110KV降压变电站电气一次部分初步设计
(完整版)110kv变电站一次电气部分初步设计
110kv变电站一次电气部分初步设计毕业设计题目110KV变电站一次电气初步设计学生姓名谭向飞学号20XX309232 专业发电厂及电力系统班级20XX3092 指导教师陈春海评阅教师完成日期20XX 年11月6日三峡电力职业学院毕业设计课题任务书课题名称学生姓名指导教师谭向飞陈春海 110kV 变电站一次电气初步设计专业指导人数发电厂及电力系统班号 20XX3096 课题概述:一、设计任务 1.选择110kV变电站接线形式; 2.计算110kV变电站的短路电流;3.选择110kV变电站的变压器,高/低压侧断路器、隔离开关、母线、电流互感器、电压互感器,并校验。
二、设计目的掌握变电站一次电气设计的计算,能选择电气设备。
三、完成成果110kV变电站一次电气接线及设备选择。
I原始资料及主要参数: 1、110kV渭北变所设计最终规模为两台110/10kV主变,110kV两回进线路,变压器组接线线,10kV8回馈线,预计每回馈线电流为400A, 2、可行研究报告中变压器调压预测结果需用有载调压方式方可满足配电电压要求,有载调压开关选用德国MR公司M型开关,#2主变型号SZ9-40000/110, 5×110+-32%/,YNd11,Uk%=。
3、110kV配电装置隔离开关GW5-110ⅡDW/630;断路器3AP1-FG-145kV, 3150A﹑40kA;复合绝缘干式穿墙套管带CT 2×300/5;中心点隔离开关GW13-63/630,避雷器HY5W-108/268及中心点/186。
4、出八回线路、10kVⅡ段母线设备﹑变二侧开关分段以及电容补偿。
10kV断路器选用ZN28E-12一体化弹簧储能操作,支架落地安装;主变10kV 侧及分段隔离开关用GN22-10G手动操作;10kV线路及电容器隔离开关用GN19-10Q手动操作;出线CT两相式,二组次级绕组,用作测量和保护;电容器回路三相式;变二侧CT 三组次级用作测量﹑纵差﹑过流及无流闭锁。
110KV降压变电站电气一次系统设计
110KV降压变电站电气一次系统设计原始资料如下:(一)电压等级110/35/10KV地方降压变电站(二)负荷情况35KV侧:最大27MW,最小13MW,年最大持续时间6000小时,COS&=0.8510KV侧:最大16MW,最小10MW,年最大持续时间6000小时,COS&=0.85(三)出线回路110KV侧2回(架空线)35KV侧8回(架空线)10KV侧10回(其中电缆4回)(四)系统情况S1系统110KV母线短路容量2000MVA,S2系统110KV母线短路容量2500MVA,正常运行方式下,S1与S2无功率交换设计成果:设计说明书一份,短路电流计算书一份,设备表一份,电气主接线图、屋内外配电装置设计图、防雷及接地保护设计图、总平面布置图共6-8张2.变电所主变的选定2.1 概述在发电厂和变电所中,用来向电力系统或用户输送功率的变压器,称为主变压器。
主变压器的容量,台数直接影响主接线的形式和配电装置结构。
变电所主变压器容量,除应根据传递容量基本资料外,还应按5~10年规划符合来选择。
根据城市规划、负荷性质、电网结构等综合考虑确定其容量。
对重要变电所,应考虑当一台主变压器停运时,其余变压器容量在计及过负荷能力允许范围内,应满足Ⅰ类和Ⅱ类负荷的供电;对一般性变电所,当一台主变压器停运时,其余变压器容量应能满足全部负荷的70%~80%[2]。
变电所主变压器的台数与电压等级、接线形式、传输容量以及和系统的联系有密切关系。
通常与系统具有强联系的枢纽变电所,在一种电压等级下,主变压器应不少于2台;对于弱联系的低压侧电压为6~10kv的变电所或与系统的联系只是备用性质时,可只装1台主变压器;对地区性孤立的一次变电所或大型工业专用变电所,可设3台主变压器。
变压器是一种静止电器,运行实践证明它的工作是比较可靠的。
一般寿命为20年,事故率较小,通常设计时,不必考虑另设专用备用变压器。
按照以上原则确定变压器容量后,最终应选用靠近的国家系列标准规格。
110kV变电站电气一次部分课程设计
110kV变电站电气一次部分课程设计课程设计任务书设计题目:110kV变电站电气一次部分设计前言变电站(Substation)改变电压的场所。
是把一些设备组装起来,用以切断或接通、改变或者调整电压。
在电力系统中,变电站是输电和配电的集结点。
主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。
对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。
随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。
本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。
其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。
其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。
目录第1章原始资料及其分析 (4)1原始资料 (4)2原始资料分析 (6)第2章负荷分析 (6)第3章变压器的选择 (8)第4章电气主接线 (11)第5章短路电流的计算 (14)1短路电流计算的目的和条件 (14)2短路电流的计算步骤和计算结果 (15)第6章配电装置及电气设备的配置与选择 (18)1 导体和电气设备选择的一般条件 (18)2 设备的选择 (19)结束语 (25)致谢 (26)参考文献 (27)附录一:一次接线图第一章原始资料及其分析1.原始资料待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。
1.1电压等级变电站的电压等级分别为110kV,35kV,10kV。
110KV降压变电所电气一次部分设计方案
黄冈职业技术学院毕业设计110KV降压变电所电气一次部分设计学院机电学院专业发电厂及电力系统班级电力200901班姓名余鹏飞学号 200908011117指导教师杜伟伟目录摘要 (1)重点词 (1)引言 (2)第1章绪论 (3)变电站发展的历史与现状 (3)课题根源及设计背景 (3)第2章变电站负荷计算和无功赔偿的计算 (5)变电站的负荷计算 (5)无功赔偿的目的 (6)无功赔偿的计算 (6)第3章主接线方案确实定 (6)主接线的基本要求 (7)主接线的方案与剖析 (8)电气主接线确实定 (9)第4章主变压器台数和容量的选择 (10)变压器的选择原则 (11)变压器台数的选择 (11)变压器容量的选择 (11)第5章防雷与接地方案的设计 (12)防雷保护 (13)接地装置的设计 (13)第6章短路电流的计算 (14)绘制计算电路 (15)短路电流计算 (15)第7章电气设备的选择 (17)导体和电气设备选择的一般条件 (18)断路器的选择 (19)隔走开关的选择 (21)互感器的选择 (22)结论 (23)参照文件 (26)110KV降压变电所电气一次部分设计摘要:跟着经济的发展和现代工业建设的快速兴起,供电系统的设计愈来愈全面、系统,工厂用电量快速增添,对电能质量、技术经济状况、供电的靠谱性指标也日趋提升,所以对供电设计也有了更高、更完美的要求。
