平面直角坐标系经典题含答案

合集下载

平面直角坐标系(习题及答案)

平面直角坐标系(习题及答案)

平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果a b=0,那么点P的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若a b>0,那么点P的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在。

;点(b,0)在.6.若点A(n-3,m-1)在x轴上,点B(2n+1,m+4)在y轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y轴平行,且A B=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y轴的直线上,点A 到y轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x轴的距离为,到y轴的距离为,到原点的距离为.11.点M在y轴的左侧,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为.12.点P(3,-2)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y轴上,则点P关于x轴的对称点的坐标为.14.若点P 先向左平移 2 个单位,再向上平移 1 个单位得到P′(-1,3),则点P的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a个单位后的坐标为;点(x,y)向下平移b个单位后的坐标为;点(x,y)先向上平移a个单位,再向右平移b个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1.B2.D3.C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( 2 ,2),(2, 2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)#。

初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案

初中数学函数之平面直角坐标系经典测试题附答案一、选择题1.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.2.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.3.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】分析:直接利用第二象限横纵坐标的关系得出a ,b 的符号,进而得出答案.详解:∵点A (a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a <-1,b >2,则-a >1,1-b <-1,故点B (-a ,1-b )在第四象限.故选D .点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.4.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B .6.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,3【答案】C【解析】【分析】 理解题意,由反射角与入射角的定义作出图形,观察出反弹6次为一个循环的规律,解答即可.【详解】如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P 的坐标为(7,4).故选C .【点睛】本题考查了平面直角坐标系中点的坐标规律,首先作图,然后观察出每6次反弹为一个循环,据此解答即可.7.在平面直角坐标系中,点P(x ﹣3,x+3)是x 轴上一点,则点P 的坐标是( )A.(0,6) B.(0,﹣6) C.(﹣6,0) D.(6,0)【答案】C【解析】【分析】根据x轴上的点的纵坐标为0列式计算即可得解.【详解】∵点P(x﹣3,x+3)是x轴上一点,∴x+3=0,∴x=﹣3,∴点P的坐标是(﹣6,0),故选:C.【点睛】本题考查了点的坐标,是基础题,熟记x轴上的点的纵坐标为0是解题的关键.8.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()A.a>5 B.a<-3 C.-3≤a≤5D.-3<a<5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)【答案】D【解析】【分析】 首先由正方形ABCD ,顶点A (1,1)、B (3,1)、C (3,3),然后根据题意求得第1次、2次、3次变换后的点C 的对应点的坐标,即可得规律:第n 次变换后的点C 的对应点的为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3),继而求得把正方形ABCD 连续经过2019次这样的变换得到正方形ABCD 的点C 的坐标.【详解】∵正方形ABCD ,顶点A (1,1)、B (3,1),∴C (3,3).根据题意得:第1次变换后的点C 的对应点的坐标为(3﹣1,﹣3),即(2,﹣3), 第2次变换后的点C 的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C 的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n 次变换后的点C 的对应点的为:当n 为奇数时为(3﹣n ,﹣3),当n 为偶数时为(3﹣n ,3),∴连续经过2019次变换后,正方形ABCD 的点C 的坐标变为(﹣2016,﹣3). 故选D .【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点C 的对应点的坐标为:当n 为奇数时为(3-n ,-3),当n 为偶数时为(3-n ,3)是解此题的关键.10.在平面直角坐标系中,以原点为中心,把点()2,3A 逆时针旋转180︒,得到点B ,则点B 的坐标为( )A .()2,3-B .()2,3--C .(2,3)-D .(3,2)--【答案】B【解析】【分析】根据中心对称的性质解决问题即可.【详解】由题意A ,B 关于O 中心对称,∵A (2,3),∴B (-2,-3),故选:B .【点睛】此题考查中心对称,坐标与图形的变化,解题的关键是熟练掌握基本知识,属于中考常考题型.11.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.12.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.13.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P (2m-4,2m+4)在y 轴上,其横坐标为0,列式可得m 的值.【详解】∵P (2m-4,2m+4)在y 轴上,∴2m-4=0,解得m=2,故选:A .【点睛】此题考查点的坐标,解题关键在于掌握y 轴上点的横坐标为0.14.如图,在平面直角坐标系中.四边形OABC 是平行四边形,其中()()2,03,1,A B 、将ABCD Y 在x 轴上顺时针翻滚.如:第一次翻滚得到111,AB C O Y 第二次翻滚得到1122B AO C Y ,···则第五次翻滚后,C 点的对应点坐标为( )A .(622,2+B .2,622+ C .2,622- D .(622,2- 【答案】A【解析】ABCD Y 在x 轴上顺时针翻滚,四次一个循环,推出第五次翻滚后,点A 的坐标,再利用平移的性质求出C 的对应点坐标即可.【详解】连接AC ,过点C 作CH ⊥OA 于点H ,∵四边形OABC 是平行四边形,A(2,0)、B(3,1),∴C(1,1),∴∠COA=45°,OC=AB=2, ∴OH= OC÷2=1,∴AH=2-1=1,∴OA=AH ,∴OC=AC ,∴∆OAC 是等腰直角三角形,∴AC ⊥OC ,∵ABCD Y 在x 轴上顺时针翻滚,四次一个循环,∴第五次翻滚后点,A 的坐标为(6+22,0),把点A 向上平移2个单位得到点C , ∴第五次翻滚后,C 点的对应点坐标为()622,2+.故选:A .【点睛】本题主要考查图形与坐标,涉及平行四边形的性质,等腰直角三角形的性质以及平移的性质,找到点的坐标的变化规律,是解的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.16.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为()2,3,则菱形OABC 的面积是( )A .6B .13C .3132D .313【答案】D【解析】【分析】 作CH ⊥x 轴于点H ,利用勾股定理求出OC 的长,根据菱形的性质可得OA =OC ,即可求解.【详解】如图所示,作CH ⊥x 轴于点H ,∵四边形OABC 是菱形,∴OA =OC ,∵点C 的坐标为()2,3,∴OH =2,CH =3,∴OC =22OH CH +=2223+=13∴菱形OABC 的面积=OA·CH =313 故选:D【点睛】本题考查菱形的性质、勾股定理、坐标与图形的性质、菱形的面积公式,解题的关键是学会添加辅助线,构造直角三角形.17.在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①f (a ,b )=(-a ,b ),如f (1,2)=(-1,2);②g (a ,b )=(b ,a ),如g (1,2)=(2,1);③h (a ,b )=(-a ,-b ),如h (1,2)=(-1,-2);按照以上变换有:g (h (f (1,2)))=g (h (-1,2))=g (1,-2)=(-2,1),那么h (f (g (3,-4)))等于A .(4,-3)B .(-4,3)C .(-4,-3)D .(4,3)【答案】C【解析】【分析】根据f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b ),可得答案.【详解】由已知条件可得h (f (g (3,-4)))= h (f (-4,3))= h (4,3)=(-4,-3) 故选:C【点睛】本题考查了点的坐标,利用f (a ,b )=(-a ,b ).g (a ,b )=(b ,a ).h (a ,b )=(-a ,-b )是解题关键.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( )A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.。

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)1、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.答案:(2,1).解析:略.考点:函数——平面直角坐标系——点的位置与坐标.2、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校().A.(0,4)(0,0)(4,0)B.(0,4)(4,4)(4,0)C.(0,4)(1,4)(1,1)(4,1)(4,0)D.(0,4)(3,4)(4,2)(4,0)答案:D.解析:(3,4)(4,2)所走路线为斜线,不符合题意,不能正常到达学校.考点:函数——平面直角坐标系.3、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋的坐标应该分别是.答案:(-6,-6),(-4,-7).解析:黑棋①的坐标是(-6,-6),黑棋③的坐标是(-4,-7).考点:函数——平面直角坐标系——点的位置与坐标.4、如果点A(x,y)在第三象限,则点B(-x,y-1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案: D.解析:∵点A(x,y)在第三象限,∴{x<0y<0.∴-x>0,y-1<0.∴点B(-x,y-1)在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.5、如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点()落在第象限.答案:四.解析:由图象可知,b<5,a<7.∴6-b>0,a-10<0.∴点(6-b,a-10)落在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.6、已知A(-2,0),B(a,0)且AB=5,则B点坐标为.答案:(3,0)或(-7,0).解析:由题知︱a+2︱=5,∴a=3或-7.∴B点坐标为(3,0)或(-7,0).考点:函数——平面直角坐标系——坐标与距离.7、若点A(-2,n)在x轴上,则点B(n-1,n+1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为().A.(1,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B.解析:∵点P(m+3,m+1)在直角坐标系的轴上.∴m+1=0.∴m=-1.∴点P的坐标为(2,0).考点:函数——平面直角坐标系——点的位置与坐标.9、已知点M(3a-8,a-1).(1)若点M在第二象限,并且a为整数,则点M的坐标为.(2)若点N的坐标为(3,-6),并且直线MN∥x轴,则点M的坐标为.答案:(1)(-2,1).(2)(-23,-6).解析:(1)若点M在第二象限,3a<0,a-1>0.∴1<a<8,又a为整数.3∴a=2.∴M(-2,1).(2)若点N的坐标为(3,-6),并且直线MN∥x轴.∴a-1=-6,即a=7.∴点M(-23,-6).考点:函数——平面直角坐标系——点的位置与坐标.10、若点P(-1,a),Q(b,2),且PQ∥x轴,则a ,b .答案:a=2.b≠-1.解析:∵PQ∥x轴.∴PQ两点的纵坐标相同.∴a=2.又∵P、Q应为不重合的两点.∴b≠-1.考点:函数——平面直角坐标系——点的位置与坐标.11、点P(a,b)是平面直角坐标系内的点,请根据点的坐标判断点P的特征:(1)若a=b,则P点在.(2)若a+b=0,则P点在.答案:(1)一三象限坐标轴夹角平分线上.(2)二四象限坐标轴夹角平分线上.解析:(1)略.(2)略.考点:函数——平面直角坐标系——点的位置与坐标.12、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是().A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)答案:C.解析:略.考点:函数——平面直角坐标系——坐标与距离.13、已知点(3-2k2,4k-3)在第一象限的角平分线上,则k= .答案:1.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.14、若点M(5-a,2a-6)在第四象限,且点M到x轴与y轴的距离相等,试求(a-2)2014-a-2015的值.答案:0.解析:由题意得,5-a+2a-6=0.解得a=1.所以,(a-2)2014-a-2015=(1-2)2014-1-2015=1-1=0.考点:函数——平面直角坐标系——坐标与距离.15、若点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴四个单位长,则点P的坐标是.答案:(-3,4).解析:略.考点:函数——平面直角坐标系——特殊点的坐标.16、在平面直角坐标系中,点P(-3,6)关于y轴的对称点的坐标为.答案:(3,6).解析:根据关于谁对称,谁不变,可知,点P(-3,6)关于y轴的对称点的坐标为(3,6). 考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.17、在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.答案:(1,2).解析:由关于谁对称谁不变,可知点P(-1,2)关于y轴的对称点为(1,2).考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.18、在平面直角坐标系中,点P(-1,2)关于x轴的对称点在第象限.答案:三.解析:点P(-1,2)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是-2.纵坐标互为相反数,是-3.则P关于x 轴的对称点是(-2,-3),在第三象限.考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.19、平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O 、A的对应点分别为点O1 、A1,则点O1 、A1的坐标分别是().A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)答案:D.解析:∵线段OA向左平移2个单位,点O(0,0),A(1,4).∴点O1,A1的坐标分别是(-2,0),(-1,4).考点:几何变换——图形的平移——坐标与图形变化:平移.20、已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)答案:D.解析:由(-2,1)→(-1,3),(2,3)→(3,5),(-3,-1)→(-2,1)可以看作点向右平移1个单位长度,向上平移2个单位长度,而图形的平移是相同的,所以D对,A、B、C错.考点:函数——平面直角坐标系——点的位置与坐标.几何变换——图形的平移——点的平移.21、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为,则点B(-4,-1)的对应点D坐标为().A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)答案:C.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.22、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是.答案:(0,4)或(0,-4).解析:由题意可知1AC·AB=6.2∴AC=4.∴点C的坐标是(0,4)或(0,-4).考点:函数——平面直角坐标系——坐标与面积.23、如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为().A.3B.3+πC.6D.6+π答案:C.解析:扫过面积即为矩形ABDC的面积.∴扫过面积=2×3=6.考点:函数——平面直角坐标系——坐标与面积.24、在正方形网格上有一个△ABC ,网格上最小正方形的边长为1.(1) 把△ABC 平移,使点A 移动到点A’的位置,画出平移后的△A’B’C’,写出结论:__________.(2)△A’B’C’的面积为__________.(3)若点A 的坐标是(-5,2),点C’为坐标是(0,-2),在图中画出平面直角坐标系,点B’的坐标是__________.答案:(1) 结论:A’B’∥AB (答案不唯一).(2)△A’B’C’的面积是为5. (3)点B’的坐标是(-3,-3).解析:(1)平移后的△A’B’C’如图所示,结论:A’B’∥AB (答案不唯一).(2)观察图形可知,△A’B’C’内接在一个长为4,宽为3的长方形中.S △A’B’C’=4×3 −12×1×3−12×1×3−12×2×4=5. ∴△A’B’C’的面积是为5.(3)平面直角坐标系如图所示,点B’的坐标是(-3,-3).考点:三角形——三角形基础——三角形面积及等积变换.几何变换——图形的平移——平移的性质——坐标与图形变化:平移——作图:平移变换.25、定义:f (a,b )=(b,a ),g (m,n )=(-m,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)] 等于 . 答案:(-6,5).解析:根据所给定义,g[f (-5,6)]=g (6,-5)=(-6,5). 考点:式——探究规律——定义新运算.函数——平面直角坐标系.26、在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f[g (3,4)]=f (-3,-4)=(-3,4),那么g[f (-3,2)] 等于( ). A.(3,2) B.(3,-2) C.(-3,2) D.(-3,-2) 答案:A.解析:∵f (-3,2)=(-3,-2).∴g[f (-3,2)]=g (-3,-2)=(3,2). 考点:式——探究规律——定义新运算.27、观察下列有规律的点的坐标:A 1(1,1),A 2(2,-4),A 3(3,4),A 4(4,-2),A 5(5,7),A 6(6,−43),A 7(7,10),A 8(8,-1)依此规律,A 11的坐标为 ,A 12的坐标为 . A.(12,16),(12,−23) B.(11,15),(11,−23)C.(11,16),(11,−23) D.(11,16),(12,−23)答案:D. 解析:略.考点:函数——平面直角坐标系——点的位置与坐标.28、如图,边长为1,2的长方形ABCD 以右下角的顶点为中心旋转90°,此时A 点的坐标为 ;依次旋转2011次,则顶点A 的坐标为 . A.(3,3),(3027,0) B.(3,3),(3017,0) C.(3,2),(3027,0) D.(3,2),(3017,0) 答案:D. 解析:略.考点:式——探究规律.方程与不等式.函数——平面直角坐标系.29、一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2011min 后,求这个粒子所处的位置坐标.A.(41,13)B.(41,14)C.(44,13)D.(44,14) 答案:C.解析:弄清粒子的运动规律,并求出靠近2011min 后粒子所在的特殊点的坐标,最后确定所求点的坐标.对于这种运算数较大的题目,我们首先来寻找规律,先观察横坐标与纵坐标相同的点:(0,0),粒子运动了0min. (1,1),粒子运动了1×2=2(min ),向左运动. (2,2),粒子运动了2×3=6(min ),向下运动.(3,3),粒子运动了3×4=12(min),向左运动.(4,4),粒子运动了4×5=20(min),向下运动.……于是点(44,44)处粒子运动了44×45=1980(min).这时粒子向下运动,从而在运动了2011后,粒子所在的位置是(44,44-31),即(44,13).考点:函数——平面直角坐标系.30、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.①填写下列各点的坐标:A1(,),A3(,),A12(,).②写出点A4n的坐标为(是正整数).③指出蚂蚁从点A100到A101的运动方向为.A. ①(1,1),(1,0),(5,0);②(2n,0);③ 从下到上.B. ①(1,1),(1,0),(6,0);②(2n,0);③ 从上到下.C. ①(0,1),(1,0),(5,0);②(2n,0);③ 从上到下.D. ①(0,1),(1,0),(6,0);②(2n,0);③ 从下到上.答案:D.解析:略.考点:函数——平面直角坐标系——点的位置与坐标——坐标与距离.。

