高等代数知识点总结

合集下载

大一高代知识点

大一高代知识点

大一高代知识点高等代数是大一数学课程中的一门重要课程,它是线性代数的延伸和拓展,具有广泛的应用领域。

本文将为大一学生总结高等代数中的一些重要知识点,以帮助他们更好地理解和掌握这门课程。

一、向量空间向量空间是高等代数的基础概念之一。

一个向量空间必须满足以下几个条件:1.封闭性:对于向量空间中的任意向量,其线性组合仍然在该向量空间中。

2.加法交换律和结合律:向量空间中的加法操作满足交换律和结合律。

3.零向量:向量空间中必须存在一个零向量,它与任意向量的加法操作结果为该向量本身。

4.负向量:对于向量空间中的任意向量,它必须存在一个相反向量,使得它们的加法结果为零向量。

5.标量乘法:向量空间中的向量可以与标量进行乘法操作。

二、线性相关与线性无关线性相关和线性无关是判断向量组是否具有独立性的重要概念。

1.线性相关:如果向量组中存在一个非零向量,可以表示为其他向量的线性组合,则称该向量组线性相关。

2.线性无关:如果向量组中的向量不能表示为其他向量的线性组合,则称该向量组线性无关。

三、矩阵与矩阵运算矩阵是高等代数中的另一个核心概念。

矩阵是由数个数按行列顺序排列而成的矩形数组。

矩阵运算包括以下几种:1.矩阵的加法:对应位置元素相加。

2.矩阵的数乘:每个元素乘以一个常数。

3.矩阵的乘法:满足左乘规则和右乘规则。

四、行列式行列式是矩阵的一个重要性质,它是一个标量值。

行列式的定义涉及矩阵的排列和元素的交换,计算行列式可以使用拉普拉斯展开定理或递推法。

五、特征值与特征向量特征值与特征向量是矩阵的另一项重要概念。

1.特征值:一个矩阵的特征值是使得该矩阵与其特征向量相乘得到的结果是特征向量的常数倍。

2.特征向量:一个矩阵的特征向量是在矩阵乘法下保持方向不变或者只伸缩的向量。

六、线性变换与线性方程组线性变换是指在向量空间中进行的保持加法和标量乘法的运算。

线性方程组是线性变换的一种具体表达形式,可以使用矩阵运算进行求解。

七、特殊矩阵在高等代数中还有一些特殊的矩阵:1.单位矩阵:对角线上的元素为1,其他元素为0。

大一高等代数期末考知识点

大一高等代数期末考知识点

大一高等代数期末考知识点高等代数作为大一学生必修的一门数学课程,是代数学的重要分支,是培养学生抽象思维和逻辑思维的基础。

本文将系统地总结大一高等代数知识点,以帮助同学们复习期末考试。

一、集合与二元关系1. 集合及其运算:包括集合的定义、集合之间的相等关系、子集与真子集、交集、并集、补集和差集等。

2. 二元关系:掌握关系的定义、域、逆关系、复合关系、等价关系和序关系的概念。

二、数系与复数1. 自然数、整数、有理数、实数和复数的定义及其性质。

2. 复数的运算:复数的加减乘除、乘方和开方。

三、代数式与多项式1. 代数式的概念:包括代数式、项、系数和次数等。

2. 多项式的运算:多项式的加减乘除以及整式化简。

3. 多项式的因式分解:二次、三次多项式的因式分解方法。

四、方程与不等式1. 一元一次方程和不等式:一元一次方程和不等式的解集、方程组与不等式组的解集。

2. 一元二次方程与不等式:二次方程和不等式的解集、因式分解法和配方法解方程和不等式。

3. 绝对值方程与不等式:绝对值方程和不等式的解集。

五、函数与图像1. 函数的概念:函数的定义、定义域、值域、图像和性质。

2. 基本初等函数:包括幂函数、指数函数、对数函数、三角函数和反三角函数等。

3. 函数的运算:函数的加减乘除、复合函数以及函数的逆。

六、行列式与矩阵1. 行列式的概念与性质:行列式的定义、性质、性质的运算规律。

2. 矩阵的概念与性质:矩阵的定义、矩阵的加法和数乘、矩阵的乘法、矩阵的转置和矩阵的逆运算。

3. 线性方程组:线性方程组的定义、增广矩阵、齐次方程组与非齐次方程组。

七、向量与线性空间1. 向量的概念与运算:向量的定义、向量的加法、数乘和数量积。

2. 线性空间的概念与性质:线性空间的定义、线性空间的性质、线性相关与线性无关、线性空间的基与维数。

3. 子空间与线性变换:子空间的定义、子空间的性质、线性变换的定义、线性变换的性质。

八、特征值与特征向量1. 特征值与特征向量的概念:矩阵的特征值与特征向量的定义。

高等代数知识点总结

高等代数知识点总结
定义(集合的映射) 设 A 、 B 为集合。如果存在法则 f ,使得 A 中任意元素 a 在法则 f 下对应 B 中唯一确定的元素(记做 f (a) ),则称 f 是 A 到 B 的一个映射,记为
f : A B, a f (a).
如果 f (a) b B ,则 b 称为 a 在 f 下的像, a 称为 b 在 f 下的原像。 A 的所有元素
称为矩阵的行(列)初等变换。
定义(齐次线性方程组) 数域 K 上常数项都为零的线性方程组称为数域 K 上的齐次
线性方程组。 这类方程组的一般形式是
a11x1 a12 x2 a1n xn 0, a12 x1 a22 x2 a2n xn 0, ...... am1x1 am2 x2 amn xn 0.
f (x) a0 (x 1 )(x 2 )......(x n ) 证明 利用高等代数基本定理和命题 1.3,对 n 作数学归纳法。
2.高等代数基本定理的另一种表述方式
定义 设 K 是一个数域, x 是一个未知量,则等式
a0 x n a1 x n1 ...... an1 x an 0
命题 变元个数大于方程个数的齐次线性方程组必有非零解; 证明 对变元个数作归纳。 说明 线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。事实上, 在(通过矩阵的初等变换)用消元法解线性方程组时,只进行加、减、乘、除的运算。如果
所给的是数域 K 上的线性方程组,那么做初等变换后仍为 K 上的线性方程组,所求出的解 也都是数域 K 中的元素。因此,对 K 上线性方程组的全部讨论都可以限制在数域 K 中进行。
命题 n 次代数方程在复数域C内有且恰有 n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C上两个n次、m次多项式

