四边形——经典例题透析_成果测评
中考数学复习《四边形》经典题型及测试题(含答案)
中考数学复习《四边形》经典题型及测试题(含答案)命题点分类集训命题点1 平行四边形的判定与计算【命题规律】1.考查内容:①平行四边形的性质及其相关计算;②平行四边形的判定.2.考查形式:①根据平行四边形的性质考查结论判断;②利用平行四边形的性质求角度、线段或面积;③添加条件使四边形为平行四边形.3.考查题型:性质在选择和填空题中考查居多,判定题近年来多在解答题中考查,有时会在二次函数压轴题中探究平行四边形的存在问题.【命题预测】平行四边形是四边形中主要的图形之一,性质与判定常常考查,是近年命题的重点. 1. 已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A . OE =12DC B . OA =OC C . ∠BOE =∠OBA D . ∠OBE =∠OCE1. D第1题图 第2题图2. 如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC =2,▱ABCD 的周长是14,则DM 等于( )A . 1B . 2C . 3D . 42. C 【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABM =∠CMB ,∵BM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠CBM =∠CMB ,∴CB =MC =2,∴AD =BC =2,∵▱ABCD 的周长是14,∴AB =CD =5,∴DM =DC -MC =3.3. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形. 3. AD ∥BC (答案不唯一)第3题图 第4题图 第5题图 4. 如图,▱ABCD 中,AC =8,BD =6,AD =a ,则a 的取值范围是________.4. 1<a <7 【解析】如解图,对角线AC ,BD 相交于点O ,则OA =12AC =4,OD =12BD =3,在△OAD中,OA -OD <AD <OA +OD ,即1<a <7.5. 如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________. 5. 50°6. 如图,将▱ABCD 的AD 边延长至点E ,使DE =12AD ,连接CE ,F 是BC 边的中点,连接FD.(1)求证:四边形CEDF 是平行四边形; (2)若AB =3,AD =4,∠A =60°,求CE 的长.6. (1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴DE ∥FC.∵F 是BC 的中点, ∴FC =12BC =12AD ,∵DE =12AD ,∴FC =DE ,∴四边形CEDF 是平行四边形. (2)解:如解图,过点D 作DH ⊥BC 于点H. 由(1)知四边形DECF 是平行四边形,∴DF =CE.∵四边形ABCD 是平行四边形,∠A =60°,AB =3,AD =4, ∴BC =4,CD =3,∠BCD =60°, 在Rt △DHC 中,HC =DC·cos ∠HCD =32,DH =DC ·sin ∠HCD =332,∵F 是BC 的中点, ∴FC =2,∴FH =FC -HC =2-32=12,在Rt △DFH 中,由勾股定理得DF =DH 2+FH 2=(332)2+(12)2=7,∴CE =7.命题点2 矩形的判定与计算【命题规律】考查形式:①利用矩形性质,结合勾股定理求线段长或面积;②矩形的判定,一般在解答题中考查,也常在二次函数综合题中考查矩形的存在性问题;③矩形折叠的相关计算与证明(见命题点6:图形折叠的相关计算).【命题预测】矩形性质将勾股定理、全等、相似等重要知识综合考查,是全国命题趋势之一. 7. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是( )A . △AFD ≌△DCEB . AF =12AD C . AB =AF D . BE =AD -DF7. B 【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD 是矩形,AF ⊥DE ,∴∠C =90°=∠AFD ,AD ∥BC ,∴∠ADF =∠CED ,∵AD =DE ,∴△AFD ≌△DCE (AAS)√B只有当∠ADF =30°时,才有AF =12AD 成立×C由△AFD ≌△DCE 可知,AF =DC ,∵矩形ABCD 中,AB =DC ,∴AB =AF√D∵△AFD ≌△DCE ,∴DF =CE ,∴BE =BC -CE =AD -DF √8. 已知矩形的对角线AC 与BD 相交于点O ,若AO =1,那么BD =________. 8. 2第7题图 第8题图 第9题图 9. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.9. 3 【解析】本题主要考查了一元二次方程的实际应用问题. 设AD =x ,由题知,AB =x +2,又∵矩形ABCD 的面积为15,则x(x +2)=15,得到x 2+2x -15=0,解得,x 1=-5(舍) , x 2=3,∴AD =3. 10. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF. (1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.10. (1)证明:∵点E 是AD 的中点, ∴AE =DE. ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE , ∴△EAF ≌△EDC(AAS ), ∴AF =DC. ∵AF =BD , ∴BD =DC ,即D 是BC 的中点.(2)解:四边形AFBD 是矩形.证明如下: ∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,又由(1)可知D 是BC 的中点, ∴AD ⊥BC ,∴四边形AFBD 是矩形.11. 如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和点G ,H. (1)求证:△PHC≌△CFP;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.11. (1)证明:∵四边形ABCD 是矩形,∴DC ∥AB ,AD ∥BC ,∠DCB =90°.∵EF ∥AB ,GH ∥AD ,∴EF ∥CD ,GH ∥BC , ∴四边形PFCH 是矩形, ∴∠PHC =∠PFC =90°,PH =CF ,HC =PF , ∴△PHC ≌△CFP(SAS ).(2)证明:由(1)知AB ∥EF ∥CD , AD ∥GH ∥BC ,∴四边形PEDH 和四边形PGBF 都是平行四边形, ∵四边形ABCD 是矩形, ∴∠D =∠B =90°,∴四边形PEDH 和四边形PGBF 都是矩形, ∴S 矩形PEDH =S 矩形PGBF .命题点3 菱形的判定与计算【命题规律】1.考查内容和形式:①根据菱形性质判断结论正误;②菱形的判定;③根据菱形的性质求角度、周长和面积;④与二次函数压轴题结合考查菱形的存在性问题.2.三大题型均会出现.【命题预测】菱形是特殊平行四边形中的重要内容,是中考常考知识,对菱形的性质与判定应做到牢固掌握.12. 如图,在▱ABCD 中,对角线AC 与BD 交于点O.若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确...的是( ) A . AB =AD B . AC ⊥BD C . AC =BD D . ∠BAC =∠DAC12. C 【解析】邻边相等的平行四边形是菱形,所以A 正确;对角线互相垂直的平行四边形是菱形,所以B 正确;对角线相等的平行四边形是矩形,所以C 错误;由∠BAC =∠DAC 可得对角线是角平分线,所以D 正确.第12题图 第13题图13. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A . (0,0)B . (1,12) C . (65,35) D . (107,57)13. D 【解析】如解图,连接CA 、AD ,CA 与OB 相交于点E ,过点E 作EF ⊥OA ,交OA 于点F .由题知点C 关于OB 的对称点是点A ,AD 与BO 的交点即为点P .根据菱形的性质,菱形的对角线互相垂直且平分两组对角,可知△COE ∽△EOF ,∴CO EO =EO OF ,∵OC =OA =5,OE =OB 2=25,∴OF =OE 2CO =(25)25=4,根据勾股定理可得EF =OE 2-OF 2=(25)2-42=2,点E 的坐标为(4,2),易得直线OE 的函数解析式为y =12x ,直线AD 的函数解析式是y =-15x +1,联立得:⎩⎨⎧y =12x y =-15x +1,解得⎩⎨⎧x =107y =57,∴点P 的坐标为(107,57).14. 如图,在菱形ABCD 中,E 、F 分别是AD 、BD 的中点,若EF =2,则菱形ABCD 的周长为________. 14. 16 【解析】∵E ,F 分别是AD ,BD 的中点,∴AB =2EF =4,∴菱形ABCD 周长是4AB =16.第14题图 第15题图15. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.15. 24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB 中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD=12×8×6=24. 16. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.16. 105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =∠DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在△ABD 内时,∠E 1BC =∠E 1BD +∠DBC =30°+75°=105°;(2)当点E 在△DBC 内时,∠E 2BC =∠DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.17. 如图,在Rt △ABC 中,∠B =90°,点E 是AC 的中点,AC =2AB ,∠BAC 的平分线AD 交BC 于点D ,作AF∥BC,连接DE 并延长交AF 于点F ,连接FC. 求证:四边形ADCF 是菱形.17. 证明:∵∠B =90°,AC =2AB , ∴sin ∠ACB =12,∴∠ACB =30°, ∴∠CAB =60°, ∵AD 平分∠CAB ,∴∠CAD =12∠CAB =30°,∠CAD =∠ACD ,∴AD =CD , ∵AF ∥CD ,∴∠DCE =∠FAE ,∠AFE =∠CDE , 又∵AE =CE ,∴△AFE ≌△CDE(AAS ), ∴AF =CD , 又AF ∥CD ,∴四边形ADCF 是平行四边形, 又AD =CD ,∴四边形ADCF 是菱形.命题点4 正方形的判定与计算【命题规律】正方形的考查相对比较综合,难度较大,常在选择或填空的压轴题位置出现,考查知识点综合性强,涉及到正方形面积、边长和周长的计算.【命题预测】正方形综合了所有特殊四边形的性质,因此以正方形为背景出题更具有对知识的检验性,倍受命题人青睐,考生应加以关注.18. 如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A . 2B . 2 2C . 2+1D . 22+118. B 【解析】∵正方形ABCD 的面积为1,∴BC =CD =1,∵E 、F 是边的中点,∴CE =CF =12,∴EF=(12)2+(12)2=22,则正方形EFGH 的周长为4×22=2 2. 19. ▱ABCD 的对角线AC 与BD 相交于点O ,且AC⊥BD,请添加一个条件:________,使得▱ABCD 为正方形. 19. ∠BAD =90°(答案不唯一)20. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于________.20. 89【解析】设BD =3a ,∠CDB =∠CBD =45°,且四边形PQMN 为正方形,∴DQ =PQ =QM =NM=MB ,∴正方形MNPQ 的边长为a ,正方形AEFG 的对角线AF =12BD =32a ,∵正方形对角线互相垂直,∴S 正方形AEFG =12×32a ×32a =98a 2,∴S 正方形MNPQ S 正方形AEFG =a 298a 2=89.第20题图 第21题图21. 如图,正方形ABCD 的边长为22,对角线AC ,BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM⊥BE 于点M ,交BD 于点F ,则FM 的长为________. 21.55【解析】∵四边形ABCD 为正方形,∴AO =BO ,∠AOF =∠BOE =90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO 中,⎩⎪⎨⎪⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO ,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD 的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM1=15,∴FM =55.22. 如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DC 上,点A ,D ,G 在同一条直线上,且AD =3,DE =1,连接AC ,CG ,AE ,并延长AE 交CG 于点H. (1)求sin ∠EAC 的值; (2)求线段AH 的长.22.解:(1)由题意知EC =2,AE =10,如解图,过点E 作EM ⊥AC 于点M , ∴∠EMC =90°,易知∠ACD =45°, ∴△EMC 是等腰直角三角形, ∴EM =2,∴sin ∠EAC =EM AE =55.(2)在△GDC 与△EDA 中,⎩⎪⎨⎪⎧DG =DE ∠GDC =∠EDA DC =DA, ∴△GDC ≌△EDA(SAS ),∴∠GCD =∠EAD , 又∵∠HEC =∠DEA ,∴∠EHC =∠EDA =90°, ∴AH ⊥GC ,∵S △AGC =12×AG ×DC =12×GC ×AH ,∴12×4×3=12×10×AH , ∴AH =6510.命题点5 多边形及其性质【命题规律】1.考查内容:①多边形的内外角和公式;②正多边形的有关计算.2.考查形式:①已知正多边形一个内角或外角的度数或内角之间的关系求边数;②已知正多边形的边数求内角度数;③求多边形的内外角和.【命题预测】多边形是三角形和四边形的延伸拓展,也是中考命题不容忽视的知识点. 23. 六边形的内角和是( )A . 540°B . 720°C . 900°D . 1080°23. B24. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A . 7B . 7或8C . 8或9D . 7或8或924. D 【解析】分类讨论:(1)切去一个角,减少一条边,设减少一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是9;(2)切去一个角,增加一条边,设增加一条边后的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是7;(3)切去一个角,边数无改变,设边数没有改变时的边数是n ,则180°(n -2)=1080°,得出n =8,所以原多边形的边数是8,综上所述,原多边形的边数是9,7,8都符合题意,答案选择D.25. 若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是________.25. 6 【解析】设这个多边形的边数为n ,则内角和为(n -2)·180°,外角和为360°,则根据题意有:(n -2)·180°=2×360°,解得n =6. 26. 一个正多边形的一个外角为45°,则这个正多边形的边数是________.26. 8 【解析】由正多边形的每一个外角都是45°,其外角和为360°,可得这个正多边形的边数是360°45°=8.方法指导设正多边形的边数为n ,正多边形的外角和为360°,内角和为(n -2)×180°,每个内角的度数为180°×(n -2)n.命题点6 图形折叠的相关证明与计算【命题规律】考查内容和形式:图形折叠计算以矩形折叠考查居多,常考查:①图形的折叠计算角度;②图形的折叠计算线段长或边长;③图形折叠的证明和计算结合;④图形折叠的操作探究.【命题预测】图形折叠将原有图形变得可操作化,且又很好地引入了对称知识,使问题升华,有效地考查学生的知识迁移能力和掌握程度,是全国命题的主流趋势之一,值得每位考生关注.27. 如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .∠DAB ′=∠CAB′ B .∠ACD =∠B′CDC .AD =AE D .AE =CE27. D28. 如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A . 2B . 3C . 2D . 128. B第28题图 第29题图29. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处.若∠2=40°,则图中∠1的度数为( )A . 115°B . 120°C . 130°D . 140°29. A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.30. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°30. C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎪⎨⎪⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.第30题图 第31题图 第32题图31. 如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB =7,BC =6,则△BCD 的周长为________. 31. 13 【解析】由折叠的性质可得:CD =AD ,∴△BCD 的周长=BC +CD +BD =BC +AD +BD =BC +BA =6+7=13.32. 如图,在▱ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,A D′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.32. 36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED=180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.33.如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.33. 解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,此时CE最小,且CE=CD=3;如解图②,当点G与点A重合时,CE最大.设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.34.如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.34. (1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D=60°,由折叠性质可知,∠D=∠AD′E=60°,∴∠AD′E=∠B=60°,∴ED′∥BC,又∵EC∥D′B,∴四边形BCED′是平行四边形,∴ED′=BC=AD=1,∴DE=ED′=1,又DC=AB=2,∴EC =1, ∴EC =ED′,∴四边形BCED′是菱形. (2)解:如解图所示,由折叠性质PD′=PD ,BD 之长即为所求, 作DG ⊥BA 的延长线于点G , ∵∠DAB =120°, ∴∠DAG =60°, ∵∠G =90°, ∴∠ADG =30°,在Rt △ADG 中,AD =1, ∴AG =12,DG =32,∵AB =2, ∴BG =52,在Rt △BDG 中,由勾股定理得:BD 2=BG 2+DG 2=7, ∴BD =7,即PD′+PB 的最小值为7.