2017北京市西城区初三数学一模试题及答案(word)

合集下载

2017年北京市西城区中考一模数学试卷(word版含答案)

2017年北京市西城区中考一模数学试卷(word版含答案)

2017年北京市西城区中考一模数学试卷(word版含答案)2017年北京市西城区中考一模数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的.1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为(A)3960810⨯(B)4960.810⨯(C)596.0810⨯(D)69.60810⨯2.在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A)0a b+=(B)0a b-=(C 3.如图,AB∥CD,DA⊥CE于点A.若∠EAB=55°,则∠D的度数为(A)25°(B)35°(C)45°(D)55°A BE4.右图是某几何体的三视图,该几何体是(A)三棱柱(B)长方体(C)圆锥(D)圆柱5.若正多边形的一个外角是40°,则这个正多边形是(A)正七边形(B)正八边形(C)正九边形(D)正十边形6.用配方法解一元二次方程2650x x--=,此方程可化为(A)()234x-=(B)()2314x-=(C)()294x-=(D)()2914x-=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2 m,旗杆底部与平面镜的水平距离为16 m.若小明的眼睛与地面距离为1.5 m,则旗杆的高度为(单位:m)(A)163(B)9 (C)12 (D)6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x -(C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表: 年龄(单位:岁)13 14 15 16频数(单位:名) 5 15 x 10-x 对于不同的x ,下列关于年龄的统计量不会发生改变的是(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数 (D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B)以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少(C)以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油(D)以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2 2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000 投中次数m 58 96 174 302 484 601投中频率m n0.580 0.640 0.580 0.604 0.605 0.601 这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.DB OAxy –4–3–2–11234–4–3–2–11234O B A已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P . 作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .l图1Plm图2DC B P O A三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 1232sin60322-⎛⎫-- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE .求证:∠BCE =∠A +∠ACB .D21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 1西瓜质量.(单位:kg)3.54.85.44.94.25.4.94.85.84.8编号11 12131415161718192西瓜质量.(单位:kg)5.4.85.24.95.15.4.86.5.75.表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 1西瓜质量.(单位:kg)4.44.94.84.15.25.15.4.54.74.9编号11 12131415161718192西瓜质量.(单位:kg)5.45.54.5.34.85.65.25.75.5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量4.98 0.27 乙种种植技术种15 4.97 0.21出的西瓜质量(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点交于点B(m,2).A,与双曲线=k yx(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF ⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.ADB24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE ⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=3,求AC的5长.26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x (单位:min)0 1 2 3 4 5 8116182212432…水箱中水的温度y (单位:℃)2355658644322m86442…m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:x y10080604020246810121416182022242628303234O(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m +1)x + m -5的图象与x 轴有两个公共点.(1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.28.在△ABC 中,AB =BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC =90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形;②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1FEC A A29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点.(1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ;②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4:x =b 的二次对称点,且点M '在射线3(0)y x x =≥上,b 的取值范围是 ; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:31y x =+的二次对称点,且点N '在y 轴上,求t 的取值范围.x x y y 图1图2–5–4–3–2–112345–3–2–11234–5–4–3–2–112345–3–2–11234O O A。