平面直角坐标系典型例题含标准答案

平面直角坐标系典型例题含标准答案

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a与b组成的数对,记作(a,b)。

注意a与b的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。

这个平面叫做坐标平面。

(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A,过点A作横轴的垂线,垂足在横轴上的坐标为a,过点A作纵轴的垂线,垂足在纵轴上的坐标为b,有序实数对(a,b)叫做点A的坐标,其中a叫横坐标,b叫做纵坐标。

第二象限第一象限----------- o---------- 耳匕 ----------- :第二壕限第四象限"- -------------- S1——3.各象限内的点与坐标轴上的点的坐标特征:4.特殊位置点的特殊坐标5.对称点的坐标特征:关于芯轴对称关于¥轴对称关于原点对称6.点到坐标轴的距离:点P(x, y)到X轴距离为卜|,到y轴的距离为|x|7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2, 3)在第( )象限.A. 一B.XC.aD.四2.若点P(a,a -2)在第四象限,则a的取值范围是( )A. 一 2 < a < 0B. 0 < a < 2C. a > 2D. a < 03.在平面直角坐标系中,点P (-2, x2 +1 )所在的象限是( )A.第一象限B.第二象限仁第三象限 D.第四象限考点2:点在坐标轴上的特点1.点P(m + 3,m +1)在%轴上,则P点坐标为( )A. (0,-2)B. (2,0)C. (4,0)D. (0,-4)2.已知点P(m,2m-1)在y轴上,则P点的坐标是。

3.若点P (x, y)的坐标满足xy=0 (x/y),则点P必在( )A.原点上B. x轴上C. y轴上D. x轴上或y轴上(除原点)考点3:对称点的坐标1.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是( )A. (-3,2)B. (3,-2)C. (-2,3)D. (2,3)2.已知点A的坐标为(-2, 3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点 C 关于x轴对称的点的坐标为( )A.(2, -3)B.(-2, 3)C.(2, 3)D.(-2, -3)3.若坐标平面上点P (a, 1)与点Q (-4, b)关于x轴对称,则( )A. a=4, b=-1B. a=-4, b=1C. a=-4, b=-1D. a=4, b=1考点4:点的平移1.已知点A (-2, 4),将点A往上平移2个单位长度,再往左平移3个单位长度得到点A’, 则点A’的坐标是( )A.(-5, 6)B.(1, 2)C.(1, 6)D.(-5, 2)2.已知A (2, 3),其关于x轴的对称点是B, B关于y轴对称点是C,那么相当于将A经过 ( )的平移到了 C.A.向左平移4个单位,再向上平移6个单位B.向左平移4个单位,再向下平移6个单位C.向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3.如图,A, B的坐标为(2, 0), (0, 1),若将线段AB平移至A1B1,则a+b的值为( )A. 2B. 3C. 4D. 5考点5:点到坐标轴的距离1.点M (-3, -2)到y轴的距离是( )A. 3B. 2C. -3D. -22.点P到x轴的距离是5,到y轴的距离是6,且点P在x轴的上方,则P点的坐标为.3.已知P (2-x, 3x-4)到两坐标轴的距离相等,则x的值为( )3 3 3A. 3B. -1C. 3 或-1D.-或 12 2 2考点6:平行于x轴或y轴的直线的特点1.如图,八口〃8s乂轴,下列说法正确的是( )3 CA. A与D的横坐标相同B. C与D的横坐标相同C. B与C的纵坐标相同D. B与D的纵坐标相同2.已知点A (m+1, -2)和点B (3, m-1),若直线八8〃乂轴,则m的值为( )A. 2B. -4C. -1D. 33.已知点M (-2, 3),线段MN=3,且MN〃y轴,则点N的坐标是( )A. (-2, 0)B.(1, 3)C.(1, 3)或(-5, 3)D.(-2, 0)或(-2, 6)考点7:角平分线的理解 1.已知点A (3a+5, a-3)在二、四象限的角平分线上,则a=考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(-2, 3),棋子“马”的坐标为(1, 3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)考点9:面积的求法(割补法)1. (1)在平面直角坐标系中,描出下列3个点:A (-1, 0), B (3, -1), C (4, 3)(2)顺次连接A, B, C,组成AABC,求4ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0, 2)(1, 0)(6, 2)(2, 4),求四边形ABCD的面积.3.在图中A (2, -4)、B (4, -3)、C (5, 0),求四边形ABCO的面积考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a, 0)和B点(0, 10)两点,且AB与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0 或 4D. 4 或-42.如图,已知:A(—5,4)、B(—2,—2)、C(0,2)(1)求A ABC的面积;(2) y轴上是否存在点P,使得A PBC面积与A ABC的面积相等,若存在求出P点的坐标,若不存在,请说明理由。

函数之平面直角坐标系经典测试题附答案解析

函数之平面直角坐标系经典测试题附答案解析

函数之平面直角坐标系经典测试题附答案解析一、选择题1.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)【答案】D【解析】【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.【详解】如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点睛】本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.2.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )A .(3,1)B .(-1,1)C .(3,5)D .(-1,5)【答案】C【解析】 解:∵正方形ABCD 的边长为4,点A 的坐标为(﹣1,1),AB 平行于x 轴,∴点B 的横坐标为:﹣1+4=3,纵坐标为:1,∴点B 的坐标为(3,1),∴点C 的横坐标为:3,纵坐标为:1+4=5,∴点C 的坐标为(3,5).故选C .点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.3.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A .5B .6C .7D .8【答案】B【解析】【分析】 观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n 时,共有n 2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B .【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.4.若点M 的坐标为b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.5.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.6.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是( )A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )【答案】A【解析】【分析】【详解】试题分析:∵平行四边形ABCD 是中心对称图形,对称中心是对角线的交点,而A 、C 关于原点对称,故B 、D 也关于原点对称∴D (-2 ,l ).故选A .考点:平行四边形的性质;坐标与图形性质.7.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.8.点A (-4,3)和点B (-8,3),则A ,B 相距( )A .4个单位长度B .12个单位长度C .10个单位长度D .8个单位长度【答案】A【解析】【分析】先根据A ,B 两点的坐标确定AB 平行于x 轴,再根据同一直线上两点间的距离公式解答即可.【详解】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.【详解】∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P 的坐标为(0,﹣4)即可判断点P (0,﹣4)在y 轴上.【详解】在平面直角坐标系中,点P (0,﹣4)在y 轴上,故选:B .【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.13.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.15.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L,∴甲乙相遇时的地点是每三个点为一个循环,÷=L,∵202036733∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键. 16.如图,在直角坐标系内,正方形如图摆放,已知顶点 A(a,0),B(0,b) ,则顶点C的坐标为()A.(-b,a + b) B.(-b,b - a) C.(-a,b - a) D.(b,b -a)【答案】B【解析】【分析】根据题意首先过点C作CE⊥y轴于点E,易得△AOB≌△BEC,然后由全等三角形的性质,证得CE=OB=b,BE=OA=a,继而分析求得答案.【详解】解:如图,过点C作CE⊥y轴于点E,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO ,在△ABO 和△BCE 中,90AOB CEB BAO CBEAB BC ⎧⎪⎨⎪∠∠︒∠∠⎩==== ∴△AOB ≌△BEC (AAS ),∴BE=OA=a ,CE=OB=b ,∴OE=OB-BE=b-a ,∴顶点C 的坐标为:(-b ,b-a ).故选:B .【点睛】本题考查正方形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法以及注意掌握数形结合思想的应用.17.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.18.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )A .(3,0)B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.19.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.20.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.。