方法指导“将军饮马”模型:直线同侧两定点,在直线上确定一点使该点到两定点的距离和最小.作法:作其中一点关于直线的对称点,连接另一点和对称点的线段即是最短距离和;最短距离计算方法:构造以最短距离线段为斜边的直角三角形,利用勾股定理求解.中考冲刺集训一、选择题1.关于▱ABCD 的叙述,正确的是( )A . 若A B⊥BC,则▱ABCD 是菱形B . 若AC⊥BD,则▱ABCD 是正方形C . 若AC =BD ,则▱ABCD 是矩形 D . 若AB =AD ,则▱ABCD 是正方形2.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A . a >bB . a =bC . a <bD . b =a +180°3.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a),(-3,2),(b ,m),(c ,m).则点E 的坐标是( )A . (2,-3)B . (2,3)C . (3,2)D . (3,-2)第3题图 第4题图4.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC +BD =16,CD =6,则△ABO 的周长是( )A . 10B . 14C . 20D . 225.菱形ABCD 的对角线AC ,BD 相交于点O ,E ,F 分别是AD ,CD 边上的中点,连接EF.若EF =2,BD =2,则菱形ABCD 的面积为( )A . 2 2B . 4 2C . 6 2D . 8 2第5题图 第6题图 第7题图6.如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( )A . 3 cmB . 4 cmC . 5 cmD . 8 cm7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE∶EC =2∶1,则线段CH 的长是( )A . 3B . 4C . 5D . 68.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF∥AD,与AC 、DC 分别交于点G 、F2H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题9.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.10.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =8,BD =6,则菱形ABCD 的高DH =________.第9题图 第10题图 第11题图11.如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB=30°,则∠E=________度. 12.如图,正方形ABCO 的顶点C ,A 分别在x 轴,y 轴上,BC 是菱形BDCE 的对角线,若∠D=60°,BC =2,则点D 的坐标是________.第12题图 第13题图 第14题图 13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________°.14.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm . 15.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论: ①∠EBG =45°;②△DEF∽△ABG;③S △ABG =32S △FGH ;④AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)第15题图 第16题图16.如图,正方形ABCD 的面积为3 cm 2,E 为BC 边上一点,∠BAE =30°,F 为AE 的中点,过点F 作直线分别与AB ,DC 相交于点M ,N.若MN =AE ,则AM 的长等于________cm . 三、解答题17.如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF 、CE. 求证:AF∥CE.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.如图,▱ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=4,FN=3,求BN的长.20.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.21.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.22.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.23.如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE,连接BD 、CE 交于点F. (1)求证:△AEC≌△ADB;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.24.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG. (1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.答案与解析:1. C2. B3. C4. B5. A 【解析】∵E ,F 分别是 AD ,CD 边上的中点,即EF 是△ACD 的中位线,∴AC =2EF =22,则菱形ABCD 的面积=12AC ·BD =12×22×2=2 2.6. B 【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.7. B 【解析】设CH =x ,∵BE ∶EC =2∶1,BC =9,∴EC =3,由折叠可知,EH =DH =9-x ,在Rt △ECH 中,由勾股定理得:(9-x )2=32+x 2,解得:x =4.8. D 【解析】逐项分析如下表:序号逐项分析正误难点突破对于多选项判断正误性的题目,几乎每个选项之间都是紧密联系的,单独判断其中每个的正误或跳跃式判断往往使题目变得复杂而无法求解,本题目难点在于④中,需将S △FDH 与已知条件AE AB =23联系起来,并用含相同未知数的代数式分别表示出S △EDH 和S △DHC ,继而求解.9. 110° 【解析】 ∵四边形ABCD 是平行四边形,∴CD ∥AB ,∴∠CAB =∠1=20°,∵BE ⊥AB 交对角线AC 于点E ,∴∠ABE =90°,∴∠2=∠CAB +∠ABE =20°+90°=110°.10. 4.8 【解析】∵S =1AC·BD =2AB·DH ,∴AC ·BD =2AB·DH.∵四边形ABCD 是菱形,∴∠AOB =90°,AO =12AC =4,BO =12BD =3,∴在Rt △AOB 中,AB =42+32=5,∴DH =8×62×5=4.8.第11题解图11. 15 【解析】如解图,连接AC.∵四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又∵AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =∠ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =∠CAE =12∠ACB=15°.第12题解图12. (3+2,1) 【解析】如解图,过点D 作DG ⊥BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).13. 75 【解析】∵多边形A 1A 2…A 12是正十二边形,作它的外接圆⊙O ,∴劣弧A 10A 3的度数=5×360°12=150°,∴∠A 3A 7A 10=12×150°=75°.第14题解图14. 13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.15. ①③④ 【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴ED FD =43≠ABAG =2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S =96=32,故③正确;∵AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故④正确.综上,答案是①③④.第16题解图16.233或33【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎪⎨⎪⎧AB =NG AE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233 cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm . 17. 证明:∵四边形ABCD 是平行四边形,第17题解图∴AD ∥BC ,AD =BC , ∴∠1=∠2, 又∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.∴△ADF ≌△CBE(SAS ). ∴∠AFD =∠CEB ,∴AF ∥CE.18. (1)【思路分析】根据四边形ABCD 是菱形,∠ABC ∶∠BAD =1∶2,可求出∠DBC 的度数,其正切值可求出.解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC ,∴∠ABC +∠BAD =180°, 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan 30°=33. (2)【思路分析】由BE ∥AC ,CE ∥BD 可知四边形BOCE 是平行四边形,再结合菱形对角线垂直的性质即可证明四边形BOCE 是矩形.证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC =90°, ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,且∠BOC =90°,∴四边形OBEC 是矩形.19. (1)证明:∵AE ⊥BD ,CF ⊥BD , ∴AM ∥CN ,又∵四边形ABCD 是平行四边形, ∴MC ∥AN ,∴四边形CMAN 是平行四边形.(2)解:∵四边形ABCD 是平行四边形, ∴∠ADE =∠CBF ,AD =CB , 又∵∠AED =∠CFB =90°, ∴△AED ≌△CFB(AAS ), ∴DE =BF =4,∴在Rt △BFN 中,BN =32+42=5.20. (1)【思路分析】要证∠CEB =∠CBE ,结合CE ∥DB ,可得到∠CEB =∠DBE ,从而只需证明∠CBE =∠DBE ,结合△ABC ≌△ABD 即可得证.证明:∵△ABC ≌△ABD , ∴∠ABC =∠ABD , ∵CE ∥BD ,∴∠CEB =∠DBE ,∴∠CEB =∠CBE.(2)证明:∵△ABC ≌△ABD ,∴BC =BD , 由(1)得∠CEB =∠CBE , ∴CE =CB , ∴CE =BD , ∵CE ∥BD ,∴四边形BCED 是平行四边形, ∵BC =BD ,∴四边形BCED 是菱形.21. (1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中, ⎨⎪⎧∠APD =∠AQB =90°∠ADP =∠BAQ ,∴△DAP ≌△ABQ(AAS ),∴AP =BQ.(2)解:①AQ 和AP ;②DP 和AP ;③AQ 和BQ ;④DP 和BQ.【解法提示】①由题图直接得:AQ -AP =PQ ;②∵△ABQ ≌△DAP ,∴AQ =DP ,∴DP -AP = AQ -AP =PQ ;③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ;④∵△ABQ ≌△DAP ,∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.22. (1)证明:在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AB =AD ∠ABE =∠ADF =90°EB =FD, ∴△ADF ≌△ABE(SAS ).(2)解:∵AB =3,BE =1,∴AE =10,EC =4,∴ED =CD 2+EC 2=5,设AH =x ,EH =y ,在Rt △AHE 和Rt △AHD 中,⎩⎪⎨⎪⎧x 2+y 2=10x 2+(5-y )2=9, 解得,x =1.8,y =2.6,∴tan ∠AED =AH EH =x y =1.82.6=913. 23. (1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,AE =AC ,∠BAC =∠DAE ,∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB ,在△AEC 和△ADB 中∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF ,∴∠BAC =∠ABD ,又∵∠BAC =45°,∴∠ABD =45°,又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得,∴AD =AB ,∴∠DAB =90°,又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.24. (1)【思路分析】根据折叠的性质,易得DF =EF ,DG =EG ,∠AFD =∠AFE ,再由EG ∥DC ,可得∠EGF =∠AFD ,从而得出EG =EF.根据四条边都相等的四边形是菱形得证;证明:由折叠的性质可得,EF =FD ,∠AEF =∠ADF =90°,第24题解图∠EFA =∠DFA ,EG =GD.∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形.(2)【思路分析】由(1)可知EG =EF ,连接DE ,则DE 与GF 相互垂直平分,证得Rt △FHE ∽Rt △FEA ,列比例式,结合FH =12GF 得到EG 、GF 、AF 的关系; 解:如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE. ∵∠FEH =∠FAE =90°-∠EFA ,∴Rt △FEH ∽Rt △FAE ,∴EF FH =AF EF,即EF 2=FH·AF , ∴EG 2=12GF·AF. (3)【思路分析】把AG ,EG 代入(2)中的关系式,求得GF ,AF 的值,根据勾股定理求得AD ,DE ,再证Rt △ADF ∽Rt △DCE ,可求出EC ,从而可求出BE 的值.解:∵AG =6,EG =25,EG 2=12GF·AF , ∴(25)2=12(6+GF)·GF ,∴GF =4, ∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8. ∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∴Rt △ADF ∽Rt △DCE ,∴EC DF =DE AF ,即EC 25=810, ∴EC =855, ∴BE =BC -EC =AD -EC =45-855=1255.。
初三数学四边形试题答案及解析
初三数学四边形试题答案及解析1.在ABCD中,,AE平分∠BAC,交BC于E. 沿AE将△ABE折叠,点B的对应点为F,连结EF并延长交AD于G,EG将ABCD分为面积相等的两部分. 则 .【答案】4.【解析】根据题意,AE平分∠BAC,交BC于E,沿AE将△ABE折叠,点B的对应点为F,∴点F在对角线AC上,且.∵EG将ABCD分为面积相等的两部分,∴点F为对角线AC的中点.∴(等底同高).∵,∴.【考点】1.折叠问题;2.平行四边形的性质;3. 折叠对称的性质.2.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+【答案】D.【解析】∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6-,CF=3+5,即CE+CF=11-,②如图:∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+,故D.考点: 平行四边形的性质.3.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC的长及四边形AOFE的面积.【答案】(1)证明见解析;(2).【解析】(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可.(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.试题解析:(1)∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形.∵AD⊥BC,∴∠ADC=90°.∴四边形ADCE是矩形.(2)∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°.∴∠ACE=30°,AE=2,CE=.∵四边形ADCE为矩形,∴OC=OA=2.∵CF=CO,∴CF=2.如图,过O作OH⊥CE于H,∴OE=OC=1.∴.【考点】1.矩形的判定和性质;2.等边三角形的性质.4.如图,已知矩形OABC的A点在x轴上,C点在y轴上,,.(1)在BC边上求作一点E,使OE=OA;(保留作图痕迹,不写画法)(2)求出点E的坐标.【答案】(1).作图见解析;(2)(8,6).【解析】(1)利用EO=AO,以O为圆心AO为半径画弧得出E即可;(2)首先过点E作EF⊥OA,垂足为F,得出B点坐标,进而求出FO的长,即可得出E点坐标.试题解析:(1)如图所示:E点即为所求;(2)过点E作EF⊥OA,垂足为F.∵矩形OABC中OC=6,OA=10,∴B点坐标为(10,6).∴EF=6.又∵OE=OA,∴OF==8.∴点E的坐标为(8,6).【考点】1.作图—复杂作图;2.坐标与图形性质;3.勾股定理;4.矩形的性质.5.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为 .【答案】.【解析】∵四边形ABCD是平行四边形,∴AO=OC.∵点E,F分别是边AD,AB的中点,∴EF是△ABD的中位线.∴.∴.【考点】1.平行四边形的性质;2.三角形中位线定理.6.已知:如图,正方形ABCD,E,F分别为DC,BC中点.求证:AE=AF.【答案】证明书见解析.【解析】根据正方形的性质,证明△ADE≌△ABF,即可证得AE=AF..∵四边形ABCD为正方形,∴ AB=AD,∠B=∠D=90°,DC=CB.∵ E、F为DC、BC中点,∴ DE=DC,BF=BC.∴ DE=BF.∵在△ADE和△ABF中,,∴△ADE≌△ABF(SAS).∴ AE=AF.【考点】1.正方形的性质;2.全等三角形的判定和性质.7.如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD,求证:∠B=∠E.【答案】见解析【解析】证明:∵四边形ABCD是等腰梯形,∴∠B=∠BCD,∵AD∥BC,∴∠BCD=∠CDE,∵CE=CD,∴∠CDE=∠E,∴∠B=∠E.8.如图,矩形纸片ABDC中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕A E上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为__________.【答案】.【解析】先根据题意画出图形,由翻折变换的性质得出F、B′重合,分别延长AE,CD相交于点G,由平行线的性质可得出GB′=AB′=AB=4,再根据相似三角形的判定定理得出△ACG∽△PB′G,求出其相似比,进而可求出答案.试题解析:如图所示,设PF⊥CD,由翻折变换的性质可得BP=B′P,又∵P到边CD的距离与到点B的距离相等,∴B'P⊥CD,∵AB平行于CD,∴∠BAG=∠AGC,∵∠BAG=∠B′AG,AGC=∠B′AG,∴GB′=AB′=AB=4,∵PB′⊥CD,∴PB′∥AC,∴△ACG∽△PB′G,∵Rt△ADB′中,AB′=4,AC=3,∴CB′=,在△ACG和△PB′G中.,解得:PB'=考点: 1.翻折变换(折叠问题);2.勾股定理;3.矩形的性质.9.如图所示,在△中,,,将绕点沿逆时针方向旋转得到.(1)线段的长是,的度数是;(2)连接,求证:四边形是平行四边形.【答案】(1)6,135°;(2)证明见解析.【解析】(1)旋转后的图形与原图形全等知OA1与OA相等,∠AOB1=∠AOA1+∠A1OB1=90°+45°=135°.(2)根据一组对边平等且相等的四边形是平等四边形可证明四边形是平行四边形. 试题解析:(1)6,135°;(2)∵∠AOA1=∠OA1B1=90°∴OA∥A1B1又OA=AB=A1B1,∴四边形是平行四边形.考点: 1.旋转的性质;2。