高等代数知识点总结笔记

高等代数知识点总结笔记

高等代数知识点总结笔记一、集合论基础1. 集合的定义和表示2. 集合的运算:交集、并集、补集、差集3. 集合的基本性质:幂集、空集、自然数集、整数集等4. 集合的关系:子集、相等集、包含关系5. 集合的基本运算律:结合律、交换律、分配律二、映射和函数1. 映射的定义和表示2. 映射的类型:单射、满射、双射3. 函数的定义和性质4. 函数的运算:复合函数、反函数5. 函数的极限、连续性6. 函数的导数、几何意义三、向量空间1. 向量和向量空间的定义2. 向量的线性运算:加法、数乘、点积、叉积3. 向量空间的性质:线性相关、线性无关、维数、基和坐标4. 线性变换和矩阵运算5. 特征值和特征向量四、矩阵与行列式1. 矩阵的定义和基本性质:零矩阵、单位矩阵、方阵2. 矩阵的运算:加法、数乘、矩阵乘法、转置、逆矩阵3. 行列式的定义和性质:行列式的展开法则、克拉默法则4. 线性方程组的解法:克拉默法则、矩阵消元法、逆矩阵法五、线性方程组1. 线性方程组的定义和分类2. 线性方程组的解法:高斯消元法、矩阵法、逆矩阵法3. 线性方程组的特解和通解:齐次线性方程组、非齐次线性方程组4. 线性方程组的解的性质:解的唯一性、解空间六、特征值和特征向量1. 特征值和特征向量的定义和性质2. 矩阵的对角化和相似矩阵3. 特征值和特征向量的应用:矩阵的对角化、变换矩阵4. 矩阵的谱定理和矩阵的相似对角化5. 实对称矩阵和正定矩阵的性质七、多项式与代数方程1. 多项式的定义和性质:零次多项式、一次多项式、多项式的加减乘除2. 代数方程的解法:一元一次方程、一元二次方程、高次方程3. 代数方程的根与系数的关系:韦达定理、牛顿定理、斯图姆定理4. 代数方程的不可约性和可解性八、群、环、域1. 代数结构的定义和性质2. 群的定义和性质:群的封闭性、结合律、单位元、逆元3. 环的定义和性质:交换环、整环、域4. 域的定义和性质:有限域、无限域、极大理想以上就是高等代数的一些基本知识点总结,希望对大家有所帮助。

高等代数知识点总结课件

高等代数知识点总结课件
详细描述
二阶行列式计算较为简单,直接按照定义进行计算即可。三 阶行列式可以利用代数余子式展开,也可以利用对角线法则 进行计算。高阶行列式可以利用递推法或化简法进行计算。
矩阵的秩的定义与性质
总结词
矩阵的秩是矩阵中线性无关的行(或列) 向量的个数,具有一些重要的性质。
VS
详细描述
矩阵的秩具有一些重要的性质,如秩的传 递性、秩的唯一性、秩的性质等。矩阵的 秩可以用来判断线性方程组的解的情况, 如当系数矩阵的秩等于增广矩阵的秩时, 线性方程组有解。
利用秩判断线性方程组解的情况
总结词
利用矩阵的秩可以判断线性方程组解的情况。
详细描述
当系数矩阵的秩等于增广矩阵的秩时,线性 方程组有解;当系数矩阵的秩小于增广矩阵 的秩时,线性方程组无解;当系数矩阵的秩 大于增广矩阵的秩时,线性方程组有无穷多 解。此外,利用矩阵的秩还可以判断线性方 程组解的个数和类型。
逆矩阵的性质
逆矩阵是唯一的;逆矩阵与原矩阵的乘积为单位矩阵;逆矩阵的逆矩阵是原矩阵。
逆矩阵的求法
高斯消元法、伴随矩阵法、初等变换法等。
线性方程组的解法
高斯消元法
将增广矩阵转化为上三角矩阵,从而得到解。
回带求解
将得到的上三角矩阵的解回代到原方程组中, 得到未知数的值。
克拉默法则
当方程组系数行列式不为0时,可以用克拉默 法则求解唯一解。
准型有助于简化二次型的计算和性质研究。
二次型的正定性判断
总结词
正定性判断是确定二次型是否为正定的过程, 正定的二次型具有一些重要的性质。
详细描述
正定性判断是二次型研究中的一个重要问题。 一个二次型被称为正定的,如果它对应于一 个正定矩阵。正定的二次型具有一些重要的 性质,如存在唯一的极小值点,且该极小值 点是全局最小值点。此外,正定的二次型还 具有一些几何意义,如对应于一个凸多面体