设计能否合理,不单直接影响基建投资、运转花费和有色金属的耗费量,也会反应在供电的靠谱性和安全生产方面,它和公司的经济效益、设备人身安全亲密有关。
变电站是电力系统的一个重要构成部分,由电器设备及配电网络按必定的接线方式所构成,他从电力系统获得电能,经过其变换、分派、输送与保护等功能,而后将电能安全、靠谱、经济的输送到每一个用电设备的转设场所。
作为电能传输与控制的枢纽,变电站一定改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋向。
110-35kv降压变电所电气一次部分设计
从以上校验可知断路器满足使用要求,故确定选用 SW2—35
II/1500 型少油断路器。
(3)断路器配用 CD3—XG II 型弹簧操作机构。
6.2 隔离开关的选择
6.2.1 110kV 侧隔离开关的选择 1)根据配电装置的要求,选择隔离开关带接地刀闸。 2)该隔离开关安装在户外,故选择户外式。 3)该回路额定电压为 110kV,因此所选的隔离开关额定电压
(3)、对于其它发电机侧电源 XΣ*=1/4(Xd+XT2+XL) =0.649
Xca*=XΣ* =0.649×(60/0.8)/100=0.517 查短路电流运算曲线[(一) t=0],得 I”*=2.0
I”G2=I”*
=2.0×(60/0.8)/(1.732×37)=2.341(kA)
短路冲击电流:iM3=2.55 I”G=2.55×2.341=5.970(kA)
Ue≥ 110kV,且隔离开关的额定电流大于流过断路器的最大持续电流 ImaX=1.05×(60/0.8)/(1.732×115)=0.395(kA)
4)初 GW4—110D 型单接地高压隔离开关其主要技术参数如 下:
型号
额定 电压 kV
额定 最大工作 接地
电流 电压 刀闸
kA
kV
A
极限通过电流 kA 有效值 峰值
4S 热稳 定电流
kA
备注
GW4-110D 110 1250 126 2000
32
5)校验所选的隔离开关
55
10 双接地
ห้องสมุดไป่ตู้
(1)动稳定校验
动稳定电流等于极限通过电流峰值即 idw = 55kA
流过该断路器的短路冲击电流 iM = 4.508 kA.s
毕业论文(设计)-某110KV降压变电所电气一次部分初步设计
重庆水利电力职业技术学院专科生毕业论文(设计)题目:某110KV降压变电所电气一次部分初步设计系别专业学号姓名指导教师年月日摘要变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用.电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
为满足经济发展的需要,根据有关单位的决定修建1座110KV降压变电所.首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。
从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。
关键词:变电所主变压器短路计算选型目录一原始资料 (6)1.1原始资料 (6)1。
2对原始资料的分析计算 (6)二 110KV盐北变电所主变选择 (8)2.1主变方案选择 (8)2.2主变容量、参数选择 (9)三所用变选择 (11)四主接线设计 (12)4.1选择原则 (12)4.2 110KV主接线设计 (12)4.3 35KV主接线设计 (13)4。
4 10KV主接线设计 (13)五短路电流计算 (14)5。
1选择短路电流计算点 (14)5.2短路电流计算 (14)六变电所电气设备选择 (19)6。
1选择设备的基本原则 (19)6。
2断路器的选择 (20)6.3隔离开关的选择 (26)6。
4电流互感器的选择 (32)6。
推荐-110kV变电站电气一次部分初步设计1 精品
重庆电力高等专科学校重庆教培中心教学点毕业专业:电力系统自动化班级:变检0602二OO九年四月内容提要根据设计任务书的要求,本次设计为110kV变电站电气一次部分初步设计,并绘制电气主接线图及其他图纸。
该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。
各个电压等级分别采用单母线分段接线、单母线分段带旁母线和单母线分段接线。
本次设计中进行了电气主接线的设计。
电路电流计算、主要电气设备选择及效验(包括断路器、隔离开关、电流互感器、母线等)、各电压等级配电装置设计及防雷保护的配置。
本设计以《电力工程专业指南》、《电力工程电气设备手册》、《高电压技术》、《电气简图用图形符号(GB/T4728.13)》、《电力工程设计手册》、《城乡电网建设改造设备使用手册》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。
目录前言第一部分110kV变电站电气一次部分设计说明书第1章原始资料第2章电气主接线设计第2.1节主接线的设计原则和要求第2.2节主接线的设计步聚第2.3节本变电站电气接线设计第3章变压器选择第3.1节主变压器选择第3.2节站用变压器选择第4章短路电流计算第4.1节短路电流计算的目的第4.2节短路电流计算的一般规定第4.3节短路电流计算的步聚第4.4节短路电流计算结果第5章高压电器设备选择第5.1节电器选择的一般条件第5.2节高压断路器的选择第5.3节隔离开关的选择第5.4节电流互感器的选择第5.5节电压互感器的选择第5.6节高压熔断器的选择第6章配电装置设计第7章防雷保护设计第二部分110kV变电站电气一次部分设计计算书第1章负荷计算第1.1节主变压器负荷计算第1.2节站用变压器负荷计算第2章短路电流计算第2.1节三相短路电流计算第2.2节站用变压器低压侧短路电流计算第3章线路及变压器最大长期工作电流计算第3.1节线路最大长期工作电流计算第3.2节主变进线最大长期工作电流计算第4章电气设备选择及效验第4.1节高压断路器选择及效验第4.2节隔离开关选择及效验第4.3节电流互感器选择及效验第4.4节电压互感器选择及效验第4.5节熔断器选择及效验第4.6节母线选择及效验第5章防雷保护计算第三部分110KV变电站电气一次部分设计图纸电气主接线图总结参考文献致谢前言变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,直接影响整个电力系统的安全与经济运行。
110KV变电站电气一次部分初步设计说明书.docx
