勾股定理之毕达哥拉斯证法
勾股定理的证明方法
勾股定理的证明方法勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的.右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂.二、赵爽弦图的证法(图2)第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”.因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得.这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得.这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
古希腊数学的伟大成就:1、使数学成为抽象性的一门科学;2、建立了演绎证明体系,希腊成为论证数学发祥地;3、创立了几何学、三角学,奠定了数论基础等;4、萌芽了一些高等数学,如数论、极限等;5、希腊人发现定理及证明,逻辑结构严密,论证认真细致,为后世树立了样板等;不足:如,重几何轻代数,认为几何方法是数学证明唯一方法,畏于无理数的存在,而不将算术应用于几何;几何作图严格限制规尺.古希腊的数学方法论泰勒斯最先提出数学方法论,数学命题要加以演绎证明,在数学中要建立一般的原理好人规则,数学命题的证明就是要借助一些公理或真实性已经确定的命题来论证某一命题真实性的思想过程.演绎证明的方法即演绎推理的方法,指从一般到特殊的推理方法,其核心是三段论法,即有两个已知判断,推出第三个判断,例如,平行四边形的对角线互相平分(第一个已知一般判断成为大前提),矩形是平行四边形(另一个已知较特殊的判断,成为小前提),则矩形的对角线互相平分(推出新判断,即结论).用演绎法证明命题使几何由实验阶段,过渡到一门抽象的理论科学,使人类对自然的认识由感性(或经验)认识上升到理性认识,因此这是一个划时代的贡献。
勾股定理证明方法
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为a的正方形和1个边长为b的正方形以及4个直角边分别为a、b,斜边为c的直角三角形拼成的。
右边的正方形是由1个边长c为的正方形和4个直角边分别为a、b,斜边c 为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是a+b),所以可以列出等式a²+b²+4×1/2ab=c²+4×1/2ab,化简得a²+b²=c²。
二、赵爽弦图的证法第一种方法:边长为a+b的正方形可以看作是由4个直角边分别为a、b,斜边为c 的直角三角形围在外面形成的。
因为边长为c的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式c²+4×1/2ab=(a+b)²,化简得a²+b²=c²。
第二种方法:边长为a+b的正方形可以看作是由4个直角边分别为a、b,斜边为 c的直角三角形拼接形成的(虚线表示),不过中间缺出一个边长为(b-a)的正方形“小洞”。
因为边长为c的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式c²=(b-a)²+4×1/2ab,化简得a²+b²=c²。
三、美国第20任总统茄菲尔德的证法这个直角梯形是由2个直角边分别为a、b,斜边为c 的直角三角形和1个直角边为c 的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式c²/2+2×1/2ab=(b+a)(a+b)/2,化简得a²+b²=c²。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方法,是数学定理中证明方法最多的之一。
“”是勾股定理最基本的公式。
勾股数组方程a 2+b 2=c 2的正整数组(a ,b ,c )。
(3,4,5)就是。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a 2+b 2=c 2,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1如果的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ),以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab.把这四个直角三角形拼成如图所示形状. ∵RtΔDAH≌RtΔABE,∴∠HDA=∠EAB.∵∠HAD+∠HAD=90o,∴∠EAB+∠HAD=90o,∴ABCD 是一个边长为c 的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90o.∴EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b ,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90o,∴∠AED+∠BEC=90o.∴∠DEC=180o―90o=90o.∴ΔDEC 是一个等腰直角三角形,它的面积等于.又∵∠DAE=90o,∠EBC=90o,∴AD∥BC.∴ABCD 是一个直角梯形,它的面积等于 ∴.∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的几种证明方法
勾股定理的证明方法勾股定理是初等几何中的一个基本定理。
这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。
二、赵爽弦图的证法(图2)第一种方法:外围正方形可以看作是边长为的正方形和由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得:。
第二种方法:内部边长为的正方形可以看作是由4个直角边分别为、,斜边为的三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以化简得。
可以列出等式,这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理毕达哥拉斯证明方法
勾股定理毕达哥拉斯证明方法勾股定理,是数学领域中的一个基本定理,描述了直角三角形两条直角边的平方和等于斜边的平方。
