高考专题:含容电路

合集下载

2025高考物理 闭合电路动态分析、故障分析及含容电路动态分析

2025高考物理  闭合电路动态分析、故障分析及含容电路动态分析

2025高考物理闭合电路动态分析、故障分析及含容电路动态分析一、单选题1.某实物投影机有10个相同的强光灯L1~L10(24V/200W)和10个相同的指示灯X1~X10(24V/2W),如图连接在220V交流电源上,若工作一段时间后,L2灯丝烧断,则()A.X1功率减小,L1功率增大B.X1功率增大,L1功率增大C.X2功率增大,其它指示灯的功率减小D.X2功率减小,其它指示灯的功率增大2.在如图所示的电路中,电源内阻和定值电阻的阻值均为r,滑动变阻器的最大阻值为2r,电表均为理想电表。

闭合开关,将滑动变阻器的滑片P由a端向b端滑动的过程中,下列选项正确的是()A.电压表的示数变大B.电流表的示数变大C.电源的效率变大D.滑动变阻器消耗功率变大二、多选题3.如图,电路中的定值电阻0R 大于电源的内电阻r 。

现将开关S 闭合,将滑动变阻器R 的滑片P 向上滑动,理想电压表V 1、V 2、V 3的示数变化量的绝对值分别为1U 、2U 、3U ,理想电流表A 的示数变化量的绝对值为I ,则下列说法中正确的是( )A .电压表 V 1的示数增大,电压表V 2的示数减小B .电流表A 的示数变大,电压表V 3的示数增大C .电压表 V 3和电流表A 的示数变化量的比值30U r R I∆=+∆ D .电压表 V 1和V 2的变化量12U U >三、单选题4.在如图所示电路中,闭合开关S ,当滑动变阻器的滑动触头P 向下滑动时,四个理想电表的示数都发生变化,电表的示数分别用I 、U 1、U 2和U 3表示,电表示数变化量的大小分别用ΔI 、ΔU 1、ΔU 2和ΔU 3表示。

下列判断正确的是( )A .|ΔU 1|<|ΔU 2|,|ΔU 2|>|ΔU 3|B .1U I 不变,1U I ∆∆变小 C .2U I变大,2U I ∆∆变大D .3U I变大,3U I ∆∆变大四、多选题5.如图所示,电源电动势为E 、内阻为r ,滑动变阻器总电阻为R ,所有电表均为理想表。

高三物理含容电路试题

高三物理含容电路试题

高三物理含容电路试题1.传感器是一种采集信息的重要器件,如图所示为一种测定压力的电容式传感器。

当待测压力F作用于可动膜片电极上时,以下说法中正确的是A.若F向上压膜片电极,电路中有从a到b的电流B.若F向上压膜片电极,电路中有从b到a的电流C.若F向上压膜片电极,电路中不会出现电流D.若电流表有示数,则说明压力F发生变化【答案】BD【解析】当F向上压膜片电极时,电容器两极板之间距离d减小,由可知C增大,又由及U不变可知Q增大,故电容器处于充电状态,电路中电流方向为从b到a,A、C错误,B正确;电容器稳定状态下,电路中没有电流,只有在充放电是有电流,D正确。

【考点】闭合电路的欧姆定律;电容器的电压、电荷量和电容的关系。

2.如图所示,平行板电容器两极板M、N相距d,两极板分别与电压恒定为U的电源两极连接,极板M带正电。

现有一质量为m的带电油滴在极板中央处于静止状态,且此时极板带电荷量与油滴带电荷量的比值为k,则()A.油滴带负电B.油滴带电荷量为C.电容器的电容为D.将极板N向下缓慢移动一小段距离,油滴将向上运动【答案】AC【解析】由题意知,极板M带正电,板间电场向下,又油滴在极板中央处于静止状态,可知受电场力竖直向上,与电场反向,故油滴带负电,所以A正确;根据平衡条件得:,所以B错误;电容器的电荷量,再根据,所以C正确;将极板N向下缓慢移动一小段距离,板间距d增大,电荷量Q不变,所以板间电场强度保持不变,所以油滴受电场力不变,保持静止,故D错误。

【考点】本题考查平行板电容器3.如图所示,D是一只理想二极管,电流只能从a流向b,而不能从b流向a.平行板电容器的A、B两极板间有一电荷,在P点处于静止状态.以E表示两极板间的电场强度,U表示两极板间的电压,Ep表示电荷在P点的电势能.若保持极板B不动,将极板A稍向上平移,则下列说法中正确的是A.E变小B.Ep不变C.U变大D.电荷将向上加速【答案】C【解析】将极板A稍向上平移,板间距离增大,根据电容的决定式C=得知,电容C减小,而电容器两端的电压不变,由知电容器所带电量将要减小,由于二极管具有单向导电性,电容器上电荷放不掉,电荷不能流回电源,所以电容器的电量仍保持不变,根据推论可知,板间场强E=,所以E不变,电荷所受的电场力不变,仍保持静止状态.P与B板间电势差UPB =EdPB,E、dPB都不变,UPB保持不变,P点的电势保持不变,则电荷在P点电势能EP不变.故本题选C.【考点】电容器的动态分析,电势与电势能.4.如图所示的电路中,电源电动势为E,内电阻为r,平行板电容器C的两金属板水平放置,R1和R2为定值电阻,P为滑动变阻器R的滑动触头,G为灵敏电流计,A为理想电流表.开关S闭合后,C的两板间恰好有一质量为m、电荷量为q的油滴处于静止状态,则以下说法正确的是()A.在P向上移动的过程中,A表的示数变大,油滴仍然静止,G中有方向由a至b的电流B.在P向上移动的过程中,A表的示数变小,油滴向上加速运动,G中有由b至a的电流C.在P向下移动的过程中,A表的示数变大,油滴向下加速运动, G中有由a至b的电流D.在P向下移动的过程中,A表的示数变小,油滴向上加速运动,G中有由b至a的电流【答案】BC【解析】滑片不动时油滴重力与电场力平衡,p向上移动时滑动变阻器阻值变大,导致总电阻R’增加,由“串反并同”的结论可知总电流I减小,电容器两端的电压u增加,则选项A错误,由电容器内的场强E=u/d可知场强增加,导致电场力F=qE变大,则油滴向上运动,此时对电容器充电,有电流从b流向a,所以B选项正确;当滑片向下滑动时,相反,电流I变大,电压u变小,电场力F减小,油滴向下加速运动,电容器放电,有电流从a至b,,则C选项正确而D选项错误。