(完整版):平面直角坐标系经典例题解析

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】考点一:平面直角坐标系中点的特征例1在平面直角坐标系中,点P(m, m-2)在第一象限内,则m的取值范围是_________________ 思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围.解:由第一象限点的坐标的特点可得: 解得:m > 2.故答案为:m> 2.点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正.例1如果m是任意实数,则点P (m-4, m+1) 一定不在( )A. 第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:T( m+1 - ( m-4) =m+1-m+4=5•••点P的纵坐标一定大于横坐标,•••第四象限的点的横坐标是正数,纵坐标是负数,•第四象限的点的横坐标一定大于纵坐标,•••点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+, +);第二象限(-,+);第三象限(-,-);第四象限(+,-). 例2如图,矩形BCDE 的各边分别平行于x轴或y轴,物体甲和物体乙分别由点 A (2, 0) 同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是( )A . (2, 0)B . ( - 1 , 1) C. ( - 2, 1) D. (- 1,- 1)分析:禾U用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12X1,物体甲行的路程为12冷=4,物体乙行的路程为12烂=8,在BC边相遇;31②第二次相遇物体甲与物体乙行的路程和为 12X2,物体甲行的路程为12X2』=8,物体乙行 [3的路程为12X 2X =16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的 路程和为12X 3,物体甲行的路程为 12X 3X1=12,物体乙3行的路程为12X 3X =24,在A 点相遇;3此时甲乙回到原出发点,则每相遇三次,两点回到出发点, •/ 2012- 3=670…2 ,故两个物体运动后的第 2012次相遇地点的是:第二次相遇地点,即物体甲行的路程为故选:D .点评: 此题主要考查了行程问题中的相遇问题及按比例分配的运用, 通过计算发现规律就可以解决问题.例2如图,动点P 从(0, 3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第2013次碰到矩形的边时,点 P 的坐标为( )A. ( 1,4)B. (5, 0)C. (6, 4)D. (8, 3)思路分析:根据反射角与入射角的定义作出图形,可知每 6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.~解 如图,经过6次反弹后动点回到出发点( 0, 3),V 划 4/KJ 11321:;; !12S45678•/ 2013- 6=335…3,•••当点P 第2013次碰到矩形的边时为第 336个循环组的第3次反弹, 点P 的坐标为(8, 3). 故选D.点评:本题是对点的坐标的规律变化的考查了, 作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练 2.如图,在平面直角坐标系中, A (1, 1) , B (- 1, 1), C (- 1,- 2), D (1 , - 2).把 一条长为2012个单12 X 2 =16,在DE 边相遇; 此时相遇点的坐标为:(-1,-1),物体乙行的路程为位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A - B - C - D - A -…的规律紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点 的坐标是()••• AB=1 -( - 1) =2 , BC=1 -( - 2) =3, CD=1 -( - 1) =2 , DA=1 -( - 2) =3 , •••绕四边形 ABCD 一周的细线长度为 2+3+2+3=10, 2012 - 10=201 …2 •细线另一端在绕四边形第 202圈的第2个单位长度的位置, 即点B 的位置,点的坐标为(-1, 1). 故选B .点评: 本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形 ABCD 一周的长度,从而确定2012个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题 的关键.例2如图,在平面直角坐标系 xOy 中,点P (-3, 5)关于y 轴的对称点的坐标为()A . (-3, -5)B . (3, 5)C . ( 3. -5)D . ( 5, -3)答:B考点二:函数的概念及函数自变量的取值范围例3在函数y中,自变量x 的取值范围是 ____________ .x思路分析:本题主要考查自变量的取值范围, 函数关系中主要有二次根式和分式两部分. 根据二次根式的意义,被开方数 X+1A0,根据分式有意义的条件, x 工0就可以求出自变量 x 的取值范围.解:根据题意得:x+1>0且x 工0 解得:X 二1且X M0 例3函数y= _3中自变量x 的取值范围是()x 1A. x > -3B. x >3C. x 》0 且 x MlD. x > -3 且 x ^l思路分析:根据被开方数大于等于 0,分母不等于0列式计算即可得解. 解:根据题意得,x+3>0且X-1M 0, 解得x > -3且x M 1. 故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑: (1 )当函数表达式是整式时,自变量可取全体实数;分析: 根据点的坐标求出四边形 ABCD 的周长,然后求出另一端是绕第几圈后的第几个 A . (1,- 1) B • ( - 1, 1) 单位长度,从而确定答案.解答:解:••• A (1 , 1), B (- 1, 1), C (- 1 , - 2), D (1,- 2),(2 )当函数表达式是分式时,考虑分式的分母不能为 (3)当函数表达式是二次根式时,被开方数非负. 对应训练 3.函数y ,2 中自变量x的取值范围是( )7x2A . x > -2B . x > 2C . x 乂2D . x >23. A考点三:函数图象的运用例4 一天晚饭后,小明陪妈妈从家里出去散步,如图描述了他们散步过程中离家的距离 S (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( )A .从家出发,到了一家书店,看了一会儿书就回家了B .从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了 C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 后开始返回与x 轴平行后的函数图象表现为随时间的增多路程又在增加,由此即可作出判断. 解:A 、从家出发,到了一家书店,看了一会儿书就回家了,图象为梯形,错误;B 、从家出发,至厅一家书店,看了一会儿书,继续向前走了一段,然后回家了,描述不准 确,错误;C 、 从家出发,一直散步(没有停留) ,然后回家了,图形为上升和下降的两条折线,错误;D 、 从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段, 18分钟后开始返回从家出发,符合图象的特点,正确. 故选D .点评:考查了函数的图象,读懂图象是解决本题的关键.首先应理解函数图象的横轴和纵轴 表示的量,再根据函数图象用排除法判断.例5如图,Y ABCD 的边长为8,面积为32,四个全等的小平行四边形对称中心分别在 Y ABCD 的顶点上,它们的各边与 Y ABCD 的各边分别平行,且与 Y ABCD 相似.若小平 行四边形的一边长为 X ,且0V x <8阴影部分的面积的和为 y ,则y 与x 之间的函数关系的 大致图象是( )思路分析:根据平行四边形的中心对称性可知四块阴影部分的面正好等于一个小平行四边形0;18分钟味着有停留,而路程没有增加,意的面积,再根据相似多边形面积的比等于相似比的平方列式求出y与x之间的函数关系式, 然后根据二次函数图象解答.解:•••四个全等的小平行四边形对称中心分别在Y ABCD的顶点上,•••阴影部分的面积等于一个小平行四边形的面积,•••小平行四边形与Y ABCD相似,..._y_32x 2(8),整理得 1 2 y -x ,2又O v x<8纵观各选项,只有D选项图象符合y与x之间的函数关系的大致图象.故选D .点评:本题考查了动点问题的函数图象,根据平行四边形的对称性与相似多边形的面积的比等于相似比的平方求出y与x的函数关系是解题的关键.例8已知一个矩形纸片OACB,将该纸片放置在平"面直角坐标洗中,点 A (11, 0),点B (0, 6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B'和折痕OP.设BP=t.(I)如图①,当/ BOP=30时,求点P的坐标;(H)如图②,经过点P再次折叠纸片,使点C落在直线PB'上,得点C'和折痕PQ,若AQ=m , 试用含有t的式子表示m;(川)在(H)的条件下,当点C'恰好落在边OA上时,求点P的坐标(直接写出结果即可). 考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.分析:(I)根据题意得,/ OBP=9O , OB=6,在Rt A OBP 中,由/ BOP=3O , BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(□)由厶OB P、△ QC P分别是由厶OBP、△ QCP折叠得到的,可知△ OB OBP ,△ QC QCP,易证得△ OBP s^ PCQ,然后由相似三角形的对应边成比例,即可求得答案;(川)首先过点P作PE丄OA于E,易证得△ PC C QA由勾股定理可求得C'Q的长,1 11然后利用相似三角形的对应边成比例与m= t2- t+6,即可求得t的值.6 6点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识. 此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.对应训练4. 甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s (米)与时间t (分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A .甲队率先到达终点B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟D •比赛中两队从出发到 2.2秒时间段,乙队的速度比甲队的速度快4•解:A 、由函数图象可知,甲走完全程需要 4分钟,乙走完全程需要 3.8分钟,乙队率先到达终点,本选项错误;B 、 由函数图象可知,甲、乙两队都走了1000米,路程相同,本选项错误;C 、 因为4-3.8=02分钟,所以,乙队比甲队少用 0.2分钟,本选项正确;D 、 根据0〜2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,本选项错误; 故选C • 5. 如图,点A 、B 、C 、D 为O O 的四等分点,动点 P 从圆心O 出发,沿OC-CD-DO 的路线做匀速运动,设运动的时间为 t 秒,/ APB 的度数为y 度,则下列图象中表示 yCD上运动时,/ APB 不变,当P 在DO 上运动时,/ APB 逐渐增大,即可得出答案.解答: 解:当动点P 在OC 上运动时,/ APB 逐渐减小; 当P 在C D 上运动时,/ APB 不变; 当P 在DO 上运动时,/ APB 逐渐增大.故选C •点评:本题主要考查了动点问题的函数图象,用到的知识点是圆周角、圆内的角及 函数图象认识的问题.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所 需要的条件,结合实际意义画出正确的图象.(度)与t (秒)之间函数关系最恰当的是(考点:动点问题的函数图象•分析:根据动点 P 在OC 上运动时,/ APB 逐渐减小,当 P考点四:动点问题的函数图象例5如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止, 点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是 1cm/s .若P , Q 同时开始运动,设运动时间为t (s ), △ BPQ 的面积为y (cm ).已知y 与t 的函数图象如图2,则下列结论 错误的是()4 B.sin /EBC —52 2 C. 当 0 v t < 10 时,y= — t5D. 当t=12s 时,△ PBQ 是等腰三角形思路分析:由图2可知,在点(10, 40)至点(14, 40)区间,△ BPQ 的面积不变,因此可 推论(1 )在BE 段,BP=BQ 持续时间10s ,贝U BE=BC=10 y 是t 的二次函数; (2 )在ED 段, y=40是定值,持续时间 4s ,则ED=4; (3)在DC 段, y 持续减小直至为0, y 是t 的一次函数. 解:(1)结论A 正确.理由如下:分析函数图象可知, BC=10cm ED=4cm 故 AE=AD-ED=BC-ED=10-4=6cm如答图1所示,连接EC,过点E 作EF 丄BC 于点F ,11由函数图象可知, BC=BE=10cm BEC =40=— BC?EF= X 10X EF,2 2E F 8/• sin / EBC= =-BE 10(3)结论C 正确.理由如下: 如答图2所示,过点P 作PGLBQ 于点G,•/ BQ=BP=,AEA. 图1AE=6cmEF=8,(2)结论B 正确.理由如下:答圏2答郎1 1 1 4 2••• y=S^BPC= BQ?PG= BQ?BP?sinZ EBC= t?t? = t2.2 2 2 5 5(4)结论D错误.理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB, NC此时AN=8 ND=2由勾股定理求得:NB=S J2,NC=2j17 ,•/ BC=10,•••△ BCN不是等腰三角形,即此时厶PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm。

7.1平面直角坐标系 习题(含答案)

7.1平面直角坐标系 习题(含答案)