这一命题在古代已被多个文明所发现和证明,其中最著名的证明方法之一归功于古希腊数学家毕达哥拉斯。
本文将详细介绍毕达哥拉斯的证明方法。
勾股定理的毕达哥拉斯证明,主要基于几何图形的面积关系。
该定理表述如下:在一个直角三角形中,设较短的两条直角边的长度分别为a和b,斜边长度为c,则有a + b = c。
以下是毕达哥拉斯的证明步骤:1.假设我们有一个直角三角形ABC,其中角C是直角,AB是斜边,AC和BC是两条直角边。
2.我们构建四个与原直角三角形ABC相似的直角三角形,每个三角形的边长都是原三角形边长的一部分。
具体来说,我们在AB上取一点D,使得AD = b,在AC上取一点E,使得AE = a。
3.以AE和AD为直角边,构造一个矩形AFED,其面积是a*b。
然后,我们在矩形AFED的四个角上各取一个与原三角形相似的直角三角形,得到四个小三角形。
4.现在,将这四个小三角形分别移动并放置在原直角三角形ABC的四个顶点上,使得它们与原三角形的相应边对齐。
这样,在三角形ABC的内部和周边就形成了一个大正方形。
5.这个大正方形的边长是a+b(因为矩形AFED的边长分别是a和b,且四个小三角形在原三角形内部的边长总和正好补足了斜边AB的长度),所以大正方形的面积是(a+b)。
6.另一方面,我们可以直接计算原直角三角形ABC的面积。
由于三角形ABC与四个小三角形相似,它们的面积比是1:1,所以原三角形的面积是四个小三角形面积之和,即4*(1/2)*a*b。
7.同时,原直角三角形ABC的面积也可以通过斜边c和直角边a、b计算得出,即面积为(1/2)*a*c 和(1/2)*b*c 之和,即(1/2)*a*c + (1/2)*b*c。
8.比较两种计算方法得到的面积,即:(a+b) = 4*(1/2)*a*b(1/2)*a*c + (1/2)*b*c = 4*(1/2)*a*b简化后得到:a + 2ab + b = 2ab + 2aba +b = 2ab由于2ab在等式两边都存在且相等,我们可以得出:a +b = c这就完成了毕达哥拉斯的证明。
勾股定理的九种证明方法(附图)
勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。
作CD⊥AB,垂足为D。
则△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ×BA,①由△CAD∽△BAC可得AC2=AD ×AB。
②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有BC2+AC2=AB2,这就是a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。
它利用了相似三角形的知识。
四、古人的证法:CABD如图,将图中的四个直角三角形涂上深红色,把中间小正方形涂上白色,,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。
即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
五、项明达证法:作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA = 90°,QP∥BC,∴∠MPC = 90°,∵ BM⊥PQ,∴∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理) 是一个,是人类早期发现并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方法,是数学定理中证明方法最多的之一。
“”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴∴ .【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理)及各种证明方法勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a² + b²= c ²的正整数组(a,b,c)。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么。
勾股定理的逆定理命题2 如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。
为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC= 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理的九种证明方法(附图)
勾股定理的九种证明方法(附图)勾股定理的证明方法一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
二、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
三、相似三角形的证法:4.相似三角形的方法:在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个三直角角形与原三角形相似。
CAD∴ BCPM是一个矩形,即∠MBC = 90°.∵∠QBM + ∠MBA = ∠QBA =90 °,∠ABC + ∠MBA = ∠MBC = 90°,∴∠QBM = ∠ABC,又∵∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2六、欧几里德射影定理证法:如图,Rt△ABC中,∠ABC=90°,AD是斜边BC上的高,通过证明三角形相似则有射影定理如下:1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC ,(3)(BC)^2;=CD·AC 。