知识点总结高等代数

知识点总结高等代数

第二章行列式知识点总结一行列式定义1、n 级行列式111212122212n n ij nn n nna a a a a a a a a a =1等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a 2的代数和,这里12n j j j 是一个n 级排列;当12n j j j 是偶排列时,该项前面带正号;当12n j j j 是奇排列时,该项前面带负号,即:1212121112121222()1212(1)n n nn n j j j ij j j nj nj j j n n nna a a a a a a a a a a a a τ==-∑;2、等价定义121212()12(1)n n ni i i ij i i i n ni i i a a a a τ=-∑和121211221212()()(1)n n n n n ni i i j j j ij i j i j i j ni i i j j j a a a a ττ+=-∑和3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项不算元素本身所带的负号各占一半;4、常见的行列式1上三角、下三角、对角行列式 2副对角方向的行列式 3范德蒙行列式:二、行列式性质1、行列式与它的转置行列式相等;2、互换行列式的两行列,行列式变号;3、行列式中某一行列中所有的元素都乘以同一个数,等于用这个数乘以此行列式;即:某一行列中所有的元素的公因子可以提到整个行列式的外面;4、若行列式中有两行成比例,则此行列式等于零;5、若某一行列是两组数之和,则这个行列式等于两个行列式之和,而这两个行列式除这一行列以外全与原来行列式的对应的行列一样;6、把行列式某一行列的各元素乘以同一数然后加到另一行列对应的元素上,行列式不变;三、行列式的按行列展开1、子式1余子式:在n 级行列式ij D a =中,去掉元素ij a 所在的第i 行和第j 列后,余下的n-1级行列式称为ij a 的余子式,记作ij M ;2代数余子式:(1)i j ij ij A M +=-称为ij a 的代数余子式;3k 级子式:在n 级行列式ij D a =中,任意选定k 行和k 列(1)k n ≤≤,位于这些行列交叉处的2k 个元素,按原来顺序构成一个k 级行列式M,称为D 的一个k 级子式;当()k n <时,在D 中划去这k 行和k 列后余下的元素按照原来的次序组成的n k -级行列式M '称为k 级子式M 的余子式;2、按一行列展开1行列式任一行列的各元素与其对应的代数余子式乘积之和等于行列式的值,即 按第i 行展开1122(1,2,,);i i i i in in D a A a A a A i n =+++= 按第j 列展开1122(1,2,,);j j j j nj nj D a A a A a A j n =+++=2行列式某一行列的元素与另一行列的对应元素的代数余子式乘积之和等零,即11220();i j i j in jn a A a A a A i j +++=≠或11220,().i j i j ni nj a A a A a A i j +++=≠3、按k 行k 列展开拉普拉斯定理:在n 级行列式中,任意取定k 个行k 列(11)k n ≤≤-,由这k 行k 列元素组成的所有的k 级子式与它们的代数余子式的乘积之和等于行列式的值; 4、其他性质1设A 为n 阶方阵,则A A '=; 2设A 为n 阶方阵,则n kA k A =;3设,A B 为n 阶方阵,则AB A B =,但A B A B ±≠±; 4设A 为m 阶方阵,设B 为n 阶方阵,则00A A AB BB*==*,但A B A B ±≠±;5行列式的乘法定理:两个n 级行列式乘积等于n 级行列式四、行列式的计算1、计算行列式常用方法:定义法、化三角形法、递推法、数学归纳法、拉普拉斯定理等等;具体计算时需要根据等到式中行或列元素的特点来选择相应的解题方法;方法一:递推法分为直接递推法和间接递推法;用直接递推法的关键是找出一个关于1n D -的代数式来表示n D ,依次从1234n D D D D D →→→→,逐级递推便可以求出n D 的值;方法二:数学归纳法;第一步发现和猜想;第二步证明猜想的正确性;第二步的关键是首先要得到n D 关于1n D -和2n D -的递推关系式;方法三:加边法;加边法是将所要计算的n 级行列式适当地添加一行一列或m 行m 列得到一个新的n+1或m+1级行列式,保持行列式的值不变,但是所得到的n+1或m+1级行列式较易计算;其一般做法如下:11111111111100n nn n n n n a a a a a a a a a a =或111111111111100nn nn n n a a b a a a a b a a =特殊情况取121n a a a ===或121n b b b ===;方法四:拆行列法;将所给的行列式拆成两上或若干个行列式之和,然后再求行列式的值;拆行列法有两种情况:一是行列式中有某行列是两项之和,可直接利用性质拆项;二是所给行列式中行列没有两项和形式,这时需作保持行列式值不变,使其化为两项和;方法五:析因子法;如果行列式D 中有一些元素是变数x 或某个参变数的多项式,那么可以将行列式D 当作一个多项式()f x ,然后对行列式()f x 实行某些变换,求出()f x 的互素的一次因式,使得()f x 与这些因式的乘积()g x 只相差一个常数因子c,根据多项式相等的定义,比较()f x 与的()g x 某一项系数,求出c 值,便可求得()D cg x =;2、行列式计算中常用的类型:类型一:“两条线”型行列式非零元分布在两条线上,例如,*等等;注:“两条线”型行列式一般采取直接展开降阶法计算,或用拉普拉斯定理展开,降阶后的行列式或为三角形行列式,或得到一个递推公式; 类型二:“三条线”行列式非零元分布在三条线上; 1“三对角”行列式,;注:“三对角”行列式可以按如下方法进行求解;首先得到一个一般的递推公式12n n n D pD qD --=+,然后可以用以下两种方法之一求出n D 的表达式:先计算123,,D D D 等,找出规律进行猜想,然后再用数学归纳法进行证明;间接递推法:借助于行列式中元素的对称性,交换行列式构造出关于n D 和1n D -的方程组,从而消去1n D -就可解得n D ;2“爪型”行列式;注:“爪型”行列式可以按行列提取公因子,然后化为上下三角形行列式进行求解;3Hessenerg型行列式;类型三:各行列元素之和相等或多数相等仅个别不相等的行列式; 注:行加法或列加法再化为三角形行列式进行求解;类型四:除主对角线外其余元素相同或成比例型行列式; 注:拆行列法或再结合其他方法进行求解; 类型五:可利用范德蒙行列式计算的行列式; 类型六:其他形式行列式;五、克莱姆法则1、克莱姆法则:如果含有n 个未知量的n 个方程的线性方程组11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数行列式不等于零,即111110nn n a a D a a =≠, 则方程组有唯一解: 其中(1,2,)j D j n =是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 级行列式;2、含n 个未知量的n 个方程的齐次线性方程组111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩只有零解的充要条件是系数行列式0D ≠;有非零解的充要条件是系数行列式0.D =。