高三物理含容电路试题答案及解析

高三物理含容电路试题答案及解析

高三物理含容电路试题答案及解析1.如图电路中,电源电动势为E、内阻为r,R为定值电阻,电容器的电容为C,R为光敏电阻,其阻值的大小随照射光强度的增强而减小。

闭合开关S后,将照射光强度增强,电压表示数的变化量为△U,电流表示数的变化量为△I,,则在此过程中A.△U和△I的比值增大B.电压表示数U和电流表示数I比值不变C.电阻R两端电压增大,增加量为△UD.电容器的带电量减小,减小量为C△U【答案】D【解析】分析电路可知,闭合开关S后,将照射光强度增强,光敏电阻的阻值减小,电路中电流增大,电压表示数即光敏电阻或电容器两端电压为减小,电路中的电压、电流是状态量,故△U和△I的比值无意义,A错;电压表示数U和电流表示数I比值等于R的电阻,会减小,B错;电阻R两端电压为,增加量为△IR不等于△U,C错;电容器电荷量决定于其电压和电容,D正确。

【考点】电容器的电容、闭合电路欧姆定律2.如图所示电路中,电源电动势E=10v,内电阻不计,电阻R1=14Ω,R2=6.0Ω,R3=2.0Ω,R4=8.0Ω,R5=10Ω,电容器的电容C=2μF,求:(1)电容器所带的电荷量。

并说明电容器哪个极板带正电.(2)若R2突然断路,将有多少电荷量通过R5?【答案】(1),下极板带正电;(2)【解析】(1)由图可知:得同理可得:令d点的电势为零电势,即则有:且可知: b点电势高,下极板带正电(2)R2断路后:此时下极板带负电,则流过R5电荷量为:【考点】3.如图,平行金属板中带电质点P原处于静止状态,不考虑电流表和电压表对电路的影响,当滑动变阻器R4的滑片向b端移动时,则()A.电压表读数减小B.电流表读数减小C.质点P将向上运动D.R3上消耗的功率逐渐增大【答案】A【解析】由图可知,与滑动变阻器串联后与并联后,再由串连接在电源两端;电容器与并联;AB、当滑片向b移动时,滑动变阻器接入电阻减小,则电路中总电阻减小;由闭合电路欧姆定律可知,电路中总电流增大;路端电压减小,同时两端的电压也增大;故并联部分的电压减小;由欧姆定律可知流过的电流减小,则流过并联部分的电流增大,故电流表示数增大;因并联部分电压减小,而中电压增大,故电压表示数减小;A正确C、因电容器两端电压减小,故电荷受到的向上电场力减小,则重力大于电场力,电荷向下运动;错误D、因两端的电压减小,由可知,上消耗的功率减小;错误故选A【考点】电路的动态分析点评:动态问题分析思路总体来说是按照先部分后整体再部分的顺序,要充分利用电路中不变部分的电阻不变的特点,间接地讨论电路变化部分.还要注意电源是有内阻的。

高考物理一轮复习专题8.5含电容电路千题精练

高考物理一轮复习专题8.5含电容电路千题精练

专题8.5 含电容电路一.选择题1. (2018高考成都一诊)如图所示的电路中,电源电动势E=4V ,内阻r=1Ω,,定值电阻R 0=1Ω,,R 为滑动变阻器,电容器的电容C=40μF 。

闭合开关S,下列说法中正确的是 A.将R 的阻值调至2Ω时,电容器的电荷量为8×10-5C B.将R 的阻值调至2Ω时,滑动变阻器的功率为最大值C.将R 的阻值调至2Ω时,电源的输出功率为最大值D.在R 的滑动触头P 由左向右移动的过程中,电容器的电荷量增加 【参考答案】AB【命题意图】本题考查含电容器电路、直流电路动态分析、闭合电路欧姆定律、电容公式、电源输出电功率最大的条件及其相关的知识点。

【解题思路】将R 的阻值调至2Ω时,由闭合电路欧姆定律,可计算出滑动变阻器中电流I =0E R R r ++=4211++A=1A ,电容器两端电压U=IR=2V ,电容器的电荷量Q=CU =40×10-6×2C=8×10-5C ,选项A 正确;把定值电阻R0看作电源内阻的一部分,根据电源输出功率最大的条件,将R 的阻值调至2Ω时,外电阻R 等于定值电阻和内阻之和,滑动变阻器的功率为最大值,选项B 正确;将R 的阻值调至2Ω时,定值电阻和滑动变阻器相对于电池来说,是外电阻,大于电池内阻,电源的输出功率不是最大值,选项C 错误;在R 的滑动触头P 由左向右移动的过程中,滑动变阻器接入电路中的电阻值逐渐减小,电容器两端电压逐渐减小,根据公式Q=CU 可知,电容器的电荷量逐渐减小,选项D 错误。