7.1平面直角坐标系习题(含答案)未命名一、单选题1.已知点A(1,0),B(0,2),点P在x轴上,且三角形PAB的面积为5,则P点的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(4,0)D.(﹣4,0)或(6,0)【答案】D【解析】【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】解:如图,设P(m,0),由题意:1•|1﹣m|•2=5,2∴m=﹣4或6,∴P(﹣4,0)或(6,0),故选:D.【点睛】本题考查三角形的面积、只能与图形性质等知识,解题的关键是学会利用参数构建方程解决问题.2.如图射线OA的方向是北偏东30°,在同一平面内∠AOB=70°,则射线OB的方向是()A.北偏东40∘B.北偏西40∘C.南偏东80∘D.B、C都有可能【分析】根据OA的方向是北偏东30°,在同一平面内∠AOB=70°即可得到结论.【详解】解:如图,∵OA的方向是北偏东30°,在同一平面内∠AOB=70°,∴射线OB的方向是北偏西40°或南偏东80°,故选:D.【点睛】此题主要考查了方向角,正确利用已知条件得出∠AOB度数是解题关键.3.点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,则点P的坐标为()A.(3,4)B.(-3,4)C.(-4,3)D.(-4,-3)【答案】B【解析】【分析】根据已知点的位置(在第二象限点的横坐标为负数,纵坐标为正数)和已知得出即可.【详解】∵点P在第二象限内,P点到x、y轴的距离分别是4、3,∴点P的坐标为(-3,4),故选B.【点睛】本题考查了点的坐标的确定与意义,点到x轴的距离是其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值.在y轴左侧,在x轴的上侧,即点在第二象限,横坐标为负,纵坐标为正.4.若点P在第二象限,且点P到x轴、y轴的距离分别为4,3,则点P的坐标是()A.(4,3)B.(3,﹣4)C.(﹣3,4)D.(﹣4,3)【答案】C根据点P在第二象限,则它的横坐标是负号,纵坐标是正号;根据点P到x轴、y轴的距离分别为4,3,则它的横坐标的绝对值是3,纵坐标的绝对值是4,两者综合进行解答.【详解】解:∵点P在第二象限,∴它的横坐标是负号,纵坐标是正号;∵点P到x轴、y轴的距离分别为4,3,∴它的横坐标的绝对值是3,纵坐标的绝对值是4,∴点P的坐标是(﹣3,4).故选:C.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.5.上海是世界知名金融中心,以下能准确表示上海市地理位置的是()A.在中国的东南方B.东经121.5∘C.在中国的长江出海口D.东经121∘29′,北纬31∘14′【答案】D【解析】【分析】根据坐标确定点的位置可得.【详解】解:A、在中国的东南方,无法准确确定上海市地理位置;B、东经121.5∘,无法准确确定上海市地理位置;C、在中国的长江出海口,法准确确定上海市地理位置;D、东经121∘29′,北纬31∘14′,是地球上唯一的点,能准确表示上海市地理位置;故选:D.【点睛】本题主要考查坐标确定点的位置,掌握将平面用两条互相垂直的直线划分为四个区域,据此可表示出平面内每个点的准确位置是关键.6.若点A(a+1,b–2)在第二象限,则点B(1–b,–a)在()A.第一象限B.第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 先根据点A 在第二象限,求出a,b 的取值,再求出1–b ,–a 的正负,即可求出点B (1–b ,–a )在哪一象限.【详解】根据题意知{a +1<0b −2>0,解得a <–1,b >2,则1–b <0,–a >0,∴点B (1–b ,–a )在第二象限,故选B .【点睛】此题主要考查直角坐标系内点的坐标特点,解题的关键是熟知各象限的坐标特点.7.如图,Rt △ABC 的两边OA ,OB 分别在x 轴、y 轴上,点O 与原点重合,点A (–3,0),点B (0,3√3),将Rt △AOB 沿x 轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为( )A .(673,0)B .(6057+2019√3,0)C .(6057+2019√3,√32)D .(673,√32) 【答案】B【解析】【分析】 根据直角坐标系内的坐标特点,可知△2020的形状如同△4,△2020的直角顶点的纵坐标为0,即可求出△2020的直角顶点的坐标.【详解】∵2020÷3=673……1,∴△2020的形状如同△4,∴△2020的直角顶点的纵坐标为0,而OB 1+B 1A 2+A 2O 2=3√3+6+3=9+3√3,∴△2020的直角顶点的横坐标为(9+3√3)×673=6057+2019√3.故选B.【点睛】此题主要考查直角坐标系的坐标变换,解题的关键是根据题意发现规律.8.已知点M(a,1),N(3,1),且MN=2,则a的值为()A.1B.5C.1或5D.不能确定【答案】C【解析】【分析】依据平面直角坐标系中两点间的距离公式,即可得到a的值.【详解】∵M(a,1),N(3,1),且MN=2,∴|a﹣3|=2,解得a=1或5,故选C.【点睛】本题主要考查了坐标与图形性质,掌握两点间的距离公式是解决问题的关键.9.若点A(n,﹣3)在y轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】直接利用y轴上点的坐标特点得出n的值,进而得出答案.【详解】∵点A(n,﹣3)在y轴上,∴n=0,则点B(n﹣1,n+1)为:(﹣1,1),在第二象限,故选B.【点睛】本题主要考查了点的坐标,熟练掌握数轴上点的坐标特征是解题的关键.注意正确得出n 的值也是解本题关键.10.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣4)B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【答案】A【解析】【分析】直接利用已知平面直角坐标系分析得出答案.【详解】如图所示:点P的坐标为:(3,﹣4),故选A.【点睛】此题主要考查了点的坐标,正确结合平面直角坐标系分析是解题关键.11.点A(−2,3)关于原点对称的点的坐标为()A.(2,3)B.(−3,2)C.(2,−3)D.(3,−2)【答案】C【解析】【分析】根据直角坐标系内点的变换即可判断.【详解】点A(−2,3)关于原点对称的点的坐标为(2,−3)故选C.【点睛】此题主要考查直角坐标系内点的变换,解题的关键是熟知直角坐标系内点坐标变换特点.12.与点P (a²+2,-a²-1)在同一个象限内的点是( )A.(2,-1)B.(-1,2)C.(-2,-1)D.(2,1)【答案】A【解析】根据平方数非负数的性质求出点P的横坐标与纵坐标的正负情况,再根据各象限内点的坐标特征求出点P所在的象限,然后解答即可.【详解】解:∵a2≥0,∴a2+2≥2,-a2-1≤-1,∴点P在第四象限,(2,-1),(-1,2),(-2,-1),(2,1)中只有(2,-1)在第四象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.平面直角坐标系中,点(2,4)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据点的坐标特征求解即可.【详解】解:点(2,4)在第一象限,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.−1B.−4C.2D.3【答案】A【解析】【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.∵点A(m+1,-2)和点B(3,m-1),且直线AB∥x轴,∴-2=m-1,∴m=-1 故选:A.【点睛】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.15.点P(-2,-3)关于x轴的对称点为()A.(−3,−2)B.(2,3)C.(2,−3)D.(−2,3)【答案】D【解析】【分析】关于x轴对称的点,横坐标不变,纵坐标变为相反数【详解】∵点P(-2,-3),∴关于x轴的对称点为(-2,3).故选:D.【点睛】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.二、填空题16.如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)如图1,写出点B的坐标();(2)如图2,若过点C的直线CD交AB于点D,且把长方形OABC的周长分为3:1两部分,则点D的坐标();(3)如图3,将(2)中的线段CD 向下平移,得到C′D′,使C′D′平分长方形OABC 的面积,则此时点D′的坐标是( ).【答案】(1)(3,5);(2)(3,4);(3)(3,2).【解析】【分析】(1)根据矩形的对边相等可得BC =OA ,AB =OC ,然后写出点B 的坐标即可; (2)先求出长方形OABC 的周长,然后求出被分成两个部分的长度,判断出点D 一定在AB 上,再求出BD 的长度即可得解;(3)先用待定系数法求出直线CD 的解析式,根据线段CD 向下平移,得到C′D′,设处直线C′D′的解析式,再求出矩形OABC 的中心坐标,代入直线C′D′的解析式即可得出结论.【详解】解:(1)∵A (3,0),C (0,5),∴OA =3,OC =5,∵四边形OABC 是长方形,∴BC =OA =3,AB =OC =5,∴点B 的坐标为(3,5).故答案为(3,5);(2)长方形OABC 的周长为:2(3+5)=16,∵CD 把长方形OABC 的周长分为3:1两部分,∴被分成的两部分的长分别为16×31+3=12,16×11+3=4, ①C→B→D 长为4,点D 一定在AB 上,∴BD =4﹣3=1,AD =5﹣BD =5﹣1=4,∴点D 的坐标为(3,4),②C→B→A→O→D 长为12时,点D 在OC 上,OD =1,不符合题意,所以,点D 的坐标为(3,4).故答案为(3,4);(3)设直线CD 的解析式为y =kx+b (k≠0),∵C (0,5),D (3,4),∴{b =53k +b =4, 解得{k =−13b =5,∴直线CD 的解析式为y =−13x +5,∵直线C′D′由直线CD平移而成,∴设直线C′D′的解析式为y=−13x+5−a,∵A(3,0),C(0,5),∴矩形OABC的中心坐标为(32,5 2 ).∵C′D′平分长方形OABC的面积,∴直线C′D′过矩形OABC的中心,∴52=−13×32+5−a,解得a=2,∴D′(3,2).故答案为:(3,2).【点睛】本题考查的是坐标与图形性质,熟知矩形的性质与一次函数的性质是解答此题的关键.17.已知线段AB∥x轴,且AB=4,若点A的坐标为(﹣1,2),则点B的坐标为_____.【答案】(3,2)或(﹣5,2).【解析】【分析】线段AB∥x轴,A、B两点纵坐标相等,又AB=4,B点可能在A点左边或者右边,根据距离确定B点坐标.【详解】∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当B点在A点左边时,B(﹣5,2),当B点在A点右边时,B(3,2);故答案为:(3,2)或(﹣5,2).【点睛】本题考查了平行于x轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.18.如果点P(2a−1,2a)在x轴上,则P点的坐标是______.【答案】(−1,0).【解析】【分析】根据x轴上点的纵坐标为0列方程求出a的值,然后求解即可.【详解】解:∵点P(2a−1,2a)在y轴上,∴2a=0,解得,a=0,所以,2a−1=2×0−1=−1,所以,点P的坐标为(−1,0).故答案为:(−1,0).【点睛】本题考查了点的坐标,熟记x轴上点的坐标特征是解题的关键.19.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第______象限.【答案】四【解析】【分析】直接利用x轴上点的坐标特点得出n的值,进而得出答案.【详解】∵点A(2,n)在x轴上,∴n=0,则点B(n+2,n﹣5)的坐标为:(2,﹣5)位于第四象限.故答案为:四.【点睛】本题考查了点的坐标,正确得出n的值是解题的关键.20.一个图形先向右平移5个单位,再向左平移7个单位,所得到的图形可以看作是原来位置的图形一次性向_____平移_____个单位得到.【答案】左2【解析】【分析】可以动手操作一下,看所得到的图形在原来图形的哪个方向,距离原图形几个单位.【详解】解:由题意可知,所得到的图形,可以看作是原来图形一次向左平移2个单位得到的.故答案为:(1). 左(2). 2【点睛】本题考查图形的平移,注意平移是沿某一直线移动的.21.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第一次碰到长方形边上的点的坐标为(3,0),则第21次碰到长方形边上的点的坐标为_____.【答案】(8,3)【解析】【分析】根据图形得出图形变化规律:每碰撞6次回到始点,从而可以得出21次碰到长方形边上的点的坐标.【详解】根据题意,如下图示:根据图形观察可知,每碰撞6次回到始点.∵21÷6=3…3,∴第21次碰到长方形边上的点的坐标为(8,3),故答案为:(8,3).【点睛】本题考查点的坐标的规律问题,关键是根据题意画出符合要求的图形,找出其中的规律.22.如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为______.【答案】(1,√3)【解析】【分析】先过点A作AC⊥OB,根据△AOB是等边三角形,求出OA=OB,OC=BC,∠AOB=60∘,再根据点B的坐标,求出OB的长,再根据勾股定理求出AC的值,从而得出点A的坐标.【详解】解:过点A作AC⊥OB,∵△AOB是等边三角形,∴OA=OB,OC=BC,∠AOB=60∘,∵点B的坐标为(2,0),∴OB=2,∴OA=2,∴OC=1,∴AC=√3,∴点A的坐标是(1,√3).故答案是:(1,√3).【点睛】此题考查了等边三角形的性质,勾股定理,关键是作出辅助线,求出点A的坐标.23.已知点P的坐标为(-2,3),则点P到y轴的距离为______.【答案】2【解析】【分析】根据点到y轴的距离等于横坐标的长度解答.【详解】解:∵点P的坐标为(-2,3),∴点P到y轴的距离为2.故答案为:2.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.24.已知点P(2a-6,a),若点P在x轴上,则点P的坐标为______.【答案】(-6,0)【解析】【分析】根据x轴上点的坐标的特点y=0,计算出a的值,从而得出点P坐标.【详解】解:∵点P(2a-6,a)在x轴上,∴a=0,则点P的坐标为(-6,0),故答案为:(-6,0).【点睛】本题主要考查了点的坐标,解题的关键是掌握在x轴上的点的坐标的特点y=0,难度适中.三、解答题25.(1)在图①的平面直角坐标系中,描出点A(2,3)、B(-2,3)、C(2,-3),连结AB、AC、BC,并直接写出△ABC的面积.(2)如图②,在5×4的正方形网格中,每个小正方形的边长均为1,点A、B均在格点上.在格点上确定点C,使△ABC为直角三角形,且面积为4,画出所有满足条件的△ABC.【答案】(1)画图见解析,面积是12;(2)见解析.【解析】【分析】(1)先画出图形,然后根据三角形的面积公式求解即可;(2)根据三角形的面积求出点C到AB的距离,再判断出点C的位置即可. 【详解】(1)如图,S△ABC=12AB⋅AC=12×4×6=12;(2)设△ABC的高为h,∵12AB⋅ℎ=12×4ℎ=4,∴h=2.∴点C的位置有3个.【点睛】本题考查了图形与坐标,三角形的面积公式,正确画出图形是解(1)的关键,求出三角形的高是解(2)的关键.26.在平面直角坐标系中,已知A(−3,−2),B(−1,4),C(5,2),D(3,−3).(1)作图:在坐标系中找出A、B、C、D四个点并顺次连接得到四边形ABCD.(2)求出该四边形的面积.【答案】(1)见解析;(2)36.【解析】【分析】(1)画出图形;(2)利用面积差可得结论.【详解】解:(1)如图所示,(2)如图分别过A、B、C、D作坐标轴的平行线,分别相交于E、F、G、H.由题意可知四边形EFGH是长方形,则有S四边形ABCD =S长方形EFGH−S△ABF−S△BCG−S△CDH−S△ADE=8×7−2×62−2×62−1×6 2−2×52=56−6−6−3−5=36.【点睛】此题主要考查了三角形的面积和点的坐标,正确得出对应点位置是解题关键.27.如图,△ABC平移后得到了△A'B'C',其中点C的对应点是点C'。