大一上期高等代数知识点

大一上期高等代数知识点

大一上期高等代数知识点高等代数是大一上学期的一门重要课程,主要涉及代数方程、线性代数等内容。

下面将介绍一些大一上期高等代数的核心知识点。

一、代数方程1. 一次方程与二次方程一次方程是形如ax + b = 0的方程,其中a和b为已知数。

解一次方程的方法包括等式两边同时加减同一个数,合并同类项等。

二次方程是形如ax² + bx + c = 0的方程,其中a、b、c为已知数,并且a ≠ 0。

解二次方程的方法包括配方法、因式分解和求根公式等。

2. 求根与判别式二次方程的求根公式为x = (-b ± √(b² - 4ac))/(2a),其中√表示平方根。

判别式Δ = b² - 4ac可用来判断二次方程的解的性质。

当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程无实数根。

二、线性代数1. 矩阵与行列式矩阵是一个由m行n列数组成的矩形阵列,常用大写字母表示。

行列式是一个用来描述矩阵性质的数值,常用竖线符号表示。

行列式的计算包括对角线法则和展开法则等。

2. 线性方程组线性方程组是由若干个线性方程组成的方程组。

求解线性方程组的方法包括消元法、逆矩阵法等。

消元法通过行变换将线性方程组转化为相等的简化形式,从而求得方程组的解。

逆矩阵法利用矩阵的逆矩阵来求解线性方程组,前提是矩阵存在逆矩阵。

三、向量与空间1. 向量向量是用来表示方向和大小的量,常用小写字母表示。

向量的运算包括加法、减法及数量乘法等。

向量的模表示向量的大小,向量的内积和外积是常见的向量运算。

2. 空间与子空间空间是指向量所在的集合,常用R^n表示n维空间。

子空间是指在一个空间中的子集,满足一些特定条件,比如封闭性和包含零向量等。

以上是大一上期高等代数的一些核心知识点。

通过学习这些知识,我们可以理解和解决代数方程、线性方程组等问题,为后续学习打下坚实基础。

高等代数知识点总结

高等代数知识点总结

高等代数知识点总结高等代数是一门研究抽象代数结构的数学学科。

它是线性代数的拓展,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式等知识点。

以下是高等代数的主要知识点的总结。

1.向量空间:向量空间是高等代数的核心概念之一、它是一组满足特定性质的向量的集合。

向量空间具有几何和代数两种性质,包括加法、数乘、零向量、负向量等。

2.线性变换:线性变换是一种保持向量空间线性组合关系的变换。

它可以通过矩阵来表示,矩阵的乘法与线性变换的复合运算等价。

线性变换的性质包括保持加法和数乘、保持零向量、保持线性组合等。

3.矩阵理论:矩阵是高等代数中常用的工具,用于表示线性变换、求解线性方程组等。

矩阵具有加法、数乘、乘法等运算规则,还可以求逆矩阵、转置矩阵等。

矩阵的秩、特征值与特征向量等性质也是矩阵理论的重要内容。

4.线性方程组:线性方程组是高等代数中的基本问题之一、它是一组包含线性方程的方程组,可以用矩阵形式表示。

线性方程组的求解可以通过消元法、高斯消元法、矩阵求逆等方法来实现。

5.特征值与特征向量:特征值与特征向量是线性变换的重要性质。

特征值是线性变换在一些向量上的纵向缩放比例,特征向量是特征值对应的非零向量。

特征值与特征向量在很多应用中起到重要作用,如矩阵对角化、求解微分方程等。

6.行列式:行列式是矩阵的一个标量量。

行列式的值代表矩阵所对应的线性变换对单位面积进行的放缩倍数。

行列式具有反对称性、线性性、乘法性等性质,可以用于求解矩阵的逆、计算特征值等。

7.正交性与正交变换:正交性是高等代数中的一个重要概念。

向量空间中的两个向量称为正交,如果它们的内积为零。

正交性和正交变换在几何、物理、信号处理等领域有广泛应用。

8.对称性与对称变换:对称性是高等代数中的一个重要概念。

对称性指的是其中一变换下,物体经过变换后保持不变。

对称性与对称变换在几何、物理、化学等领域有广泛应用。

总结起来,高等代数是一门研究抽象代数结构的学科,主要涉及向量空间、线性变换、矩阵理论、线性方程组、特征值与特征向量、行列式、正交性与正交变换、对称性与对称变换等知识点。