110KV变电站电气一次部分初步设计说明书第一部分设计说明书第1章原始资料该课题来源于工程实际,建设此变电站是为了满足该地区输变电的需要。
本次设计的变电站高压侧从相距 6.5km 的 PX110kV变电站受电,经过降压后分别以35kV、10kV 两个电压等级输出。
它在系统中起着重要的作用,它是变换电压、汇集和分配电能的电网环节,可以降低输电时电线上的损耗,主要的作用是将高压电降为低压电,经过降压后的电才可接入用户。
1.1 建站规模(1)、变电站类型:待建电站属于110kV 变电工程。
(2)、主变台数及容量:待建DK110kV 变电站主变台数及容量为:本期2×31.5MVA,远景规划: 2× 31.5MVA。
(3)、主变台数及容量:待建DK110kV 变电站主变台数及容量为:本期2×31.5MVA,远景规划: 2× 31.5MVA。
(4)、进出线:待建DK110kV变电站从相距6.5km 的 PX110kV变电站受电,线径 LGJ-240;变电站进出线 ( 全部为架空线 ) ,110kV共 2 回;35kV 共 4 回;10KV 共16回。
(5)负荷情况:待建 DK110kV变电站年负荷增长率为 5%,变电站总负荷考虑五年发展规划。
(6)无功补偿:待建DK110kV变电站无功补偿装置采用电力电容两组,容量为 2×3000kvar 。
(7)建站规模:待建DK110kV变电站所占地面积可采用半高型布置。
1.2 、短路阻抗系统作无穷大电源考虑,归算到本站110kV 侧母线上的阻抗标幺值X1= X 20.06 , X 00.154 (取 S B100 MVA, E S 1.0 )。
1.3 、地区环境条件待建 DK110kV变电站所在地区年最高气温35℃,年最低气温- 15℃,年平均气温 15℃。
第 2 章电气主接线设计电力系统是由发电厂、变电站、线路和用户组成。
(完整)110KV变电所一次部分设计
课程设计(论文)题目 110KV变电所一次部分设计学院名称电气工程学院指导教师职称讲师班级电力113班学号学生姓名2014年 6月 30日电气工程基础设计任务书一、设计内容要求设计110KV变电所(B所)的电气部分二、原始资料1供设计的变电所有A、B、C三个,各自的地理位置和系统发电机、变压器相关数据如附图1所示.附图1 各变电所的地理位置2各变电所的10kV低压负荷分别为P a=500kW,P b=300kW,P c=200kW.3各变电所典型负荷曲线有两种,分别如附图2(a)和附图2(b)所示。
4110kV输电线路l1、l2、l3、l4的长度各不相同,电抗均按0。
4Ω/km计.5每位同学设计的原始数据,除了P a=500kW,P b=300kW,P c=200kW之外,其它数据应根据自己所在班级的序号,在附表1中查找。
附图2 典型日负荷曲线附表1 每位同学设计原始数据查找表三、设计任务(1)设计本变电所的主变压器台数、容量、形式。
(2)设计高低压侧主接线方式。
(3)设计本变电所的所用电接线方式。
(4)计算短路电流。
(5)选择电气设备(包括断路器、隔离开关、互感器等)。
设计成果1.设计说明书一份 2。
计算书一分 3。
主接线图一份要求:上述3者按顺序装订成一册(简装,钉书针左边钉好3颗,勿用夹子夹)五、主要参考资料[1]姚春球。
发电厂电气部分。
北京:中国电力出版社:2004[2]电力工业部西北电力设计院.电力工程电气设备手册(第一册).北京:中国电力出版社,1998 [3]周问俊.电气设备实用手册.北京:中国水利水电出版社,1999[4]陈化钢。
企业供配电。
北京:中国水利水电出版社,2003。
9[5]电力专业相关教材和其它相关电气手册和规定摘要:本次设计为110kV降压变电站电气一次部分的初步设计,根据原始资料,以设计任务书和国家有关电力工程设计的规程、规范及规定为设计依据.变电站的设计在满足国家设计标准的基础上,尽量考虑当地的实际情况。
110kV变电站电气一次部分初步设计资料
110kV变电站电气一次部分初步设计资料三峡电力职业学院毕业设计《110kV变电站电气一次部分初步设计》设计人:王海风设计时间: 7月1摘要根据设计任务书的要求,本次设计为110kV变电站电气一次部分初步设计,并绘制电气主接线图及其它图纸。
该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。
各个电压等级分别采用单母线分段接线、单母线分段接线和单母线分段接线。
本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线等)、各电压等级配电装置设计、直流系统设计以及防雷保护的配置。
2目录绪论 (1)第1章变电站总体分析 (2)1.1 变电站总体分析 (2)第2章负荷分析计算与主变压器的选择 (4)2.1负荷分析计算 (4)2.2主变选择 (6)2.3 无功补偿 (8)第3章电气主接线设计............................................... 错误!未定义书签。
3.1主接线的设计原则和要求 (11)3.2主接线的设计步骤 ................................................ 错误!未定义书签。
3.3 电气主接线设计..................................................... 错误!未定义书签。
第4章短路电流计算及电气设备选择 ....................... 错误!未定义书签。
34.1 短路电流的危害..................................................... 错误!未定义书签。
4.2电气设备选择 ........................................................ 错误!未定义书签。
110kV变电站电气一次部分设计
发电厂课程设计报告110kV变电站电气一次部分设计摘要电力工业是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的位置,是时间国家现代化的战略重点。
电能是一种无形的、不能大量储存的二次能源。
电能的发、变、送、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。
要满足国民经济发展的要求就必须加强电网建设,而变电站建设就是电网建设中的重要一环。
在变电站的设计中,既要求所变电能能很好地服务于工业生产,又要切实保证工厂生产和生活的用电的需要,并做好节能工作,就必须达到以下基本要求:安全,在变电过程中,不发生人身事故和设备事故。
可靠,所变电能应满足电能用户对用电的可靠性的要求。
优质,所变电能应满足电能用户对电压和频率等质量的要求。
经济变电站的投资要少,输送费用要低,并尽可能地节约电能、减少有色金属的消耗量和尽可能地节约用地面积。
由原始资料可以知道,该地区变电所所涉及方面多,考虑问题多,分析变电所担负的任务及用户负荷等情况,选择所址,利用用户数据进行负荷计算,确定用户无功功率补偿装置。