北京市西城区2017届九年级数学4月统一测试一模试题

北京市西城区2017届九年级数学4月统一测试一模试题

北京市西城区2017届九年级数4月统一测试(一模)学试题一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB =55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°CABE第3题图 第4题图4.右图是某几何体的三视图,该几何体是 (A )三棱柱(B )长方体(C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -= (B )()2314x -= (C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是(A )80%20x - (B )()80%20x - (C )20%20x - (D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表: 年龄(单位:岁) 13 14 1516 频数(单位:名)515x10-x(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分) 11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A (1,2),点B (2,1),写出一个符合条件的函数表达式_________. 13.下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是 .14.如图,四边形ABCD 是⊙O 内接四边形,若∠BAC =30°,∠CBD =80°,则∠BCD 的度数为_________________.第15题15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将△AOB 顺时针旋转90°得到△A'OB',其中点A'与点A 对应,点B'与点B 对应.若点A (-3,0),B (-1,2),则点A'的坐标为_______________,点B'的坐标为________________. 16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程. 请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 123260322sin -⎛⎫-- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE . 求证:∠BCE =∠A +∠ACB .D21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 910西瓜质量.(单位:kg) 3.5 4.85.44.94.25.4.94.85.84.8编号11 12 13 14 15 16 17 18 19 20西瓜质量.(单位:kg) 5.0 4.85.24.95.15.4.86.5.75.表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10西瓜质量.(单位:kg) 4.4 4.94.84.15.25.15.4.54.74.9编号11 12 13 14 15 16 17 18 19 20西瓜质量.(单位:kg) 5.4 5.54.5.34.85.65.25.75.5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27 乙种种植技术种出的西瓜质量15 4.97 0.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2). (1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.ADB24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为 %;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB=∠EBC;(2)连接BF,CF,若CF=6,sin∠FCB=35,求AC的长.HFD A O BC26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x0 1 2 3 4 5 8 10 16 18 20 21 24 32 …(单位:min)水箱中水的温度y20 35 50 65 80 64 40 32 20 m80 64 40 20 …(单位:℃)m的值为;(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式;当4<x≤16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源min.27.在平面直角坐标系xOy中,二次函数y=mx2 -(2m + 1)x + m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y的取值范围是-6 ≤ y ≤ 4-n,求n的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC中,AB=BC,BD⊥AC于点D.(1)如图1,当∠ABC=90°时,若CE平分∠ACB,交AB于点E,交BD于点F.①求证:△BEF是等腰三角形;②求证:BD=12(BC + BF);(2)点E在AB边上,连接CE.若BD=12(BC + BE),在图2中补全图形,判断∠ACE与∠ABC之间的数量关系,写出你的结论,并写出求解∠ACE与∠ABC关系的思路.图2图1D FECB AACB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2:x =a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线(y x x=≥(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:1y=+的二次对称点,且点N'在y轴上,求t的取值范围.图1图2。