高等代数知识点

高等代数知识点

高等代数知识点高等代数是大学数学专业的一门核心课程,主要研究线性代数的更深层次的内容和推广。

它是数学中的一门基础学科,对于很多数学分支都有着重要的应用。

下面是高等代数的主要知识点:1.向量空间理论:向量空间是高等代数的核心概念之一、它研究向量的基本性质和运算规律,包括向量的加法、数乘、内积、外积等。

2.线性变换和矩阵理论:线性变换是向量空间中的一个重要概念,它是一种保持向量加法和数乘运算的函数。

矩阵是线性变换在两个有限维向量空间基下的坐标矩阵表示。

3.特征值和特征向量:特征值和特征向量是线性变换中重要的概念,它们描述了一个线性变换在一些向量上的作用。

特征值是一个标量,特征向量是满足特定条件的非零向量。

4.行列式和特征多项式:行列式是一个方阵所确定的一个标量值,它描述了一个矩阵的一些特征。

特征多项式则是通过行列式来描述一个线性变换的特征。

5.正交性和正交矩阵:正交性是线性代数中重要的概念,它描述了向量空间中向量的垂直性质。

正交矩阵是一种特殊的方阵,它的列向量两两正交并且长度为16.线性方程组:线性方程组是高等代数中一个基本的研究对象。

通过矩阵的运算和消元法可以求解线性方程组的解。

7.广义逆矩阵和正规方阵:广义逆矩阵是矩阵理论的重要扩展,它在未必是方阵的情况下,求解矩阵方程和线性方程组具有重要应用。

正规方阵则是满足一定条件的方阵。

8.特殊矩阵:特殊矩阵是高等代数中特别重要的一类矩阵,包括对角矩阵、上三角矩阵、下三角矩阵、对称矩阵、反对称矩阵等。

9.特征值分解和奇异值分解:特征值分解是一种将线性变换表示成特征向量和对应特征值的形式的方法,奇异值分解则是一种将矩阵表示成特征值和特征向量的形式的方法。

10. Jordan标准形和Schur分解:Jordan标准形是复矩阵的一种标准形式,它可以将复矩阵进行相似变换后表示成一个特殊的形式。

Schur分解是一种将矩阵表示成三角形的形式的方法。

这些是高等代数的主要知识点,掌握了这些知识点,就能够理解和应用高等代数的基本原理和方法,为后续更深入的数学学习打下坚实的基础。

高等代数知识点总结

高等代数知识点总结

高等代数知识点总结一、群论群是高等代数中最基本的代数结构之一,它是一个集合和上面的一个二元运算构成的代数系统。

群满足以下四个性质:1. 封闭性:对于群G中的任意两个元素a和b,它们的乘积ab也属于G。

2. 结合律:对于群G中的任意三个元素a、b和c,有(a·b)·c = a·(b·c)。

3. 存在单位元:存在一个元素e∈G,对于任意元素a∈G,有a·e = e·a = a。

4. 存在逆元:对于群G中的任意元素a,存在一个元素b∈G,使得a·b = b·a = e。

群的性质有很多重要的结论,比如:每个群都有唯一的单位元,每个元素都有唯一的逆元,乘法运算满足左消去律和右消去律等。

群还有很多重要的概念和定理,比如:子群、陪集、拉格朗日定理、卡曼定理等。

二、环论环是一个比群更一般化的代数结构,它包括一个集合和上面的两个二元运算:加法和乘法。

环满足以下性质:1. 集合对加法构成一个阿贝尔群。

2. 乘法满足结合律。

3. 分配律成立,即对于环R中的任意三个元素a、b、c,有a·(b+c) = a·b + a·c和(b+c)·a = b·a + c·a。

环还有一些重要的概念和定理,比如:整环、域、多项式环、欧几里德环、唯一因子分解整环等。

三、域论域是一个更加一般化的代数结构,它是一个集合和上面的两个二元运算:加法和乘法。

域满足以下性质:1. 集合对加法构成一个阿贝尔群。

2. 非零元素对乘法构成一个阿贝尔群。

3. 分配律成立。

域是代数学中一个非常重要的概念,它是线性代数和代数几何的基础。

高等代数还包括一些其他的内容,比如:线性代数、模论、范畴论等。

线性代数是代数学的另一个重要分支,它研究的是向量空间和线性变换等代数结构。

模论是研究环上模结构的代数学分支,它是线性代数的一种推广。

数学高等代数重点知识点

数学高等代数重点知识点

数学高等代数重点知识点数学高等代数是大学阶段数学学科的重要组成部分,它涵盖了众多的数学概念、理论和技巧。

本文将聚焦于数学高等代数的重点知识点,旨在帮助读者全面理解和掌握这些知识。

一、矩阵和行列式1. 矩阵的基本概念:矩阵是由数个数按一定规律排成的矩形阵列。

介绍矩阵的行、列、元素、维数等概念。

2. 矩阵的运算:包括矩阵的加法、减法、数乘以及矩阵的乘法等。

3. 矩阵的转置:介绍矩阵的转置操作及其性质。

4. 行列式的定义和性质:解释行列式的概念,阐述行列式的性质和运算规则。

二、向量空间1. 向量的基本概念:阐述向量的定义、线性运算以及向量的线性相关性。

2. 向量空间的定义和性质:解释向量空间的概念,介绍向量空间的性质和基本运算规则。

3. 子空间:介绍子空间的定义,解释子空间的性质和判定标准。

4. 基和维数:讲解基的概念,介绍线性无关和生成空间的概念,并介绍维数的定义和计算方法。

三、线性方程组1. 线性方程组的基本概念:解释线性方程组的定义和基本性质。

2. 解的存在性与唯一性:介绍线性方程组解的存在性、唯一性和无穷多解的判定条件。

3. 齐次线性方程组和非齐次线性方程组:解释齐次线性方程组和非齐次线性方程组的概念,介绍它们解的性质。

4. 矩阵的秩和可逆性:介绍矩阵的秩的概念,解释矩阵可逆的条件和性质。

四、特征值和特征向量1. 特征值和特征向量的定义:解释特征值和特征向量的概念,说明与矩阵的关系。

2. 特征方程:介绍特征方程的定义和求解方法。

3. 对角化和相似矩阵:解释相似矩阵和对角矩阵的概念,介绍矩阵相似的判定条件和对角化的步骤。

五、线性映射1. 线性映射的定义和性质:解释线性映射的概念,介绍线性映射的基本性质和运算规则。

2. 核和像:介绍线性映射的核(零空间)和像(值域)的概念。

3. 矩阵的表示和变换:解释线性映射的矩阵表示方法,介绍线性映射的变换和判定条件。

综上所述,数学高等代数的重点知识点包括矩阵和行列式、向量空间、线性方程组、特征值和特征向量以及线性映射等内容。

考研数学 线性代数(高等代数)重点知识整理总结

考研数学 线性代数(高等代数)重点知识整理总结

考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。

2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。

重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。

(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

(4)行列式具有分行(列)可加性。

行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。

(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。

余子式ij M 、代数余子式ij ji ij M A +-=)1(。

(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。

定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。

逆否:若方程组存在非零解,则D 等于零。

③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。

④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。

高等代数知识点总结

高等代数知识点总结
19
矩阵等价 •
A,B行等价有可逆矩阵P使得A=PB • 每个矩阵都行等价于唯一一个RREF矩阵 • A,B等价有可逆矩阵P,Q使得A=PBQ Ir 0 • 每个秩数为r的矩阵都等价于 0 0 • 对于m×n矩阵A,B下列条件等价 1. AB,即A可由初等变换化成B 2. 有可逆矩阵P,Q使得PAQ=B 3. 秩A=秩B 4. A,B的标准型相同
3
重要结论: • 带余除法定理
对于任意多项式f(x)和非零多项式g(x),有唯一的q(x) 和r(x)使得 f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x).
• 最大公因式的存在和表示定理
任意两个不全为0的多项式都有最大公因式,且对于 任意的最大公因式d(x)都有u(x)和v(x)使得 d(x)=f(x)u(x)+g(x)v(x)
(kA)T= k AT (AB)T= BT AT
(AT)T=A
|A1|=|A|1
|A*|=|A|n1 r(A*)= 1, 若r(A)=n-1
0, 若r(A)<n-1 n, 若r(A)=n
其 它
A-1=|A|-1A*
定义 性质
若P,Q可逆,则 r(A)=r(PA)=r(AQ ) 12 =r(PAQ)
6
• 复数域上的标准分解定理
在复数域上,每个次数大于1的多项式f都有如下的 标准分解 其中a是f的常数项, x1,…,xt 是f全部互不相同的根, n1,…,nt分别是这些根的重数.
f a( x x1 )
n1
( x xt )
nt
• 实数域上的标准分解定理
在实数域上,每个次数大于1的多项式f都有如下的 标准分解