同时进行各种变压器的选择,从而确定变电站的接线方式,再进行短路电流计算,选择送配电网络及导线,进行短路电流计算。
选择变电站高低压电气设备,为变电站平面及剖面图提供依据。
本变电站的设计包括了:总体方案的确定、负荷分析、短路电流的计算、高低压配电系统设计与系统接线方案选择、继电保护的选择与整定、防雷与接地保护等内容。
随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。
变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。
关键词:变电站变压器接线高压网络配电系统目录第一部分变电站(所)电气一次部分设计说明书一、原始资料 (1)二、电气主接线设计 (2)三、主变压器变的选择 (6)四、站(所)用变压器的选择 (7)五、高压电气设备选择 (10)高压断路器的选择及校验 (12)隔离开关的选择及校验 (13)电流互感器的选择及校验 (14)电压互感器的选择及校验 (14)高压熔断器的选择及校验 (17)母线选择及校验 (18)电缆选择及校验 (18)六、防雷及过电压保护装置设计 (19)第二部分变电站(所)电气一次部分设计计算书七、负荷计算 (21)八、短路电流计算 (22)九、电气设备选择及校验计算 (32)高压断路器的选择及校验 (33)隔离开关的选择及校验 (35)电流、电压互感器的选择及校验 (37)高压熔断器的选择及校验 (40)母线选择及校验 (40)电缆选择及校验 (45)四、防雷保护计算 (45)结束语 (49)参考文献 (50)第一部分变电站电气一次部分设计说明书一、110KV降压变电站一次部分设计原始资料1.1 进线1.3 环境条件变电所位于某城市,地势平坦,交通便利,空气污染较重,区平均海拔200米,最高气温39℃,最低气温2℃,年平均雷电日90日/年,土壤电阻率高达300 .M1.4 短路阻抗系统作无穷大电源考虑二、电气主接线设计电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要求用规定的设备文字和图形符号,并按工作顺序排列,详细地表示电气设备或成套装置全部基本组成和连接关系,代表该变电站电气部分的主体结构,是电力系统结构网络的重要组成部分。
110kV降压变电所电气一次部分的设计毕业设计
摘要本毕业设计通过对110KV变电站一次部分的设计,完成了对负荷的分析、主变压器的选择、无功补偿装置的选择、电气主接线的选择、各电压等级负荷的计算、最大持续工作电流及短路电流的计算、变压器、高压断路器、隔离开关、母线、绝缘子和穿墙套管、电流互感器、电压互感器、接地刀闸、避雷器的配置、选择、校验工作。
关键词:电气一次部分设计计算短路电流变电站110kV降压变电所电气一次部分的设计第一章:设计概况一.设计题目110kV降压变电所电气一次部分的设计二.所址概况1.所址地理位置及地理条件变电所位于某中型城市边缘,所区西为城区,南为工业区,所址地势平坦,交通便利,进出线方便,空气污染轻微,不考虑对变电所的影响。
2.所区平均海拔200米,最高气温40℃,最低气温-18℃,年平均气温14℃,最热月平均最高气温30℃,土壤温度25℃。
三.系统情况如下图:四.负荷情况:五.设计任务1.负荷分析及主变压器的选择。
2.电气主接线的设计。
3.变压器的运行方式以及中性点的接地方式。
4.无功补偿装置的形式及容量确定。
5.短路电流计算(包括三相、两相、单相短路)6.各级电压配电装置设计。
7.各种电气设备选择。
8.继电保护规划。
9.主变压器的继电保护整定计算。
六.设计目的总体目标:培养学生综合运用所学各科知识,独立分析和解决实际工程问题的能力。
第二章:负荷分析及主变选择一.负荷分析:1.负荷分类及定义1)一级负荷:中断供电将造成人身伤亡或重大设备损坏,切难以修复,带来极大的政治、经济损失者,属于一级负荷。
一级负荷要求有两个独立电源供电。
2)二级负荷:中断供电将造成设备局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。
二级负荷应由两回线供电。
但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。
3)三级负荷:不属于一级和二级的一般电力负荷。
三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。
最新110kV变电所电气一次部分初步设计
110k V变电所电气一次部分初步设计洹安110kV变电所电气一次部分初步设计摘要此次110kV变电站电气一次部分初步设计包括:主变压器2台,容量为2x50000kVA,型号为SFSZ9-50000/110。
110kV采用单母分段带旁路接线方式;其出线为4回,本期为2回。
其母线采用管形母线,断路器采用LW6-110型SF6高压断路器,隔离开关采用GW4-110型户外高压隔离开关,电流互感器采用LB3-110型油浸式带保护用电流互感器,电压互感器采用JCC6-110型电压互感器。
35kV采用单母分段带旁路接线方式;其出线为8回,本期为6回。
其母线采用单条矩形母线,断路器采用LW6-35型SF6高压断路器,隔离开关采用GW4-35型户外高压隔离开关,电流互感器采用LB3-35型油浸式带保护用电流互感器,电压互感器采用JDX6-35型油浸式电压互感器。
10kV采用单母分段接线方式;其出线本期为14回,另有2回备用。
其母线采用管形母线,断路器采用ZN-10型真空断路器,隔离开关采用GN10型户内高压隔离开关,电流互感器采用LAJ-10型套管式户内用电流互感器,电压互感器采用JSJW-10型油浸式电压互感器。
关键词:变电所变压器接线洹安110kV变电所电气一次部分初步设计第一部分设计说明书第一章电气主接线设计第一节电气主接线的设计原则和要求变电所电气主接线系指变电所的变压器,输电线路怎样与电力系统相连接,从而完成输配电任务。
变电所的主接线是电力系统接线组成的一个重要组成部分。
主接线的确定,对电力系统的安全、稳定、灵活、经济运行以及变电所电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会产生直接的影响。
一、主接线的设计原则(一)考虑变电所在电力系统中的地位和作用变电所在电力系统中的地位和作用是决定主接线的主要因素。
变电所是枢纽变电所、地区变电所、终端变电所、企业变电所还是分支变电所,由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。
110kV变电所电气一次部分初步设计-电气自动化-毕业论文