四边形典型题目专题
四边形典型题目专题 四边形是几何学中常见的形状,其典型题目涉及到四边形的性质、分类、特点以及与其他几何形状的联系等方面。
本文将围绕关键字“四边形典型题目专题”展开讨论,重点探究四边形的各种题型和解题方法。
四边形是指具有四条边的几何形状,它可以根据边长、角度、对称性和对边的关系等属性进行分类。
常见的四边形有矩形、正方形、平行四边形、菱形、梯形等。
在解题过程中,我们需要掌握各种四边形的特点和性质,以确定问题的解法。
一、矩形1、定义:矩形是具有四个角都是直角的四边形。
2、性质:矩形的对边相等且平行,对角线相等,且互相平分。
二、正方形1、定义:正方形是四条边和四个角都相等的矩形。
2、性质:正方形的所有边相等,对角线相等,且互相垂直平分。
三、平行四边形1、定义:平行四边形是具有对边平行的四边形。
2、性质:平行四边形的对边相等且平行,对角线不能相等。
四、菱形1、定义:菱形是具有四个边都相等的四边形。
2、性质:菱形的对角线互相垂直且平分,对角线的交点是菱形的中心。
五、梯形1、定义:梯形是具有两边平行的四边形。
2、性质:梯形的底边平行且相等,上底边平行但不相等,两条非平行边的夹角相等。
了解各种四边形的性质和特点后,我们可以通过解题实例来加深理解。
例1:已知一个四边形各边长度依次为a,b,c,d,证明它是矩形的充分必要条件是a^2 + c^2 = b^2 + d^2。
解:充分性证明:若a^2 + c^2 = b^2 + d^2,由矩形的性质可知,各对边平行,且对角线相等。
所以,该四边形是矩形。
必要性证明:若该四边形是矩形,则各对边平行且相等,对角线相等。
设AC和BD为对角线,AC = BD,根据余弦定理,有AC^2 =AD^2 + CD^2,BD^2 = BA^2 + AD^2。
由于矩形的对角线相等,即AC^2 = BD^2,所以AD^2 + CD^2 = BA^2 + AD^2,化简可得a^2 + c^2 =b^2 + d^2。
四边形常见模型(六大题型)(解析版)-初中数学
四边形常见模型目录题型01中点四边形模型 1题型02十字架模型 4题型03对角互补模型 8题型04半角模型 11题型05含60°的菱形模型 16题型06三垂线模型 20题型01中点四边形模型1.(23-24九年级上·山东枣庄·期中)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【答案】C【详解】解:如图,设点E,F,G,H分别是四边形ABCD各边的中点,∵四边形EFGH是菱形,∴EF=FG=GH=EH,∵BD=2EF,AC=2FG,∴BD=AC.∴原四边形一定是对角线相等的四边形.故选:C.2.(23-24九年级上·山西朔州·期中)如图,四边形ABCD的对角线AC⊥BD于点O,点E,F,G,H分别为边AB,BC,CD和AD的中点,顺次连接EF,FG,GH和HE得到四边形EFGH.若AC=10,BD =12,则四边形EFGH的面积等于()A.30B.35C.40D.60【答案】A【详解】解:∵点E ,F 分别为边AB ,BC 的中点,∴EF 是△ABC 的中位线,∴EF ∥AC ,EF =12AC ,∵AC =10,∴EF =12AC =5,同理,可得:HG ∥AC ,HG =12AC =5,∴EF ∥HG ,EF =HG ,∵点E ,H 分别为边AB ,AD 的中点,∴EH 是△ABD 的中位线,∴EH ∥BD ,EH =12BD =6,同理,可得:FG ∥BD ,FG =12BD =6,∴EH ∥FG ,EH =FG ,∴四边形EFGH 是平行四边形,∵AC ⊥BD ,∴EF ⊥EH ,∴∠FEH =90°,∴平行四边形EFGH 是矩形,∴矩形EFGH 的面积为:6×5=30,即四边形EFGH 的面积为30.故选:A .3.(23-24九年级上·山东东营·期中)如图,把矩形ABCD 沿直线AC 折叠,点B 落在点E 处,连接DE ,则顺次连接四边形ADEC 各边中点,得到的四边形的形状一定是.【答案】菱形【详解】解:∵把矩形ABCD 沿直线AC 折叠,点B 落在E 处,∴CD =AE =AB ,∵顺次连接四边形ADEC 各边中点,∴H 、F 分别是DE 、AD 的中点,∴HF =12AE .同理FM =12CD ,NH =12CD ,MN =12AE ,又∵DC =AE ,∴HN =HF =FM =MN ,∴四边形HFMN 是菱形.∴得到的四边形的形状一定是:菱形.故答案为:菱形.4.(23-24九年级上·河南信阳·期中)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)求证:四边形EFGH 的形状是平行四边形;(2)当四边形ABCD 的对角线满足条件时,四边形EFGH 是矩形;(3)当四边形ABCD 的对角线满足条件时,四边形EFGH 是菱形.【答案】(1)证明见解析(2)互相垂直(3)AC =BD【详解】(1)证明:如图,连接AC 、BD ,∵点E 、F 、G 、H 分别为AB 、BC 、CD 、AD 的中点,∴EF 、GH 分别为△ABC 、△ADC 的中位线,∴EF =12AC ,EF ∥AC ,GH =12AC ,GH ∥AC ,∴EF =GH ,EF ∥GH ,∴四边形EFGH 的形状是平行四边形;(2)解:当AC ⊥BD 时,四边形EFGH 是矩形,∵EF ∥AC ,FG ∥BD ,AC ⊥BD ,∴EF ⊥FG ,∴平行四边形EFGH 是矩形,故答案为:互相垂直;(3)解:当AC =BD 时,四边形EFGH 是菱形,∵EF =12AC ,FG =12BD ,AC =BD ,∴EF =FG ,∴平行四边形EFGH 是菱形,故答案为:相等.5.(23-24九年级上·福建泉州·期中)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH ,HE ,得到四边形EFGH (即四边形ABCD 的中点四边形).(1)求证:四边形EFGH 是平行四边形;(2)当四边形ABCD 的对角线满足条件时,四边形EFGH 是矩形?并说明理由.【答案】(1)见详解(2)AC ⊥BD ,见详解【详解】(1)解:连接AC ,如图,∵四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,∴HG ∥AC ,HG =12AC ,EF ∥AC ,EF =12AC ,∴HG ∥EF ,HG =EF ,∴四边形EFGH 是平行四边形;(2)解:AC ⊥BD ,理由如下:连接AC ,BD ,∵四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,∴HG ∥AC ,EH ∥BD .∵AC ⊥BD ,∴HG ⊥EH ,∴∠EHG =90°,∴平行四边形EFGH 是矩形.故答案为:AC ⊥BD .题型02十字架模型6.(23-24九年级上·黑龙江哈尔滨·期中)如图,将一边长为15的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =8,折痕为PQ ,则PQ 的长为()A.15B.16C.17D.18【答案】C 【详解】解:过点P作PM ⊥BC 于点M ,由折叠得到PQ ⊥AE ,∴∠DAE +∠APQ =90°,又∠DAE +∠AED =90°,∴∠AED =∠APQ ,∵AD ∥BC ,∴∠APQ =∠PQM ,则∠PQM =∠APQ =∠AED ,∠D =∠PMQ ,PM =AD∴△PQM ≌△ADE∴PQ =AE =82+152=17.故选:C .【点睛】本题考查正方形的折叠问题,全等三角形的判定与性质,勾股定理,正方形的性质,平行线的性质等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.7.(23-24九年级上·四川成都·期中)如图,将边长为4的正方形纸片ABCD 折叠,使得点A 落在边CD 的中点E 处,折痕为FG ,点F 、G 分别在边AD 、BC 上,则折痕FG 的长度为.【答案】25【详解】解:如图,过点G 作GH ⊥AD 于H ,则四边形ABGH 中,HG =AB ,由翻折变换的性质得GF ⊥AE ,∵∠AFG +∠DAE =90°,∠AED +∠DAE =90°,∴∠AFG =∠AED ,∵四边形ABCD 是正方形,∴AD =AB ,∴HG =AD ,在△ADE 和△GHF 中,∠GHF =∠D∠AFG =∠AED GH =AD,∴△ADE ≌△GHF (AAS ),∴GF =AE ,∵点E 是CD 的中点,∴DE =12CD =2,在Rt △ADE 中,由勾股定理得,AE =AD 2+DE 2=42+22=25,∴GF 的长为25.故答案为:25.【点睛】本题考查翻折变换的问题,折叠问题其实质是轴对称,对应线段相等,对应角相等,找到相应的直角三角形利用勾股定理求解是解决本题的关键.8.(23-24九年级上·江苏泰州·期中)如图,正方形纸片ABCD 的边长为24,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE =10,则GE 的长为【答案】9813【详解】解:∵四边形ABCD 为正方形,∴AB =AD =24,∠BAD =∠D =90°,由折叠及轴对称的性质可知,△ABF ≌△GBF ,BF 垂直平分AG ,∴BF ⊥AE ,AH =GH ,∴∠BAH +∠ABH =90°,又∵∠FAH +∠BAH =90°,∴∠ABH =∠FAH ,∴△ABF ≌△DAE (ASA ),∴AF =DE =10,在Rt △ABF 中,BF =AB 2+AF 2=242+102=26,S △ABF =12AB •AF =12BF •AH ,∴24×10=26AH ,∴AH =12013,∴AG =2AH =24013,∵AE =BF =26,∴GE =AE -AG =26-24013=9813,故答案为:9813.【点睛】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.9.(23-24九年级上·陕西商洛·期中)如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 相交于点G ,连接AG ,求证:(1)CE ⊥DF .(2)∠AGE =∠CDF .【答案】(1)见解析;(2)见解析.【详解】(1)∵四边形ABCD 是正方形,∴AB=BC =CD =AD ,∠B =∠BCD =90°,∵E ,F 分别是AB ,BC 的中点,∴BE =12AB ,CF =12BC ,∴BE =CF ,在△CBE 与△DCF 中,BC =CD∠B =∠FCD BE =CF,∴△CBE ≌△DCF SAS ,∴∠ECB =∠FDC ,∵∠BCE +∠ECD =∠BCD =90°,∴∠ECD +∠CDF =90°,∴∠CGD =90°,∴CE ⊥DF .(2)延长CE ,交DA 的延长线于H ,∵在正方形ABCD 中,AD ∥BC ,∴∠AHE =∠BCE ,∵点E 是AB 的中点,∴AE =BE ,∵∠AHE =∠BCE ,∠AEH =∠CEB ,AE =BE ,∴△AEH ≌△BEC AAS ,∴AH =BC ,∵在正方形ABCD 中,AD =BC ,∴AH =AD ,∵CE ⊥DF∴∠HGD =90°,∴AG 是Rt △HGD 斜边的中线,AG =12DH =AD ,∠ADG =∠AGD ,∠AGE +∠AGD =∠HGD =90°,∠CDF +∠ADG =∠CDA =90°,∠AGE=∠CDF.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质等,综合性很强,解题的关键是能够综合运用上述知识.题型03对角互补模型10.(23-24九年级上·江苏泰州·期中)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,点E为对角线BD上任意一点,连接AE、CE.若AB=5,BC=3,则AE2-CE2等于()A.7B.9C.16D.25【答案】C【详解】解:如图所示:连接AC,与BD交于点O,∵对角线互相垂直的四边形叫做“垂美”四边形,∴AC⊥BD,在Rt△AOE中,AE2=AO2+OE2,在Rt△COE中,CE2=CO2+OE2,∴AE2-CE2=AO2-CO2,在Rt△AOB中,AO2=AB2-OB2,在Rt△COB中,CO2=BC2-OB2,∴AO2-CO2=AB2-BC2=52-32=16,∴AE2-CE2=16,故选:C.【点睛】题目主要考查勾股定理的应用,理解题意,熟练运用勾股定理是解题关键.11.(23-24·山东淄博·期中)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【详解】设EF =x ,DF =y ,根据三角形重心的性质得AF =2y ,BF =2EF =2x ,利用勾股定理得到4x 2+4y 2=c 2,4x 2+y 2=14b 2,x 2+4y 2=14a 2,然后利用加减消元法消去x 、y 得到a 、b 、c 的关系.【解答】解:设EF =x ,DF =y ,∵AD ,BE 分别是BC ,AC 边上的中线,∴点F 为△ABC 的重心,AF =12AC =12b ,BD =12a ,∴AF =2DF =2y ,BF =2EF =2x ,∵AD ⊥BE ,∴∠AFB =∠AFE =∠BFD =90°,在Rt △AFB 中,4x 2+4y 2=c 2,①在Rt △AEF 中,4x 2+y 2=14b 2,②在Rt △BFD 中,x 2+4y 2=14a 2,③②+③得5x 2+5y 2=14(a 2+b 2),∴4x 2+4y 2=15(a 2+b 2),④①-④得c 2-15(a 2+b 2)=0,即a 2+b 2=5c 2.故选:A .【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.12.(23-24九年级上·河北石家庄·期中)已知对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC ,BD 交于点O .(1)若AB =5,OA =3,OC =4,则BC =;(2)若AD =2,BC =5,则AB 2+CD 2=;(3)若AB =m ,BC =n ,CD =c ,AD =d ,则m ,n ,c ,d 之间的数量关系是.【答案】427m 2+c 2=n 2+d 2【详解】(1)∵AC ⊥BD ,∴∠BOC =∠COD =∠DOA =∠AOB =90°,∴OB =AB 2-OA 2=52-32=4,∴CB =OB 2+OC 2=42+42=42.故答案为42.(2)由(1)得:∴OB 2+OC 2=BC 2,OA 2+OD 2=AD 2,OB 2+OA 2=AB 2,OC 2+OD 2=CD 2,∴AB 2+CD 2=OB 2+OA 2+OC 2+OD 2=BC 2+AD 2,∵AD =2,BC =5,∴AB 2+CD 2=2 2+5 2=7.故答案为7.(3)由(2)得:AB 2+CD 2=BC 2+AD 2,∴m 2+c 2=n 2+d 2.故答案为m 2+c 2=n 2+d 2.【点睛】本题考查勾股定理的应用问题,熟练利用勾股定理和等量代换是解题的关键.13.(23-24九年级上·安徽芜湖·期中)如图甲,我们把对角线相互垂直的四边形叫做垂美四边形.(1)【概念理解】我们已经学习了①平行四边形、②菱形、③矩形、④正方形,在这四种图形中是垂美四边形的是(填序号).(2)【性质探究】小美同学猜想“垂美四边形两组对边的平方和相等”,即,如图甲,在四边形ABCD 中,若AC ⊥BD ,则AB 2+CD 2=AD 2+BC 2.请判断小美同学的猜想是否正确,并说明理由.(3)【问题解决】如图乙,在△ABC 中,BC =3,AC =4,D ,E 分别是AC ,BC 的中点,连接AE ,BD ,有AE ⊥BD ,求AB .【答案】(1)②④;(2)猜想正确,理由见解析;(3)AB =5【详解】解:(1)∵菱形、正方形的对角线相互垂直,∴菱形和正方形符合垂美四边形的定义,故答案为:②④;(2)猜想正确,理由如下:∵四边形ABCD 中,AC ⊥BD ,∴∠AOB =∠COD =∠BOC =∠AOD =90°,∴AB 2=OA 2+OB 2,CD 2=OC 2+OD 2,BC 2=OB 2+OC 2,AD 2=OA 2+OD 2,∴AB 2+CD 2=OA 2+OB 2+OC 2+OD 2,BC 2+AD 2=OB 2+OC 2+OA 2+OD 2,∴AB 2+CD 2=AD 2+BC 2;(3)∵BC =3,AC =4,D 、E 分别是AC 、BC 的中点,∴AD =12AC =2,BE =12BC =32,DE =12AB ,∵AE ⊥BD ,∴AB 2+ED 2=AD 2+BE 2,∴5 4AB2=4+94,∴AB=5.14.(23-24九年级上·福建福州·期中)如图,我们把对角线互相垂直的四边形叫做垂美四边形.(1)在我们学过:①平行四边形、②矩形、③菱形、④正方形,能称为垂美四边形的是;(只填序号)(2)如图,垂美四边形ABCD的对角线交于点O,AB=2,BC=3,AD=4,求CD的长度.【答案】(1)③④(2)21【详解】(1)解:∵菱形和正方形的对角线相互垂直,矩形和平行四边形的对角线不一定垂直,∴只有正方形和菱形能称为垂美四边形,故答案为:③④;(2)∵AC⊥BD,∴AB2=AO2+BO2,BC2=BO2+CO2,DC2=DO2+CO2,AD2=AO2+DO2,∴AB2+DC2=AO2+BO2+DO2+CO2,BC2+AD2=AO2+BO2+DO2+CO2,∴AB2+DC2=BC2+AD2;∵AB=2,BC=3,AD=4∴CD2=32+42-22=9+16-4=21∴CD=21.题型04半角模型15.(23-24九年级上·四川眉山·期中)(半角模型)如图,正方形ABCD中,E是AB上的点,F是BC上的点,且∠EDF=45°.求证:AE+CF=EF.【答案】见解析【详解】证明:如图,在BC的延长线上截取CG=AE,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=∠BCD=∠DCG=90°,∴△ADE≌△CDG SAS,∴DE=DG,∠ADE=∠CDG.∵∠EDF=45°,则∠ADE+∠CDF=∠ADC-∠EDF=45°∴∠FDG=∠CDF+∠CDG=45°.∴∠EDF=∠FDG.在△DEF 和△DGF 中DE =DG∠EDF =∠FDG DF =DF,∴△DEF ≌△DGF SAS ∴EF =GF .即EF =GC +CF∴AE +CF =EF .16.(23-24九年级上·广西南宁·期中)【探索发现】如图①,四边形ABCD 是正方形,M ,N 分别在边CD 、BC 上,且∠MAN =45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将△ADM 绕点A 顺时针旋转90°,点D 与点B 重合,得到△ABE ,连接AM 、AN 、MN.(1)试判断DM ,BN ,MN 之间的数量关系,并写出证明过程.(2)如图②,点M 、N 分别在正方形ABCD 的边BC 、CD 的延长线上,∠MAN =45°,连接MN ,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.【答案】(1)MN =DM +BN .证明见解析(2)MN =BN -DM .证明见解析【详解】(1)解:MN =DM +BN .证明如下:由旋转,可知:AE =AM ,BE =DM ,∠EAM =90°.∠ABE =∠D =90°∴点E 、B 、C 共线∵∠MAN =45°∴∠EAN =∠EAM -∠MAN =45°=∠MAN在△EAN 和△MAN 中AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN (SAS )∴EN =MN∵EN =BE +BN∴MN =DM +BN (2)解:MN =BN -DM .证明如下:在BC 上取BE =MD .连接AE ,∵AB =AD ,∠B =∠ADM ,∠EAM =90°∴△ABE ≌△ADM (SAS )∴AE =AM ,∠BAE =∠MAD∵∠MAN =45°∴∠EAN=∠EAM-∠MAN=45°=∠MAN在△EAN和△MAN中,AE=AM∠EAN=∠MANAN=AN∴△EAN≌△MAN(SAS)∴EN=MN∵EN=BN-BE∴MN=BN-DM【点睛】本题考查了旋转的性质,全等三角形的判定和性质,利用全等三角形的性质进行等量转化是解题的关键.17.(23-24九年级上·广东汕尾·期中)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.(1)求证:△EAG≅△EAF;(2)若DF=3,求BE的长.