高等代数I知识点整理

高等代数I知识点整理

高等代数I知识点整理1.集合和映射:-集合:元素、子集、幂集、交集、并集、差集、集合运算律等。

-映射:定义、定义域、值域、像、单射、满射、双射等。

2.代数结构:-群:群的定义、子群、正规子群、商群、循环群、对称群等。

-环:环的定义、子环、整环、域、特殊环(交换环、有单位元环、整整环)、多项式环等。

-矢量空间:线性组合、线性相关与线性无关、生成子空间、基和维数、坐标等。

3.线性方程组:-线性方程组的解和解集。

-矩阵和向量表示线性方程组,线性方程组的向量形式与矩阵形式的转换。

-齐次线性方程组和非齐次线性方程组。

4.行列式和特征值特征向量:-行列式的定义、性质与计算。

-矩阵的秩与行列式的关系,线性方程组解的结构与行列式的关系。

-特征值与特征向量的定义与性质,对角化、相似矩阵与特征值特征向量的关系。

5.线性空间:-线性空间的定义与性质,子空间、直和、维数定理等。

-线性变换的定义与性质,线性变换的矩阵表示与特征值特征向量的关系。

6.内积空间:-内积的定义与性质,正交、单位正交、正交补空间等。

- 正交矩阵、正交变换,Gram-Schmidt正交化过程。

-线性最小二乘问题。

7.线性算子:-算子的定义和性质,线性算子、特征值、特征向量等。

-特征子空间、核、像与秩-零化度定理等。

以上是高等代数I的一些重要知识点整理。

在学习这门课程时,学生需要深入理解这些知识点的定义、性质和应用,并通过大量的练习问题进行巩固。

高等代数I为后续数学课程如线性代数、矩阵论、抽象代数等打下坚实的基础。

高等代数知识点总结精编版

高等代数知识点总结精编版

高等代数知识点总结精编版高等代数是数学的一个分支,包括了对抽象代数结构的研究。

它涵盖了一系列的知识点和概念,如线性代数、矩阵论、群论、环论、域论等等。

以下是高等代数的一些重要知识点的总结。

1.线性代数:线性代数是高等代数的基础,涉及向量空间、线性变换、矩阵等概念。

其中,向量空间的概念是线性代数的核心,它包括了向量的加法和数乘运算,并满足一些性质。

线性变换是一种特殊的函数,它保持向量空间的线性结构。

矩阵是线性变换的代数表示,可以通过矩阵乘法来描述线性变换的复合。

2.矩阵论:矩阵论是研究矩阵及其性质的数学分支。

它包括对矩阵的基本运算规则的研究,如矩阵加法、乘法、转置等。

矩阵的秩是一个重要的概念,它描述了矩阵的线性相关性。

矩阵的特征值和特征向量是矩阵论中的另一个关键概念,它们和矩阵的对角化密切相关。

3.群论:群论是一门研究代数结构的分支学科,集中研究代数运算封闭的集合及其运算的性质。

一个群是一个集合,其中包含了一个二元操作,并且满足封闭性、结合律、存在单位元和存在逆元等性质。

群的子群、正规子群、商群等概念在群论中都有重要的应用。

4.环论:环论是研究环及其性质的数学分支。

一个环是一个集合,它包含了两个二元运算,并且满足一些性质,如封闭性、结合律、分配律等。

环的子环、理想、商环等概念在环论中有着重要的应用。

5.域论:域论是研究域及其性质的数学分支。

一个域是一个集合,它包含了两个二元运算,并且满足一些性质,如封闭性、结合律、分配律、存在单位元和存在逆元等。

域的子域、扩域、代数扩张等概念在域论中有着重要的应用。

以上只是高等代数的一部分知识点介绍,其中每个方向都有更详细和深入的内容。

高等代数在数学中有着广泛的应用,如在线性方程组求解、线性回归、图论、密码学等方面都有重要的作用。

对高等代数的学习对于理解和应用数学都具有重要的意义和价值。

高等代数期末重难点总结

高等代数期末重难点总结

高等代数期末重难点总结一、向量空间与线性变换1. 向量空间的定义与性质:向量空间是一种特殊的集合,它包含了满足一定性质的向量并满足一定的运算规则。

其中包括向量的加法、数乘、零向量和加法逆元的存在等。

2. 线性变换与线性映射:线性变换是指一个向量空间到另一个向量空间的映射,它保持向量的线性组合运算。

线性变换具有一些重要的性质,如保持直线和平面、保持向量的和与乘积等。

3. 矩阵的运算与性质:矩阵是一种常见的表示线性变换的工具,它可以描述将一个向量映射到另一个向量的线性变换。

矩阵与向量的乘法、矩阵的加法与数乘等运算具有一定的性质,如结合律、分配律等。

4. 向量的线性相关与线性无关:在向量空间中,向量的线性相关性与线性无关性是非常重要的概念。

线性相关的向量可以通过线性组合表示为零向量,而线性无关的向量则不存在这样的组合。

5. 基与维度:向量空间的基是指一个向量组,通过线性组合可以表示该向量空间中的所有向量。

而基的维度则是由基中向量的个数决定的。

基与维度的概念与向量的线性无关性密切相关。

二、矩阵运算与特征值问题1. 矩阵的行列式与逆矩阵:行列式是矩阵的一个重要概念,它可以描述线性变换对面积(体积)的影响。

逆矩阵是对于给定的矩阵,存在一个矩阵使得它们的乘积等于单位矩阵。

2. 矩阵的秩与行空间、列空间:矩阵的秩是指矩阵中非零行(列)向量的最大线性无关组的向量个数。

行空间是由矩阵的行向量张成的向量空间,列空间是由矩阵的列向量张成的向量空间。

3. 特征值与特征向量:特征值是对于一个线性变换,存在使其乘积等于该向量的数值;特征向量是与特征值相对应的非零向量,它满足在变换后与原向量方向相同或相反。

4. 对角化:对角化是指对于一个矩阵,存在一个可逆矩阵P,使得对角阵D=P^-1AP。

对角化的一个重要应用是简化矩阵的运算,例如求幂。

5. 正交变换与正交矩阵:正交变换是指一个线性变换保持向量的长度和夹角不变。

正交矩阵是方阵中的一种特殊矩阵,满足矩阵的转置等于矩阵的逆。

《高等代数》知识点梳理

《高等代数》知识点梳理

(1 )定义:由s⋅ n个数a ij(i= 1,2, s;j= 1,2, n)排成s行n列的数表a 11a s1a1n,称为s行n列矩阵,简记为A= (a ij)s⋅n。

asn(2)矩阵的相等:设A= (a ij)m⋅n,B= (a ij)l⋅k,如果m= l,n= k,且a ij= b ij,对i= 1,2, m;j= 1,2, n都成立,则称A与B相等,记A= B。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

a11(1)矩阵的加法:as1运算规律:①A+ B= B+ A②( A+ B) + C= A+ (B+ C)a11(2)数与矩阵的乘法:kas1 运算规律:①(k+ l) A= kA+ lA a1nb11b1na11+ b11+ =asnbs1bsnas1+ bs1③A+ O= A④A+(−A) = Oa1nka11ka1n=asnkas1kasn③k(lA) = (kl) Aa1n+ b1n。

a sn+b sn②k( A+ B) = kA+ kBa11 (3)矩阵的乘法:as1④A+(−A) = Oa1nb11b1mc11=asnbn1bnmcs1c1m其中csmc = a b + a b + + a b a 11ij i 1 1i i 2 2i in nj ,i = 1,2, s ; j = 1,2, m 。

运算规律:① ( A B )C = A (BC ) ③ (B + C ) A = BA + CA② A (B + C ) = AB + AC ④ k ( A B ) = A (kB ) = (kA )B 一般情况 ,① AB ≠ BA② AB = AC , A ≠ 0 , ⇒ B = C ③ AB = 0 ⇒ A = 0 或 A = 0a 11a 1na 11 a1s(4)矩阵的转置 : A = ,A 的转置就是指矩阵 A '=a s 1asna n 1ans运算规律 :① ( A ')'= A③ ( A B )'= B ' A '② ( A + B )'= A '+B '(5)方阵的行列式 :设方阵 A =运算规律: ④ (kA )'= kA 'a 1n a11,则A 的行列式为| A |=。