2.(2018江苏高考物理)如图所示,电源E 对电容器C 充电,当C 两端电压达到80 V 时,闪光灯瞬间导通并发光,C 放电.放电后,闪光灯断开并熄灭,电源再次对C 充电.这样不断地充电和放电,闪光灯就周期性地发光.该电路(A)充电时,通过R的电流不变(B)若R增大,则充电时间变长(C)若C增大,则闪光灯闪光一次通过的电荷量增大(D)若E减小为85 V,闪光灯闪光一次通过的电荷量不变【参考答案】BCD【命题意图】本题考查电容器电路、电容器充电和放电及其相关知识点。

含容电路和电路故障的分析

含容电路和电路故障的分析

[冲关必试] 5.如图8-2-10所示,电源电动势为6 V, 当开关接通时,灯泡L1和L2都不亮,用 电压表测得各部分电压是Uad=0、Ucd= 6 V、Uab=6 V,由此可以断定 (C ) 图8-2-10
A.L1和L2的灯丝都断了 C.L2的灯丝断了
B.L1的灯丝断了 D.变阻器R断路
7.用电压表检查如图8-2-12所示电
例.(双选) (2011· 天津模拟)某同学按如 图7-2-18电路进行实验,电压表
内阻看做无限大,电流表内阻看做零.
实验中由于电路发生故障,发现两 电压表示数相同了(但不为零),若这种情况的发生是由用 电器引起的,则可能的故障原因是 A.R3短路 B.RP短路 ( BD )
C.R3断开
D.R2断开
6.[双选](2012•广东六校联考)M、N
是水平放置的平行板电容器,
将它与一电动势为E、内阻为r的电 源组成如8-2-11图所示的电路, R是并联在电容器上的滑动变阻器, 图8-2-11
G是灵敏电流计,在电容器的两极板间有一带电的油
滴处于悬浮状态,如图所示,现保持开关S闭合,将
滑动变阻器的滑片向上滑动,则 A.在滑片滑动时,灵敏电流计中有从a向b的电流 ( ) B.在滑片滑动时,灵敏电流计中有从b向a的电流 C.带电油滴将向上运动D.带电油滴将向下运动
(3)电压变化带来的电容器的变化:电路中电流、电压的变
化可能会引起电容器的充、放电。若电容器两端电压升 高,电容器将充电;若电压降低,电容器将通过与它连 接的电路放电,可由ΔQ=C·ΔU计算电容器上电荷量的 变化;若电容器极板上极性发生变化。则电容器出现先 放电后反向充电的情况。 (4)含电容器电路的处理方法: 如果电容器与电源并联,且电路中有电流通过,则电

高考物理专题复习:动态电路、故障电路与含容电路分析

高考物理专题复习:动态电路、故障电路与含容电路分析

高考物理专题复习:动态电路、故障电路与含容电路分析一、单项选择题(共8小题)1.如图所示的电路中,电源电动势为E ,内阻为r ,L 为小灯泡(其灯丝电阻可以视为不变),R 1和R 2为定值电阻,R 3为光敏电阻,其阻值的大小随照射光强度的增强而减小。

闭合开关S 后,将照射光强度增强,则()A .电路的路端电压将减小B .灯泡L 将变暗C .R 1两端的电压将减小D .内阻r 上发热的功率将减小2.如图所示的电路,电源电动势E 恒定且内阻r 不可忽略,R 1、R 2、R 3为定值电阻,R 4为滑动变阻器,A 1、A 2为理想电流表,V 1、V 2、V 3为理想电压表。

闭合开关后,I 1、I 2分别表示两个电流表的示数,U 1、U 2、U 3分别表示三个电压表的示数。

现将滑动变阻器R 4的滑片稍向上滑动一些,ΔI 1、ΔI 2分别表示两个电流表示数变化的大小,ΔU 1、ΔU 2、ΔU 3分别表示三个电压表示数变化的大小。

下列说法正确的是()A .U 2变小B .22I U 变小C .ΔU 2小于ΔU 3D .11I U ∆∆大于12I U ∆∆3.如图所示,电源电压恒定,闭合开关S 后,电路正常工作。

过了一会儿,两电表的示数一个变大,另一个变小,则该电路中出现的故障是()A.一定是电阻R断路B.可能是电阻R短路C.可能是灯L断路D.一定是灯L短路第3题图第4题图4.如图所示,E为内阻不能忽略的电池,R1、R2、R3均为定值电阻,电压表与电流表均为理想电表;开始时开关S闭合,电压表、电流表均有示数,某时刻发现电压表和电流表读数均变大,则电路中可能出现的故障是()A.R1断路B.R2断路C.R1短路D.R3短路5.如图所示,R1、R2为定值电阻,C为电容器,闭合开关S,在滑动变阻器R 的滑片向下滑动过程中()A.电阻R2中有向下的电流B.电阻R1两端的电压减小C.通过滑动变阻器R的电流变小D.电容器C极板所带电荷量变小6.如图所示,C为两极板水平放置的平行板电容器,闭合开关S,当滑动变阻器R1、R2的滑片处于各自的中点位置时,悬在电容器C两极板间的带电尘埃P 恰好处于静止状态。

