=x+4y, 3 2=-2x-2y,
菜 单 隐 藏
高考总复习 A 数学
抓主干 知 识 回 扣
研考向 考 点 探 究 提素能 高 效 训 练
x=-1, 方程组有解为 1 y=4.