高等代数知识点总结ppt

高等代数知识点总结ppt

高等代数知识点总结一、引言高等代数是一门研究数学结构、代数运算和线性方程系统的学科。

它在数学、物理学、通信、计算机等领域都有广泛的应用。

本文将对高等代数中的几个重要知识点进行总结。

二、向量空间向量空间是高等代数中的重要概念,它是由一组向量构成的集合,并满足特定的代数运算法则。

2.1 向量空间的定义向量空间是一个非空集合,其中包含一组向量,满足以下几个条件:•加法封闭性:对于任意的向量u、v属于向量空间V,u + v也属于V。

•数乘封闭性:对于任意的向量u属于向量空间V和任意的标量c,cu 也属于V。

•零向量:向量空间V中存在一个零向量0,满足对于任意的向量u 属于V,u + 0 = u。

•相反向量:对于任意的向量u属于向量空间V,存在一个相反的向量-v,满足u + (-v) = 0。

2.2 子空间在向量空间V中,如果一个集合W也是一个向量空间,并且W是V的子集,则称W为向量空间V的子空间。

2.3 线性无关与线性相关在向量空间V中,如果存在一组向量{v1, v2, …, vn}以及一组不全为0的标量{c1, c2, …, cn},满足c1v1 + c2v2 + … + cnvn = 0,则称该组向量是线性相关的;否则,称该组向量是线性无关的。

2.4 基和维数在向量空间V中,如果存在一组线性无关的向量{v1, v2, …, vn},并且该组向量可以通过线性组合得到V中的任意向量,则称该组向量是向量空间V的一组基。

向量空间V的基中向量的个数称为维数,记为dim(V)。

三、矩阵与线性方程组3.1 矩阵的定义矩阵是由数按矩形排列而成的一个数组,它是线性方程组的重要表示形式。

3.2 矩阵的运算矩阵与矩阵之间可以进行加法、数乘和乘法运算。

•矩阵加法:给定两个矩阵A和B,只有当它们的维数相同时,才能进行加法运算。

•数乘:给定一个矩阵A和一个标量c,可以通过将c乘以A的每个元素来得到标量乘法的结果。

•矩阵乘法:给定两个矩阵A和B,它们能够进行乘法运算的前提是A 的列数等于B的行数。

高等代数知识点总结

高等代数知识点总结

高等代数知识点总结高等代数是数学中的一个重要分支,它主要研究了代数结构及其相关性质。

下面是关于高等代数的一些常见知识点的总结。

1.环论:环是一种代数结构,它包含了一个集合以及对于这个集合中的元素定义的加法和乘法运算。

环的一些基本概念包括单位元、零元、可逆元、交换性、零因子、整环等。

环论研究了环的性质、子环、理想、同态等内容。

2.域论:域是一个包含了加法和乘法运算的交换环,且除了零元以外的所有元素都有乘法逆元。

域的一些基本概念包括素域、代数闭域、有限域等。

域论研究了域的性质、子域、扩域、代数元、素元、不可约多项式等内容。

3.矩阵论:矩阵是一个有限个数按一定顺序排列的数构成的数组,在高等代数中起到了很重要的作用。

矩阵的一些基本运算包括矩阵的加法、乘法、转置、逆等。

矩阵论研究了矩阵的行列式、特征值、特征向量、秩、相似矩阵等内容。

4.向量空间:向量空间是一个满足一定性质的集合,其中的元素称为向量。

向量空间的一些基本概念包括线性组合、线性相关性、线性独立性、子空间、基、维数等。

向量空间论研究了向量空间的性质、线性变换、内积空间、正交性、最小二乘法等内容。

5.线性代数:线性代数是研究向量、矩阵和线性方程组等问题的一门学科,它是高等代数的一个重要分支。

线性代数的一些基本概念包括线性变换、行列式、特征值、特征向量等。

线性代数研究了线性方程组的解的存在唯一性、线性变换的特征值分解、矩阵的相似对角化等内容。

6.线性空间:线性空间是一个满足一定性质的集合,其中的元素称为向量。

线性空间的一些基本概念包括线性组合、线性相关性、线性独立性、子空间、基、维数等。

线性空间论研究了线性空间的性质、线性变换、内积空间、正交性、最小二乘法等内容。

7.线性映射:线性映射是一个保持线性结构的映射,也就是满足线性变换的条件。

线性映射的一些基本概念包括核、像、像空间、零空间等。

线性映射论研究了线性映射的性质、线性变换的特征值分解、线性方程组的解的唯一性等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
伴随
其它
定义 性质

性质 转置不变性 反交换性 交错性 齐性
公式 |AT| = |A| |...α...β...| = −|...β...α...| |...α...α...| = 0 |...kα...| = k|....α...|
备注 行列地位平等 换法变换 倍法变换 统称线性
|...α+β...| = |...α...| + |...β...| 加性 倍加不变性 |...α+kβ...β...| = |...α...β...| |aij| = ak1Ak1+…+aknAkn 按第k行 = a1kA1k+…+ankAnk 第k列展开 Laplace定理
次数大于1的多项式都可分解成有限个既约多项式之 积,且不计因子次序和常数因子倍时,分解唯一.
• 标准分解定理
每个次数大于1的多项式f都有如下的标准分解
f = ap
n1 1
L p
nt t
其中a是非零常数, p1,…,pt, 是互不相同的首一既约多 项式, n1,…,nt是正整数. 进一步,a, p1,…,pt,n1,…,nt由f 唯一确定.
0 A = B 0 * = | A || B | B
分块三角形行列式
A *
0 B
A *
=
* B
A 0
= ( −1)
mn
| A || B |
16
Cauchy-Binet公式 公式 设U是m×n矩阵, V是n×m矩阵, m≥n, 则
i1 L im ------- | UV |= ∑ 式U 式V i1L im -------- i1 L im
列变换
倍法变换
1 O 1 c 1 O 1
消法变换
1 O 1 M O c L 1 O 1
对单位矩阵做一次初等变换
用相应的初等矩阵左乘以A 对A做一次行变换 = 用相应的初等矩阵左乘以A 做一次行 做一次列 用相应的初等矩阵右乘以A 对A做一次列变换 = 用相应的初等矩阵右乘以A