高二物理含容电路试题答案及解析

高二物理含容电路试题答案及解析

高二物理含容电路试题答案及解析1.如图所示,C为中间插有电介质的电容器,a和b为其两极板;a板接地;P和Q为两竖直放置的平行金属板,在两板间用绝缘线悬挂一带电小球;P板与b板用导线相连,Q板接地。

开始时悬线静止在竖直方向,在b板带电后,悬线偏转了角度α 。

在以下方法中,能使悬线的偏角α变大的是()A.缩小a、b间的距离B.加大a、b间的距离C.取出a、b两极板间的电介质D.换一块形状大小相同、介电常数更大的电介质【答案】BC【解析】由知,d↓,C↑;Q不变,再根据,U↓,由分析知,PQ间的E↓,α变小,故A错误;增大a、b间的距离,d↑,C↓,Q不变,U↑,分析知,PQ间的E↑,α变大,故B正确;取出a、b两极板间的电介质ε↓,C↓,Q不变,,U↑,PQ间的E↑,α变大,,故C 正确;换一块形状大小相同、介电常数更大的电介质ε↑,C↑,Q不变,,U↓,PQ间的E↓,α变小,故D错误。

【考点】本题考查电容器的动态分析。

2.图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当横杆AB()A.匀速滑动时,I1=0,I2=0B.匀速滑动时,I1≠0,I2≠0C.加速滑动时,I1=0,I2=0D.加速滑动时,I1≠0,I2≠0【答案】D【解析】当AB切割磁感线时,相当于电源.电容器的特点“隔直流”,两端间电压变化时,会有充电电流或放电电流.匀速滑动,电动势不变,电容器两端间的电压不变,所以I2=0,I1≠0,故AB均错误;加速滑动,根据知,电动势增大,电容两端的电压增大,所带的电量要增加,此时有充电电流,所以I1≠0,I2≠0,故C错误,D正确.所以选D.【考点】本题考查导体切割磁感线时的感应电动势、闭合电路的欧姆定律及电容器对电流的作用.3.(8分)如图所示,面积为0.2m2的100匝线圈A处在磁场中,磁场方向垂直于线圈平面.磁感强度随时间变化的规律是B=(6-0.2t) (T)已知R1=4Ω,R2=6Ω,电容C=30μF,线圈A的电阻不计.求:(1)闭合S后,通过R2的电流强度大小和方向。

高考物理一轮复习学案电磁感应现象中的含容电路

高考物理一轮复习学案电磁感应现象中的含容电路

电磁感应现象中的含容电路三种情况1. 导体棒有初速度2. 电容器有电量3. 导体棒有恒定外力 一.导体棒有初速度1.(导体棒有初速度)光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

求导体棒的最终速度。

2.(电容器有电量)如图所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r 。

初始时开关S 断开,电容器两极板间的电压为U 。

闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好,下列说法正确的是( )A .闭合开关S 的瞬间,金属棒立刻开始向左运动B .闭合开关S 的瞬间,金属棒的加速度大小为BULmRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为22BCULm B L C+3.(导体棒有恒定外力)如图所示,含电容 C 的金属导轨宽为 L,垂直放在磁感应强度为 B 的匀强磁场中,质量 为 m 的金属棒跨在导轨上,证明:在恒力 F 的作用下,做匀加速直线运动,且加速度CL B m F22a +=4.(多选)如图所示,宽为L 的水平光滑金属轨道上放置一根质量为m 的导体棒MN ,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R 的电阻连接,匀强磁场的方向与轨道平面垂直,磁感应强度大小为B ,电容器的电容为C ,金属轨道和导体棒的电阻不计.现将开关拨向“1”,导体棒MN 在水平向右的恒力F 作用下由静止开始运动,经时间t 0后,将开关S 拨向“2”,再经时间t ,导体棒MN 恰好开始匀速向右运动.下列说法正确的是( ) A .开关拨向“1”时,金属棒做加速度逐渐减小的加速运动 B .t 0时刻电容器所带的电荷量为CBLFt 0m +CB 2L 2C .开关拨向“2”后,导体棒匀速运动的速率为FR B 2L 2D .开关拨向“2”后t 时间内,导体棒通过的位移为FR B 2L 2(t +mt 0m +CB 2L 2-mR B 2L2) 5(多选).如图甲所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。