由公式(2)+(3)得:(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,即(AB)^2;+(BC)^2;=(AC)^2七、杨作玫证法:做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D 作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD = 90º,∠PAC = 90º,∴∠DAH = ∠BAC.又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴RtΔDHA ≌RtΔBCA.∴DH = BC = a,AH = AC = b.由作法可知,PBCA 是一个矩形,所以RtΔAPB ≌RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.987654321PQR HG Dabcaccc∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA. ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a . ∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 543212S S S S S c ++++= ① ∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.八、陈杰证法:设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c. ∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b. 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC. ∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE.BD F Gab ca b cac a b c 1234567∴ ∠AFB = ∠AED = 90º,BF = DE = a. ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG.∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=, 76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.九、辛卜松证法:设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.ab 21ab 21ab 21ab 212c 2b 2aAD B Bab aba bb a ccccb a ab ab ba b a。
勾股定理(毕达哥拉斯定理)及各种证明方法
勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理毕达哥斯拉证法
勾股定理毕达哥斯拉证法一、毕达哥拉斯证法的背景毕达哥拉斯是古希腊著名的数学家、哲学家。
毕达哥拉斯学派在数学研究方面有着众多贡献,勾股定理的证明是他们的重要成果之一。
二、毕达哥拉斯证法的具体内容1. 图形构造- 我们以直角三角形的三条边为边长向外作正方形。
设直角三角形的两条直角边分别为 a、b,斜边为 c。
那么就得到了三个正方形,边长分别为 a、b、c。
2. 证明思路- 将边长为 a 和 b 的两个正方形进行分割。
对于边长为 a 的正方形,我们可以把它分割成若干个小的三角形和四边形(具体分割方式可以是沿着与直角三角形相似的形状进行分割)。
- 同样,对于边长为 b 的正方形也进行类似的分割。
- 然后通过巧妙的平移、旋转等几何变换,将这些分割后的图形组合起来,正好可以填满边长为 c 的正方形。
- 这就直观地证明了 a^2+b^2=c^2。
例如,我们可以这样详细说明:- 假设直角三角形 ABC,∠ C = 90^∘,AC = b,BC=a,AB = c。
- 以 AC 为边的正方形 ACDE,可以分割成四个与 ABC 全等的直角三角形和一个小正方形。
- 以 BC 为边的正方形 BCFG,也可以分割成四个与 ABC 全等的直角三角形和一个小正方形。
- 当我们把这两个正方形的分割图形进行重新组合时,会发现它们可以组成以AB 为边的正方形 ABHI。
从面积的角度来看:- 正方形 ACDE 的面积为 b^2,它等于四个直角三角形的面积加上中间小正方形的面积。
- 正方形 BCFG 的面积为 a^2,同样等于四个直角三角形的面积加上中间小正方形的面积。
- 正方形 ABHI 的面积为 c^2,由于前面两个正方形分割后重新组合能得到这个正方形,所以 a^2+b^2=c^2。
毕达哥拉斯定理证明
毕达哥拉斯定理证明毕达哥拉斯定理,又称勾股定理,是数学中一条关于直角三角形的定理。
它的表述是:直角三角形斜边的平方等于两腰的平方和。
我们可以用几何法证明这个定理。
假设有一个直角三角形ABC,其中∠ABC为直角。
假设AC 为斜边,AB和BC为腰。
我们需要证明AC² = AB² + BC²。
首先,我们做一个辅助线,从角C做垂直于斜边AC的线段CD,使得D落在边AB上。
由于CD与AC垂直,并且AD = AB,所以三角形ADC和三角形ABC是相似的。
根据相似三角形的性质,我们可以得到以下比例关系:AC/AB = AD/AC将上述比例关系乘以AC,得到:AC² = AB × AD同样地,我们可以得到以下比例关系:AC/BC = DC/AC将上述比例关系乘以AC,得到:AC² = BC × DC将这两个等式相加,得到:AC² + AC² = AB × AD + BC × DC化简得到:2AC² = AB × AD + BC × DC我们已知角C为直角,所以三角形CDB也是直角三角形。
由于直角三角形中的两条直角边的乘积等于斜边的平方,我们可以得到以下等式:AC² + AC² = AB × AB + BC × BC化简得到:2AC² = AB² + BC²综上所述,我们证明了毕达哥拉斯定理。
注意:这只是一种证明毕达哥拉斯定理的一种方法,还有其他方法可以证明这个定理。
毕达哥拉斯 勾股定理
毕达哥拉斯勾股定理毕达哥拉斯勾股定理,是指在直角三角形中,直角边上的两个小正方形的面积之和等于斜边上的一个大正方形的面积。
通俗的说,就是在一个三角形中,较短的两个直角边的平方和等于最长边的平方。
这个公式在几何学和代数学中广泛应用,也是学习数学必不可少的基础。
公式如下:$a^2+b^2=c^2$其中,$a、b、c$ 为三角形中的三条边。
据史料记载,毕达哥拉斯勾股定理最早由公元前6世纪之前的希腊哲学家毕达哥拉斯提出,他发现了这个规律之后,在数学研究中取得了显著成果。
毕达哥拉斯勾股定理不仅应用广泛,而且能够通过各种数学方法得到证明。
证明一:基于模形式的证明在三角形 $ABC$ 中,$a, b, c$ 分别为三条边的长度,$h_c$ 为斜边 $c$ 在直角三角形上面的高。