【答案】(1)见解析(2)BE=2【详解】(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°;由旋转的性质可知:∠GAB=∠DAF,AG=AF,∵∠BAD=90°,∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠GAB+∠BAE=∠GAE=45°,∴∠GAE=∠EAF=45°,在△EAG和△EAF中,AF=AG∠GAE=∠EAF AE=AE,∴△EAG≅△EAF SAS.(2)解:∵DF=3,CD=6,∴CF=3,由(1)可知:GE=EF,BG=DF,∴CG=9,∴CE+EF=9,在Rt△EFC中,由勾股定理得:CE2+CF2=EF2,即CE2+32=9-CE2,解得:CE=4,∴BE=BC-CE=6-4=2.18.(23-24九年级上·黑龙江齐齐哈尔·期中)【问题情境】神奇的半角模型在几何图形中,共顶点处的两个角,其中较小的角是较大的角的一半时,我们称之为半角模型.截长补短法是解决这类问题常用的方法.如图1,在正方形ABCD中,以A为顶点的∠EAF=45°,AE、AF与BC、CD分别交于E、F两点,为了探究EF、BE、DF之间的数量关系,小明的思路如下:如图2,延长CB到点H,使BH=DF,连接AH,先证明△ADF≌△ABH,再证明△AHE≌△AFE.从而得到EF、BE、DF之间的数量关系.(1)提出问题:EF、BE、DF之间的数量关系为.(2)知识应用:如图3,AB=AD,∠B=∠D=90°,以A为顶点的∠BAD=120°,∠EAF=60°,AE、AF与BC、CD分别交于E、F两点,你认为(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(3)知识拓展:如图4,在四边形ABCD中,AB=AD=a,BC=b,CD=c.∠ABC与∠D互补,AE、AF与BC、CD分别交于E、F两点,且∠EAF=1∠BAD,请直接写出△EFC的周长=.(用2含a、b、c的式子表示.)【答案】(1)EF=DF+BE(2)(1)中的结论还成立,证明见解析(3)b+c【详解】(1)解:延长CB到点H,使BH=DF,连接AH,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=∠ABH=∠BAD=90°,∴△ADF≌△ABH,∴∠DAF=∠BAH,AH=AF,∵∠EAF=45°,∴∠BAE+∠DAF=90°-∠EAF=45°,∴∠EAH=∠BAE+∠BAH=45°,∴∠EAH=∠EAF,∵AE=AE,∴△AHE≌△AFE,∴EF=EH,∵EH=BE+BH,∴EF=DF+BE;故答案为:EF=DF+BE(2)解:(1)中的结论还成立,证明如下:延长CB到点M,使BM=DF,连接AM,∵∠B=∠D=90°,∴∠ABM=∠D=90°,∵AB=AD,∴△ADF≌△ABM,∴∠DAF=∠BAM,AM=AF,∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠EAM=∠BAE+∠BAM=60°,∴∠EAM=∠EAF,∵AE=AE,∴△AME≌△AFE,∴EF=EM,∵EM=BE+BM,∴EF=DF+BE;(3)解:如图,延长CB到点P,使BP=DF,连接AP,∠ABC+∠D=180°,∠ABC+∠ABP=180°,∴∠D=∠ABP,∵AB=AD,∴△ADF≌△ABP,∴∠DAF=∠BAP,AP=AF,∵∠EAF=1∠BAD,2∠BAD,∴∠BAE+∠DAF=12∴∠EAP=∠EAF,∵AE=AE,∴△APE≌△AFE,∴EF=EP,∵EP=BE+BP,∴EF=DF+BE,∵BC=b,CD=c,∴△EFC的周长=EF+CE+CF=DF+BE+CE+CF=BC+CD=b+c.故答案为:b+c题型05含60°的菱形模型19.(2024·上海·期中)菱形ABCD的边长为23,∠B=60°,AE⊥BC于E,AF⊥CD于F,那么△AEF周长为【答案】9【详解】解:过点A作AM⊥EF,∵四边形ABCD是菱形,∴AB∥CD,AB=BC=CD=23,∵∠B =60°,∴△ABC 是等边三角形,∴∠BAC =60°,∵AE ⊥BC ,∴BE =CE =12BC =232=3,∠BAE =∠DAF =30°,再Rt △AEB 中,AE =AB 2-BE 2=3,同理可证,∠DAF =∠CAF =30°,AF =3,∴∠EAF =120°-30°-30°=60°,AE =AF =3,∴△AEF 是等边三角形,边长为3∴△AEF 的周长是9.20.(23-24九年级上·重庆沙坪坝·开学考试)如图,菱形ABCD 的边长为4,∠BAD =60°,过点B 作BE ⊥AB 交CD 于点E ,连接AE ,F 为AE 的中点,连接CF ,CF 交BE 于点G ,则GF 的长为.【答案】192【详解】解:如图,取H 为BE 的中点,∵菱形ABCD 的边长为4,∠BAD =60°,∴AB =BC =CD =4,AB ∥CD ,∠BAD =∠BCE =60°,∵F 为AE 的中点,H 为BE 的中点,∴EH =12BE ,FH 是△ABE 的中位线,∴FH =12AB =2,AB ∥FH ,∴AB ∥FH ∥CD ,∵BE ⊥AB ,∴FH ⊥BE ,CD ⊥BE ,∴∠FHE =∠BEC =90°,∴∠CBE =90°-60°=30°,∴CE =12BC =2,∴BE =BC 2-CE2=42-22=23,∴EH =12BE =3,∴FH =CE ,在△FHG 和△CEG 中,∠FHG =∠CEG∠FGH =∠CGE FH =CE,∴△FHG ≌△CEG (AAS ),∴EG =GH =12EH =32,在Rt △FHG 中,由勾股定理得:GF =FH 2+GH 2=22+32 2=192,故答案为:192.【点睛】本题考查了菱形的性质、三角形中位线定理、全等三角形的判定与性质、含30°角的直角三角形的性质以及勾股定理等知识,熟练掌握菱形的性质,证明三角形全等是解题的关键.21.(23-24九年级上·上海·期中)如图,菱形ABCD 中,AB =3,∠DAB =60°,AE =1,点P 为对角线AC上的一个动点,则PE +PB 的最小值为.【答案】7【详解】解:如图,连接BD ,PD ,过D 作DR ⊥AB 于R ,由菱形的对称性可得:PD =PB ,∴PB +PE =PD +PE ≥DE ,当D ,P ,E 三点共线时,PD +PE 最短,∵菱形ABCD 中,AB =3,∠DAB =60°,∴AB =AD =3,△ABD 为等边三角形,∴AR =BR =32,DR =AD 2-AR 2=323,∵AE =1,∴ER =32-1=12,∴DE =12 2+323 2=7,∴PB +PE 的最小值为:7;故答案为:7【点睛】本题考查的是菱形的性质,等边三角形的判定与性质,勾股定理的应用,化为最简二次根式,三角形的三边关系的应用,作出合适的辅助线是解本题的关键.22.(23-24九年级上·广西钦州·期中)如图,已知菱形ABCD 的边长为8,点M 是对角线AC 上的一动点,且∠ADC =120°,则MA +MB +MD 的最小值是.【答案】83【详解】解:如图,过点M 作ME ⊥AB 于点E ,连接BD ,∵四边形ABCD 是菱形,∴AB∥CD,AD=AB=DC=BC,∠DAB,∠MAE=12∴∠DAB+∠ADC=180°,∴∠DAB=180°-120°=60°,∴∠MAE=1∠DAB=30°,2△DAB是等边三角形,∵ME⊥AB,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2ME+DM,∴当D、M、E三点共线时,ME+DM取得最小值,此时ME+DM=DE,∴MA+MB+MD的最小值为2DE,AB=4,∴AE=12∴DE=AD2-AE2=82-42=43,∴2ME+DM=2DE=83,∴MA+MB+MD的最小值为83;故答案:83.23.(23-24九年级上·四川绵阳·开学考试)如图,△ABC中,∠BCA=90°,D是斜边AB的中点,若CE∥AB,DE∥BC,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,则四边形ADCE的面积=.【答案】(1)证明见解析(2)183【详解】(1)证明:∵CE∥AB,DE∥BC,∴四边形DBCE是平行四边形.∴CE∥BD,且EC=BD.∵D是斜边AB的中点,∴AD=BD,∴EC=AD,∴四边形ADCE是平行四边形,∵∠BCA=90°,D是斜边AB的中点,∴CD=12AB=AD,∴平行四边形ADCE是菱形.(2)解:∵∠BCA=90°,∠B=60°,∴∠BAC=30°,∵BC=6,∴AB=2BC=12,∴AC=AB2-BC2=122-62=63,由(1)知,四边形ADCE是菱形,四边形DBCE是平行四边形,∴AC⊥DE,DE=BC=6,∴菱形ADCE的面积=12AC×DE=12×63×6=183,故答案为:183【点睛】本题考查平行四边形的判定与性质、菱形的判定与性质、含30°角的直角三角形的性质及勾股定理,熟练掌握相关性质及判定定理是解题关键.24.(23-24九年级上·浙江杭州·开学考试)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【答案】(1)见解析(2)菱形的面积为83【详解】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,作EG⊥BC于G,∴∠BEG=30∘,∠BGE=90∘,∴BG=12BE=2,∴EG=23,即高为23,∴菱形的面积为4×23=8 3.题型06三垂线模型25.(23-24九年级上·浙江嘉兴·期中)如图,在正方形ABCD中,点G为CD边上一点,以CG为边向右作正方形CEFG,连接AF,BD交于点P,连接BG,过点F作FH⎳BG交BC于点H,连接AH,交BD于点K,下列结论中错误的是()A.HE=CDB.△AHF是等腰直角三角形C.点P为AF中点D.PK=BK+DP【答案】D【详解】解:A.∵四边形CEFG是正方形,∴GF∥CE,GF=CE,∵BG∥HF,∴四边形BHFG为平行四边形,∴GF=BH,∴BH=CE,∴BC=HE,∵四边形ABCD为正方形,∴BC=CD.∴HE=CD,故A正确;B.∵ABCD是正方形,CEFG是正方形,∴AB=BC,CE=EF,∠ABH=∠HEF=90°,∵BC=HE,BH=CE,∴AB=HE,BH=EF,∴△ABH≌△HEF(SAS),∴AH=HF,∠BAH=∠EHF,∵∠BAH+∠AHB=90°,∴∠EHF+∠AHB=90°,∴∠AHF=90°,∴△AHF为等腰直角三角形,故B正确;C.过H作HM⊥BC,HM与BD交于点M,连接MF,则MH∥EF,∵四边形ABCD是正方形,∴∠ABC=90°,∠HBD=1∠ABC,2∴∠HBM=45°,∴BH=MH,∵△ABH≌△HEF,∴BH=EF,∴MH=EF,∴四边形EFMH为矩形,∴MF∥BE∥AD,MF=HE,∴∠DAP=∠MFP,∠ADP=∠FMP,∵AD=BC=HE,∴AD=MF,∴△P AD≌△PFM(ASA),∴AP=FP,故C正确;D.将△ADP绕点A顺时针旋转90,得△ABQ,连接QK,则AQ=AP,∠QAP=90°,∵△AHF是等腰直角三角形,∴∠HAF=45°,∴∠QAK=∠P AK=45°,∵AK=AK,∴△AQK≌△APK(SAS),∴QK=PK,∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,由旋转性质知,∠ABQ=∠ADP=45°,BQ=DP,∴∠QBK=90°,∴BK2+BQ2=QK2,∴BK2+DP2=KP2,故D错误;故选:D.【点睛】本题是正方形的一个综合题,主要考查了正方形的性质,矩形的性质与判定,平行四边形的性质与判定,等腰直角三角形的性质与判定,全等三角形的性质与判定,旋转的性质,后两选项关键在构造全等三角形.26.(23-24九年级上·广西贵港·期中)如图,在△ABC中,∠ACB=90°,AC=8,BC=7,以斜边AB为边向外作正方形ABDE,EF垂直于CA的延长线于F,连接CE,则CE的长为()A.13B.15C.17D.20【答案】C【详解】∵四边形ABDE是正方形,∴∠BAE=90°,AE=AB,∵EF ⊥CA ,∴∠F =90°,∴∠EAF +∠AEF =90°,∵∠EAF +∠BAC =180°-∠BAE =90°,∴∠AEF =∠BAC ,在ΔAEF 和ΔBAC 中,∠F =∠ACB =90°∠AEF =∠BAC AE =AB,∴ΔAEF ≌ΔBAC AAS ,∴EF =AC =8,AF =BC =7,在Rt ΔECF 中,EF =8,FC =FA +AC =8+7=15,根据勾股定理得:CE =82+152=17,故选:C .【点睛】此题考查了勾股定理,正方形的性质,以及全等三角形的判定与性质,熟练掌握勾股定理是解本题的关键.27.(23-24九年级上·辽宁盘锦·期中)如图,正方形ABCD 的边长为3,点E 在AB 上,点F 在BC 的延长线上,且AE =CF ,则四边形EBFD 的面积为:.【答案】9【详解】∵四边形ABCD 是正方形,∴AD =DC ,∠A =∠DCF =90°,∵AE =CF,∴△DAE ≅△DCF SAS ,∴四边形EBFD 的面积=正方形ABCD 的面积=32=9.故答案是9.【点睛】本题主要考查了全等三角形的判定与性质,正方形的性质,准确计算是解题的关键.28.(23-24九年级上·陕西西安·期中)已知:点E 、F 、G 、H 分别为四边形ABCD 四条边中点,顺次连接EF 、FG 、GH 、HE 得到四边形EFGH .有下列说法:①四边形EFGH 是平行四边形;②当四边形ABCD 为平行四边形时,四边形EFGH 是菱形;③当四边形ABCD 为矩形时,四边形EFGH 是菱形;④当AC ⊥BD 时,四边形EFGH 是矩形;⑤若四边形EFGH 是正方形,则四边形ABCD 一定是正方形.其中正确的是()A.①③④B.①②⑤C.①③④⑤D.②④⑤【答案】A 【详解】解:如图所示,连接BD 、AC ,∵E 、H 分别为AD ,CD 中点,∴EH =12AC ,同理,FG =12AC ,EF =12BD ,HG =12BD ,∴EH =FG ,EF =HG ,∴四边形EFGH 是平行四边形,故①正确;当四边形ABCD 是矩形时,则AC =BD ,∴EH =EF ,∴平行四边形EFGH 是菱形,而当四边形ABCD 是平行四边形时,不能得出EH =EF ,故②错误,③正确;当AC ⊥BD 时,∵E 、F 、H 分别为AD 、AB 、CD 中点,∴EF ∥BD ,EH ∥AC ,∴EF ⊥EH ,∴四边形EFGH 是矩形,故④正确;∵EF =GH =12BD ,EH =FG =12AC ,四边形EFGH 是正方形,∴EF =GH =EH =FG ,EF ⊥EH ,∴BD =AC ,BD ⊥AC ,不能说明四边形ABCD 是正方形,故⑤错误;故选A .29.(23-24九年级上·山东泰安·期中)如图,菱形ABCD 中,∠B =60°,AB =2cm ,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为()A.23cmB.33cmC.43cmD.3cm【答案】B【详解】解:连接AC ,∵菱形ABCD ,∴AB =AD =BC =CD =2cm ,∠B =∠D ,∵E 、F 分别是BC 、CD 的中点,∴BE =12BC =1,DF =12CD =1,∴BE =DF =1,在△ABE 和△ADF 中,AB =AD∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴AE =AF ,∠BAE =∠DAF ,∵∠B =∠D =60°,∴△ABC 与△ACD 是等边三角形,∴AE ⊥BC ,∴∠BAE =∠DAF =90°-60°=30°,AE =AB 2-BE 2=3,∵∠BAD =180°-∠B =120°,∴∠EAF =∠BAD -∠BAE -∠DAF =120°-30°-30°=60°,∴△AEF 是等边三角形,∴△AEF 的周长是33cm .故选B .30.(23-24九年级上·江苏无锡·期中)如图,在正方形ABCD 中,AB =4,点E 是边AD 的中点,将△DCE沿着CE 翻折,得到△D CE ,延长BD 交CE 的延长线于点H ,则EH =.【答案】255【详解】解:∵四边形ABCD 是正方形,AB =4,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =AD =4,∵点E 是边AD 的中点,∴DE =AE =12AD =2,在Rt △CDE 中,CE =DE 2+CD 2=22+42=25,∵将△DCE 沿着CE 翻折,得到△D CE ,∴∠DCE =∠D CE =12∠DCD ,∠D =∠CD E =90°,CD =CD =4,DE =D E =2,∴CD =BC ,如图,过点D ′作D F ⊥CH 于点F ,过点C 作CG ⊥BH 于点G ,则∠D CG =∠BCG =12∠BCD ,∴∠HCG =∠D CE +∠D CG =12∠DCD +12∠BCD =12(∠DCD +∠BCD )=12∠BCD =45°,∴∠H =45°,∴△D FH 为等腰直角三角形,HF =D F ,∵S ΔDCE =12D E ×CD =12CE ×D F ,∴D F =D E ×CD CE =2×425=455,∴HF =D F =455,在Rt △D EF 中,EF =D E 2-D F 2=22-455 2=255,∴EH =HF -EF =255,故答案为:255.【点睛】本题主要考查正方形的性质、折叠的性质、勾股定理、等腰三角形的性质,正确作出辅助线,根据题意推理论证得到∠H =45°是解题关键.31.(23-24九年级上·山西太原·期中)如图,在正方形ABCD 中,AB =3,点E 是BC 边上一点,且CE =2BE ,连接AE ,点F 是AB 边上一点,过点F 作FG ⊥AE 交CD 于点G ,连接EF ,EG ,AG ,则四边形AFEG 的面积为.【答案】5【详解】解:如图,过F 点作FH ⊥CD 于H ,∴∠FHG =90°,∵四边形ABCD 是正方形,∴BC =AB =3,∠B =∠C =90°,∴四边形BCHF 是矩形,∴FH =BC =AB =3,∠BFH =90°,∴∠GFH +∠AFG =90°,∵AE ⊥FG ,∴∠AFG +∠EBA =90°,∴∠EAB =∠GFH ,在△ABE 和△FHG 中,∠B =∠FHGAB =FH ∠BAE =∠HFG,∴△ABE ≌△FHG (ASA )∴AE =FG ,∵CE =2BE ,∴BE =13BC =1,∴AE =AB 2+BE 2=32+12=10,∴FG =10,∴S 四边形AFEG =12AE ⋅FG =12×10×10=5;故答案:5.【点睛】本题考查了正方形的性质,矩形的判定及性质,全等三角形的判定及性质,勾股定理,对角形互相垂直的四边形面积等,掌握正方形中“十字架”模型的解法是解题的关键.32.(23-24九年级上·山西吕梁·期中)如图,正方形ABCD 的周长为16cm ,顺次连接正方形各边中点E 、F 、G 、H ,得到四边形EFGH 的面积等于cm 2.【答案】8【详解】解:连接AC ,BD ,∵点E 、F 、G 、H 是正方形各边的中点,∴EF 是△ABD 的中位线,FG 是△ABC 的中位线,GH 是△BCD 的中位线,EH 是△ADC 的中位线,∴EF =GH =12BD ,FG =EH =12AC ,EF ∥BD ,FG ∥AC ,又∵AC =BD ,∴EF =FG =GH =EH ,∴四边形EFGH 是菱形,又∵AC ⊥BD ,EF ∥BD ,FG ∥AC ,∴EF ⊥FG ,∴四边形EFGH 是正方形∵正方形ABCD 的周长为16cm ,,∴AB =BC =CD =AD =4,在Rt △ABD 中,由勾股定理,得BD =42,,∴EF =12BD =22∴四边形EFGH 的面积=22 2=8cm 2.故答案为:8.33.(23-24九年级上·山东东营·开学考试)如图,在平面直角坐标系中,菱形OABC 的边长为2,点B 在y 轴上,∠AOC =60°,则点B 的坐标为.【详解】解:如图,连接AC交BO于点D,∴OC=OA=2,OD=DB,AC⊥BD,∵∠AOC=60°,∴△AOC是等边三角形,∴AC=OA=2,AC=1,∴AD=12∴OD=OA2-AD2=3,∴OB=2OD=23,∵点B在y轴上,∴点B的坐标为0,23.故答案为:0,23.34.(23-24九年级上·湖北咸宁·期中)在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=45°.EA交BD于M,AF交BD于N.(1)作△APB≌△AND(如图①),求证:△APM≌△ANM;(2)求证:MN2=BM2+DN2;(3)矩形ABCD中,M、N分别在BC、CD上,∠MAN=∠CMN=45°,(如图②),请你直接写出线段MN,BM,DN之间的数量关系.【答案】(1)见解析(2)见解析(3)MN2=2BM2+2DN2.理由见解析【详解】(1)证明:∵四边形ABCD是正方形,∴∠BAD=90°,∵∠EAF=45°.∴∠BAM+∠NAD=45°,∵△APB≌△AND,∴P A=NA,∠P AB=∠NAD,∴∠P AB+∠BAM=45°,∴∠P AM=∠NAM=45°,在△APM和△ANM中,P A=NA∠P AM=∠NAMAM=AM,∴△APM≌△ANM(SAS);(2)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABD=∠ADB=45°,∵△APB≌△AND,∴PB=ND,∠ABP=∠ADB=45°,∴∠BPM=∠ABP+∠ABD=90°,∴PM2=BM2+PB2,∵△APM≌△ANM,∴PM=MN,∴MN2=BM2+DN2;(3)解:MN2=2BM2+2DN2.理由如下:将△ABM绕点A逆时针旋转90°,得到△AB M .如图:过点M 作M F⊥CD于F,连接M N,同(1)可证△AMN≌△AM N,∴M N=MN.∵∠C=90°,∠CMN=45°,∴CM=CN.设BM=a,DN=b,CM=c,则AD=a+c,CD=b+c,∴M F=AD-AB =AD-AB=a+c-(b+c)=a-b,NF=DN+DF=DN+B M =DN+BM=b+a.在Rt△M FN中,M N2=M F2+NF2=(a-b)2+(a+b)2=2a2+2b2,∴MN2=2BM2+2DN2.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形以及勾股定理,解题的关键是:(1)利用SAS即可证明△APM≌△ANM;(2)证明∠BPM=90°,利用勾股定理求解;(3)通过构造直角三角形,利用勾股定理找出MN2=2BM2+2DN2.35.(23-24九年级上·四川成都·期中)如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,CE=DF,AB=BE,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若平行四边形ABCD的周长为22,CE=DF=3,∠ABE=60°,求AE的长.【答案】(1)见解析(2)4【详解】(1)证明:∵平行四边形ABCD,∴AD∥BC,AD=BC,∵CE=DF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)解:∵平行四边形ABCD,∴AB=CD,AD=BC,∵平行四边形ABCD的周长为22,∴AB+BC=11,∴AB+BE+EC=11,∵AB=BE,CE=3,∴AB=BE=4,∵∠ABE=60°,∴△ABE是等边三角形,∴AE=BE=4.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质以及等边三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.。