含容电路问题求解方法

含容电路问题求解方法

Җ㊀山东㊀顾化坤㊀㊀含容电路问题是高中物理教学的重点,也是学生学习的难点.近年来,在各种考试中关于含容电路的问题屡屡出现.为更好地突破这个难点,本文试通过分析求解几道例题,总结解题的通式通法,以供参考.1㊀平行板电容器中带电粒子的运动例1㊀如图1所示,E =10V ,r =1Ω,R 1=R 3=5Ω,R 2=4Ω,C =100μF .当开关S 断开时,电容器中带电粒子恰好处于静止状态.求当开关S 闭合后,带电粒子加速度的大小和方向.图1开关S 断开时,电阻R 1㊁R 2串联,电路中的电流为I 1=E R 1+R 2+r =105+4+1A=1A .电容器两端的电压与电阻R 2两端的电压相等,即U 1=I 1R 2=1ˑ4V=4V .此时,电容器中的带电粒子受到的重力和电场力大小相等,设此时电容器内匀强电场的场强为E 1,则有m g =qE 1=U 1dq .开关S 闭合后,R 1被短路,电路中的电流I 2=E R 2+r =104+1A=2A.此时,电容器两端的电压仍与电阻R 2两端的电压相等,即U 2=I 2R 2=2ˑ4V=8V .显然,此时带电粒子受到的电场力大于重力,其方向竖直向上.设此时电容器内匀强电场的场强为E 2,由牛顿第二定律得q E 2-m g =ma ,其中E 2=U 2d.联立以上各式解得a =g .技巧方法㊀在恒定电路中,平行板电容器因带电在内部形成一个电场,不考虑边缘效应,可将此电场看作匀强电场,因此,带电粒子在电容器中的运动实质上就是带电粒子在匀强电场中的运动.2㊀电容器的充放电状态例2㊀如图2所示,当a ㊁b 两点间没有接电容器时,闭合开关S ,灯L 正常发光.断开S ,在a ㊁b 两点间接一个电容较大的电容器C ,再闭合开关S 时,观察到的现象是;闭合一段时间后,再将开关S断开,观察到的现象是.图2在a ㊁b 两点间接电容器,闭合开关S 时,由于电容器处于充电状态,电容器两端的电压从零逐渐增大到灯L 的额定电压,之后电路处于稳定状态.在此过程中,灯L 两端的电压也从零开始逐渐增大,故可观察到灯L 慢慢变亮的现象.电路稳定后再把开关断开,由于电容器处于放电状态,它与灯L 构成回路,电容器相当于电源,电容器放电.随着电容器放电电流逐渐减小,灯L 两端的电压逐渐降低.故断开开关S 后可观察到灯慢慢变暗后熄灭.技巧方法㊀电容器充电时,在电路中因电荷的移动形成电流,电容器两端的电压逐渐增大,通过的电流逐渐减小,所带的电荷量不断增大.在电容器刚充电时,电流最大,当带电荷量达到最大时,充电完毕,电流减小为零.电容器放电时,在电路中因电荷的移动形成电流,电容器两端的电压逐渐减小,通过的电流逐渐减小,所带的电荷量不断减少.在放电过程刚开始时,电流最大,当带电荷量减小为零时,放电完毕,电流减小为零.3㊀判定电路的电流方向例3㊀在如图3所示的电路中,电源电动势E =031 5V ,内阻r =1Ω,电阻R 1=4Ω,电阻R 2=R 3=10Ω,电容器的电容C =5ˑ10-3F ,则:图3(1)开关S 断开时,电容器的电荷量Q 1为多少?(2)将开关S 闭合,通过电流计G 的电荷量q 为多少?电流方向如何?(1)开关S 断开时,R 1与R 2串联,电容器两端的电压U C 1等于路端电压.根据闭合电路欧姆定律得I 1=E R 1+R 2+r =1 54+10+1A=0 1A .电容器两端的电压U C 1=I 1(R 1+R 2)=0 1ˑ(4+10)V=1 4V .电容器所带的电荷量Q 1=C U C 1=5ˑ10-3ˑ1 4C =0 007C .(2)开关S 闭合后,R 2与R 3并联再与R 1串联,电容器两端的电压U C 2等于电阻R 1两端的电压.R 2与R 3并联的总电阻R 23=R 2R 3R 2+R 3=10ˑ1010+10Ω=5Ω.根据闭合电路欧姆定律知通过电阻R 1的电流I ᶄ1=E R 1+R 23+r =1 54+5+1A=0 15A .电容器两端的电压U C 2=I ᶄ1R 1=0.15ˑ4V=0.6V .电容器所带的电荷量为Q 2=C U C 2=5ˑ10-3ˑ0 6C =0 003C .将开关S 闭合瞬间,通过电流计G 的电荷量q =Q 1-Q 2=0 004C .由此可知,开关闭合后,电容器将要放电,电流方向自右向左通过电流计G .技巧方法㊀判断含有电容器的电路中的电流方向,关键在于弄清电容器是处于充电状态还是放电状态.总之,求解含容电路问题,既要掌握电容器的基本特点,也要熟悉串㊁并联电路的特点,做到能够化简电路,并能熟练灵活地运用处理此类问题的通式通法,实现快速求解.(作者单位:山东省平度市第九中学)Җ㊀山东㊀王现忠㊀㊀从物理学的视角来看,模型法是人们为研究物理问题㊁探究物理事物本身规律而对研究对象所作的一种简化描述.模型法以观察和实验为基础,采用理想化的思维方法,揭示物理现象的本质和内在特性.在高中物理解题教学中,教师可指导学生应用模型法解题,抓住问题的主要因素,将问题由复杂变得简单,从而顺利解决问题,提升学生物理学科核心素养.1㊀物理模型物理作为一门自然科学,主要研究物体最一般的运动规律和物质的基本结构,与其他学科相比较为抽象,结合研究对象的规律建立模型有助于将抽象问题具体化.例1㊀物理兴趣小组研究两名同学在接力赛中直线部分的交接棒过程,甲同学能在加速之后以7m s-1的速度运动,而乙同学从开始运动到接棒过程做匀加速直线运动,为使乙同学顺利接棒且达到合适速度,甲同学在接力区前10m 处发出信号,乙开始做匀加速直线运动,恰能在接力区被甲追上且速度相同,求乙同学的加速度a 乙及在何处接到棒(已知接力区长度为L =20m ).解答本题需先挖掘研究对象的本质,建立模型,再根据甲㊁乙两名同学的运动情况,建立出质点匀速直线运动和匀加速直线运动两个模型.根据题意得知L 甲=v 甲t 甲,L 乙=12a 乙t 2乙,L 甲=L 乙+10m ,v 乙=v 甲=a 乙t 乙,联立各式得t 甲=t 乙=2 86s ,a 乙=2 45m s -2.结合题意得L 乙=12a 2t 22=10m ,即两同学在距接力区起点10m 处接棒.此题涉及两个模型,匀速直线运动模型和匀加速直线运动模型,主要考查运动学知识㊁牛顿运动定律的应用等,学生通过认真分析,构建出模型,使解题思路变得清晰,易于求解.2㊀实物模型实物模型是指用来代替由具体物体组成的.代表13。