学士学位论文110kV变电所电气一次部分初步设计摘要关键词:变电所;电气一次主接线;一次电气设备;二次电气设备;防雷设计;配电设计AbstractThe substation is the core part of the power transmission and transformation field. The substation consists of a large number of equipment, with a variety of functions such as switching voltage levels and transmitting power over long distances. With the continuous expansion of the power supply range of the power system, people's demand for power quality is gradually improved. With the rapid development of human civilization, substation has its core value in both urban and rural areas. Therefore, it is more and more important for human beings to design and build a high-quality substation. This graduation project is to design a 110kV substation. First, according to various relevant technical requirements and regulations, the wiring modes corresponding to different voltage levels are selected. The main basis is: economic and reliable, flexible operation, and then with the actual requirements, the selection of the best field conditions in line with the wiring mode. Secondly, according to the requirements in the instruction book, the equipment selection and verification are carried out by calculating the steady-state current in the design and the short-circuit impact current values in various places. Finally, lightning protection design of substation, distribution device design and general plane design.Key words:substation; Primary electrical wiring; Primary electrical equipment; Secondary electrical equipment; Lightning protection design; The power distribution design目录摘要 (I)第一章绪论 (1)1.1设计背景 (1)1.2设计内容 (1)第二章负荷计算及主变压器的选择 (2)2.1概述 (2)2.2负荷计算 (2)2.3主变压器的选择 (3)2.3.1 主变压器台数选择 (3)2.3.2 主变压器容量的确定 (3)第三章选择电气主接线 (4)3.1概述 (4)3.2设计原则 (4)3.3设计要求 (4)3.4主接线方案的确定 (5)第四章短路电流计算 (7)4.1短路电流计算 (7)第五章电气设备的选择 (10)5.1概述 (10)5.2母线选择 (10)5.2.1 110kV侧母线选择 (10)5.2.2 10kV母线选择及校验 (12)5.2.3 10KV侧出线选择及校验 (13)5.2.4 35kV侧母线选择 (13)5.2.5 35KV侧出线选择及校验 (14)5.3断路器的选择与校验 (14)5.3.1 110kV断路器的选择及校验 (14)5.3.2 10kV侧断路器的选择及校验 (15)5.3.3 35kV断路器的选择及校验 (16)5.4隔离开关的选择与校验 (17)5.4.1 110kV侧隔离开关的选择与校验 (17)5.4.2 10kV侧进线隔离开关的选择与校验 (17)5.4.3 10kV侧出线隔离开关的选择与校验 (18)5.4.4 35kV侧进线隔离开关的选择与校验 (18)5.4.5 35kV侧出线隔离开关的选择与校验 (18)5.5电力电容的选择 (19)5.6绝缘子及穿墙套管的选择 (19)5.6.1 绝缘子的选择 (19)5.6.2 穿墙套管的选择 (20)5.7熔断器的选择 (21)5.8电流互感器的选择 (23)5.8.1 110kV侧电流互感器的选择 (23)5.8.2 10kV侧电流互感器的选择 (24)5.8.3 10kV侧出线电流互感器的选择 (24)5.8.4 35kV侧电流互感器的选择 (24)5.8.5 35kV侧出线电流互感器的选择 (25)5.9电压互感器的选择 (25)5.10所用变的选择 (26)5.10.1 10kV所用变的选择 (26)5.10.2 35kV所用变的选择 (26)第六章配电装置设计 (28)6.135K V、110K V配电装置设计 (28)6.210K V配电装置设计 (28)第七章防雷设计 (30)7.1受防雷装置保护的设备 (30)7.2避雷针的设计 (30)参考文献 (32)致谢 (33)第一章绪论1.1 设计背景1.2 设计内容此次设计的主要工作是高压一次部分设计,同时选取配套的设备。
参考资料:110KV变电所电气一次部分初步设计