四边形辅助线的经典例题
四边形辅助线的经典例题1.问题描述在几何学中,我们通常使用辅助线来帮助解决问题,特别是在研究四边形时。
本文将介绍一些经典的四边形辅助线例题,并提供解答和解题思路。
2.题目一题目描述如图所示,在四边形A BC D中,连结A C和B D的交点为P。
证明:四边形AB CD是平行四边形的充分必要条件是A P=CP。
A_______B||||D__|_______|__C解答和解题思路解答设四边形AB CD为平行四边形,即AB∥CD,AD∥B C。
通过观察可以发现,△A PC与△CP D相似(共边、共角、共角),因此我们有:A P/P C=AC/C D=AB/BC同理,△AP B与△B CP相似,可得:A P/P B=AB/B C=AC/CD由上述两个等式可知:A P/P C=AP/P B即A P=CP,得证。
解题思路在证明这个结论时,我们需要利用平行四边形的性质和相似三角形的性质。
通过观察和推理,我们可以发现△A P C与△C PD相似,△A PB与△B CP相似。
利用相似三角形的性质,我们可以得出A P=CP的结论。
3.题目二题目描述如图所示,在四边形A BC D中,连结A C和B D的交点为P。
证明:当且仅当四边形AB CD的对角线互相平分时,四边形AB CD为矩形。
A_______B||||D__|_______|__C解答和解题思路解答设四边形AB CD的对角线AC和B D相交于P点。
先证明四边形A BC D 是矩形的充分条件是A P=CP且B P=DP。
由题意可知,四边形A BC D是矩形,则A B∥C D且AD∥B C。
根据平行线性质,我们可以得到以下结论:A D/D C=AP/P C(1)A B/B C=BP/P D(2)由(1)式得到A P/PC=A D/DC,即AP/P C=A D/B D,再结合(2)式得到:A P/P C=AD/B D=AB/BD=AB/B C即A P/PC=A B/BC,从而得到AP=C P。
四边形几何证明题精选含解析
四边形几何证明精选一、解答题1.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAB绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.2.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.3.【问题情境】如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.【探究展示】(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.(2)如图2,若点E是BC边上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【拓展延伸】(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.4.如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.(1)求证:△PCE是等腰直角三角形;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.5.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.6.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;(2)将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并证明你的判断.7.如图,在正方形ABCD中,点E是边AD上任意一点,BE的垂直平分线FG交对角AC于点F.求证:(1)BF=DF;(2)BF⊥FE.8.如图所示,E、F分别为平行四边形ABCD边AB、CD的中点,AG//DB交CB的延长线于点G.(1)求证:DE//BF;(2)若∠G=90°,判断四边形DEBF的形状,并说明理由.9.如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.10.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.11.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF//BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.14.如图1,四边形ABCD是正方形,点G是BC边上任意一点.DE⊥AG于点E,BF//DE且交AG于点F.(1)求证:AE=BF;(2)如图2,如果点G是BC延长线上一点,其余条件不变,则线段AF、BF、EF有什么数量关系?请证明出你的结论.15.如图,在△ABC中,∠ABC=90°,点D为AC的中点,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)证明:四边形BDFG是菱形;(2)若AC=10,CF=6,求线段AG的长度.16.已知正方形ABCD中,对角线AC、BD相交于O.①如图1,若E是AC上的点,过A作AG⊥BE于G,AG、BD交于F,求证:OE=OF②如图2,若点E在AC的延长线上,AG⊥EB交EB的延长线于G,AG延长DB延长线于点F,其它条件不变,OE=OF还成立吗?17.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.18.如图,EF是平行四边ABCD的对角线BD的垂直平分线,EF与边AD,BC分别交于点E,F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.19.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当四边形AECF为菱形,M点为BC的中点时,求∠CBD的度数.20.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH//BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;答案和解析1.【答案】解:(1)BM +DN =MN 成立.证明:如图,把△ADN 绕点A 顺时针旋转90°,得到△ABE ,则可证得E 、B 、M 三点共线(图形画正确).∴∠EAM =90°−∠NAM =90°−45°=45°,又∵∠NAM =45°,∴在△AEM 与△ANM 中,{AE =AN ∠EAM =∠NAM AM =AM,∴△AEM≌△ANM(SAS),∴ME =MN ,∵ME =BE +BM =DN +BM ,∴DN +BM =MN ;(2)DN −BM =MN .在线段DN 上截取DQ =BM ,在△ADQ 与△ABM 中,∵{AD =AB∠ADQ =∠ABM DQ =MB,∴△ADQ≌△ABM(SAS),∴∠DAQ =∠BAM ,∴∠QAN =∠MAN .在△AMN 和△AQN 中,{AQ =AM ∠QAN =∠MAN AN =AN,∴△AMN≌△AQN(SAS),∴MN =QN ,∴DN −BM =MN .【解析】(1)结论:BM +DN =MN 成立,证得B 、E 、M 三点共线即可得到△AEM≌△ANM ,从而证得ME =MN .(2)结论:DN −BM =MN.首先证明△ADQ≌△ABM ,得DQ =BM ,再证明△AMN≌△AQN(SAS),得MN =QN ,本题考查正方形的性质、旋转变换等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.2.【答案】证明:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .由折叠的性质可得:BC =CE ,AB =AE ,∴AD =CE ,AE =CD .在△ADE 和△CED 中,{AD =CEAE =CD DE =ED,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【解析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD= CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.3.【答案】(1)证明:取AB的中点M,连结EM,如图1:∵M是AB的中点,E是BC的中点,∴在正方形ABCD中,AM=EC,∵CF是∠DCG的平分线,∴∠ECF=90°+45°=135°,∵BM=BE,∴∠BME=45°,∴∠AME=∠ECF=135°,∵∠BEA+∠CEF=90°,∠MAE+∠BEA=90°,∴∠MAE=∠CEF,在△AME与△ECF中,{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF(ASA),∴∠BAE+∠EFC=∠FCG=∠DCF;(2)证明:取AB上的任意一点M,使得AM=EC,连结EM,如图2:∵AE⊥EF,AB⊥BC,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠MAE=∠CEF,∵AM=EC,∴在正方形ABCD中,BM=BE,∴∠AME=∠ECF=135°,在△AME与△ECF中,{∠MAE=∠CEF AM=EC∠AME=∠ECF,∴△AME≌△ECF(ASA),∴∠BAE+∠EFC=∠FCG=∠DCF;(3)证明:取BA延长线上的一点N使得AN=CE,如图3:∵AN=CE,AB⊥BC,∴∠ANE=45°,∴∠ECF=∠ANE=45°,∵AD//BE,∴∠DAE=∠BEA,∵NA⊥AD,AE⊥EF,∴∠NAE=∠CEF,在△ANE与△ECF中,{∠NAE=∠CEFAN=CE∠ANE=∠ECF,∴△ANE≌△ECF(ASA),∴AE=EF.【解析】(1)取AB的中点M,连结EM,根据正方形的性质和全等三角形的判定证明即可;(2)在AB上取一点M,使AM=EC,连接EM,根据已知条件利用ASA判定△AME≌△ECF,利用全等三角形的性质证明即可.(3)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,利用全等三角形的性质证明即可.此题主要考查全等三角形的判定和性质,关键是熟练掌握正方形的性质,角平分线的性质及全等三角形的判定方法.4.【答案】(1)证明:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA和△PDC中,{PD=PD∠PDA=∠PDC DA=DC,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC,∴∠FPC=∠EDF=90°,∴△PEC是等腰直角三角形.(2)解:如图2中,结论:△PCE是等边三角形.理由:∵四边形ABCD是菱形,∴AD=DC,∠ADB=∠CDB,∠ADC=∠ABC=120°,在△PDA和△PDC中,{PD=PD∠PDA=∠PDC DA=DC,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,PA=PE=PC,∴∠1=∠2,∵∠DFE=∠PFC,∴∠EPC=∠EDC,∵∠ADC=120°,∴∠EDC=60°,∴∠EPC=60°,∵PE=PC,∴△PEC是等边三角形.【解析】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.(1)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC,推出∠FPC=∠EDF=90°,推出△PEC是等腰直角三角形;(2)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,PA=PE= PC,推出∠1=∠2,由∠DFE=∠PFC,推出∠EPC=∠EDC,由∠ADC=120°,推出∠EDC=60°,推出∠EPC=60°,由PE=PC,即可证明△PEC是等边三角形.5.【答案】(1)证明:∵四边形ABCD是正方形,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC−∠CBF=∠EBF−∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB∠ABF=∠CBE BF=BE,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°−∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB−∠FEB=135°−45°=90°,∴△CEF是直角三角形.【解析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB= 135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.6.【答案】解:(1)延长BG交DE于点H,在△BCG与△DCE中,{BC=DC∠BCG=∠DCECG=CE,∴△BCG≌△DCE(SAS),∴∠GBC=∠EDC,BG=DE,∵∠BGC=∠DGH,∴∠DHB=∠BCG=90°,∴BG⊥DE;(2)BG=DE,BG⊥DE仍然成立如图2,∠BCD+∠DCG=∠ECG+∠DCG,即∠BCG=∠DCE,在△BCG与△DCE中,{BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∵∠BHC=∠DHG,∴∠BCD=∠DOB=90°,即BG⊥DE【解析】(1)延长BG交DE于点H,易证△BCG≌△DCE,所以∠GBC=∠EDC,BG=DE,所以∠DHB=90°;(2)易证△BCG≌△DCE,所以∠GBC=∠EDC,BG=DE,所以∠BCD=90°.本题主要考查正方形,涉及正方形的性质,旋转的性质,全等三角形的判定与性质,综合程度较高,需要学生根据所学知识灵活解答.7.【答案】证明:如图所示:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF=45°,∠BAE=90°,在△BAF和△DAF中,{AB=AD ∠BAF=∠DAF AF=AF ,∴△BAF≌△DAF(SAS),∴BF=DF;(2)∵BE的垂直平分线FG交对角AC于点F,∴BF=EF,∵BF=DF,∴EF=DF,∴∠FDE=∠FED,∵△BAF≌△DAF,∴∠ABF=∠FDE,∴∠ABF=∠FED,∵∠FED+∠FEA=180°,∴∠ABF+∠FEA=180°,∴∠BAE+∠BFE=180°,∴∠BFE=90°,∴BF⊥FE.【解析】(1)由正方形的性质得出AB=AD,∠BAF=∠DAF=45°,由SAS证明△BAF≌△DAF,得出对应边相等即可;(2)由线段垂直平分线的性质得出BF=EF,证出EF=DF,得出∠FDE=∠FED,再由全等三角形的性质证出∠ABF=∠FED,由邻补角关系得出∠FED+∠FEA=180°,证出∠ABF+∠FEA=180°,由四边形内角和得出∠BAE+∠BFE=180°,求出∠BFE= 90°即可.本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、四边形内角和定理等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.8.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=12AB,DF=12CD.∴BE=DF,BE//DF,∴四边形DFBE是平行四边形,(2)解:四边形DEBF 是菱形;理由如下:∵∠G =90°,AG//BD ,AD//BG ,∴四边形AGBD 是矩形,∴∠ADB =90°,在Rt △ADB 中∵E 为AB 的中点,∴AE =BE =DE ,∵四边形DFBE 是平行四边形,∴四边形DEBF 是菱形.【解析】(1)根据已知条件证明BE =DF ,BE//DF ,从而得出四边形DFBE 是平行四边形,即可证明DE//BF ,(2)先证明DE =BE ,再根据邻边相等的平行四边形是菱形,从而得出结论.本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,比较综合,难度适中.9.【答案】证明:(1)∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠A′DE =90°,根据旋转的方法可得:∠EA′D =45°,∴∠A′ED =45°,∴A′D =ED ,在△AA′D 和△CED 中{AD =CD∠ADA′=∠CDE A′D =ED,∴△ADA′≌△CDE(SAS);(2)由正方形的性质及旋转,得CD =CB′,∠CB′E =∠CDE =90°,又CE =CE ,∴Rt △CEB′≌Rt △CED∴∠B′CE =∠DCE ,∵AC =A′C∴直线CE 是线段AA′的垂直平分线.【解析】(1)根据正方形的性质可得AD =CD ,∠ADC =90°,∠EA′D =45°,则∠A′DE =90°,再计算出∠A′ED =45°,根据等角对等边可得A′D =ED ,即可利用SAS 证明△ADA′≌△CDE ;(2)首先由AC =A′C ,可得点C 在AA′的垂直平分线上;再证明△AEB′≌△A′ED ,可得AE =A′E ,进而得到点E 也在AA′的垂直平分线上,再根据两点确定一条直线可得直线CE 是线段AA′的垂直平分线.此题主要考查了正方形的性质,以及旋转的性质,关键是熟练掌握正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;找准旋转后相等的线段.10.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB//DF ,∴∠BAF =∠CFA .∵E 为BC 的中点,在△AEB和△FEC中,{∠BAE=∠CFA ∠AEB=∠FEC BE=EC,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【解析】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC(AAS)是解题关键.