人教版高中物理-含电容电路计算专题

人教版高中物理-含电容电路计算专题

《含电容电路》练习题1.如图所示,电源的电动势E=10V,内阻r=1Ω,R1=3Ω,R2=6Ω,C=30μF.(1)闭合开关K,求稳定后经过R1的电流;(2)然后断开开关,求断开开关后通过R1的总电量。

2、如图所示,电源电动势E=10.0V,其内阻不计。

固定电阻的阻值R 1 = 4.0Ω,可变电阻R 2的阻值可在0 ~10.0Ω之间调节,电容器的电容C = 30.0μF。

求:(1)闭合开关S,当R 2取何值时,R 2消耗的功率最大,最大功率为多少。

(2)在R 2消耗的功率最大状态时,将开关S断开,这以后流过R 1的总电荷量为多少?3、如图所示,U=10V,电阻R1=3Ω,R2=2Ω,R3=5Ω,电容器的电容C1=4μF,C2=1μF,求:(1)若电路稳定后,C1、C2的带电量?(2)S断开以后通过R2的电量及R2中电流的方向?4.如右图所示的电路中,两平行金属板A 、B 水平放置,两板间的距离d =40 cm.电源电动势E =24V ,内电阻r =1Ω,电阻R =15Ω。

闭合开关S ,待电路稳定后,将一带正电的小球从B 板小孔以初速度v 0=4 m/s 竖直向上射入板间。

若小球带电荷量为q =1×10-2 C ,质量为m =2×10-2 kg ,不考虑空气阻力。

那么,滑动变阻器接入电路的阻值为多大时小球恰能到达A 板?此时电源的输出功率是多大?(取g =10 m/s 2)。

5.图所示,四个电阻阻值均为R ,电键S 闭合时,有一质量为m ,带电量为q 的小球静止于水平放置的平行板电容器的中点。

现开断电键S ,这个带电小球便向平行板电容器的一个极板运动,并和此板碰撞,碰撞过程中小球没有机械能损失,只是碰后小球所带电量发生变化,碰后小球带有和该板同种性质的电荷,并恰能运动到另一极板,设两极板间距离为d ,不计电源内阻,求:(1)电源电动势E 是多大?(2)小球与极板碰撞后所带的电量q /是多少?R S P E r A B v 0。

(完整word版)含容电路的计算

(完整word版)含容电路的计算

含容电路的计算专题分析含容电路问题是高考中的一个热点问题,在高考试题中多次出现。

同学们要要点提示复习。

1、求电路稳定后电容器所带的电量求解这类问题关键要知道:电路稳定后,电容器是断路的,同它串联的电阻均可视为短路,电容器两端的电压等于同它并联电路两端的电压。

【例1】在图16所示的电路中,已知电容C=2μF ,电源电动势E=12V,内电阻不计,R 1∶R 2∶R 3∶R 4=1∶2∶6∶3。

则电容器极板a 所带的电量为( )A 。

-8×10-6C B 。

4×10-6C C. —4×10-6C D 。

8×10—6C方法点拨:电路稳定后,电容C 作为断路看待,电路等价于R 1和R 2串联,R 3和R 4串联.由串联电路的特点得:211R R ER U AB +=, 即V R R E R U AB 4211=+=同理可得V R R ER U CD8433=+= 故电容C 两端的电压为:V U U U U U AB AD D B ab 4=-=-= 电容器极板a 所带的电量为:C CU Q ab a 6108-⨯==。

即D 选项正确。

2、求通过某定值电阻的总电量【例2】图17中,E=10V ,R 1=4Ω,R 2=6Ω,C=30μF,电池内阻可忽略。

(1)闭合电键K,求稳定后通过R 1的电流。

(2)然后将电键K 断开,求这以后流过R 1的总电量.方法点拨:(1)闭合电键K ,稳定后通过R 1的电流为:A R R EI 121=+=,电容器上电压为IR 2,储存的电量为 Q 1=CIR 2=1.8C 410-⨯(2) 电键K 断开后,待稳定后,电容器上电压为E,储存的电量为:Q 2=CE=3×10—4C 流过R 1的总电量为C Q Q Q 412102.1-⨯=-=∆【练1】在如图18所示的电路中,电源的电动势E=30V ,内阻r=1.0Ω,R 1=10Ω,R 2=10Ω,R 2=30Ω,R 3=35Ω,电容器的电容C=100μF,电容器原来不带电。