平面直角坐标系练习题3套带答案

平面直角坐标系练习题3套带答案

一、选择题1,点P (m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为( )A.(0,-2)B.(2,0)C.(0,2)D.(0,-4) 2,在直角坐标系xOy 中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.2个B.3个C.4个D.5个3,如图1所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4,在平面直角坐标系中,若点()13-+,m m P 在第四象限,则m 的取值范围为( )A 、-3<m <1B 、m >1C 、m <-3D 、m >-3 5,已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A.3B.5C.6D.76,小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向 7、已知如图2中方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格的顶点上确定一 点C ,连结AB ,AC ,BC ,使△ABC 的面积为2平方单位.则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2) 8,如图3,若△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-3)那么将△ABC 作同榉的平移得到△A 1B 1C 1,则点A 的对应点A 1的坐标是( )A.(4,1)B.(9,一4)C.(一6,7)D.(一1,2)9,已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形.则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10,已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( )A.一定大于90°B.一定小于90°C.一定等于90°D.以上三种情况都有可能二、填空题11,已知点M (a ,b ),且a ·b >0,a +b <0,则点M 在第___象限. 12,如图4所示,从2街4巷到4街2巷,走最短的路线的走法共有___种.13,如图5所示,进行“找宝”游戏,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母___的下面寻找.14,点P (a ,b )与点Q (a ,-b )关于___轴对称;点M (a ,b )和点N (-a ,b ) 关于___轴对称.15,△ABC 中,A (-4,-2),B (-1,-3),C (-2,-1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′、B ′、C ′的坐标分别为___、___、___.16,已知点M (-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M 在新坐标系内的坐标为___.17,在一座共8层的商业大厦中,每层的摊位布局基本相同.小明的父亲在6楼的位置如图3所示,其位置可以表示为(6,2,3).若小明的母亲在5楼,其摊位也可以用如图6表示,则小明的母亲的摊位的位置可以表示为___.18,观察图象,与如图7中的鱼相比,图5中的鱼发生了一些变化.若图7中鱼上点P 的坐标为(4,3.2),则这个点在如图8中的对应点P 1的坐标为___(图中的方格是1×1).19,长方形ABCD 中,A 、B 、C 三点的坐标分别是A (6,4),B (0,4),C (0,0)则D 点的坐标是 .20,如图9在一个规格为4×8的球台上,有两个小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则O 点的位置可表示为 .三、解答题(共36分)21,如图10所示的直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),确定这个四边形的面积.22,如图11所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?23,如果│3x +3│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y-1)在坐标平面内的什么位置?图4(街)(巷)2354114532图7图8图5(2)A B C D E F G H I J K L M N O P Q R S TU V W X Y图10(3,6)(16,0)(14,8)(0,0)C D B A xy图112365417图3相帅炮图1图3 图2图924,如图12所示,C 、D 两点的横坐标分别为2,3,线段CD =1;B 、D 两点的横坐标分别为-2,3,线段BD =5;A 、B 两点的横坐标分别为-3,-2,线段AB =1.(1)如果x 轴上有两点M (x 1,0),N (x 2,0)(x 1<x 2),那么线段MN 的长为多少?(2)如果y 轴上有两点P (0,y 1),Q (0,y 2)(y 1<y 2),那么线段PQ 的长为多少?25,如图13,三角形ABC 中任意一点P (x 0,y 0),经平移后对称点为P 1(x 0+3,y 0-5),将三角形作同样平移得到三角形A 1B 1C 1,求A 1、B 1、C 1 的坐标, 并在图中画出A 1B 1C 1的位置.26,如图14将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?图12图14第6章平面直角坐标系综合练习题(2)一、1,B;2,C;3,C;4,A;5,A;6,B;7,C;8,A;9,C;10,C.二、11,三;12,6;13,X;14,x、y;15,(0,1)、(3,0)、(2,2);16,(-1,5);17,(5,4,2);18,P1(4,2.2);19,(6,0);20,(3,4).三、21,94;22,3个格;23,根据题意可得3x+3=0,x+3y-2=0,解得y=1,x=2-3y=-1,所以点P(x,y),即P(-1,1) 在第二象限Q(x+1,y-1),即Q(0,0)在原点上;24,(1)MN=x2-x1.(2)PQ=y2-y1;25,A1(2,-1),B1(-1,6) C1(4,-4),图略;26,(1)所得的图形与原来的图形相比向下平移了4个单位长度.(2)所得的图形与原来的图形相比向右平移了6个单位长度;27,P2(1,-1) ,P7(1,1) ,P100(1,-3).第6章平面直角坐标系综合练习题(3)一、选择题1,如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2,如图2所示,横坐标正数,纵坐标是负数的点是( )A.A 点B.B 点C.C 点D.D 点 3,(2008年扬州市)在平面直角坐标系中,点P (-1,2)的位置在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4,已知点A (-3,2),B (3,2),则A 、B 两点相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度5,点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上 6,若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限7,已知坐标平面内点A (m 、n )在第四象限,那么点B (n 、m )在( )A.第一象限B.第二象限C.第三象限D.第四象限 8,把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( ) A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)9,如图3,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个的坐标是( )A.(2,2)(3,4)(1,7) B.(一2,2)(4,3)(1,7)C.(一2,2)(3,4)(1,7)D.(2,一2)(3,3)(1,7)10,在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A ′点,则A 与A ′的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位 二、填空题11,电影票上“4排5号”,记作(4,5),则5排4号记作___. 12,点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.13,在平面直角坐标系中,点(3,-5)在第___象限. 14,已知a <b <0,则点A (a -b ,b )在___象限.15,△ABO 中,OA =OB =5,OA 边上的高线长为4,将△ABO 放在平面直角坐标系中,使点O 与原点重合,点A 在x 轴的正半轴上,那么点B 的坐标是___.16,已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___.17,△ABC 的三个顶点A (1,2),B (-1,-2),C (-2,3)将其平移到点A ′(-1,-2)处,使A 与A ′重合,则B 、C 两点坐标分别为 , .18,把面积为10cm 2的三角形向右平移5cm 后其面积为 . 19,菱形的四个顶点都在坐标轴上,已知其中两个顶点的坐标分别是(3,0),(0,4),则另两个顶点的坐标是____.20,如图4所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.三、解答题21,用有序数对表示物体位置时,(-3,2)与(2,-3)表示的位置相同吗?请结合图形说明.22,如果点A 的坐标为(-a2-3,b 2+2),那么点A 在第几象限?说说你理由.23,如图5所示,图中的“马”能走遍棋盘中的任何一个位置吗?.24,在直角坐标系中描出下列各组点,并组各组的点用线段依次连结起来.(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0); (2)(2,0)、(5,3)、(4,0); (3)(2,0)、(5,-3)、(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方,那么至少要向上平移几个单位长度.25,如图6笑脸的图案中,左右两眼的坐标分别为(4,3)和(6,3),嘴角左右端点分别为(4,1)和(6,1)试确定经过下列变化后,左右眼和嘴角左右两端的点的坐标.(1)将笑脸沿x 轴方向,向左平移2个单位的长度. (2)将笑脸沿y 轴方向,向左平移1个单位的长度.图5(1)DCB A五行三行六行六列五列四列三列二列一列图1 图2(3)图4图3图626,如图7,在平面直角坐标系中,已知点为A (-2,0),B (2,0). (1)画出等腰三角形ABC (画出一个即可); (2)写出(1)中画出的ABC 的顶点C 的坐标.27,如图8,△ABC 三个顶点的坐标分别为A (4,3),B (3,1),C (4,1).(1)将三角形ABC 三个顶点的横坐标都减去6,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得△A 1B 1C 1与三角形ABC 的大小、形状和位置上有什么关系?(2)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系?第6章平面直角坐标系综合练习题(3)一、1,A ;2,B ;3,B ;4,D ;5,A ;6,B ;7,B ;8,C ;9,C ;10,B .二、11,(5,4);12,(0,0);13,四;14,三;15,(3,4)或(3,-4);16,(-3,2);17、B (一3,一6)、C (一4,一1);18,10;19,(-3,0)、(0,-4);20,(-2,3)、(0,2)、(2,1)、(-2,1).三、21,不同,图略;22,第二象限,因为-a 2-3<0,b 2+2>0;23,马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可;24,至少要向上平移3个以单位长度;25,(1)(2,3)、(4,3)、(2,1)、(4,1).(2)(4,4)、(6,4)、(4,2)、(6,2);26,略;27,(1)所得△A 1B 1C 1与△ABC 的大小、形状完全相同,△A 1B 1C 1可以看作△ABC 向左平移6个单位长度得到的.(2)类似地△A 2B 2C 2与△ABC 的大小、形状完全相同,可以看作△ABC 向下平移5个单位长度得到的.图略.图7图8。

山西忻州一中七年级数学下册第七章【平面直角坐标系】经典测试(含答案)

山西忻州一中七年级数学下册第七章【平面直角坐标系】经典测试(含答案)

一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-55.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗6.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2-8.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)9.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( )A .(2,-4)B .(4,-2)C .(-2,4)D .(-4,2) 10.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 11.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭二、填空题12.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.13.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 14.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 15.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.16.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______17.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 18.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.19.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 20.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.21.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______三、解答题22.在平面直角坐标系内,点()0,5A,点()29,32M x x --在第三象限,(1)求x 的取值范围;(2)点M 到y 轴的距离是到x 轴的2倍,请求出M 点坐标;(3)在(2)的基础上,若y 轴上存在一点P 使得AMP 的面积为10,请求出P 点坐标. 23.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是A(﹣3,2),B(0,4),C (0,2).(1)将△ABC 以点O 为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)平移△ABC,使对应点A2的坐标为(0,﹣4),写出平移后对应△A2B2C2的中B2,C2点坐标.一、选择题1.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°2.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)3.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-54.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 5.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2-6.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的127.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 8.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 9.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88610.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 11.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)二、填空题12.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.13.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.14.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.15.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.16.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 17.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.18.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.19.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.20.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.21.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.三、解答题22.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点'B 、'C 分别是B 、C 的对应点.(1)请画出平移后的三角形'''A B C (不写画法),并写出点'B 、'C 的坐标; (2)求三角形ABC 的面积.23.如图,已知每个小正方形的边长均为1的网格中有一个三角形. ()1请你画出这个三角形向上平移3个单位长度,所得到的'''A B C ∆ ()2请以'A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B ,点C 及','B C 的坐标.24.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-; (2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或232.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( ) A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3) 5.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 7.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交8.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 9.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上10.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)11.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题12.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.13.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.14.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.15.如果点()3,1P m m ++在坐标轴上,那么P 点坐标为_________.16.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.17.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________. 18.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.21.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题22.在平面直角坐标系中,有点(),1A a -,点()2,B b .(1)当A ,B 两点关于直线1x =-对称时,求AOB 的面积;(2)当线段//AB y 轴,且3AB =时,求-a b 的值.23.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P的坐标).24.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()--“帅”的坐标为()2,40,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.25.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD,求四边形ABCD的面积.。

平面直角坐标系数学题

平面直角坐标系数学题

平面直角坐标系数学题
以下是三个关于平面直角坐标系的数学题及其答案:
题目1
题目:在平面直角坐标系中,点A的坐标为(3, -2),点B与点A关于x轴对称,则点B的坐标是什么?
答案:点B的坐标是(3, 2)。