(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.11.【答案】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.12.【答案】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF//BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=12∠BCD,∠DCF=12∠DCG,,即∠ECF=90°,∴四边形DECF是矩形.【解析】本题利用了角平分线的定义、平行线的性质、等角对等边、等量代换、平行四边形的判定、矩形的判定.(1)由于CE平分∠BCD,那么∠DCE=∠BCE,而EF//BC,于是∠FEC=∠BCE,等量代换∠FEC=∠DCE,那么OE=OC,同理OC=OF,等量代换有OE=OF;(2)由于O是CD中点,故OD=OC,而OE=OF,那么易证四边形DECF是平行四边形,又CE、CF是∠BCD、∠DCG的角平分线,∠BCD+∠DCG=180°那么易得∠ECF=90°,从而可证四边形DECF是矩形.13.【答案】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE//AC,AC=2DE,∵EF=2DE,∴EF//AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=12AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【解析】(1)由三角形中位线定理得出DE//AC,AC=2DE,求出EF//AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=12AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.14.【答案】(1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG,∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,{∠BAF=∠ADE∠AFB=∠DEA=90°DA=AB,∴△ABF≌△DAE(AAS),∴BF=AE,(2)AF+EF=BF;∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,{∠BAF=∠ADE∠AFB=∠DEA=90°DA=AB,∴△ABF≌△DAE(AAS),∴BF=AE,AF=DE,∴AF+EF=BF.【解析】(1)根据正方形的四条边都相等可得DA=AB,再根据同角的余角相等求出∠BAF=∠ADE,然后利用“角角边”证明△ABF和△DAE全等,再根据全等三角形对应边相等可得BF=AE,AF=DE,然后根据图形列式整理即可得证;(2)根据题意作出图形,然后根据(1)的结论可得BF=AE,AF=DE,然后结合图形写出结论即可.本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟记正方形的四条边都相等,每一个角都是直角,然后求出三角形全等是解题的关键.15.【答案】(1)证明:∵AG//BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD∴CE⊥AG,又∵BD为AC的中线,∴BD=DF=12AC,∴四边形BDFG是菱形;(2)解:∵四边形BDFG是菱形,∠ABC=90°,点D为AC的中点,∴GF=DF=12AC=5,∵CF⊥AG,∴AF=√AC2−CF2=√102−62=8,∴AG=AF+GF=8+5=13.【解析】(1)首先可判断四边形BDFG是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BDFG是菱形;(2)由菱形的性质求得GF=DF=12AC=5,由勾股定理得AF的长,继而求得AG的长.本题主要考查了菱形的判定与性质、直角三角形斜边的中线的性质以及勾股定理,注意掌握数形结合思想是解答此题的关键.16.【答案】①证明:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,{∠BOE=∠AOF OB=OA ∠OBE=∠OAF ,∴△BOE≌△AOF(ASA),∴OE=OF;②解:OE=OF还成立;理由如下:∵四边形ABCD是正方形,∴OA=OB,AC⊥BD,∴∠BOE=∠AOF=90°,∴∠OEB+∠OBE=90°,∵AG⊥BE,∴∠AGE=90°,∴∠OEB+∠OAF=90°,∴∠OBE=∠OAF,在△BOE和△AOF中,{∠BOE=∠AOF OB=OA ∠OBE=∠OAF ,∴△BOE≌△AOF(ASA),∴OE=OF.【解析】本题考查了正方形的性质、全等三角形的判定与性质有关知识.①由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可;②由正方形的性质得出OA=OB,AC⊥BD,得出∠BOE=∠AOF=90°,由角的互余关系得出∠OBE=∠OAF,由ASA证明△BOE≌△AOF,得出对应边相等即可.17.【答案】证明:(1)∵四边形ABCD是矩形,∴AB//DC、AD//BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=12∠ABD,∠FDB=12∠BDC,∴∠EBD=∠FDB,∴BE//DF,又∵AD//BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°−∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,∴四边形BEDF是菱形.【解析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE//DF,根据AD//BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.本题主要考查矩形的性质、平行四边形、菱形,熟练掌握矩形的性质、平行四边形的判定与菱形的判定是解题的关键.18.【答案】(1)证明:∵EF垂直平分BD,∴OB=OD,∵四边形ABCD为平行四边形,∴AD//BC,∴∠EDO=∠FBO,∠DOE=∠BOF,∴△DOE≌△BOF(ASA),∴OE=OF,∴四边形AFCE为菱形;(2)解:∵BD=8,∴OD=4且ED=5,∴EO=3,∴S菱形BFDE =12BD×EF=EO·BD=3×8=24.【解析】本题主要考查平行四边形的性质、垂直平分线的性质,全等三角形的判定与性质以及菱形的判定与性质.(1)先证明△DOE≌△BOF,得出OE=OF,再根据EF垂直平分BD,可得出四边形BFDE 为菱形;(2)根据勾股定理可得出OE的长,根据菱形的面积求解即可.19.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC//AD(平行四边形的对边相互平行),∴∠ADE=∠CBD,AD=BC又∵AM丄BC(已知),∴AM⊥AD;∵CN丄AD(已知),∴AM//CN,∴AE//CF;在△ADE和△CBF中,{∠DAE=∠BCF AD=CB∠ADF=∠CBE∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等),∴四边形AECF为平行四边形(对边平行且相等的四边形是平行四边形);(2)如图,连接AC交BF于点0,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD(平行四边形的对角线相互平分),∴AC与BD互相垂直平分,∴▱ABCD是菱形(对角线相互垂直平分的平行四边形是菱形),∴AB=BC(菱形的邻边相等);∵M是BC的中点,AM丄BC(已知),∴AB=AC(等腰三角形的性质),∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°.【解析】(1)根据平行四边形的性质、垂直的定义、平行线的判定定理可以推知AE//CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根据全等三角形的对应边相等知AE=CF,所以一组对边平行且相等的四边形是平行四边形;(2)根据M是BC的中点,AM丄BC(已知),可证明△ABC为等边三角形,然后根据三线合一定理即可求解.本题综合考查了全等三角形的判定与性质、菱形的判定与性质以及等边三角形的判定与性质等知识点.20.【答案】解:(1)∵四边形ABCD是矩形,∴AB//CD,∴∠DCE=∠CEB,∵EC平分∠DEB,∴∠DEC=∠CEB,∴∠DCE=∠DEC,∴DE=DC;(2)如图,连接DF,∵DE=DC,F为CE的中点,∴DF⊥EC,∴∠DFC=90°,在矩形ABCD中,AB=DC,∠ABC=90°,∴BF=CF=EF=12EC,∴∠ABF=∠CEB,∵∠DCE=∠CEB,∴∠ABF=∠DCF,在△ABF和△DCF中,{BF=CF∠ABF=∠DCF AB=DC,∴△ABF≌△DCF(SAS),∴∠AFB=∠DFC=90°,∴AF⊥BF;(3)CE=4√7.理由如下:∵AF⊥BF,∴∠BAF+∠ABF=90°,∵EH//BC,∠ABC=90°,∴∠BEH=90°,∴∠FEH+∠CEB=90°,∵∠ABF=∠CEB,∴∠BAF=∠FEH,∵∠EFG=∠AFE,∴△EFG∽△AFE,∴GFEF =EFAF,即EF2=AF⋅GF,∵AF⋅GF=28,∴EF=2√7,∴CE=2EF=4√7.【解析】(1)根据平行线的性质以及角平分线的定义,即可得到∠DCE=∠DEC,进而得出DE=DC;(2)连接DF,根据等腰三角形的性质得出∠DFC=90°,再根据直角三角形斜边上中线的性质得出BF=CF=EF=12EC,再根据SAS判定△ABF≌△DCF,即可得出∠AFB=∠DFC=90°,据此可得AF⊥BF;(3)根据等角的余角相等可得∠BAF=∠FEH,再根据公共角∠EFG=∠AFE,即可判定△EFG∽△AFE,进而得出EF2=AF⋅GF=28,求得EF=2√7,即可得到CE=2EF= 4√7.本题属于四边形综合题,主要考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质的综合应用,解决问题的关键是作辅助线,构造全等三角形.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.。
四边形类题型解题技巧-
四边形类题型解题技巧四边形是几何知识中非常重要一块内容,因其“变化多端”更是成为中高考数学考试一个热门考点。
如其中特殊四边形--平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用,如求角的度数、求线段的长、求周长、求第三边的取值范围、综合计算题、探索题等等问题.典型例题1:解题反思:本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键。
辅助线是解决四边形一个重要知识点,如构造三角形中位线。
实现线段或角的转移,从而迅速找到解题突破口,往往会使得某些看似无法解决的几何题化难为易,迎刃而解。
解题反思:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键,难点在于作辅助线构造出全等三角形和平行四边形.除了中位线,在一些四边形问题解决过程中,出现这样解法:顺次连结四边形四条边的中点所得的四边形叫中点四边形。
这个中点四边形有许多重要性质,在中考试题中也屡见不鲜,中点四边形的四个结论如下:任意四边形的中点四边形是平行四边形、对角线相等的四边形的中点四边形是菱形、对角线垂直的四边形的中点四边形是矩形、对角线相等且垂直的四边形的中点四边形是正方形。
因为四边形的两条对角线垂直,所以这个四边形的中点四边形是矩形,又因为这个四边形的。
两条对角线相等,所以这个四边形的中点四边形是菱形。
既是矩形又是菱形的图形就是正方形。
近几年随着新课改不断的深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题。
这类问题的实践性强,要利用图形变化过程中利前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解。
解题反思:考查了几何变换综合题,涉及的知识点有:等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,综合性较强,难度中等.四边形中另一种特殊图形--梯形,也是热门考点。
四边形典范试题50题及答案解析
经典四边形习题50道(附答案)1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。
2.已知:直角梯形ABCD中,BC=CD=a 且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。
3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD 平分∠ABC交EF于G,EG=18,GF=10 求:等腰梯形ABCD的周长。
4、已知:梯形ABCD中,AB∥CD,以AD,_B_C_A_B_A_B_EAC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F是BE的中点。
5、已知:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60︒,梯形的周长是20cm, 求:AB的长。
6、从平行四边形四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H,求证:EF∥GH。
7、已知:梯形ABCD的对角线的交点为E若在平行边的一边BC的延长线上取一点F,使SABC∆=SEBF∆,求证:DF∥AC。
_A_B_A_B_B8、在正方形ABCD中,直线EF平行于对角线AC,与边AB、BC的交点为E、F,在DA的延长线上取一点G,使AG=AD,若EG与DF的交点为H,求证:AH与正方形的边长相等。
9、若以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE,AF是BC边的高,延长FA使AG=BC,求证:BG=CD。
10、正方形ABCD,E、F分别是AB、AD延长线上的一点,且AE=AF=AC,EF交BC于G,交AC于K,交CD于H,求证:EG=GC=CH=HF。
_C_B_F_B_C_F_B_A_E_11、在正方形ABCD 的对角线BD 上,取BE=AB , 若过E 作BD 的垂线EF 交CD 于F , 求证:CF=ED 。
12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。
四边形测试题7
1 FB C四边形单元测试 2008.05班级___________姓名___________座号_______评分____________1. 下面命题中,真命题的个数有①对角线相等的四边形是矩形 ②矩形的四个角都是直角,并且对角线相等 ③对角线互相垂直且相等的四边形是正方形④一组对角相等且这组对角被对角线平分的四边形是菱形⑤梯形可分为直角梯形和等腰梯形两类A. 0个B. 1个C. 2个D.3个2.菱形的一条对角线与它的边相等,则它的锐角等于A .30︒B .45︒C .60︒D .75︒3. 三角形的重心是三角形的A.三条角平分线的交点B. 一条边的中线与另一边的高的交点C. 三条高的交点D. 三条中线的交点4. 顺次连结菱形各边中点所得的四边形是A. 矩形B. 菱形C. 正方形D. 等腰梯形5. 能识别四边形ABCD 是等腰梯形的条件是A. AD ∥BC ,AB=CDB.∠A: ∠B: ∠C: ∠D=3:2:3:2C. AD ∥BC ,AD ≠BC ,AB=CDD.∠A+∠B=180°, AD=BC6. 以线段AB 的两个端点为其中两个顶点作位置不同的正方形,一共可以作A. 2个B. 3个C.4个D.5个7. 如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,CE=CF,若∠BEC=80°,则∠EFD 的度数为A. 25°B. 35°C. 40°D. 45° 8. 如图,在平面直角坐标系中,点A 、B 、D 的坐标分别为 (-2,3),(-4,-1),(3,3),要在第四象限内找一点C,使四边形ABCD 是平行四边形,则点C 的坐标是A. (2,-1) B. (1,-2,)C. (1,-1)D. (2,-2)。
特殊平行四边形 解答题(八大模块)(解析版)—2024-2025学年九年级数学上学期期中挑战满分冲刺
特殊平行四边形 解答题(八大模块)目录:模块一、基础—单特殊平行四边形模块二、与其他几何性质结合模块三、作图有关的解答证明题模块四、模块二强化模块五、动态几何基础模块六、综合探究特殊平行四边形的判定模块七、特殊平行四边形在平面直角坐标系的应用模块八、压轴过渡练模块一、基础—单特殊平行四边形1.如图,四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O .若12Ð=Ð,请判断四边形ABCD 的形状,并说明理由.【答案】四边形ABCD 是矩形,理由见解析【分析】本题考查了平行四边形的性质,等角对等边,矩形的判定.先根据平行四边形的性质得出2,2AC OC BD OB ==,再根据12Ð=Ð,推出AC BD =,即可得出结论.【解析】解:四边形ABCD 是矩形,理由如下:∵AC 、BD 是平行四边形ABCD 的对角线,∴2,2AC OC BD OB ==,∵12Ð=Ð,∴OC OB =,则AC BD =,∴平行四边形ABCD 是矩形.2.如图,在矩形ABCD 中,点E F 、在BC 上,连接AE DF 、,且AE DF =,求证:ABE DCF △≌△.【答案】证明见解析.【分析】本题考查了矩形的性质和全等三角形的判定,由四边形ABCD 是矩形,得90B C Ð=Ð=︒,AB DC =,然后根据“HL ”的判定方法即可求证,熟练掌握知识点的应用是解题的关键.【解析】证明:∵四边形ABCD 是矩形,∴90B C Ð=Ð=︒,AB DC =,在Rt ABE △与Rt DCF V 中,AB DC AE DF=ìí=î,∴()Rt Rt HL ABE DCF ≌△△.3.如图所示,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD =12cm ,AC =6cm ,求菱形的周长.4.如图,ABCD 是正方形,G 是BC 上任意一点,DE AG ^于E ,BF AG ^于F .求证:AE BF =.【答案】证明见解析.【分析】由正方形的性质结合DE AG ^,BF AG ^,证明,ABF DAE V V ≌即可得到答案.【解析】解:ABCD Q 是正方形,,90,AB AD BAD \=Ð=︒90,BAF DAE \Ð+Ð=︒DE AG ^Q ,BFAG ^,90,DEA AFB \Ð=Ð=︒90,DAE ADE \Ð+Ð=︒,BAF ADE \Ð=Ð在ABF △与DAE V 中,,BAF ADE AFB DEA AB DA Ð=ÐìïÐ=Ðíï=î,ABF DAE \V V ≌.BF AE \=【点睛】本题考查的正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.5.如图,在矩形ABCD 中,6AB =,8BC =,AC 与BD 交于点O .求BOC V 与DOC △的周长差.【答案】2【分析】本题主要考查矩形的性质,熟练掌握矩形的性质是解题关键.利用矩形的性质可得6CD AB ==,OB OD =,再根据三角形的周长公式计算即可.【解析】解:Q 四边形ABCD 为矩形,6AB =,8BC =,6CD AB \==,OB OD =,()862BOC DOC C C OB OC BC OD OC CD BC CD \-=++-++=-=-=V V ,BOC V \与DOC △的周长之差为2.6.如图,在菱形ABCD 中,点M 、N 分别在AB 、CB 上,且ADM CDN Ð=Ð,求证:BM BN =.7.如图,菱形ABCD 的对角线相交于点O ,∠BAD =60°,菱形ABCD 的周长为24.(1)求对角线BD 的长;(2)求菱形ABCD 的面积.【答案】(1)68.如图,在矩形ABCD 中,对角线AC 与BD 交于点O ,BE AC ^,CF BD ^,垂足分别为E 、F .求证:OE OF =.【答案】证明见解析.9.如图,在菱形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE CF =.连接AF 、CE 交于点G .求证:DGE DGF Ð=Ð.【答案】证明见解析.【分析】先证△DAF ≌△DCE ,再证△AEG ≌△CFG ,最后证△DGE ≌△DGF ,根据全等三角形的性质即可得到∠DGE =∠DGF .