高二物理电学专题提升专题20含容电路的分析及计算

高二物理电学专题提升专题20含容电路的分析及计算

专题20 含容电路的分析及计算一:专题概述解决含电容器的直流电路问题的一般方法:(1) 不分析电容器的充、放电过程时,把电容器处的电路视为断路,简化电路时可以去掉,求电荷量时再在相应位置补上.(2) 电路稳定后,与电容器串联的电路中没有电流,同支路的电阻相当于导线,即电阻不起降压的作用,但电容器两端可能出现电势差.(3) 电路中电流、电压的变化可能会引起电容器的充、放电.若电容器两端电压升高,电容器将充电;若电压降低,电容器将通过与它连接的电路放电.(4) 如果电容器与电源并联,且电路中有电流通过,则电容器两端的电压不是电源电动势E,而是路端电压U.(5) 如果变化前后极板带电的电性相同,那么通过每根引线的电荷量等于始、末状态电容器带电荷量之差;如果变化前后极板带电的电性改变,那么通过每根引线的电荷量等于始、末状态电容器带电荷量之和.二:典例精讲1.电容器与滑动变阻器的电路分析典例1:在如图所示的电路中,闭合电键S,将滑动变阻器滑片P向a端移动一段距离,下列结论正确的是A.灯泡L变亮B.电流表读数变大C.电容器C上的电荷量增多D.电压表读数变小【答案】C2.电容与传感器结合的电路分析典例2:如图所示的电路中,R1、R2、R3是固定电阻,R4是光敏电阻,其阻值随光照强度的增强而减小。

当开关S闭合且没有光照射时,电容器C不带电。

当用强光照射R4且电路稳定时,则与无光照射时比较A.电容器C的上极板带正电B.电容器C的下极板带正电C.通过R4的电流变小,电源的路端电压增大D.通过R4的电流变大,电源提供的总功率变小【答案】B3.电容器与二极管电路的分析典例3:如图所示的电路中,电源电动势E=6V,内阻r=1Ω,电阻R1=3Ω,R2=6Ω, 电容器的电容C=3.6μF,二极管D具有单向导电性.开始时,开关S1闭合,S2断开.(1) 合上S2,待电路稳定以后,求电容器上电荷量变化了多少.(2) 合上S2,待电路稳定以后再断开S1,求断开S1后流过R1的电荷量是多少.【答案】(1) 减少1.8×10-6C(2) 9.6×10-6C【解析】(1) 设开关S1闭合,S2断开时,电容器两端的电压为U1,干路电流为I1,根据闭合电路欧姆定律有I1==1.5A,U1=I1R1=4.5V.合上开关S2后,电容器电压为U2,干路电流为I2.根据闭合电路欧姆定律有I2==2A,U2=I2=4V.所以电容器上电荷量变化了ΔQ=(U2-U1)C=-1.8×10-6 C.(或电容器上电荷量减少了1.8×10-6C)(2) 合上S2后,电容器上电荷量为Q=CU2=1.44×10-5C.断开S1后,R1和R2的电流与阻值成反比,故流过电阻的电荷量与阻值成反比,流过电阻R1的电荷量为Q1=Q=9.6×10-6C.三总结提升(1)电路稳定后,电容器两极板间的电压就等于该支路两端的电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.(18分)
当平行板电容器的两极板间是真空时,电容C 与极板的正对面积S 、极板间距离d 的关系为
4S
C πkd
=。

对给定的平行板电容器充电,当该电容器极板所带电荷量Q 变化时,两极板间的电势差U 也随之变化。

(1)在图14所示的坐标系中画出电容器带电量Q 与极板间电势差U 的关系图像。

(2)电容器储存的电能等于电源搬运电荷从一个极板到另一个极板过程中,克服电场力所做的功。


弹簧弹力F 与形变量x 关系图像中,图像与x 轴围成的面积代表弹簧弹性势能的大小。

与之类比,推导电容器储存的电能表达式21
2E CU =。

(3)若保持平行板电容器带电量Q 、极板正对面积S 不变,两极板间为真空,将板间距离由d 1增大到
d 2,需要克服电场力做多少功?
(1)对于给定的电容器,Q=CU ,Q -U 图像如图所示。

(3分)
(2)该图像的斜率为电容器电容C ,图像与横坐标轴围成的面积为对电容器充电过程中,电容器储存
的电能。

故1
2
E QU = (3分) 由Q=CU (2分)
得:21
2
E CU =
(3)板间距离为d 时,平行板电容器的电容为4πS C kd
=
当电容器带电量为Q 时,两板间电压Q U C =
(3分)
得电容器储存的电能为2
2πkdQ E S =
(3分)
当板间距离由d 1增大到d 2时,电容器储存的电能增加量为
2
21212π()
kQ E E E d d S ∆=-=-
(3分)
故需要克服电场力做功2
212π()kQ W E d d S =∆=-
(1分)
23.(18分)如图1所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道
MN 、PQ 固定在水平面内,相距为L 。