西城区2017初三上学期期末考试数学试题答案

西城区2017初三上学期期末考试数学试题答案

33北京市西城区2016—2017 学年度第一学期期末试卷九年级数学参考答案2017.1一、选择题(本题共30 分,每小题3 分)题号 1 2 3 4 5 6 7 8 9 10 答案 A C A D B C D C B B 二、填空题(本题共18 分,每小题3 分)11.112.本题答案不唯一,如:EF ∥ BC .13.3 314.0 ≤x ≤315.5016.本题作法不唯一,如:(1)如图所示,点O 即为所求作的圆心.(2)作图的依据:线段垂直平分线的点与这条线段两个端点的距离相等;不在同一条直线上的三个点确定一个圆.三、解答题(本题共72 分,第17﹣26 题,每小题5 分,第27 题7 分,第28 题7 分,第29 题8 分)17.解:原式= 4 ⨯3- 3⨯+ 2 ⨯2⨯24 分2 2 2=1 -. 5 分18.(1)证明:∵等边△ABC ,∴∠BAC = 60︒,AB =AC .∵线段AD 绕点A 顺时针旋转60︒,得到线段AE ,∴ ∠DAE = 60︒ , AE = AD .∴ ∠BAD + ∠EAB = ∠BAD + ∠DAC . ∴ ∠EAB = ∠DAC . ∴ △EAB ≌△DAC . ∴ ∠AEB = ∠ADC . 3 分(2)解:∵ ∠DAE = 60︒ , AE = AD ,∴ △EAD 为等边三角形. ∴ ∠AED = 60︒ ,又∵ ∠AEB = ∠ADC = 105︒ . ∴ ∠BED = 45︒ . 5 分 19.解:(1) y = x 2 + 4x + 3= x 2 + 4x + 22 - 22 + 3= (x + 2)2-12 分(2)列表:x … -4 -3 -2 -1 0 … y (3)0 -1 03…(3)本题答案不唯一,如:当 x < -2 时, y 随 x 的增大而减小,当 x > -2 时, y 随 x 的 增大而增大.5 分20.(1)证明:∵ CE = CD ,∴ ∠CDE = ∠CED .∴ ∠ADB = ∠CEA . ∵ ∠DAC = ∠B ,∴ △ABD ∽△CAE .3 分(2)解:由(1) △ABD ∽△CAE ,∴ AB = BD . AC AE∵ AB = 6 , AC = 9, BD = 2 ,2∴ AE =3. 5 分221.解:设剪掉的正方形纸片的边工为x cm . 1 分由题意,得(30 - 2x)(20 - 2x)= 264 . 3 分整理,得x2- 25x + 84 = 0 .解方程,得x1=4,x2= 21(不符合题意,舍去). 4 分答:剪掉的正方形纸片的边长为4 cm . 5 分22.解:本题答案不唯一,如:(1)以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系xOy ,则A(-4,0), B (4,0), C (0,6).设这条抛物线的表达式为y =a (x - 4)(x + 4).∵抛物线经过点C ,∴-16a = 6 .∴a =-3 .8∴这条抛物线表示的二次函数表达式为y =-3x2 + 6 . 4 分8(2)当x = 1时,y =45.8∵4.4 + 0.5 = 4.9 <45,8∴这辆货车能安全通过这条隧道. 5 分23.(1)证明:连接OC.∴AB 是O 的直径,∴ ∠ACB = 90︒,即∠1 +∠3 = 90︒.∵O A =OC ,∴ ∠1 = ∠2 .∴ ∠BCD = ∠CAB = ∠1. ∴ ∠BCD + ∠3 = 90︒ . ∴ OC ⊥ DC 于点C . ∴ DC 是 O 的切线.3 分(2)解:在Rt △OCD 中, OC = 3 , sin D = 3,5∴ OD = 5 , AD = 8 ,∵ CE = CB , ∴ ∠2 = ∠4 . ∴ ∠1 = ∠4 . ∴ OC ∥ AF . ∴ △DOC ∽△DAF .∴ OC = OD . AF AD∴ AF = 24. 5 分524.本题答案不唯一,如:(1)测量工具有:简单测角仪,测量尺等; 1 分 (2)设CD 表示祈年殿的高度,测量过程的几何图形如图所示. 需要测量的几何量如下:①在点 A ,点 B 处用测角仪分别测出仰角α , β ;②测出 A , B 两点之间的距离 s m . 3 分(3)求解思路:a .设CD 为 x m .在Rt △DBC 中,由∠DBC = β ,可得 BC = x;tan β同理,在Rt △DAC 中,可得 AC =x.tan α b .由 AB = AC - BC 得 s = x tan α- xtan β ,x 可求.5 分25.(1)证明:∵直径 DE ⊥ AB 于点 F ,∴ AF = BF . ∴ AM = BM . 2 分 (2)解:连接 AO , BO ,如图.3 6 2∵ DE ⊥ AB ,AO = BO , ∴ ∠AOF = ∠BOF = 1∠AOB .2由(1)可得 AM = BM , ∵ AM ⊥ BM ,∴ ∠MAF = ∠MBF = 45︒ . ∴ ∠CMN = ∠BMF = 45︒ . ∵ ∠N = 15︒ ,∴ ∠ACM = ∠CMN + ∠N = 60︒ ,即∠ACB = 60︒ .∵ ∠ACB = 1∠AOB ,2∴ ∠AOF = ∠ACB = 60︒ . ∵ D E = 8 , ∴ AO = 4 .在Rt △AOF 中,由sin ∠AOF = AF,得 AF = 2 .AO在Rt △AMF 中, AM = BM = 2AF = 2 . 在Rt △ACM 中,由tan ∠ACM = AM ,得CM = 2 2 .CM∴ BC = CM + BM = 2 + 2 26.解:(1)补全表格如下:. 5 分方 程 两 根 的 情 况对应的二次函数的大致图象 a , b , c 满足的条件方 程 有 一 个 负实 根 和 一 个 正 实根⎧a > 0 ⎪∆ = b 2 - 4ac > 0 ⎪ ⎨- b> 0⎪ 2a ⎪ ⎪⎩c > 06⎪⎩ 3 分(2)解:设一元二次方程x2-(2m + 3)x - 4m = 0 对应的二次函数为:y =x2-(2m + 3)x - 4m ,∴一元二次方程x2-(2m +3)x-4m = 0 有一个负实根和一个正实根,且负实根大于-1,⎧⎪-4m < 0∴⎨(-1)2 -(2m + 3)⋅(-1)- 4m > 0.。