【解析】证明:∵四边形ABCD 是菱形,∴DA =DC =AB =BC ,∵AE =CF ,∴DE =DF在△DAF 和△DCE 中,DF DE ADF CDE AD CD =ìïÐ=Ðíï=î,∴△DAF ≌△DCE (SAS ),∴∠EAG =∠FCG ,在△AEG 和△CFG 中,EAG FCG AGE CGF AE CF Ð=ÐìïÐ=Ðíï=î,∴△AEG ≌△CFG (AAS ),∴EG =FG ,在△DGE 和△DGF 中,DE DF EG FG DG DG =ìï=íï=î,∴△DGE ≌△DGF (SSS ),∴∠DGE =∠DGF .【点睛】本题考查菱形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,在正方形ABCD 中,点E 在BC 边的延长线上,点F 在CD 边的延长线上,且CE DF =,连接AE 和BF 相交于点M .求证:AE BF = .【答案】证明见解析.【分析】利用正方形的性质证明:AB =BC =CD ,∠ABE =∠BCF =90°,再证明BE =CF ,可得三角形的全等,利用全等三角形的性质可得答案.【解析】证明:∵四边形ABCD 为正方形,∴AB =BC =CD ,∠ABE =∠BCF =90°,又∵CE =DF ,∴CE +BC =DF +CD 即BE =CF ,在△BCF 和△ABE 中,BE CF ABE BCF AB BC =ìïÐ=Ðíï=î∴ABE BCF △△≌(SAS ),∴AE =BF .【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.模块二、与其他几何性质结合11.如图,正方形ABCD 的边长为4,点E在对角线BD 上,且∠BAE =22.5°,EF ⊥AB 于点F ,求EF 的长.12.如图,在矩形ABCD 中,E ,F 分别是BC ,AD 边上的点,且AE CF =.(1)求证:ABE CDF △≌△;(2)当AC EF ^时,四边形AECF 是菱形吗?请说明理由.【答案】(1)见解析(2)当AC EF ^时,四边形AECF 是菱形,理由见解析【分析】(1)由矩形的性质得出90B D Ð=Ð=︒,AB CD =,AD BC =,AD BC ∥,由HL 证明Rt Rt ABE CDF ≌△△即可;(2)由全等三角形的性质得出BE DF =,得出CE AF =,由CE AF ∥,证出四边形AECF 是平行四边形,再由AC EF ^,即可得出四边形AECF 是菱形.【解析】(1)证明:Q 四边形ABCD 是矩形,90B D \Ð=Ð=︒,AB CD =,AD BC =,AD BC ∥,在Rt ABE △和Rt CDF △中,AE CF AB CD =ìí=î,()Rt Rt HL ABE CDF \V V ≌;(2)解:当AC EF ^时,四边形AECF 是菱形,理由如下:ABE CDF QV V ≌,BE DF \=,BC AD =Q ,CE AF \=,Q CE AF ∥,\四边形AECF 是平行四边形,又AC EF ^Q ,\四边形AECF 是菱形.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.13.如图,已在ABCD Y 中,对角线AC 与BD 相交于点O ,E ,F 是BD 上两点,且BE DF =,2AC OE =,(1)求证: 四边形AECF 是矩形;(2)若90304BAC ACE AE Ð=︒Ð=︒=,,,求BC 的长.∴903060AEG Ð=︒-︒=︒,∴1206060,BEG Ð=︒-︒=︒∴906030,GBE Ð=︒-︒=︒14.在四边形ABCD 中,AD BC ∥,AD BC =,对角线AC BD 、交于点O ,BD 平分ABC Ð,延长AD 至点E ,使DE BO =,连接OE .(1)求证:四边形ABCD 是菱形;(2)若460AD DAB =Ð=︒,,求OE 的长.【答案】(1)见解析15.如图,在矩形ABCD 中,对角线AC 的垂直平分线分别与边AB ,CD 的延长线交于点M ,N ,与边AD 交于点E ,垂足为O .(1)求证:AOM CON △△≌;(2)若8AD =,4CD =,求AE 的长.【答案】(1)见解析(2)5AE =【分析】(1)根据矩形的性质得出AB CD ∥,求出M N Ð=Ð,AO CO =,再根据全等三角形的判定定理AAS 推出即可;(2)根据矩形的性质得出4AB CD ==,根据线段垂直平分线的性质得出AE CE =,再根据勾股定理求出即可.【解析】(1)证明:∵四边形ABCD 是矩形,∴AB CD ∥,∴M N Ð=Ð,∵AC 的垂直平分线是MN ,∴AO CO =,在AOM V 和CON V 中,AOM CON M NAO CO Ð=ÐìïÐ=Ðíï=î,∵AC 的垂直平分线是∴AE CE x ==,∵四边形ABCD 是矩形,∴90ADC Ð=︒,DC =在Rt CDE △中,由勾股定理,得即()22284x x -+=,解得16.如图,在四边形ABCD 中,AB DC P ,AB AD =,AC 平分DAB Ð.对角线AC ,BD 相交于点O ,过点D 作DE AB ^于点E ,连接OE .(1)求证:四边形ABCD 是菱形.(2)若AD =4AC =,求OE 的长.【答案】(1)见解析(2)1,,,,17.如图,在正方形ABCD中,E是BC边上的一点,连接AE,点B关于直线AE的对称点为F,连接EF并延长交CD 于点G ,连接AG .求证:GF GD =.【答案】证明见解析.【分析】连接AF ,根据对称得:△ABE ≌△AFE ,再由HL 证明Rt △AFG ≌Rt △ADG ,可得结论.【解析】证明:连接AF ,Q 四边形ABCD 是正方形,AB AD \=,90B D Ð=Ð=︒,Q 点B 关于直线AE 的对称点为F ,∴△ABE ≌△AFE ,AB AF AD \==,90AFE B Ð=Ð=︒,90AFG \Ð=︒,在Rt AFG V 和Rt ADG V 中,AG AG =Q ,AF AD =,∴Rt △AFG ≌Rt △ADG (HL ),GF GD \=.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,对称的性质,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.18.如图,在矩形ABCD 中,AB BC <,E 为AD 上一点,且BE AD =.(1)请用无刻度的直尺和圆规作出CBE Ð的平分线.(保留作图痕迹,不写作法)(2)在(1)中所作的角平分线与AD 的延长线交于点F ,连接CF .猜想四边形BEFC 是什么四边形?并证明你的猜想.【答案】(1)见解析(2)四边形BEFC 是菱形.证明见解析【分析】本题考查作图—基本作图、矩形的性质、角平分线的定义、菱形的判定,熟练掌握矩形的性质、角平分线的定义、菱形的判定是解答本题的关键.(1)根据角平分线的作图方法作图即可.(2)结合矩形的性质、角平分线的定义、菱形的判定可得结论.【解析】(1)解:如图,BP 即为所求.(2)解:四边形BEFC 是菱形.证明:BF Q 平分CBE Ð,CBF EBF \Ð=Ð.Q 四边形ABCD 是矩形,AD BC \=,AF BC ∥,CBF EFB \Ð=Ð,EBF EFB \Ð=Ð,BE EF \=,BE AD =Q ,AD BC =,BC EF \=,\四边形BEFC 是平行四边形.BE EF =Q ,\四边形BEFC 是菱形.模块三、作图有关的解答证明题19.如图,四边形ABCD 是正方形,射线DP 交AB 于点,90,P PDQ DQ Ð=︒交BC 的延长线于点Q .(1)尺规作图:作PDQ Ð的平分线交BC 于E ;(保留作图痕迹,不写作法)(2)在(1)的基础上,连接PE ,求证:PE PA CE=+【答案】(1)见解析(2)见解析【分析】此题考查了正方形的性质、全等三角形的判定和性质角平分线的作图等知识.(1)按照角平分线的作图方法作图即可;(2)证明()ASA PDA QDC V V ≌,则AP CQ =,PD QD =,再证明()SAS PDE QDE V V ≌,则PE QE =,由QE CQ CE PA CE =+=+即可得到PE PA CE =+.【解析】(1)解:如图所示:(2)证明:∵四边形ABCD 是正方形,∴90PAD ADC BCD Ð=Ð=Ð=︒,AD CD =,∴90PDA CDP Ð+Ð=︒,90QCD Ð=︒∵90PDQ Ð=︒,∴90CDQ CDP Ð+Ð=︒∴PDA CDQ Ð=Ð,∵90QCD PAD Ð=Ð=︒,AD CD =,∴()ASA PDA QDC V V ≌∴AP CQ =,PD QD =,∵作PDQ Ð的平分线交BC 于E∴PDE QDE Ð=Ð,又∵,DE DE =∴()SAS PDE QDE V V ≌∴PE QE =,∵QE CQ CE PA CE=+=+∴PE PA CE=+20.如图,在由24个全等的正三角形组成的正六边形网格中,请画出符合要求的格点四边形(即顶点均在格点上的四边形).(1)在图中画出以AB 为对角线的矩形APBQ .(2)在图中画出一个邻边比为1)中的矩形不全等.(2)解:如图,矩形CDEF 即为所求作的矩形.设每个小正方形的边长为1,∵1AC CG DG AD ====,∴四边形ACGD 为菱形,∴1122AO GO AG ===,CD ^模块四、模块二强化21.如图,在正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A ,D 不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE V V ≌;(2)过点E 作EF BC ∥交PB 于点F ,连接AF ,当PB PQ =时.求证:四边形AFEP 是平行四边形.由三角形内角和定理可得AFP FPEÐ=ÐPE AF \∥,EF AP Q ∥,\四边形AFEP 是平行四边形.【点睛】本题主要考查正方形的性质,平行四边形的判定,全等三角形的判定与性质,平行线分线段成比例,直角三角形性质,等腰三角形的判定与性质,三角形内角和定理,熟练掌握相关几何性质与判定是解题的关键.22.如图,在矩形ABCD 中,6AD =,8CD =,菱形EFGH 的三个顶点E 、G 、H 分别在矩形ABCD 的边AB 、CD 、DA 上,2AH =,连接CF .(1)当2DG =时,求证:四边形EFGH 是正方形;(2)当△FCG 的面积为2时,求CG 的值.则90FMG Ð=︒,90A FMG \Ð=Ð=︒,由矩形和菱形的性质,可得AEG MGE \Ð=Ð,HEG Ð23.如图,在ABC V 中,AB AC =,AD 平分BAC Ð,CE AD ∥且CE AD =.(1)求证:四边形ADCE 是矩形;(2)若ABC V 是边长为4的等边三角形,,AC DE 相交于点O ,在CE 上截取CF CO =,连接OF ,求线段FC 的长及四边形AOFE 的面积.则90OHC Ð=︒,∵30OCH Ð=︒,112OH OC \==,AEC COF AOFE S S S \=-=V V 四边形模块五、动态几何基础24.如图,在矩形纸片AEE D ¢中,5AD =,15AEE D S ¢=矩形,在EE ¢上取一点F ,使4EF =,剪下AEF △,将它平移至DE F ¢¢V 的位置,拼成四边形AFF D ¢.(1)求证∶四边形AFF D ¢是菱形;(2)求四边形AFF D ¢的两条对角线的长.∵4EF =,5FF AD ¢==,∴9EF EF FF ¢¢=+=,在Rt AEF ¢△中,22239AF AE EF ¢¢=+=+在Rt DFE ¢V 中,541FE FF E F ¢¢¢¢=-=-=,25.如图,把矩形ABCD 绕点A 按逆时针方向旋转得到矩形AEFG ,使点E 落在对角线BD 上,连接DG ,DF .(1)若50BAE Ð=︒,则DAG Ð= °;(2)求证:DF AB =.【答案】(1)50(2)见解析【分析】(1)根据矩形的性质,得到90BAD EAG Ð=Ð=︒,进而得到BAE DAG Ð=Ð,即可求出DAG Ð的度数;(2)根据旋转和矩形的性质,易证四边形ABDF 是平行四边形,即可证明结论.【解析】(1)解:Q 矩形ABCD 和矩形AEFG ,90BAD EAG \Ð=Ð=︒,BAD EAD EAG EAD -=-∴∠∠∠∠,BAE DAG \Ð=Ð,50BAE Ð=︒Q ,50DAG \Ð=︒,故答案为:50;(2)证明:连接AF ,由旋转的性质可知,AF BD =,FAE ABD Ð=Ð,AB AE =,ABE AEB \Ð=Ð,FAE AEB \Ð=Ð,AF BD \∥,\四边形ABDF 是平行四边形,DF AB \=;【点睛】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,平行线的判定,等边对等角,熟练掌握旋转和矩形的性质是解题关键.26.如图,在矩形ABCD 中,2AB AD >,点E F ,分别在边AB CD ,上.将ADF △沿AF 折叠,点D 的对应点G 恰好落在对角线AC 上;将CBE △沿CE 折叠,点B 的对应点H 恰好也落在对角线AC 上.连接GE FH ,.求证:(1)AEH CFG △≌△;(2)四边形EGFH 为平行四边形.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由矩形的性质可得AD BC =,90B D Ð=Ð=︒,AB CD ∥,即得EAH FCG Ð=Ð,由折叠的性质可得AG AD =,CH CB =,90CHE B Ð=Ð=︒,90AGF D Ð=Ð=︒,即得CH AG =,90AHE CGF Ð=Ð=︒,进而得AH CG =,即可由ASA 证明AEH CFG △≌△;(2)由(1)得90AHE CGF Ð=Ð=︒,AEH CFG △≌△,即可得到EH FG ∥,EH FG =,进而即可求证;本题考查了矩形的性质,折叠的性质,全等三角形的判定和性质,平行线的判定和性质,掌握矩形和折叠的性质是解题的关键.【解析】(1)证明:∵四边形ABCD 是矩形,∴AD BC =,90B D Ð=Ð=︒,AB CD ∥,∴EAH FCG Ð=Ð,由折叠可得,AG AD =,CH CB =,90CHE B Ð=Ð=︒,90AGF D Ð=Ð=︒,∴CH AG =,90AHE CGF Ð=Ð=︒,∴AH CG =,在AEH △和CFG △中,90EAH FCG AH CGAHE CGF Ð=Ðìï=íïÐ=Ð=︒î,∴()ASA AEH CFG V V ≌;(2)证明:由(1)知90AHE CGF Ð=Ð=︒,AEH CFG △≌△,∴EH FG ∥,EH FG =,∴四边形EGFH 为平行四边形.27.如图,正方形ABCD 和正方形GECF ,点E 、F 分别在边BC 、上,将正方形GECF 绕点C 顺时针方向旋转,旋转角为0180a a ︒<<︒().(1)如图2,连接BE 、DF ,求证:BE DF =;(2)如图3,若1BC =+,1EC =,当点E 旋转到边上时,连接BE 、连接DF ,并将延长BE 交DF 于点H ,求证:BH 垂直平分DF .【答案】(1)见解析(2)见解析【分析】(1)根据四边形ABCD 和GECF为正方形可得BC DC =,EC FC =,BCE DCF Ð=Ð,再证明()SAS BCE DCF V V ≌即可得到结论;(2)证明BD BF =,=DE EF 即可得出结论.本题主要考查了正方形的性质,旋转的性质,线段垂直平分线的判断,全等三角形的判定与性质等知识,正确作出辅助线构造全等三角形是解答本题的关键.【解析】(1)证明:∵四边形ABCD 和GECF 为正方形,BC DC \=,EC FC =,90BCD ECF Ð=Ð=︒,BCE DCE DCF DCE \Ð+Ð=Ð+Ð,)解:连接, Q ()2221BD BC \==+22EF CE ==,CD BC =211BF BC CF \=+=++22,BF BD DE EF \==+=模块六、综合探究特殊平行四边形的判定28.如图,点O 是ABC V 内一点,连接OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)连接AO①直接写出当AO 和BC 有怎样的位置关系时,四边形DEFG 是矩形;②直接写出当AO和BC有怎样的关系时,四边形DEFG是正方形.Q\∥DE AO,Q点E、F分别是OB、\BC EF∥,Q,AO BC^由①得当AO BC ^时,四边形Q 点D 、E 分别是AB 、\12DE AO =,Q 点E 、F 分别是OB 、(1)求证:四边形EFGH 是矩形;(2)如图二,连接FH ,P 为边FH 上一动点,PN EF ^于点N ,PM EH ^于点M ,3EF =,4EH =,求MN 的最小值.30.如图(1),在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至点G ,使EG AE =,连接CG ,延长CF 至点H ,使FH CF =,连接AH .(1)求证:四边形AGCH 是平行四边形;(2)如图(2),若2AC AB =,求证:四边形AGCH 是矩形;(3)如图(3),若AC AB ^,求证:四边形AGCH 是菱形.()SAS AEO CFO \△≌△,\Ð=Ð=,AEO CFO AE CF ,AE CF \∥,,==EG AE FH CF Q ,AG CH \=,\四边形AGCH 是平行四边形;(2)==Q ,EA EG OA OC ,EO \是AGC V 的中位线,∥\EO GC ,AE CF \∥,\四边形EGCF 是平行四边形,22==Q ,AC AB AC AO ,AB AO \=,E Q 是OB 的中点,AE OB \^,90OEG \Ð=︒,\四边形EGCF 是矩形;90AGC \Ð=︒,由(1)知,四边形AGCH 是平行四边形,\四边形AGCH 是矩形;(3)连接H G ,由(1)知,OA OC =,HG \过点O ,连接BG ,Q 点E 为OB 的中点,BE OE \=,AE EG =Q ,\四边形ABGO 是平行四边形,∥\AB OG ,AB AC ^Q ,\^HG AC ,\四边形AGCH 是菱形.【点睛】本题是四边形的综合题,考查了矩形的判定,菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,三角形的中位线定理,正确的识别图形是解题的关键.31.如图所示,在Rt ABC △中,90B =°,100cm AC =,60A Ð=︒,点D 从点C 出发沿CA 方向以4cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒()025t <£.过点D 作DF BC ^于点F ,连接DE ,EF .(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF V 为直角三角形?请说明理由.【答案】(1)证明见解析Q 90CFD \Ð=︒,90B Ð=︒Q ,60A Ð=︒,30C \Ð=︒,114222DF CD t t \==´=,AE DF \=,若四边形AEFD 为菱形,则AE =100AC =Q ,4CD t =,1004AD AC CD t \=-=-,又2AE t =Q ,21004t t \=-,Q 90DFC DFB \Ð=Ð=︒,又90B Ð=︒Q ,\四边形DFBE 为矩形,DF BE \=,90B Ð=︒Q ,60A Ð=︒,由(1)可知:四边形AEFD 是平行四边形,\∥EF AD ,90ADE DEF \Ð=Ð=︒,在Rt ADE V 中,60A Ð=︒,2AE t =30AED \Ð=︒,11模块七、特殊平行四边形在平面直角坐标系的应用32.如图,已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点(10,0)A ,点(0,6)C ,在边AB 上任取一点D ,将AOD △沿OD 翻折,使点A 落在BC 边上,记为点E .(1)EC 的长度为 ;(2)求D 点坐标;(3)若在x 轴正半轴上存在点P ,使得OEP V 为等腰三角形,则点P 的坐标为 .则6EM AB ==,在Rt OEM △中,OM OE =设OP a =,则PE a =,PM 在Rt PEM △中,2PE PM =222(8)6a a \=-+,\同②得8OM =,8MP \=,\点P 的坐标为(16,0);综上,点P 的坐标为(10,0)或25,04æöç÷èø【点睛】本题属于几何变换综合题,考查了翻折变换,矩形的性质,等腰三角形的性质,勾股定理,分类讨论思想的运用是解题的关键.33.如图1,在平面直角坐标系中,一次函数48y x =+的图象分别交x 轴,y 轴于A ,B 两点,将AOB V 绕点O 顺时针旋转90︒得COD △(点A 与点C 对应,点B 与点D 对应).(1)直接写出直线CD 的解析式;(2)点E 为线段CD 上一点,过点E 作EF y ∥轴交直线AB 于点F ,作EG x ∥轴交直线AB 于点G ,当EF EG AD +=时,求点E 的坐标;(3)如图2,若点M 为线段AB 的中点,点N 为直线CD 上一点,点P 为坐标系内一点.