目录一、110KV变电所电气一次部分初步设计---------------------------------1二、设计任务书-------------------------------------------------------------------4三、设计成品------------------------------------------------------------------------四、主接线设计------------------------------------------------------------------- 〈一〉负荷分析统计---------------------------------------------------------------- 〈二〉主变选择--------------------------------------------------------------------- 〈三〉主接线方案拟定-------------------------------------------------------------- 〈四〉可靠性分析-------------------------------------------------------------------五、经济比较------------------------------------------------------------------------六、短路电流计算--------------------------------------------------------------------七、电气设备设计选择--------------------------------------------------------------〈一〉选择母线-----------------------------------------------------------------------〈二〉选择断路器、隔离开关------------------------------------------------------〈三〉选择10KV母线的支持绝缘子---------------------------------------------〈四〉选择110KV一回出线上一组CT-----------------------------------------八、配电装置设计-------------------------------------------------------------------一.110KV变电所电气一次部分初步设计参考资料1.本所设计电压等级:110/35/10K2.系统运行方式:不要求在本所调压3.电源情况与本所连接的系统电源共有3个,其中110KV两个,35KV一个.具体情况如下:(1)110KV系统变电所该所电源容量(即110KV系统装机总容量)为200MV A(以火电为主)。
110KV降压变电站电气一次部分初步设计
110KV降压变电站电气一次局部初步设计一、变电站的作用1.变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进展生产〔发电机〕、变换〔变压器、整流器、逆变器〕、输送和分配〔电力传输线、配电网〕,消费〔负荷〕;另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。
2.电力系统供电要求〔1〕保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的平安,形成十分严重的后果。
停电给国民经济造成的损失远远超过电力系统本身的损失。
因此,电力系统运行首先足可靠、持续供电的要求。
〔2〕保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负—0.5%HZ等,波形质量那么以畸变率是否超过给定值来衡量。
〔3〕保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。
因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。
二、变电站与系统互联的情况1.待建变电站根本资料〔1〕待建变电站位于城郊,站址四周地势平坦,站址附近有三级公路,交通方便。
〔2〕该变电站的电压等级为110KV,35KV,10KV三个电压等级。
110KV是本变电站的电源电压,35KV,10KV是二次电压。
〔3〕该变电站通过双回110KV线路与100公里外的系统相连,系统容量为1250MVA,系统最小电抗〔即系统的最大运行方式〕为 0.2〔以系统容量为基准〕,系统最大电抗〔即系统的最小运行方式〕为 0.3。
2.35KV和10KV负荷统计资料35KV和10KV用户负荷统计资料如表1-1,1-2所示,最大负荷利用小时为Tmax=5500h,同时率取0.9,线损率取5%,功率因数取0.95。
110kv降压变电所电气一次部分的电气设计
目录第 1 章变电所概况 (1)1.1 工程概况 (1)1.2 变电所位置分 (1)第 2 章电气主接线设计 (1)2.1 设计原则 (1)2.2 方案论证 (2)2.3负荷的计算 (3)2.4主变压器的选择 (4)第3 章短路电流计算 (5)3.1 计算目的 (5)3.2计算过程 (6)第4 章母线及电气设备的选择..................................................................... .................... .7 4.1断路器和隔离开关的选择 (8)4.2母线的选择............................................................................................ .11 结论及心得体会.......................................................................................... . (15)参考文献 (16).第一章.变电所概况1.1工程概况根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。
从负荷增长方面阐明了建站的必要性,然后通过对拟建变电所的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110KV,10KV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压断路器,隔离开关,母线进行了选型,然后根据短路电流及冲击电流进行相关的校验,从而完成了110KV电气一次部分的设计,并力求在可靠性的前提下,做到运行操作简便,运行灵活,经济合理。
1.2变电所位置分待建的城中110KV降压变电所在城市近郊并向造纸厂、硅铁厂、电视机厂、毛纺厂、缝纫机厂、医院、自行车厂、学校供电。
110KV变电所电气一次部分设计
目录第一章绪论 (2)第二章电气主接线的方按及论证 (4)第一节6~220KV主接线 (4)第二节主接线的选择与设计 (11)第三节变压器接地方式 (14)第三章变电所电力变压器的选择 (15)第一节电力变压器的选择 (15)第二节功率因数和无功功率补偿 (16)第四章短路电流计算 (19)第一节短路电流计算的概述 (19)第二节短路电流的计算 (21)第五章变电所一次设备的选择 (24)第一节电气一次设备的选择原则 (24)第二节一次设备的选择与检验 (29)第三节导体的设计 (37)第四节高压熔断器的选择 (42)第六章高压配电装置 (44)第一节设计原则与要求 (44)第二节6---110KV配电装置 (47)第七章变电所防雷与接地规划 (49)第八章继电保护 (53)第一节概述 (53)第二节变压器的保护 (56)第三节母线的继电器保护 (57)第九章仪表规划 (58)设计总结................................................. 错误!未定义书签。