因为点A和点B关于x轴对称,所以它们的x坐标相同,而y坐标互为相反数。

题目2
题目:在平面直角坐标系中,点C的坐标为(-4, 5),将点C向右平移6个单位长度后得到点D,则点D的坐标是什么?
答案:点D的坐标是(2, 5)。

因为将点C向右平移6个单位长度,其x坐标会增加6,而y坐标保持不变。

题目3
题目:在平面直角坐标系中,点E在第四象限,且到x轴的距离为3,到y轴的距离为4,则点E的坐标是什么?
答案:点E的坐标是(4, -3)。

因为在第四象限,点的x坐标是正数,y坐标是负数。

同时,点到x轴的距离等于其纵坐标的绝对值,点到y轴的距离等于其横坐标的绝对值。

《第11章平面直角坐标系》单元测试含答案解析

《第11章平面直角坐标系》单元测试含答案解析

第11章 平面直角坐标系一、选择题(共16小题)1.在平面直角坐标系中,已知点P 的坐标是(﹣1,﹣2),则点P 关于原点对称的点的坐标是( )A .(﹣1,2)B .(1,﹣2)C .(1,2)D .(2,1)2.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4,2),则点A 1的坐标是( )A .(4,﹣2)B .(﹣4,﹣2)C .(﹣2,﹣3)D .(﹣2,﹣4)3.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a+b 的值为( )A .33B .﹣33C .﹣7D .74.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4,﹣3)B .(﹣4,3)C .(0,﹣3)D .(0,3)5.在平面直角坐标系中,若点P (m ,m ﹣n )与点Q (﹣2,3)关于原点对称,则点M (m ,n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A .(﹣1,) B .(﹣1,)或(1,﹣) C .(﹣1,﹣) D .(﹣1,﹣)或(﹣,﹣1)7.在平面直角坐标系中,把点P (﹣5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,﹣3)B .(﹣3,3)C .(3,3)或(﹣3,﹣3)D .(3,﹣3)或(﹣3,3)8.如图,在平面直角坐标系中,点B 、C 、E 、在y 轴上,Rt △ABC 经过变换得到Rt △ODE .若点C 的坐标为(0,1),AC=2,则这种变换可以是( )A .△ABC 绕点C 顺时针旋转90°,再向下平移3B .△ABC 绕点C 顺时针旋转90°,再向下平移1C .△ABC 绕点C 逆时针旋转90°,再向下平移1D .△ABC 绕点C 逆时针旋转90°,再向下平移39.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是( )A .(,1)B .(1,﹣)C .(2,﹣2)D .(2,﹣2)10.在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为( )A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)11.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)12.将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)13.点A (3,﹣1)关于原点的对称点A′的坐标是( )A .(﹣3,﹣1)B .(3,1)C .(﹣3,1)D .(﹣1,3)14.在直角坐标系中,点B 的坐标为(3,1),则点B 关于原点成中心对称的点的坐标为( )A.(3,﹣1)B.(﹣3,1)C.(﹣1,﹣3) D.(﹣3,﹣1)15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣4二、填空题(共12小题)17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为.20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为.21.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是.22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为.23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.24.点P(5,﹣3)关于原点的对称点的坐标为.25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.26.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是.27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是.28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为.三、解答题(共2小题)29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为,点B关于x轴的对称点B′的坐标为,点C 关于y轴的对称点C的坐标为.(2)求(1)中的△A′B′C′的面积.30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为;(2)将点A向右平移5个单位得到点D,则点D的坐标为;(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.第11章平面直角坐标系参考答案与试题解析一、选择题(共16小题)1.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2) D.(2,1)【考点】关于原点对称的点的坐标.【专题】压轴题.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),据此即可求得点P关于原点的对称点的坐标.【解答】解:∵点P关于x轴的对称点坐标为(﹣1,﹣2),∴点P关于原点的对称点的坐标是(1,2).故选:C.【点评】此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.2.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2)B.(﹣4,﹣2) C.(﹣2,﹣3) D.(﹣2,﹣4)【考点】关于原点对称的点的坐标.【专题】几何图形问题.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【考点】关于原点对称的点的坐标.【分析】先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3)B.(﹣4,3)C.(0,﹣3)D.(0,3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.5.(•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】关于原点对称的点的坐标.【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m ﹣n=﹣3,∴m=2,n=5∴点M (m ,n )在第一象限,故选A .【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.如图,在△ABO 中,AB ⊥OB ,OB=,AB=1.将△ABO 绕O 点旋转90°后得到△A 1B 1O ,则点A 1的坐标为( )A .(﹣1,) B .(﹣1,)或(1,﹣) C .(﹣1,﹣) D .(﹣1,﹣)或(﹣,﹣1)【考点】坐标与图形变化-旋转.【分析】需要分类讨论:在把△ABO 绕点O 顺时针旋转90°和逆时针旋转90°后得到△A 1B 1O 时点A 1的坐标.【解答】解:∵△ABO 中,AB ⊥OB ,OB=,AB=1,∴∠AOB=30°,当△ABO 绕点O 顺时针旋转90°后得到△A 1B 1O ,则易求A 1(1,﹣); 当△ABO 绕点O 逆时针旋转90°后得到△A 1B 1O ,则易求A 1(﹣1,).故选B .【点评】本题考查了坐标与图形变化﹣旋转.解题时,注意分类讨论,以防错解.7.在平面直角坐标系中,把点P (﹣5,3)向右平移8个单位得到点P 1,再将点P 1绕原点旋转90°得到点P 2,则点P 2的坐标是( )A .(3,﹣3)B .(﹣3,3)C .(3,3)或(﹣3,﹣3)D .(3,﹣3)或(﹣3,3)【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】分类讨论.【分析】首先利用平移的性质得出点P1的坐标,再利用旋转的性质得出符合题意的答案.【解答】解:∵把点P(﹣5,3)向右平移8个单位得到点P1,∴点P1的坐标为:(3,3),如图所示:将点P1绕原点逆时针旋转90°得到点P2,则其坐标为:(﹣3,3),将点P1绕原点顺时针旋转90°得到点P3,则其坐标为:(3,﹣3),故符合题意的点的坐标为:(3,﹣3)或(﹣3,3).故选:D.【点评】此题主要考查了坐标与图形的变化,正确利用图形分类讨论得出是解题关键.8.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C 的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.【点评】本题考查的是坐标与图形变化旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A.(,1)B.(1,﹣) C.(2,﹣2)D.(2,﹣2)【考点】坐标与图形变化-旋转.【专题】计算题.【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y 轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM ⊥y轴,∴∠POQ=120°,∵AP=OP,∴∠BAO=∠POA=30°,∴∠MOQ=30°,在Rt△OMQ中,OQ=OP=2,∴MQ=1,OM=,则P的对应点Q的坐标为(1,﹣),故选B【点评】此题考查了坐标与图形变化﹣旋转,熟练掌握旋转的性质是解本题的关键.10.在平面直角坐标系内,点P (﹣2,3)关于原点的对称点Q 的坐标为( )A .(2,﹣3)B .(2,3)C .(3,﹣2)D .(﹣2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).【解答】解:根据中心对称的性质,得点P (﹣2,3)关于原点对称点P′的坐标是(2,﹣3). 故选:A .【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.11.将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是( )A .(﹣3,2)B .(﹣1,2)C .(1,2)D .(1,﹣2)【考点】坐标与图形变化-平移;关于x 轴、y 轴对称的点的坐标.【分析】先利用平移中点的变化规律求出点A′的坐标,再根据关于y 轴对称的点的坐标特征即可求解.【解答】解:∵将点A (3,2)沿x 轴向左平移4个单位长度得到点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y 轴对称的点的坐标是(1,2).故选:C .【点评】本题考查坐标与图形变化﹣平移及对称的性质;用到的知识点为:两点关于y 轴对称,纵坐标不变,横坐标互为相反数;左右平移只改变点的横坐标,右加左减.12.将点P (﹣2,3)向右平移3个单位得到点P 1,点P 2与点P 1关于原点对称,则P 2的坐标是( )A .(﹣5,﹣3)B .(1,﹣3)C .(﹣1,﹣3)D .(5,﹣3)【考点】关于原点对称的点的坐标;坐标与图形变化-平移.【分析】首先利用平移变化规律得出P 1(1,3),进而利用关于原点对称点的坐标性质得出P 2的坐标.【解答】解:∵点P (﹣2,3)向右平移3个单位得到点P 1,∴P 1(1,3),∵点P 2与点P 1关于原点对称,∴P 2的坐标是:(﹣1,﹣3).故选:C .【点评】此题主要考查了关于原点对称点的性质以及点的平移规律,正确把握坐标变化性质是解题关键.13.点A (3,﹣1)关于原点的对称点A′的坐标是( )A .(﹣3,﹣1)B .(3,1)C .(﹣3,1)D .(﹣1,3)【考点】关于原点对称的点的坐标.【分析】直接根据关于原点对称的点的坐标特点即可得出结论.【解答】解:∵两个点关于原点对称时,它们的坐标符号相反,∴点A (3,﹣1)关于原点的对称点A′的坐标是(﹣3,1).故选C .【点评】本题考查的是关于原点对称的点的坐标,熟知关于原点对称的点的坐标特点是解答此题的关键.14.在直角坐标系中,点B 的坐标为(3,1),则点B 关于原点成中心对称的点的坐标为( )A .(3,﹣1)B .(﹣3,1)C .(﹣1,﹣3)D .(﹣3,﹣1)【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(﹣x ,﹣y ).【解答】解:点(3,1)关于原点中心对称的点的坐标是(﹣3,﹣1),故选D.【点评】此题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题,记忆方法是结合平面直角坐标系的图形记忆.15.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为()A.(﹣2,1)B.(2,﹣1)C.(2,1) D.(﹣2,﹣1)【考点】关于原点对称的点的坐标.【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.【解答】解:∵点A坐标为(﹣2,1),∴点B的坐标为(2,﹣1).故选B.【点评】本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).16.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P点关于x轴的对称点为P2(a,b),则=()A.﹣2 B.2 C.4 D.﹣4【考点】关于原点对称的点的坐标;立方根;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.【解答】解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.【点评】此题主要考查了关于原点对称点的性质以及关于x轴对称点的性质,得出P点坐标是解题关键.二、填空题(共12小题)17.若点(a,1)与(﹣2,b)关于原点对称,则a b= .【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.18.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).【考点】坐标与图形变化-旋转.【分析】首先根据点A的坐标求出OA的长度,然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OA′=OA,据此求出点A′的坐标即可.【解答】解:如图,过点A作AC⊥y轴于点C,作AB⊥x轴于点B,过A′作A′E⊥y轴于点E,作A′D⊥x轴于点D,,∵点A(4,5),∴AC=4,AB=5,∵点A(4,5)绕原点逆时针旋转90°得到点A′,∴A′E=AB=5,A′D=AC=4,∴点A′的坐标是(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了坐标与图形变换﹣旋转,要熟练掌握,解答此题的关键是要明确:旋转变换只改变图形的位置,不改变图形的形状与大小.19.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为(3,1).【考点】坐标与图形变化-旋转.【分析】过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,根据旋转求出∠A=∠A'OD,证△AC0≌△ODA',推出A'D=OC=1,OD=CA=3,即可根据题意作出A点绕坐标原点顺时针90°后的点,然后写出坐标.【解答】解:过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,∵∠AOA'=90°,∠ACO=90°,∴∠AOC+∠A'OD=90°,∠A+∠AOC=90°,∴∠A=∠A'OD,在△AC0和△ODA'中,,∴△AC0≌△ODA'(AAS),∴A'D=OC=1,OD=CA=3,∴A'的坐标是(3,1).故答案为:(3,1).【点评】本题主要考查对坐标与图形变换﹣旋转,全等三角形的性质和判定等知识点的理解和掌握,能正确画出图形并求出△AC0≌△ODA'是解此题的关键.20.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为(﹣2,0)或(1,﹣).【考点】坐标与图形变化-旋转.【专题】压轴题;数形结合.【分析】在Rt△OAB中利用勾股定理计算出OA=2,则利用含30度的直角三角形三边的关系得∠A=30°,所以∠AOB=60°,然后分类讨论:当△ABO绕点O逆时针旋转120°后,点A的对应点A′落在x轴的负半轴上,如图,OA′=OA=2,易得A′的坐标为(﹣2,0);当△ABO绕点O顺时针旋转120°后,点A的对应点A1落在第四象限,如图,则OA1=OA=2,∠AOA1=120°,∠BOA1=30°,利用三角函数可求出A1的纵坐标和横坐标.【解答】解:在Rt△OAB中,∵AB=,OB=1,∴OA==2,∴∠A=30°,∴∠AOB=60°,①当△ABO绕点O逆时针旋转120°后,点A的对应点A1落在x轴的负半轴上,如图,OA1=OA=2,此时A1的坐标为(﹣2,0);②当△ABO 绕点O 顺时针旋转120°后,点A 的对应点A 1′落在第三象限,如图,则OA 1′=OA=2,∠AOA 1′=120°,∵∠AOB=60°,∴∠BOA 1′=60°,∴点A 1′的横坐标为OA 1′•cos60°=2×=1,纵坐标为OA 1′•sin60°=2×=, A 1′的坐标为(1,﹣).综上所述,A 1的坐标为(﹣2,0)或(1,﹣). 故答案为(﹣2,0)或(1,﹣).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A (﹣2,5)的对应点A′的坐标是 A′(5,2) .【考点】坐标与图形变化-旋转.【分析】由线段AB 绕点O 顺时针旋转90°得到线段A′B′可以得出△ABO ≌△A′B′O′,∠AOA′=90°,作AC ⊥y 轴于C ,A′C′⊥x 轴于C′,就可以得出△ACO ≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A 的坐标就可以求出结论.【解答】解:∵线段AB 绕点O 顺时针旋转90°得到线段A′B′,∴△ABO ≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC ⊥y 轴于C ,A′C′⊥x 轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为:A′(5,2).【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.22.设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点M(1,2)关于原点的对称点M′的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).【点评】此题主要考查了关于原点对称的点的坐标特点,关键是熟练掌握点的坐标的变化规律.23.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.24.点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3).【考点】关于原点对称的点的坐标.【分析】两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.【解答】解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为:(﹣5,3).【点评】主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.25.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.26.已知点P(3,2),则点P关于y轴的对称点P的坐标是(﹣3,2),点P关于原点O的1的坐标是(﹣3,﹣2).对称点P2【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.的坐标是(﹣3,2),【解答】解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,﹣2).点P关于原点O的对称点P2故答案为:(﹣3,2);(﹣3,﹣2).【点评】本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.27.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).【考点】关于原点对称的点的坐标.【分析】根据关于坐标原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).【点评】本题考查了关于原点对称的点的坐标,熟记关于坐标原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.28.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为(﹣1,﹣1).【考点】关于原点对称的点的坐标.【分析】过点A作AD⊥OB于点D,根据等腰直角三角形的性质求出OD及AD的长,故可得出A点坐标,再由关于原点对称的点的坐标特点即可得出结论.【解答】解:过点A作AD⊥OB于点D,∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(﹣1,﹣1).故答案为(﹣1,﹣1).【点评】本题考查的是关于原点对称的点的坐标特点,熟知等腰直角三角形的性质是解答此题的关键.三、解答题(共2小题)29.在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.【考点】关于原点对称的点的坐标;三角形的面积;关于x轴、y轴对称的点的坐标.【分析】(1)关于原点对称的两点的横、纵坐标都是互为相反数;关于x轴对称的两点的横坐标相同,纵坐标互为相反数;关于y轴对称的两点的横坐标互为相反数,纵坐标相同;(2)根据点A′(1,﹣5),B′(4,﹣2),C′(1,0)在平面直角坐标系中的位置,可以求得A′C′=5,B′D=3,所以由三角形的面积公式进行解答.【解答】解:(1)∵A(﹣1,5),∴点A关于原点O的对称点A′的坐标为(1,﹣5).∵B(4,2),∴点B关于x轴的对称点B′的坐标为(4,﹣2).∵C(﹣1,0),∴点C关于y轴的对称点C′的坐标为(1,0).故答案为:(1,﹣5),(4,﹣2),(1,0).(2)如图,∵A′(1,﹣5),B′(4,﹣2),C′(1,0).∴A′C′=|﹣5﹣0|=5,B′D=|4﹣1|=3,=A′C′•B′D=×5×3=7.5,即(1)中的△A′B′C′的面积是7.5.∴S△A′B′C′【点评】本题考查了关于原点、x轴、y轴对称的点的坐标,三角形的面积.解答(2)题时,充分体现了“数形结合”数学思想的优势.30.如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(1)若点C与点A关于原点O对称,则点C的坐标为(2,﹣2);(2)将点A向右平移5个单位得到点D,则点D的坐标为(3,2);(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.【考点】关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.【分析】(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A的横坐标加5,纵坐标不变即可得到对应点D的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.【解答】解:(1)∵点C与点A(﹣2,2)关于原点O对称,∴点C的坐标为(2,﹣2);(2)∵将点A向右平移5个单位得到点D,点D的坐标为(3,2);(3)由图可知:A(﹣2,2),B(﹣3,﹣2),C(2,﹣2),D(3,2),∵在平行四边形ABCD内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(﹣1,1),(0,0),(1,﹣1),∴P==.【点评】本题考查了关于原点对称的点的坐标,坐标与图形变化﹣平移,概率公式.难度适中,掌握规律是解题的关键.。