首先,通过相似三角形的知识,可以得出以下三个关系式:$\frac{h_c}{c}=\frac{b}{c}$进一步计算可以得到:证毕。
向量乘积加上向量的长度刚好等于对应的三角形的面积。
假设向量 $(a,0)$ 和向量$(0,b)$,则向量 $(a,b)$ 的长度为斜边的长度 $c$。
向量 $(a,b)$ 的向量乘积为 $ab$。
由于 $\text{area}_{\bigtriangleup ABC} = \frac{1}{2}(a \times b)$,所以斜边的平方为 $a^2 + b^2$。
证明三:基于欧几里得平面几何学和相似三角形的证明在三角形 $ABC$ 中,假设 $\bigtriangleup ABD$ 和 $\bigtriangleup AEC$ 为$\bigtriangleup ABC$ 中的两个相似三角形。
则三角形 $\bigtriangleup ABC$ 和$\bigtriangleup ABD$, $\bigtriangleup AEC$ 为等价的。
因此,可以通过相似三角形的知识计算出 $BD$ 和 $EC$ 的长度,这样可以得到以下三个关系式:总之,毕达哥拉斯勾股定理是数学研究的基石之一,应用广泛,有许多不同的证明方法和版本。
勾股定理的证明方法
勾股定理的证明方法勾股定理是初等几何中的一个基本定理。
这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。
一、传说中毕达哥拉斯的证法(图1)左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。
在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。
二、赵爽弦图的证法(图2)第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
三、美国第20任总统茄菲尔德的证法(图3)这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。
这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话。
勾股定理的证明方式
勾股定理的证明方式勾股定理是初等几何中的一个大体定理。
那个定理有十分悠长的历史,两千连年来,人们对勾股定理的证明颇感爱好,因为那个定理太切近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都情愿探讨和研究它的证明.下面结合几种图形来进行证明。
一、传奇中毕达哥拉斯的证法(图1)左侧的正方形是由1个边长为的正方形和1个边长为的正方形和4个直角边别离为、,斜边为的直角三角形拼成的。
右边的正方形是由1个边长为的正方形和4个直角边别离为、,斜边为的直角三角形拼成的。
因为这两个正方形的面积相等(边长都是),因此能够列出等式,化简得。
在西方,人们以为是毕达哥拉斯最先发觉并证明这必然理的,但遗憾的是,他的证明方式已经失传,这是传奇中的证明方式,这种证明方式简单、直观、易懂。
二、赵爽弦图的证法(图2)第一种方式:边长为的正方形能够看做是由4个直角边别离为、,斜边为的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,因此能够列出等式,化简得。
第二种方式:边长为的正方形能够看做是由4个直角边别离为、,斜边为的角三角形拼接形成的(虚线表示),只是中间缺出一个边长为的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,因此能够列出等式,化简得。
这种证明方式很简明,很直观,它表现了我国古代数学家赵爽精湛的证题思想和对数学的钻研精神,是咱们中华民族的自豪。
三、美国第20任总统茄菲尔德的证法(图3)那个直角梯形是由2个直角边别离为、,斜边为的直角三角形和1个直角边为的等腰直角三角形拼成的。
因为3个直角三角形的面积之和等于梯形的面积,因此能够列出等式,化简得。
这种证明方式由于用了梯形面积公式和三角形面积公式,从而使证明加倍简练,它在数学史上被传为美谈。
古希腊数学的伟大成绩:1、使数学成为抽象性的一门科学;2、成立了演绎证明体系,希腊成为论证数学发源地;3、创建了几何学、三角学,奠定了数论基础等;4、萌芽了一些高等数学,如数论、极限等;5、希腊人发觉定理及证明,逻辑结构周密,论证认真细致,为后世树立了样板等;不足:如,重几何轻代数,以为几何方式是数学证明唯一方式,畏于无理数的存在,而不将算术应用于几何;几何作图严格限制规尺。
勾股定理(毕达哥拉斯定理)及各类证明方式
勾股定理(毕达哥拉斯定理)是一个,是人类初期发觉并证明的重要数学定理之一,用思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
是的一个特例。
约有400种证明方式,是数学定理中证明方式最多的之一。
“”是勾股定理最大体的公式。
勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。
(3,4,5)确实是。
也确实是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。
勾股定理命题1 若是的两条直角边长别离为a ,b ,斜边长为c ,那么。
勾股定理的逆定理命题2 若是的三边长a ,b ,c 知足,那么那个三角形是直角三角形。
【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,那么每一个直角三角形的面积等于21ab. 把这四个直角三角形拼成如下图形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(讲义的证明)做8个全等的直角三角形,设它们的两条直角边长别离为a 、b ,斜边长为c ,再做三个边长别离为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上能够看到,这两个正方形的边长都是a + b ,因此面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,那么每一个直角三角形的面积等于. 把这两个直角三角形拼成如下图形状,使A 、E 、B 三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的黄昏,在美国华盛顿的郊外,有一名中年人正在散步,欣赏黄昏的美景,他确实是那时美国俄亥俄州共和党议员伽菲尔德。