参考文献 (61)英文翻译 (61)致谢 (72)第一章绪论一、110KV变电所的技术背景近年来,我国的电力工业在持续迅速的发展,而电力工业是我国国民经济的一个重要组成部分,其使命包括发电、输电及向用户的配电的全部过程。
完成这些任务的实体是电力系统,电力系统相应的有发电厂、输电系统、配电系统及电力用户组成。
110KV变电所一次部分的设计,是主要研究一个地方降压变电所是如何保证运行的可靠性、灵活性、经济性。
而变电所是作为电力系统的一部分,在连接输电系统和配点系统中起着重要作用。
我们这次选题的目的是将大学四年所学过的《电力工程》、《电力系统自动化》、《电机学》、《电路》等有关电力工业知识的课程,通过这次毕业设计将理论知识得以应用。
二、设计依据这次设计的基本原则是以设计任务书为依据,以所学知识为基础,以国家经济建设的方针政策,技术规范为标准,结合工程的实际情况,在保证供电可靠性、高度灵活,满足各项技术要求的前提下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110KV降压变电站电气一次部分初步设计一、变电站的作用1.变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机)、变换(变压器、整流器、逆变器)、输送和分配(电力传输线、配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。
2.电力系统供电要求(1)保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的安全,形成十分严重的后果。
停电给国民经济造成的损失远远超过电力系统本身的损失。
因此,电力系统运行首先足可靠、持续供电的要求。
(2)保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负0.2—0.5%HZ 等,波形质量则以畸变率是否超过给定值来衡量。
(3)保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。
因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。
二、变电站与系统互联的情况1.待建变电站基本资料(1)待建变电站位于城郊,站址四周地势平坦,站址附近有三级公路,交通方便。
(2)该变电站的电压等级为110KV,35KV,10KV三个电压等级。
110KV是本变电站的电源电压,35KV,10KV是二次电压。
(3)该变电站通过双回110KV线路与100公里外的系统相连,系统容量为1250MVA,系统最小电抗(即系统的最大运行方式)为0.2(以系统容量为基准),系统最大电抗(即系统的最小运行方式)为0.3。
2.35KV和10KV负荷统计资料35KV和10KV用户负荷统计资料如表1-1,1-2所示,最大负荷利用小时为Tmax=5500h,同时率取0.9,线损率取5%,功率因数取0.95。
线路每相每公里电抗值X0=0.4Ω/km 基准电压UB取各级的平均电压,平均电压为1.05 额定电压。
三、电气主接线设计及主变压器的选择1.变电站电气主接线的设计原则①接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少的或不用断路器的接线,如线路—变压器组或桥型接线等。
在110—220kV 配电装置中,当出线为2回时,一般采用桥型接线,当出线不超过4 回时,一般采用单母线接线,在枢纽变电站中,当110—220kV 出线在4 回及以上时,一般采用双母线接线。
在大容量变电站中,为了限制6—10kV 出线上的短路电流,一般可采用下列措施:1)变压器分列运行;2)在变压器回路中装置分裂电抗器;3)采用低压侧为分裂绕组的变压器;4)出线上装设电抗器。
②断路器的设置:根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。
③为正确选择接线和设备,必须进行逐年各级电压最大最小有功和无功电力负荷的平衡。
2.主变压器的选择主变容量一般按变电站建成近期负荷5~10 年规划选择,并适当考虑远期10~15 年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,从长远利益考虑,根据地区供电条件、负荷性质、用电容量和运行方式等条件综合确定。
在有一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。
装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。
1)相数:容量为300MW 及以下机组单元接线的变压器和330kV 及以下电力系统中,一般都应选用三相变压器。
因为单相变压器组相对投资大,占地多,运行损耗也较大。
同时配电装置结构复杂,也增加了维修工作量。
2)绕组数与结构:电力变压器按每相的绕组数为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通双绕组、三绕组、自耦式及低压绕组分裂式等型式。
在发电厂或变电站中采用三绕组变压器一般不多于3 台,以免由于增加了中压侧引线的构架,造成布置的复杂和困难。
3)绕组接线组别:变压器三绕组的接线组别必须和系统电压相位一致。
否则,不能并列运行。
电力系统采用的绕组连接有星形“Y”和三角形“D”。
在发电厂和变电站中,一般考虑系统或机组的同步并列以要求限制3 次谐波对电源等因素。
根据以上原则,主变一般是Y,D11 常规接线。
4)调压方式:为了保证发电厂或变电站的供电质量,电压必须维持在允许范围内,通过主变的分接开关切换,改变变压器高压侧绕组匝数。
从而改变其变比,实现电压调整。
通常,发电厂主变压器中很少采用有载调压。
因为可以通过调节发电机励磁来实现调节电压,对于220kV 及以上的降压变压器也仅在电网电压有较大变化的情况时使用,一般均采用无激磁调压,分接头的选择依据具体情况定。
5)冷却方式:电力变压器的冷却方式随变压器型式和容量不同而异,一般有自然风冷却、强迫风冷却、强迫油循环水冷却、强迫油循环风冷却、强迫油循环导向冷却。
根据以上变压器选择原则,结合原始资料提供的信息,分析后决定本变电站用2台三相三绕组的变压器,并采用YN,yn0,d11接线。
由原始资料可知,P10=7.8MW,P35=6.9 MW设负荷同时率系数K1取0.9,线损平均取5%,即K2=1.05,功率因数cosφ取0.95。