一质量为m 的导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好。

轨道和导体棒的电阻均不计。

(1)如图2所示,若轨道左端MP 间接一阻值为R 的电阻,导体棒在水平向右的恒力F 的作用下由静
止开始运动。

求经过一段时间后,导体棒所能达到的最大速度的大小。

(2)如图3所示,若轨道左端MP 间接一电动势为E 、内阻为r 的电源和一阻值为R 的电阻。

闭合开
关S ,导体棒从静止开始运动。

求经过一段时间后,导体棒所能达到的最大速度的大小。

(3)如图4所示,若轨道左端MP 间接一电
容器,电容器的电容
为C ,导体棒在水平向右的恒力F 的作用下从静止开始运动。

求导体棒运动过程中的加速度的大小。

(1)导体棒ab 向右做加速度减小的加速运动,当安培力与外力F 平衡时,导体棒ab 达到最大速度v 1
BIL =F (3分)
E
I R
=
(1分) E =BLv 1 (1分) 解得122
FR
v B L
=
(1分) (2)闭合开关后,导体棒ab 产生的电动势与电阻R 两端的电压相等时,导体棒ab 达到最大速度v 2
E
I R r
=
+ (1分) U IR = (2分) 2U BLv = (2分)
解得2()
ER
v BL R r =
+ (1分)
(3)导体棒ab 向右加速运动,在极短时间△t 内,导体棒的速度变化△v ,根据加速度的定义 v
a t
∆=
∆(1分) F
B
R M N
Q
P
b
a
图2
B
M
N
Q
P
b
a
图4
C B
M
N
Q
P
b a
图1
R
E B
M N
Q
P
b a
图3
S
r
导体棒产生的电动势变化△E =BL △v ,电容器增加的电荷△q =C △E =CBL △v 根据电流的定义
q
I t
∆=
∆(1分) 解得I =CBLa (1分)
导体棒ab 受到的安培力F 安=BIL =B 2L 2Ca (1分) 根据牛顿第二定律F -F 安=ma (1分) 解得22
F
a m CB L
=+(1分)
3.a .小明以6m/s 的初速度将足球水平踢出,足球在草
坪上滚动直到停下来的全过程中的速度-时间图像如图1所示。

图1中图线与
坐标轴所围的面积等于12个小方格的面积。

(1)请你判断:足球在滚动过程中受到的阻力大小是变大、
变小还是不变?
(2)求足球滚动了多远才停下来?
b .用如图2所示的电路研究电容器的放电过程,其中电压传感器相当于一个理想电压表,可以显示电阻箱两端电压随时间的变化关系。

实验时将电阻箱R 的阻值调至2000Ω,将开关S 拨到a 端,电源向电
容器充电,待电路稳定后,将电压传感器打开,再将开关S 拨到b 端,电容器通过电阻箱放电。

以S 拨到
b 端时为t =0时刻,电压传感器测得的电压U 随时间t 变化图像如图
3所示。

忽略导线及开关的电阻,且不考虑电路的辐射问
题。

容器充电过程中电源内部产生的热量。

图2
E,r
C
R S
a b 电压传感器
5
10
15
8642
2
46t/s
v/ms
-1
0图1
5
10
15
8
6
42
y = f (x )
图3
0U/V
t/s

(1)足球在滚动过程中受到的阻力变小。

(2)图1中图线与坐标轴所围的面积即为足球滚动距离,足球滚动了12m 才停下来。

b .(1)在电容器放电过程中的任意瞬时有:t I Q ∆∆= 根据欧姆定律有 R
U
I =
U -t 图线与t 轴所围面积除以电阻R 即为电容器所带电荷量的最大值,由图可知该面积等于12个小方
格的面积。

因此电容器所带电荷量的最大值 C -3
10×
6=Q (2)电容器所带电荷量Q 与其两端电压U 成正比,且由图3知电容器所带电荷量最大时,电容器两端电压U =6V 。

电源
电动势E =6V 。

放电过程中电容器两端电压U 随电荷量Q 变化的关系图像
如答图1所示。

电容器放电过程中任意瞬时释放的电势能Q U
E c ∆∆= U -Q 图线与Q 轴所围面积为电容器放电过程中释放的总电势能E c ,也是电容器在充电时获得的总电势
能。

即 mJ 18=c E
电容器充电过程中,非静电力做功提供的总能量 mJ 总36==EQ E 电容器充电过程中电源内部产生的热量mJ -总18==c r E E Q 说明:其他方法正确同样给分。

23.(18分) 如图,在竖直向下的磁感应强度为B =1.0T 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、
PQ 固定在水平面内,相距为L =0.4m 。

一质量为m =0.2kg 、电阻R 0=0.5Ω的导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好。

若轨道左端P 点接一电动势为E =1.5V 、内阻为r =0.1Ω的电源和一阻值R =0.3Ω的电阻。

轨道左端M 点接一单刀双掷开关K ,轨道的电阻不计。

求:
5
10
15
8642
2
4
6810
Q/10-3C
U/V
图4
5
10
15
8
6
42
2
46
8
10

Q/10-3C
U/V
0图4答图1
(1)单刀双掷开关K 与1闭合瞬间导体棒受到的磁场力F ; (2)单刀双掷开关K 与1闭合后导体棒运动稳定时的最大速度v m ; (3)导体棒运动稳定后,单刀双掷开关K 与1断开,然后与2闭合,求此后能够在电阻R 上产生的电热Q R 和导体棒前冲的距离X 。

解 (1) I =
r
R E
0+ = 2.5 A
F = BIL = 1 N (6分)
(2) 导体运动稳定后
E = BLv m = 1.5 v v m = 3.75 m/s (6分
) (3)单刀双掷开关K 与2闭合后,电路中产生的总电热Q
Q =
2
1
m v m 2 = 1.4 J 在电阻R 上产生的电热Q R = 0
R R R
+ Q = 0.53 J
在此过程中 Ft = m v m
即 0
22R R X L B += m v m
X = 3.75 m (6分)
K
1 2 a b
R
M N
P
Q
E。

相关文档
最新文档