最新北京市西城区初三一模试卷及答案数学

最新北京市西城区初三一模试卷及答案数学

北京市西城区2017年九年级统一测试数学试卷 2017.4一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是0ab1(A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°DCABE第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -= (B )()2314x -= (C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x - (C )20%20x -(D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁) 13 14 15 16 频数(单位:名)515x10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是 (A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升二、填空题(本题共18分,每小题3分)11.分解因式:ax2-2ax+a=________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率mn0.580 0.640 0.580 0.604 0.605 0.601这名球员投篮一次,投中的概率约是.4.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为____________.第14题图第15题15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P .作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ; (3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: ()10O123260+322sin -⎛⎫---- ⎪⎝⎭18.解不等式组: 52<3+4722x x x x -⎧⎪⎨+≥⎪⎩19.已知x=2y ,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20. 如图,在△ABC 中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE . 求证:∠BCE =∠A +∠ACB .EDABC21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 3.5 4.8 5.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.0 4.8 5.2 4.9 5.1 5.0 4.8 6.0 5.7 5.0表2 乙种种植技术种出的西瓜质量统计表编号 1 2 3 4 5 6 7 8 9 10 西瓜质量.(单位:kg) 4.4 4.9 4.8 4.1 5.2 5.1 5.0 4.5 4.7 4.9编号11 12 13 14 15 16 17 18 19 20 西瓜质量.(单位:kg) 5.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.98 0.27乙种种植技术种出的西瓜质量15 4.97 0.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22. 在平面直角坐标系x O y ,直线y =x -1与y 轴交于点A ,与双曲线=ky x交于点B (m ,2). (1)求点B 的坐标及k 的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交于点D ,若△ABC 的面积为6,求直线CD 的表达式.23.如图,在□ABCD 中,对角线BD 平分∠ABC ,过点A 作AE //BD ,交CD 的延长线于点E ,过点E 作EF ⊥BC ,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若∠ABC =45°,BC =2,求EF 的长.DFEBAC24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B 作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB =∠EBC;(2)连接BF,CF,若CF =6,sin∠FCB =35,求AC的长.HFDEA O BC26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y 是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.下面是小明的探究过程,请补充完整:(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况接通电源后的时间x0 1 2 3 4 5 8 10 16 18 20 21 24 32 …(单位:min)水箱中水的温度y20 35 50 65 80 64 40 32 20 m80 64 40 20 …(单位:℃)m的值为;(2)①当0 ≤x ≤ 4时,写出一个符合表中数据的函数解析式;当4<x ≤ 16时,写出一个符合表中数据的函数解析式;②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:xy 10080604020246810121416182022242628303234O(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数, ①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为y =a (x -h )2 + k ,当x < 2时,y 随x 的增大而减小,求k 的取值范围.28.在△ABC 中,AB = BC ,BD ⊥AC 于点D .(1)如图1,当∠ABC = 90°时,若CE 平分∠ACB ,交AB 于点E ,交BD 于点F .①求证:△BEF 是等腰三角形; ②求证:BD =12(BC + BF ); (2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1D FEDCB AACB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2: x = a 的二次对称点,则a 的值为 ; ③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ; (2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M '在射线3(0)3y x x =≥上,b 的取值范围是 ; (3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:31y x =+的二次对称点,且点N '在y 轴上,求t 的取值范围.xxy y 图1图2–5–4–3–2–112345–3–2–11234–5–4–3–2–112345–3–2–11234OOA。