则10kV 和35kV 的综合最大负荷分别为:S10MAX=K1K2P10/cosφ=0.9×1.05×7.8÷0.95=7.76(MVA)S35MAX=K1K2P35/cosφ=0.9×1.05×6.9÷0.95=6.86(MVA)每台变压器额定容量为:S N=0.6S M=0.6(S10MAX+S35MAX)=0.6×(6.86+7.76)=8.772(MVA)由此查询变电站设计参考资料选得的变压器参数如下表:检验:当一台主变不能正常工作时,只有一台主变工作且满载则,S1=10000KVA,占总负荷的百分比为10/14.62=68%,且还未计及变压器事故过负荷40%的能力,所以所选变压器满足要求。
3.电器主接线选择(单母线分段接线方式)优点:①、用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;②、当一段母线故障时,分段断路器自动将故障段切除,保证正常段母线不间断供电,故障时停电范围小,供电的可靠性提高;③、扩建时需向两个方面均衡扩建;④、接线简单清晰,操作方便,不易误操作,设备少,投资小,占地面积小,为以后的发展和扩建奠定了基础。
缺点:①、当一段母线或母线侧隔离开关故障或检修时,该母线的回路都要在检修期间停电。
②、当出线为双回路时,常使架空线路出现交叉跨越。
适用范围:适用于6~10kV 线路出线16 回及以下,每段母线所接容量不宜四、短路电流计算短路的危害:(1)通过故障点的短路电流和所燃起的电弧,使故障元件损坏;(2)短路电流通过非故障元件,由于发热和电动力的作用,引起他们的损坏或缩短他们的使用寿命;(3)电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量;(4)破坏电力系统并列运行的稳定性,引起系统震荡,甚至整个系统瓦解。
1.本变电站短路电流计算用标幺值进行计算,基准容量S B=100MVA,线路每相每公里电抗值由于本变电站所用三绕组变压器为降压变压器,所以其各电压侧阻抗电压正系统等值网络图如下:其中,三绕组变压器电抗标幺值:U T11%=U T21%=1/2(U d1-2%﹢U d1-3%﹣U d2-3%)=0.5×(10.5﹢17﹣6)=10.75U T12%=U T22%=1/2(U d1-2%﹢U d2-3%﹣U d1-3%)=0.5×(10.5﹢6﹣17)=﹣0.25U T13%=U T23%=1/2(U%﹢U d1-3%﹣U d1-2%)=0.5×(6﹢17﹣d2-310.5)=6.25则:X T11*=X T21*=U T11%/100·S B/S N=10.75÷100×100÷10=1.075X T12*=X T22*=0X T13*=X T23*=U T13%/100·S B/S N=6.25÷100×100÷10=0.625线路的电抗标幺值:X L1*=X L2*=X0·l·S B/U B2=0.4×100×100÷1152=0.3025系统电抗标幺值,由于要求三相短路电流,所以用最大运行方式下的系统电抗:X S *=X Smin ·S B /S S =0.2×100÷1250=0.016由此得到含短路点的等值网络简化图如下:1)110kV 侧(K1 点)发生三相短路时:等值网络图如下:此时短路点总电抗标幺值为: X Σ110*=X S *+X L *=0.016+0.3025÷2=0.16725 电源对短路点的计算阻抗为:X BS110=X Σ110*•S S /S B =0.16725×1250÷100=2.09通过查“水轮发电机运算曲线数字表”得: I (0)“*=0.509 I (1)“*=0.525 I (2)“*=0.525 I (4)“*=0.525 110kV 侧的基准电流为:I B110=S B /U B110=100÷÷115=0.502(kA )短路电流有名值为:I (0)“=I (0)“*·I B110=0.509×0.502=0.256(kA ) I (1)“=I (1)“*·I B110=0.525×0.502=0.264(kA )X sX L1X L2W 1XT 21XT 11X T22X T23X T12X T13W 2W 3K 1K 2K 3X sX LW 1K 1I (2)“=I (2)“*·I B110=0.525×0.502=0.264(kA ) I (4)“=I (4)“*·I B110=0.525×0.502=0.264(kA )冲击电流为: i cj =2.55•I (0)“=2.55×0.256=0.653(kA )2)35kV 侧(K2 点)发生三相短路时:等值网络图如下:此时短路点总电抗标幺值为:X Σ35*=X S *+X L *+X T1*+X T2*=0.016+0.3025÷2+(1.075+0)/2=0.70475电源对短路点的计算阻抗为:X BS35=X Σ35*•S S /S B =0.70475×1250÷100=8.809>3.45当X BS >3.45 时,求短路电流不用查表法,用倒数法: I “*=I ∞*=1/X BS35=1÷0.70475=1.418943 35kV 侧的基准电流为: I B35=S B /U B35=100÷÷37=1.56(kA ) 短路电流有名值为: I “=I “*·I B35=1.418943×1.56=2.213551(kA ) 冲击电流为:i cj =2.55•I “=2.55×2.213551=5.645(kA )3)10kV 侧(K3 点)发生三相短路时:等值网络图如下:X sX LW 1X T1X T2W 2K 2X sX LW 1X T1X T3W 3K 3此时短路点总电抗标幺值为:X Σ10*=X S *+X L *+X T1*+X T3*=0.016+0.3025÷2+(1.075+0.625)/2=1.017电源对短路点的计算阻抗为:X BS10=X Σ10*•S S /S B =1.017×1250÷100=12.716>3.45当X BS >3.45 时,求短路电流不用查表法,用倒数法:I “*=I ∞*=1/X BS35=1÷1.017=0.98328410kV 侧的基准电流为: I B10=S B /U B10=100÷÷10.5=5.499(kA ) 短路电流有名值为: I “=I “*·I B10=0.983284×5.499=5.40708(kA )冲击电流为:i cj =2.55•I “=2.55×5.40708=13.78805(kA )系统最大运行方式下的三相短路电流短路点 0s 短路电 流(kA ) 1s 短路电 流(kA ) 2s 短路电 流(kA ) 4s 短路电 流(kA ) 稳态短路 电流(kA ) 冲击电流(KA )K1(110KV ) 0.256 0.2640.2640.2640.653K2(35KV )2.214 5.645K3(10KV )5.40713.781. 断路器及校验目前,使用得最多的是少油断路器,六氟化硫断路器和空气断路器。