• 对于 ×n矩阵 ,B下列条件等价 对于m× 矩阵 矩阵A, 下列条件等价 1. A≅B,即A可由初等变换化成 可由初等变换化成B ≅ , 可由初等变换化成 2. 有可逆矩阵 有可逆矩阵P,Q使得 使得PAQ=B 使得 3. 秩A=秩B 秩 4. A,B的标准型相同 , 的标准型相同
20
可逆矩阵vs列满秩矩阵
− (A*)*=|A|n−2A*
其它
A-1=|A|-1A*
AA*=A*A=|A|I 可逆时, 当A可逆时, 可逆时 A*=|A|A−1
13
行列式 加法 数乘 乘法 转置 取逆
秩数
|kA|=kn|A| |AB|=|A||B| |AT|=|A| |A−1|=|A|−1
− |A*|=|A|n−1
r(A+B)≤r(A)+r(B) r(kA)=r(A) (k≠0) r(A)+r(B)-n≤r(AB)≤r(A), r(B) r(AT)=r(A) n, 若r(A)=n r(A*)= 1, 若r(A)=n−1 − 0, 若r(A)<n−1 − 若P, Q可逆,则 r(A)=r(PA)=r(AQ) =r(PAQ)
总结
计算
2
一元多项式 基本概念:
次数:最基本的概念和工具 整除:多项式之间最基本的关系 带余除法:最基本的算法,判断整除. 最大公因式:描述多项式之间关系的复杂程度 互素:多项式之间关系最简单的情形 既约多项式:最基本的多项式 根:最重要的概念和工具
3
重要结论: 重要结论: • 带余除法定理
对于任意多项式f(x)和非零多项式g(x),有唯一的q(x) 和r(x)使得 f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x).
− (kA)*= kn−1A*
r(A+B)≤r(A)+r(B) |kA|=kn|A| |AB|=|A||B| |AT|=|A| |A−1|=|A|−1
− |A*|=|A|n−1
r(kA)=r(A) (k≠0) r(A)+r(B)-n≤ r(AB)≤r(A), r(B) r(AT)=r(A)
(AB)*= B*A* (AT)*=(A*)T (A−1)*=(A*)−1
转置 加法 数乘 乘法 转置 取逆 伴随
取逆
伴随
(A+B)T=AT+BT (kA)T= k AT (kA)−1= k−1A−1 (AT) −1=(A−1)T (A−1) −1=A
− (kA)*= kn−1A*
(AB)T= BT AT (AB) −1= B−1 A−1 (AT)T=A
(AB)*= B*A* (AT)*=(A*)T (A−1)*=(A*)−1
8
• Eisenstein判别法:
设 f ( x) = an x n + L + a1 x + a0 是整系数多项式,若 有素数p使得
p / an , p | an−1 ,..., p | a0 , p / a0 | |
2
则f(x)是有理数域上的既约多项式. • 有理根:有理根的分母整除首项系数,分子整除常 有理根的分母整除首项系数, 有理根的分母整除首项系数 数项
6
• 复数域上的标准分解定理
在复数域上,每个次数大于1的多项式f都有如下的 标准分解 n n
f = a ( x − x1 ) 1 L ( x − x t )
t
其中a是f的常数项, x1,…,xt 是f全部互不相同的根, n1,…,nt分别是这些根的重数.
• 实数域上的标准分解定理
在实数域上,每个次数大于1的多项式f都有如下的 标准分解
• 最大公因式的存在和表示定理
任意两个不全为0的多项式都有最大公因式,且对 0 于任意的最大公因式d(x)都有u(x)和v(x)使得 d(x)=f(x)u(x)+g(x)v(x)
• 互素
f(x)和g(x)互素⇔有u(x)和v(x)使得 f(x)u(x)+式分解唯一定理
− (A*)*=|A|n−2A*
n, 若r(A)=n r(A*)= 1, 若r(A)=n-1 0, 若r(A)<n-1
其 它
A-1=|A|-1A*
AA*=A*A=|A|E 可逆时, 当A可逆时, 可逆时 A*=|A|A−1
定义 性质
若P,Q可逆,则 r(A)=r(PA)=r(AQ) =r(PAQ)
12
• 重因式
f无重因式当且仅当f与其导式互素.
5
代数学基本定理:
下列陈述等价, 1. 复数域上次数≥1的多项式总有根 2. 复数域上的n次多项式恰有n个根 3. 复数域上的既约多项式恰为一次式 4. 复数域上次数≥1的多项式可分解成一次式之积. 5. 实数域上的次数>1的既约多项式只有无实根的二 次式 6. 实数域上次数≥1的多项式可分解成一次式和二次 式之积
| A |=
消法变换 aj1Ak1+…+ajnAkn = a1jA1k+…+anjAnk =δjk|aij| 分块三角矩阵的行列式


A
j1 L
j
k
i1 L j1 L
ik 代 jk


A
i1 L j1 L
ik jk
Cauchy-Binet
公式 Vandermonde 行列式
21
Ir 0
矩阵分解
设A的秩数为r, 则A有如下分解 1.
I A = P r 0
0 Q ,其中P,Q为可逆矩阵 0
2. A=PE,其中P可逆,E是秩数为r的RREF 3. A=GH,其中G列满秩,H行满秩,且秩数都是r (满秩分解)
22
两种常用方法
1.分块矩阵的初等变换和Schur公式
9
多元多项式
.
基本概念:
次数、齐次分量、字典序、首项、对称多项式
重要结论
命题1.8.1 若多项式的值全为0,则该多项式必为0. 命题1.8.2 每个n次多项式f均可唯一地表示成齐次多
项式之和 f = f 0 + f1 + L + f n,fn≠0,且其中fi是0或i次 齐次多项式,0≤i≤n,fi称为f的i次齐次分量.
对于n阶矩阵A,下列条件等价 对于n阶矩阵A,下列条件等价 A, 1. A是可逆矩阵 |A|≠ 2. |A|≠0 3. 秩A=n 使得AB=I AB=I或 4. 有B使得AB=I或BA=I 5. A是有限个初等矩阵之积 A(行或列 等价于I 行或列) 6. A(行或列)等价于I 的列( 7. A的列(行)向量组线性无关 方程组Ax=0 Ax=0没有非零解 8. 方程组Ax=0没有非零解 对任意b,Ax=b b,Ax=b总有解 9. 对任意b,Ax=b总有解 对某个b,Ax=b b,Ax=b有唯一解 10. 对某个b,Ax=b有唯一解 是可消去的(即由AB=AC AB=AC或 11. A是可消去的(即由AB=AC或 BA=CA恒可得 BA=CA恒可得B=C) 对于m 对于m×r矩阵G,下列条件等价 矩阵G,下列条件等价 G, 是列满秩矩阵, 1. G是列满秩矩阵, 有一个r 2. G有一个r阶的非零子式 G=列数 3. 秩G=列数 有左逆,即有K使得KG=I 4. G有左逆,即有K使得KG=I 有矩阵H使得(G, H)可逆 5. 有矩阵H使得(G, H)可逆 6. G行等价于 7. G的列向量组线性无关 方程组Gx=0 Gx=0没有非零解 8. 方程组Gx=0没有非零解 对任意b, Gx=b有解 b,若 有解则唯一 9. 对任意b,若Gx=b有解则唯一 对某个b,Gx=b b,Gx=b有唯一解 10. 对某个b,Gx=b有唯一解 是左可消去的(即由GB=GC 11. G是左可消去的(即由GB=GC 恒可得B=C) 恒可得B=C)
相关文档
最新文档