且以O ,M ,N ,P 为顶点的四边形为矩形,请直接写出所有符合条件的点N 的坐标,并写出其中一种求解点N 坐标的过程.∵,∵,()0,8B ,点M 为线段∴()1,4M -,12OM AM BM AB ===∵将AOB V 绕点O 顺时针旋转90∴AOB COD ≌△△,∴2OA OC ==,OAB OCD Ð=Ð∵ON OM ^,由(1)得,直线CD 的解析式为设1,24N n n æö-+ç÷èø,∵()1,4M -,∴2221417OM =+=,22ON n =+模块八、压轴过渡练34.如图,在ABC V 中,点O 是边AC 上一个动点,过点O 作直线MN BC ∥.设MN 交ACB Ð的平分线于点E ,交ABC V 的外角ACD Ð的平分线于点F .(1)求证:OE OF =;(2)若12CE =,5CF =,求OC 的长;(3)连接AE ,AF ,当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?请说明理由.【答案】(1)见解析(2) 6.5OC =(3)点O 在边AC 上运动到AC 的中点时,四边形AECF 是矩形.理由见解析【分析】(1)由角平分线的定义结合平行线的性质可证得ACE OEC Ð=Ð,则OE OC =,同理OC OF =,即可得出结论;(2)利用勾股定理可求得EF 的长,再结合(1)的结论可求得OC 的长;(3)只要保证四边形AECF 是平行四边形即可,则可知O 为AC 的中点时,满足条件.本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及勾股定理等知识,熟练掌握矩形的判定和等腰三角形的判定是解题的关键.【解析】(1)证明:CE Q 平分ACB Ð,ACE ECB \Ð=Ð,MN BC Q P ,ECB OEC \Ð=Ð,ACE OEC \Ð=Ð,OE OC \=,同理可得OC OF =,OE OF \=;35.如图,四边形ABCD 和BGEF 均为正方形,点E 恰好在线段AD 上,连接AF 、BE 、CG .(1)当点E 与A 、D 两点都不重合时,求证:ABF CBG V V ≌;(2)当点E 与A 点重合时,等式AB AE CG -=成立;当点E 与A 、D 两点都不重合时,等式AB AE CG -=是否仍然成立?请证明你的结论.Q 90EFB \Ð=︒,45FEB FBE Ð=Ð=︒,90AFE EFH BFH EFH \Ð+Ð=Ð+Ð=︒,AFE HFB \Ð=Ð.36.问题解决:如图①,在矩形ABCD 中,点E ,F 分别在AB BC ,边上,DE AF DE AF =^,于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,连接AH ,判断AHF △的形状,并说明理由.类比迁移:如图②,在菱形ABCD 中,点E ,F 分别在AB BC ,边上,DE 与AF 相交于点G ,6072DE AF AED AE BF =Ð=︒==,,,,求DE 的长.【答案】(1)见解析;(2)等腰三角形,见解析;类比迁移:9【分析】本题主要考查了正方形的证明、菱形的性质、三角形全等的判断与性质等知识点,理解题意并灵活运用相关知识、正确做出辅助线构造三角形全等是解题的关键.(1)先说明90DE AF AGD ^Ð=︒,可得ADE BAF Ð=Ð,再证明()AAS ADE BAF V V ≌得到AD AB =,然后根据一组邻边相等的矩形是正方形即可证明结论;(2)由ADE BAF ≌△△可得AE BF =,再证明BH BF =可得AH AF =,从而得到等腰三角形;类比迁移:如图,延长CB 到点H ,使BH AE =,连接AH ,由菱形的性质可证明DAE ABH ≌V V ,再结合已知60AED Ð=︒可得AHF △是等边三角形,最后利用线段的和差即可解答.【解析】(1)解:证明:∵四边形ABCD 是矩形,∴90DAB ABC Ð=Ð=︒,∴90DE AF AGD ^Ð=︒,,∵9090BAF DAF ADE DAF Ð+Ð=︒Ð+Ð=︒,,∴ADE BAFÐ=Ð在ADE V 和BAF △中,90DAE ABF ADE BAFDE AF Ð=Ð=︒ìïÐ=Ðíï=î∴()AAS ADE BAF V V ≌,∴AD AB =,∴四边形ABCD 是正方形.(2)AHF △是等腰三角形,理由:由(1)得ADE BAF ≌△△,∴AE BF =,∵BH AE =,∴BH BF =,∵90ABH Ð=︒,∴AH AF =,。
平行四边形经典证明题例题讲解
经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠. 又BE DF ∥,BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴ 又∵∴∴∥即得是平行四边形∴ ∴四边形的周长解法二:连接∵∴又∵ ∴≌∴ ∴四边形的周长解法三:连接∵∴又∵ ∴∴∥即是平行四边形∴ ∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC AB CD ∥DCA BAC ∠=∠B DAC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=DCABE FADCBAD CBAD CB解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =. (1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=° 1390∴∠+∠=° 12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△ DM AE ∴= AE EP = DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=° 4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥ABDEFCA DCBEBCEDA F PF∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
(完整版)平行四边形的性质及判定典型例题
平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。
平行四边形经典证明题例题讲解
1 / 16经纬教育 平行四边形证明题 经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长. 【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:连接3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC DCABE FAD CBAD CB2 / 16∵∴又∵∴≌∴∴四边形的周长解法三:连接∵ ∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC上两点,AF CE DF BE DF BE ==,,∥.求证:(1)AFD CEB △≌△. (2)四边形ABCD 是平行四边形.AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AD CBABDEFC3 / 16【关键词】平行四边形的性质,判定 【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又AF CE DF BE ==,,AFD CEB ∴△≌△(SAS).(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由; (3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==°, DAM ABE ∴△≌△DM AE ∴= AE EP =A DCBEBCE DA F P F4 / 16DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,° Rt Rt DAM ABE ∴△≌△ 14DM AE ∴=∠=∠, 1590∠+∠=°4590∴∠+∠=° AE DM ∴⊥ AE EP ⊥ DM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知:平行四边形ABCD中,E、F分别是AB、CD的中点, 连结AF、CE.(1)求证:△ BEC^A DFA;(2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论举一反三:【变式1】如图,在△ ABC中,AB=AC , D为BC中点,四边形ABDE是平行四边形。
求证:四边形ADCE是矩形。
【变式2】已知口ABCD的对角线AC, BD相交于0, △ ABO是等边三角形,AB= 4cm , 求这个平行四边形的面积。
经典例题透析因类型一:矩形1. (2011山东青岛)【变式3】如图,在矩形 ABCD中,对角线 AC 、BD 相交于点O , AE 丄BD 于E ,则: (1) 图中与/ BAE 相等的角有 ___________ ;(2) ___________________________________ 若/ AOB=60。
,贝U AB : BD = 图中△ DOC 是 __________________________________________ 角形(按边 分).类型二:菱形举一反三:【变式1】已知如图,平行四边形 ABCD 的对角线AC 的垂直平分线与边 AD 、BC 分别 交于E 、F 。
试判断四边形 AFCE 的形状并说明理由.)如图,在平行四边形 ABCD 中,E,F 分别是BC , AD 中点。
BC(2011四川雅安 (1)求证:△ ABE BA CDF【变式4】(2011四川自贡)如图,在△ ABC 中,AB=BC=1,/ ABC=120 °,将△ ABC 绕点B 顺时针旋转30。
得△交」二一于点E , 1 -分别交 VF.类型三:正方形||銅3.( 2011广西玉林)如图,点G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形 AEFG,线段EB 和GD 相交于点H.(1) 求证:EB=GD;(2) 判断EB 与GD 的位置关系,并说明理由 (3) 若 AB=2,AG=,求 EB 的长.思路点拨:证明两条线段相等的方法有很多种, 而本题中DG, BE 分别在△ DAG 与厶AEB 中,结合正方形的性质,我们可以证明厶DAG 与厶AEB 全等,利用全等三角形的对应边相等来说明。
研究线段的位置关系,主要是平行或相交(包括垂直相交)。
【答案】(1)证明:在厶GAD 和厶EAB 中/ GAD=90 o+ / EAD ,/ EAB=90 o+ / EAD•••/ GAD= / EAB又••• AG=AE , AB=AD • △ GADEAB(1) 试判断四边形(2) 求DE 的长.的形状,并说明理由;••• EB=GD(2)EB丄GD理由如下:连接BD,由(1 )得:/ ADG= / ABE 则在△ BDH 中,/ DHB=180o- (/ HDB+ / HBD)=180 o- (450+ / ADG+45 o- / ABE) =180 o-90 o=90 o.• EB丄GD.(3)设BD与AC交于点O.•/ AB=AD=2.在Rt△ ABD 中,BD= :‘‘:_ •」’-目I... EB=GD= Jo,*二J迄忑『+(血)2 二 ^^二価.总结升华:熟练掌握并灵活应用正方形的性质是解决很多有关正方形问题的关键,如:本题中用到了正方形的四个角都是直角,四条边都相等。
举一反三:【变式1】已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE= CG,连接BG 并延长交DE于F.(1)求证:△ BCG^A DCE;(2)将厶DCE绕点D顺时针旋转90。
得到△ DAE',判断四边形E' BGD是什么特殊四边形?并说明理由.•••四边形为正方形•BC= CD,/ BCG=Z DCE= 90°•/ CG= CE,•△ BCG^A DCE(2)答:四边形E' BGD是平行四边形理由:•••△ DCE绕点D顺时针旋转90。
得到△ DAE'•CE= AE'•/ CG = CE•CG = AE'•/ AB = CD, AB // CD,•BE'= DG, BE'// DG ,•四边形E' BGD是平行四边形• OD=OA=在Rt △ DOG 中,OG=AG+OA=【答案】(1)证明:【变式2】如图B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连接BG、DE.观察猜想BG与DE之间的大小关系,并证明你的结论.在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出若不存在,请说明理由•【答案】(1) BG=DE••四边形ABCD和四边形CEFG都是正方形,•GC=CE, BC=CD,/ BCG= / DCE=90 °•••△ BCG BA DCE•BG=DE(2)存在• △ BCG和厶DCE△ BCG绕点C顺时针方向旋转90 °与厶DCE重合【变式3】如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结AG,点E、F分别在AG 上,连接BE、DF,/ 1= / 2 , / 3= / 4.(1)证明:△ ABE BA DAF;(2)若/ AGB=30。
,求EF 的长.【答案】(1 )•••四边形••• AB=AD在厶ABE和厶DAF中AB^DAZ4 = Z3•△ ABE BA DAF(2)•••四边形ABCD是正方形•••/ 1+ / 4=90 0•/ 3= / 4•••/ 1+ / 3=90 0(1)(2) 旋转过程;【答案】(1)证明:•••四边形 ABCD 是正方形••• BC = CD ,/ ECB =Z ECD = 45 ° 又 EC = EC • △ ABE BA ADE(2)•••△ ABE BA ADE•••/ BEC =Z DEC =二 / BED •••/ BED = 120 °BEC = 60 ° =Z AEF•••/ EFD = 60° +45 ° = 105 °--的中点,过点 心作,交匚三的延长线于点 】(1) 求证:四边形nF 是菱形;(2) 请判断四边形 二三£是什么特殊四边形?并加以证明证明:(1 )•••四边形ABCD 是平行四边形• AB//CD 且 AB=CD , AD // BC 且 AD = BCE, F 分别是 AB , CD 的中点,• BE== AB , DF=二 CD • BE= DF•四边形DEFG 是平行四边形在厶 ABD 中,E 是 AB 的中点,• AE = BE =二 AB = AD ,而/ DAB=604.如图,在口卫弓二中,—共厂,工僅【上二,点芒,丄二分别是工忘,类型四:综合运用•••△ AED是等边三角形,即DE=AE=AD,故DE= BE•••平行四边形DEFB是菱形(2)四边形AGBD是矩形•理由如下:•/ AD//BC且AG//DB •四边形AGBD是平行四边形由(1 )的证明知AD = DE=AE= BE,•••/ ADE= / DEA=60。
,/ EDB= / DBE=30 °,故/ ADB=90•平行四边形AGBD是矩形所以PQ+PR=二•故选A.【变式2】正方形ABCD的边长是4厘米,长方形DEFG的长DG=5厘米,问长方形的宽DE为多少厘米?举一反三:【变式1】如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC, P为CE上任意一点,PQ丄BC于点Q , PR丄BE于点R,则PQ+PR的值是()•A.-1B.=2D.A.【答案】解:如图,过点C作CH丄BD,则PQ+PR=CH(等腰三角形底边上一点到两腰的距离之和等于腰上的高)因为所以CH=二BD (在直角三角形中,斜边上的中线等于斜边的半)。
因为BD = J血+M二J血+A护=屈段二& C 图2【答案】因为长方形面积=长x 宽,现在已知长方形 DEFG 的长,要求宽,所以先求长 方形DEFG 的面积•而正方形ABCD 面积已知,能找出正方形ABCD 面积与长方形 EFGD 面积之间的关系即可•观察两个图形的重叠部分发现,如果连结AG ,如图2,那么在正方形ABCD中,三角形AGD 的底和高分别为正方形边长 AD 和CD ,所以它的面积是正方形 ABCD 面积 的一半•同样在长方形 EFGD 中,三角形 AGD 的底为长方形的长 DG ,高为长方形的宽 DE , 所以它的面积也是长方形 DEFG 面积的一半•这样就找到了长方形 DEFG 与正方形ABCD 面积 之间的关系•连结辅助线AG ,因为三角形 AGD 的面积是正方形 ABCD 面积的一半,也是长 方形DEFG 面积的一半•所以长方形 DEFG 面积=正方形ABCD 面积=4 X 4=16 (平方厘米) 长方形 DEFG 的宽DE=16 - 5=3.2 (厘米)【变式3】(2011青海西宁)如图,矩形 ABCD 的对角线相交于点 0,DE // CA ,AE //BD .(1) 求证:四边形 A0DE 是菱形;(2) 若将题设中“矩形 ABCD ”这一条件改为“菱形 ABCD ”,其余条件不变,则四边 形A0DE 是 _______【答案】(1)证明:•••矩形 ABCD 的对角线交于点 0,••• AC= BD (矩形对角线相等), 0A=0C=AC ,0B=0D=BD .• 0A=0D .•••DE // CA ,AE // BD ,•四边形A0DE 是平行四边形(两组对边分别平行的四边形是平 行四边形).•四边形A0DE 是菱形.(2)矩形.【变式4】(2011黑龙江黑河)在正方形 ABCD 的边AB 上任取一点E ,作EF 丄AB 交 BD 于点F ,取FD 的中点G ,连结EG 、CG ,如图(1 ),易证 EG=CG 且EG 丄CG.(1)将厶BEF 绕点B 逆时针旋转90。
,如图(2),贝U 线段EG 和CG 有怎样的数量关 系和位置关系?请直E D写出你的猜想,并加以证明•【答案】•/ EF=CM••• FM=DM•••/ F=45 °又FG=DG•••/ CMG=二/ EMC=45 °•••/ F= / GMC•△ GFE^A GMC•EG=CG,/ FGE=Z MGC•••/ FMC=90 °, MF=MD , FG=DG•MG 丄FD•••/ FGE+Z EGM=90 °•••/ MGC+ / EGM=90 ° 即/ EGC=90 °•EG 丄CG学习成果测评基础达标:I —i一、填空题1 •用一把刻度尺来判定一个零件是矩形的方法是_______________-2 .如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为_______ c m3.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是 _____________ 4.如图1 , DE// BC, DF// AC,2 cm5 .若四边形ABCD是平行四边形,请补充条件_______________ 一个即可),使四边形ABCD是菱形.6.如图2,在平行四边形ABCD中,已知对角线AC和BD相交于点0,A ABO的周长为17, AB = 6,那么对角线AC+ BD = __________ .7 .以正方形ABCD的边BC为边做等边△ BCE,则/ AED的度数为 __________________ .&如图3,延长正方形ABCD的边AB到E,使BE= AC,则/ E= ______________________ °.那么AP的长为_____ .10 .在平面直角坐标系中,点A、B、C的坐标分别是A( —2 , 5), B(-3, - 1), C(1 , —1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是_______________ .、选择题11 .如图4在平行四边形EF,则/ E+Z F=()A. 110 °B. 3012 .菱形具有而矩形不具有的性质是()ABCD中,Z B=110 °,延长AD至F,延长CD至E,连结A.对角相等B.四边相等C.对角线互相平分D.四角相等13 .如图5,在菱形ABCD中,对角线AC=4 , Z BAD=120 ,则菱形ABCD的周长为A. 20B. 18C. 16D. 159 .已知菱形ABCD的边长为14.已知:如图 6,在矩形 ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中 点.若AB = 2, AD = 4,则图中阴影部分的面积为()A . 8B . 6C . 4D . 317 .四边形ABCD ,仅从下列条件中任取两个加以组合,使得ABCD 是平行四边形,-共有多少种不同的组合?()AB // CD ; BC // AD ; AB=CD ; BC=AD 。