《平面直角坐标系》测试题及答案

《平面直角坐标系》测试题及答案

平面直角坐标系测试题满分100分, 考试时间 90分钟一、选择题(每小题3分,共30分)1.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示 B 点,那么C 点的位置可表示为( ) A .(0,3) B .(2,3) C .(3,2) D .(3,0) 2.点B (0,3-)在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上3.平行于x 轴的直线上的任意两点的坐标之间的关系是( ) A .横坐标相等 B .纵坐标相等 C .横坐标的绝对值相等 D .纵坐标的绝对值相等 4.下列说法中,正确的是( )A .平面直角坐标系是由两条互相垂直的直线组成的B .平面直角坐标系是由两条相交的数轴组成的C .平面直角坐标系中的点的坐标是唯一确定的D .在平面上的一点的坐标在不同的直角坐标系中的坐标相同 5.已知点P 1(-4,3)和P 2(-4,-3),则P 1和P 2( ) A .关于原点对称 B .关于y 轴对称C .关于x 轴对称D .不存在对称关系6.如果点P (5,y )在第四象限,则y 的取值范围是( ) A .y >0 B .y <0 C .y ≥0 D .y ≤07.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为( ) A .(2,2); B .(3,2); C .(2,-3) D .(2,3) 8.在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是( ) A .(-3,2); B .(-7,-6); C .(-7,2) D .(-3,-6) 9.已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限A BC二、填空题(每小题3分,共21分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.已知坐标平面内一点A(1,-2),若A、B两点关于x轴对称,则点B的坐标为 .13.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点A 的坐标为.14.已知点M在y轴上,纵坐标为5,点P(3,-2),则△OMP的面积是_______.15.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________.16.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a=_____.17.已知线段MN平行于x轴,且MN的长度为5,若M(2,-2),那么点N的坐标是__________.三、解答题(共49分)18.(5分)写出如图中“小鱼”上所标各点的坐标.19.(6分)在平面直角坐标系中,画出点A(0,2),B(-1,0),过点A作直线L1∥x轴,过点B作L2∥y轴,分析L1,L2上点的坐标特点,由此,你能总结出什么规律?20.(8分)如图,A点坐标为(3,3),将△ABC先向下平移4个单位得△A′B′C′,再将△A′B′C′向左平移5个单位得△A〞B〞C〞。

北京十二中七年级数学下册第七章【平面直角坐标系】经典习题(含答案)

北京十二中七年级数学下册第七章【平面直角坐标系】经典习题(含答案)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b4.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1-5.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( ) A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 10.如图,在平面直角坐标系中,半径为1个单位长度的半圆123,,O O O ,…组成一条平滑曲线,点P 从点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2016秒时,点P 的坐标是( )A .()2016,1B .()2016,0C .()2016,1-D .()2016,0π 11.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.如图,将边长为1的正方形OABP 沿x 轴正方向连续翻转,点P 依次落在点1P ,2P ,3P ,4P ,…的位置,那么2016P 的坐标是________.14.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.15.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__16.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________. 17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.19.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3(1)数轴上点A 表示的数为______.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O A B C '''',移动后的长方形O A B C ''''与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S①设点A 的移动距离AA x '=.当4S =时,x =______.②当S 恰好等于原长方形OABC 面积的一半时,求数轴上点A '表示的数为多少. 23.如图,已知△ABC 的顶点分别为A (﹣2,2)、B (﹣4,5)、C (﹣5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出点B 1的坐标;(2)作出△ABC 关于y 轴对称的图形△A 2B 2C 2,并写出点B 2的坐标;(3)若点P (a ,b )是△ABC 内部一点,则点P 关于直线m 对称的点的坐标是 . 24.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.25.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,点B 的坐标是(1,2).(1)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A'B'C'.请画出△A'B'C'并写出A',B′,C'的坐标;(2)在△ABC内有一点P(a,b),请写出按(1)中平移后的对应点P″的坐标.一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-5.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 6.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .17.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上8.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______15.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .16.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.17.三角形A′B′C′是由三角形ABC 平移得到的,点A(-1,4)的对应点为A′(1,-1),若点C′的坐标为(0,0),则点C′的对应点C 的坐标为______.18.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.21.点3(2,)A -到x 轴的距离是__________.三、解答题22.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .23.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 满足2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.24.如图,已知三角形,ABC 把三角形ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到三角形'''A B C .(1)在图中画出三角形'''A B C ,并写出',','A B C 的坐标;(2)连接,AO BO ,求三角形ABO 的面积;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在请直接写出点P 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠3.下列各点中,在第二象限的是( )A .()1,0B .()1,1C .()1,1-D .()1,1- 4.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3-5.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 6.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4-7.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 9.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限二、填空题12.在平面直角坐标系中,点()3,2P -到y 轴的距离为__________.13.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.14.若线段AB 的端点为()1,3-,()1,3,线段CD 与线段AB 关于x 轴轴对称,则线段CD 上任意一点的坐标可表示为___________.15.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.16.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)17.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.19.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.20.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.21.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .三、解答题22.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1): ;(1,2): ;(2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点 与点 的直线平行于x 轴,这两点的坐标的共同特点是 ; ②连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 .23.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少?24.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.。

平面直角坐标系典型例题含答案及解析

平面直角坐标系典型例题含答案及解析

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。

注意a 与b 的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。

这个平面叫做坐标平面。

(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。

3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点)P到X轴距离为y,到y轴的距离为x。

x,(y7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。

3.若点P (x ,y )的坐标满足xy=0(x ≠y ),则点P 必在( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上(除原点) 考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.(2,3)2.已知点A 的坐标为(-2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 3.若坐标平面上点P (a ,1)与点Q (-4,b )关于x 轴对称,则( ) A .a=4,b=-1 B .a=-4,b=1 C .a=-4,b=-1 D .a=4,b=1 考点4:点的平移1.已知点A (-2,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A ′,则点A ′的坐标是( )A .(-5,6)B .(1,2)C .(1,6)D .(-5,2)2.已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于将A 经过( )的平移到了C .A .向左平移4个单位,再向上平移6个单位B .向左平移4个单位,再向下平移6个单位C .向右平移4个单位,再向上平移6个单位D .向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A .2B .4C .0或4D .4或-4 2.如图,已知:)4,5(-A 、)2,2(--B 、)2,0(C 。

德阳市七年级数学下册第七章【平面直角坐标系】经典练习题(含答案解析)

德阳市七年级数学下册第七章【平面直角坐标系】经典练习题(含答案解析)

一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,56.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上9.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303)10.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-11.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.已知点A (2a+5,a ﹣3)在第一、三象限的角平分线上,则a =_____.16.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.17.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__18.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.19.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______.三、解答题22.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点'B 、'C 分别是B 、C 的对应点.(1)请画出平移后的三角形'''A B C (不写画法),并写出点'B 、'C 的坐标; (2)求三角形ABC 的面积.23.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)25.如图,已知火车站的坐标为()2,1,文化宫的坐标为()1,2-.(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、宾馆的坐标;(3)请将原点O ,宾馆C 和文化宫B ,看作三点用线段连起来,将得OBC ,然后将此三角形向下平移3个单位长度,画出平移后的111O B C ,并求出其面积.一、选择题1.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或23 2.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 3.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 4.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 5.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 6.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5) 7.在平面直角坐标系中,点P 在第二象限,且点P 到x 轴的距离为3个单位长度,到y 轴的距离为4个单位长度,则点P 的坐标是( )A .()3,4B .()3,4--C .()4,3-D .()3,4- 8.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 9.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角) 13.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.14.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 15.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.16.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.17.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.18.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .19.如图,已知1(1,0)A ,2(1,1)A ,3(1,1)A -,4(1,1)A --,5(2,1)A -,则2020A 的坐标为_______.20.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.21.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题22.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移4个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度)(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标;(3)求△ABC 的面积.23.在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示:ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.25.如图,平面直角坐标系中,已知点A (-3,3),B (-5,1),C (-2,0),P ( )是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为 P 1 ( a +6,b+2 )(1)直接写出点A1,B1,C1的坐标;(2)在图中画出△A1B1C1;(3)求△ABC的面积.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 3.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 4.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,6.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .17.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4) 10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 11.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m二、填空题12.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 13.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___.14.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 15.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.16.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣c|+8b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____.17.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.19.点3(2,)A -到x 轴的距离是__________.20.在平面直角坐标系中,点()3,1A -在第______象限.21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.(探究):(1)在图1中,已知线段AB 、CD ,其两条线段的中点分别为E 、F ,请填写下面空格. ①若(1,0)A -,(3,0)B ,则E 点坐标为______.②若(2,2)C -,(2,1)D --,则F 点坐标为______.(2)请回答下列问题①在图2中,已知线段AB 的端点坐标为()11,A x y ,()22,B x y ,求出图中线段AB 的中点P 的坐标(用含1x ,1y ,2x ,2y 的代数式表示),并给出求解过程.②(归纳):无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为()11,A x y ,()22,B x y ,线段AB 的中点为(,)P x y 时,x =______,y =______.(直接填写,不必证明) ③(运用):在图3中,在平面直角坐标系中AOB 的三个顶点(0,0)O ,(2,3)A -,(4,1)B ,若以A ,O ,B ,M 为顶点的四边形是平行四边形,请利用上面的结论直接写出顶点M 的坐标(不需写出解答过程)23.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴24.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标. 25.如图,一只蚂蚁在网格(每小格边长为1)上沿着网格线运动.它从格点A(1,2)处出发去看望格点B 、C 、D 等处的蚂蚁,规定:向上向右走均为正,向下向左走均为负.如:从A 到B 记为:A→B ( +1,+3 ),从B 到A 记为:B→A ( -1,-3 ),其中第一个数表示左右方向,第二个数表示上下方向.填空:(1)图中A→C ( , ) C→ ( , )(2)若这只蚂蚁从A 处去M 处的蚂蚁的行走路线依次为(+3,+3),(+2,-1),(-3,-3),(+4,+2),则点M 的坐标为( , )(3)若图中另有两个格点P、Q,且P→A ( m+3,n+2),P→Q(m+1,n-2),则从Q到A记为(,)。

平面直角坐标系经典训练题(含答案)

平面直角坐标系经典训练题(含答案)

平面直角坐标系1.下列各点中,在第三象限的点是( )A .()1,4--B .()1,4-C .()1,4-D .()1,4 2.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 3.在平面直角坐标系中,点(-2,-3)到x 轴的距离是( ) A .-2 B .-3 C .2 D .3 4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)- 5.如图,半径为1的圆,在x 轴上从原点O 开始向右滚动一周后,落定点M 的坐标为( )A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 6.如图,在平面直角坐标系中,以原点O 为圆心作弧,分别与x 轴和y 轴的正半轴交于点A 和点B ,再分别以A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点P (m ﹣1,2n ),则实数m 与n 之间的关系是( )A .m ﹣2n =1B .m +2n =1C .2n ﹣m =1D .n ﹣2m =17.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.8.在平面直角坐标系中,点A (x ﹣1,2﹣x )关于y 轴对称的对称点在第一象限,则实数x 的取值范围是_____.9.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为________10.已知,AB ∥x 轴,点A 的坐标是(3,2),并且AB=5,则点B 的坐标为________. 11.若点M(a ﹣3,a+1)在y 轴上,则M 点的坐标为______.12.如图,点A 、B 、C 的坐标分别是(0,2)、(2,2)、(0,-1),那么以点A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标是:________.13.已知点(,)P x y 的坐标满足||3x =2=,且0xy <,则点P 的坐标是__________ 14.如图,若在象棋棋盘上建立平面直角坐标系,使棋子“将”的位置的坐标为(0,0),棋子“象”的位置的坐标为(2,0),则“炮”的位置的坐标为_______.答案第1页,总1页 参考答案1.A2.A3.D4.D5.B6.A7.(3,1)8.x <19.(2,0)10.(8,2)或(-2,2) 11.()0,412.(2,-1)或(-2,-1)或(2,5) 13.()3,4-14.( 3 3 )-,。

平面直角坐标系典型例题含答案

平面直角坐标系典型例题含答案

平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。

注意a 与b 的先后顺序对位置的影响。

2.平面直角坐标系(1)定义:在同一平面画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。

这个平面叫做坐标平面。

(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。

3.各象限的点与坐标轴上的点的坐标特征:点),(y x P 在各象限的坐标特点 坐标轴上点),(y x P 的坐标特点第一象限 第二象限第三象限第四象限X 轴Y 轴原点00>>y x 00><y x 00<<y x 0<>y x )0,(x),0(y)0,0(4. 特殊位置点的特殊坐标连线平行于坐标轴的点 象限角平分线上的点 平行于x 轴 平行于y 轴 第一、三象限 第二、四象限 纵坐标相同 横坐标不同 横坐标相同 纵坐标不同纵横坐标相同纵横坐标互为相反数5.对称点的坐标特征:平面任一点),(n m P 平面点对称的规律 关于x 轴的对称点关于y 轴的对称点关于原点的对称点关于谁对称,谁不变, 另一项互为相反数),(n m - ),(n m - ),(n m --6.点到坐标轴的距离:点),(y x P 到X 轴距离为y ,到y 轴的距离为x 。

7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P(-2,3)在第()象限.A.一B.二C.三D.四2.若点)2P在第四象限,则a的取值围是()aa(-,A.0a D.0<a>-a B.2<<a C.22<0<3.在平面直角坐标系中,点P(-2,12+x)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点2:点在坐标轴上的特点1.点)1P在x轴上,则P点坐标为()m,3(++mA.)2,0(-,0(- B.)0,2( C.)0,4( D.)42.已知点)1P在y轴上,则P点的坐标是。

兰州铁路局第五中学七年级数学下册第七章【平面直角坐标系】经典题(含答案解析)

兰州铁路局第五中学七年级数学下册第七章【平面直角坐标系】经典题(含答案解析)

一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)2.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4 B .6- C .1-或4 D .6-或233.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限4.在平面直角坐标系中,点P (−1,)在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)7.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12508.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 9.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 10.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A.900 B.946 C.990 D.88611.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上二、填空题12.若点A(m+2,﹣3)与点B(﹣4,n+5)在二四象限角平分线上,则m+n=_____.13.在x轴上方的点P到x轴的距离为3,到y轴距离为2,则点P的坐标为________.14.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.15.到x轴距离为2,到y轴距离为3的点的坐标为___________.16.若点M(5,a)关于y轴的对称点是点N(b,4),则(a+b)2020= __2,3表示,则C点的坐标17.如图,有A,B,C三点,如果A点用()1,1表示,B点用()为_______.18.如图,正方形ABCD的各边分别平行于x轴或y轴,蚂蚁甲和蚂蚁乙都由点E(3,0)出发,同时沿正方形ABCD的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.19.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .20.在平面直角坐标系中,若点3(1)M ,与点()3N x ,的距离是8,则x 的值是________ 21.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.三、解答题22.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫(A ,B ,C ,D 都在格点上).规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A →C ( , ),B →C ( , ),C →D ( , );(2)若这只甲虫的行走路线为A →B →C →D ,则该甲虫走过的路程是 ;(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.(4)若图中另有两个格点M 、N ,且M →A (2﹣a ,b ﹣5),M →N (4﹣a ,b ﹣3),则N →A 应记为什么?23.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .24.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标. 25.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-; (2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,12.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b - B .(),a b - C .(),a b -- D .(),a b3.在平面直角坐标系中,点(2,1)A -关于y 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 5.在平面直角坐标系中,点P 的坐标为(3,﹣1),那么点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( ) A .(0,﹣2) B .(3,0) C .(0,3) D .(﹣2,0) 9.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 10.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________. 13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 15.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.17.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 18.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.19.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________20.如图所示,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P ,2(1,1)P ,3(1,0)P ,4(1,1)P -,5(2,1)P -,6(2,0)P ,…,则点2020P 的坐标是______.21.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.三、解答题22.在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点'A 的坐标是()2,2-,现将三角形ABC 平移,使点A 变换为点'A ,点'B 、'C 分别是B 、C 的对应点.(1)请画出平移后的三角形'''A B C (不写画法),并写出点'B 、'C 的坐标; (2)求三角形ABC 的面积.23.在平面直角坐标系中,已知点M 的坐标为()23,1m m +-.(1)若点M 在x 轴上,求m 的值;(2)已知点N 的坐标为(3,2)-,且直线MN x ⊥轴,求线段MN 的长.24.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC 经过一次平移后得到A B C ''', 图中标出了点B 的对应点B '.请利用网格点和直尺画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 及高线CE ;(3)在上述平移中,边AB 所扫过的面积为 .25.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR是三角形ABC经过某种变换后得到的图形.点A的对应点为P,点B 的对应点为Q,点C的对应点为R.观察变换前后各对应点之间的关系,若点M经过这种变换后的对应为N,则点N的坐标为(______,______)(用含m,n的式子表示)一、选择题1.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 3.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)4.若点P (x, y )在第二象限,且2,3x y ==,则x + y =( )A .-1B .1C .5D .-55.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4-6.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交7.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 8.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 9.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1) 10.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 11.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C (1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题12.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 13.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __14.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.15.在平面直角坐标系中,点A (2,0)B (0,4),作△BOC ,使△BOC 和△ABO 全等,则点C 坐标为________16.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 17.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.18.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限19.已知P (a,b ),且ab <0,则点P 在第_________象限.20.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .21.点3(2,)A -到x 轴的距离是__________.三、解答题22.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示) (2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OAB S =?若存在,求出点B 的坐标;若不存在说明理由. 23.如图,在平面直角坐标系中,点C (-1,0),点A (-4,2),AC ⊥BC 且AC=BC , 求点B 的坐标.24.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B的对应点为Q,点C的对应点为R.观察变换前后各对应点之间的关系,若点M经过这种变换后的对应为N,则点N的坐标为(______,______)(用含m,n的式子表示)25.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 平面直角坐标系水平测试题(一)一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!) 1.某同学的座位号为(),那么该同学的位置是( )(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定 2.下列各点中,在第二象限的点是( ) (A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3) 3.若轴上的点到轴的距离为3,则点的坐标为( ) (A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3) 4.点(,)在轴上,则点坐标为( ).(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2)5.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1)•,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3)6.线段AB 两端点坐标分别为A (),B (),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为( )(A )A 1(),B 1() (B )A 1(), B 1(0,5) (C )A 1() B 1(-8,1) (D )A 1() B 1() 7、点P (m+3,m+1)在x 轴上,则P 点坐标为( )A .(0,-2)B .(2,0)C .(4,0)D .(0,-4)8、点P (x,y )位于x 轴下方,y 轴左侧,且x =2 ,y =4,点P 的坐标是( )A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4) 9、点P (0,-3),以P 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( )A .(8,0)B .( 0,-8)C .(0,8)D .(-8,0) 10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形 ( )A .向右平移2个单位B .向左平移2 个单位C .向上平移2 个单位D .向下平移2 个单位 11、点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有 ( )A .a=3, b=4B .a=±3,b=±4C .a=4, b=3D .a=±4,b=±3 12、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是( )A .相等B .互为相反数C .互为倒数D .相等或互为相反数 13、已知P(0,a)在y 轴的负半轴上,则Q(21,1a a ---+)在( )A 、y 轴的左边,x 轴的上方B 、y 轴的右边,x 轴的上方14.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.15. 若点P (,)在第二象限,则点Q (,)在第_______象限.16. 若点P 到轴的距离是12,到轴的距离是15,那么P 点坐标可以是________.17.小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3),(-2,3),则移动后猫眼的坐标为_________.18. 如图,中国象棋中的“象”,在图中的坐标为(1,0),•若“象”再走一步,试写出下一步它可能走到的位置的坐标________.三、认真答一答:19. 如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20. 适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点。

⑴作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼, 从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22、在直角坐标系中,已知点A(-5,0),点B(3,0),C点在y轴上,且△ABC的面积为12,试确定点C的坐标。

23、写出如图中△ABC各顶点的坐标且求出此三角形的面积。

24、如图,△AOB 中,A 、B 两点的坐标分别为(-4,-6),(-6,-3),求△AOB 的面积。

25、如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变成三角形OA 2B 2,第三次将三角形OA 2B 2变成三角形OA 3B 3,已知123(1,3),(2,3),(4,3),(8,3)A A A A ,123(2,0),(4,0),(8,0),(16,0)B B B B 。

(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将三角形OA 3B 3变换成三角形44OA B ,则3B 的坐标是 ,4B 的坐标是 。

(2)若按第(1)题找到的规律将三角形OAB 进行了n 次变换,得到三角形OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 。

26、如图,在△ABC 中,三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC 沿x 轴正方向平移2个单位长度,再沿y 轴沿负方向平移1个单位长度得到△EFG 。

(1)求△EFG 的三个顶点坐标。

(2)求△EFG 的面积。

27、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0), (3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移 1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)、点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOPCPO∠+∠∠的值不变,②DCP CPO BOP ∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.28. 已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.29、如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是A (0,0)、B (6,0)、C (5,5)。

求: (1)求三角形ABC 的面积;(2)如果将三角形ABC 向上平移3个单位长度,得三角形A 1B 1C 1,再向右平移2个单位长度,得到三角形A 2B 2C 2。

分别画出三角形A 1B 1C 1和三角形A 2B 2C 2。

并试求出A 2、B 2、C 2的坐标?30、已知点P (a+1,2a-1)关于x 轴的对称点在第一象限,求a 的取值范围.31、在如图所示的平面直角坐标系中表示下面各点: A (0,3);B (1,-3);C (3,-5);D (-3,-5); E (3,5);F (5,7);G (5,0)A(1)A 点到原点O 的距离是 。

(2)将点C 向x 轴的负方向平移6个单位,它与点 重合。

(3)连接CE ,则直线CE 与y 轴是什么关系? (4)点F 分别到x 、y 轴的距离是多少?32、在直角坐标系中,已知点A (-5,0),点B (3,0),C 点在y 轴上,且△ABC 的面积为12, 试确定点C 的坐标。

33、写出如图中△ABC 各顶点的坐标且求出此三角形的面积。

34、如图,△AOB 中,A 、B 两点的坐标分别为(-4,-6),(-6,-3),求△AOB 的面积。

35、如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变成三角形OA 2B 2,第三次将三角形OA 2B 2变成三角形OA 3B 3,已知123(1,3),(2,3),(4,3),(8,3)A A A A ,123(2,0),(4,0),(8,0),(16,0)B B B B 。

(1)、观察每次变换前后的三角形有何变化,找出规律,按此规律再将三角形OA 3B 3变换成三角形44OA B ,则3B 的坐标是 ,4B 的坐标是 。

(2)若按第(1)题找到的规律将三角形OAB 进行了n 次变换,得到三角形OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测n A 的坐标是 ,n B 的坐标是 。

11、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm ,整点P 从原点O 出发,速度为1cm/s ,且整点P 作向上或向右运动(如图1所示).运动时间(s)与整点个数的关系如下表:根据上表中的规律,回答下列问题:(1)、当整点P 从点O 出发4s 时,可以得到的整点的个数为________个.(2)、当整点P 从点O 出发8s 时,在直角坐标系(图2)中描出可以得到的所有整点,并顺次连结这些整点. (3)、当整点P 从点O 出发________s 时,可以得到整点(16,4)的位置.图1(试验图) 图230、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0), (3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移 1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD . (1)、求点C ,D 的坐标及平行四边形ABDC 的面积ABDC S 四边形(2)、在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=2ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)、点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.31.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.32、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示).运动时间(s)与整点个数的关系如下表:根据上表中的规律,回答下列问题:(1)、当整点P从点O出发4s时,可以得到的整点的个数为________个.(2)、当整点P从点O出发8s时,在直角坐标系(图2)中描出可以得到的所有整点,并顺次连结这些整点.(3)、当整点P从点O出发________s时,可以得到整点(16,4)的位置.图1(试验图)图参考答案;;;;;;;;;11.(5,2);12.三;13.(15,12)或(15,-12)或(-15,12)或(-15,-12);14. (-1,3),(1,3);15.(3,-5);16.(3,2),(3,-2),(-1,2),(-1,-2);17.(-1,7);18.(3,3)或(6,-6);19. 答案不唯一.如图:火车站(0,0),宾馆(2,2),市场(4,3),超市(2,-3),医院(-2,-2),文化宫(-3,1),体育场(-4,3).20.(1)“鱼”;(2)向左平移2个单位.21.略;22.解:如答图所示,过A,B分别作y轴,x轴的垂线,垂足为C,E,两线交于点D,则C(0,3),D(3,3),E(3,0).又因为O(0,0),A(1,3),B(3,1),所以OC=3,AC=1,OE=3,BE=1.AD=DC-AC=3-1=2,BD=DE-BE=3-1=2.则四边形OCDE的面积为3×3=9,△ACO和△BEO的面积都为×3×1=,△ABD的面积为×2×2=2,所以△ABO的面积为9-2×-2=4.23.这些点在同一直线上,在二四象限的角平分线上,举例略.24.答案不唯一,略.。

相关文档
最新文档