初中数学北京市西城区初三一模数学考试卷及答案

初中数学北京市西城区初三一模数学考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:的相反数是A.6 B.C.D.试题2:国家体育场“鸟巢”建筑面积达258 000平方米,258 000用科学记数法表示应为A.2.58×103B.25.8×104C.2.58×105D.258×103试题3:正五边形各内角的度数为A.72° B.108°C.120° D.144°试题4:抛掷两枚质地均匀的硬币,两枚硬币落地后,正面都朝上的概率是A. B.C. D.试题5:如图,过上一点作的切线,交直径的延长线于点D. 若∠D=40°,则∠A的度数为A.20°B.25°C.30°D.40°试题6:某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是A.众数是9 B.中位数是9 C.平均数是9 D.锻炼时间不低于9小时的有14人试题7:由个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则的最大值是A.16 B.18 C.19 D.20试题8:对于实数c、d,我们可用min{ c,d }表示c、d两数中较小的数,如min{3,}=.若关于x的函数y = min{,}的图象关于直线对称,则a、t的值可能是A.3,6 B.2,C.2,6 D.,6试题9:函数中,自变量x的取值范围是.试题10:分解因式:= .试题11:如图,正方形ABCD的面积为3,点E是DC边上一点,DE=1,将线段AE绕点A旋转,使点E落在直线BC上,落点记为F,则FC的长为 .试题12:如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B与点C重合,折痕与AB、BC的交点分别为D、E. (1) DE的长为;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.试题13:计算:.试题14:解不等式组并求它的所有的非负整数解.试题15:如图,在△ABC中,AB=CB,∠ABC=90º,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE 、DE、DC.(1) 求证:△ABE≌△CBD ;(2) 若∠CAE=30º,求∠BCD的度数.试题16:已知,其中a不为0,求的值.试题17:平面直角坐标系xOy中,反比例函数y=x/k 的图象经过点,过点A作AB⊥x轴于点B,△AOB的面积为1.(1) 求m和k的值;(2) 若过点A的直线与y轴交于点C,且∠ACO=45°,直接写出点C的坐标.试题18:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.试题19:为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.捐款户数分组统计图2捐款户数分组统计图1捐款户数分组统计表户数组别捐款额(x)元A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400请结合以上信息解答下列问题.(1) a=,本次调查样本的容量是;(2) 先求出C组的户数,再补全“捐款户数分组统计图1”;(3) 若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?试题20:如图,梯形ABCD中,AD∥BC,,BC=2,,.(1) 求∠BDC的度数;(2) 求AB的长.试题21:如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.(1) 求点O到BD的距离及∠OBD的度数;(2) 若DE=2BE,求的值和CD的长.试题22:阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为;(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1图2图3试题23:已知关于x的一元二次方程的一个实数根为 2.(1) 用含p的代数式表示q;(2) 求证:抛物线与x轴有两个交点;(3) 设抛物线的顶点为M,与y轴的交点为E,抛物线顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.试题24:已知:在如图1所示的锐角三角形ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.(1) 求证:BF∥AC;(2) 若AC边的中点为M ,求证:;(3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图1图2试题25:平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点A的坐标为(1, 0),OB=OC,抛物线的顶点为D.(1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3) Q为线段BD上一点,点A 关于∠AQB 的平分线的对称点为,若,求点Q的坐标和此时△的面积.试题1答案:A试题2答案:C试题3答案:B试题4答案:C试题5答案:B试题6答案:D试题7答案:B试题8答案:C试题9答案:x≥-2试题10答案:试题11答案:试题12答案:4,4试题13答案:解:原式=…………………………………………………………4分=.…………………………………………………………………… 5分试题14答案:解:由①得.……………………………………………………………………1分由②得x≤.……………………………………………………………………3分∴原不等式组的解集是-2< x≤.………………………………………………4分∴它的非负整数解为0,1,2.………………………………………………… 5分试题15答案:(1)证明:如图1.∵∠ABC=90º,D为AB延长线上一点,∴∠ABE=∠CBD=90º . …………………………………………………1分在△ABE和△CBD中,∴△ABE≌△CBD.…………………… 2分(2)解:∵AB=CB,∠ABC=90º,∴∠CAB=45°. …….…………………… 3分又∵∠CAE=30º,∴∠BAE =15°. ……………………………………………………………4分∵△ABE≌△CBD,∴∠BCD=∠BAE =15°. ……………………………………………………5分试题16答案:解:原式= =. ..….….….….….……………………3分∵2a+b=0,∴.……………………………………………………………………… 4分∴原式=.∵a不为0,∴原式=. ..….….….….……………………………………………………… 5分试题17答案:解:(1)∵反比例函数的图象经过点,∴,且m>0.∵AB⊥x轴于点B,△AOB的面积为1,∴.解得. ……………………………………………………………… 1分∴点A的坐标为. ………………………………………………… 2分∴. …………………………………………………………… 3分(2)点C的坐标为(0,3)或(0,-1). ……………………………………………… 5分试题18答案:解:设甲工厂每天能加工件新产品,则乙工厂每天能加工1.5件新产品.依题意得. ……………………………………………………2分解得. …………………………………………………………………… 3分经检验,是原方程的解,并且符合题意.…………………………… 4分∴.答: 甲工厂每天能加工40件新产品, 乙工厂每天能加工60件新产品. ……………5分试题19答案:解:(1)2,50;…………………………………2分(2),C组的户数为20. … 3分补图见图2.…………………………4分(3)∵,∴根据以上信息估计,全社区捐款不少于300元的户数是180.……………………………… 5分试题20答案:解:(1)∵梯形ABCD 中,AD∥BC,,,∴,.在Rt △ABD中,∵,,∴.∴.…… 2分(2)作于点E,于点F.(如图3)在Rt△BCE中,∵BC=2,,∴,.∵,∴.∴.…………………………………………… 3分∵,∴.…………………………… 4分∵AD∥BC,,,∴.…………………………………………………… 5分试题21答案:解:(1)作于点F,连结OD.(如图4)∵∠BAD=60°,∴∠BOD=2∠BAD =120°.又∵OB=OD,∴.∵AC为⊙O的直径,AC=4,∴OB= OD= 2.在Rt△BOF中,∵∠OFB=90°,OB=2,,∴,即点O到BD的距离等于1.(2)∵OB= OD,于点F,∴BF=DF.由DE=2BE,设BE=2x,则DE=4x,BD=6x,EF=x,BF=3x.∵,∴,EF=.在Rt△OEF中,,∵,∴,.…………………………………… 4分∴.∴.∴.∴.…………………………………………………5分试题22答案:解:(1)135°;………………………………………………………………………… 2分(2)120°;………………………………………………………………………… 3分.……………………………………………………………………… 5分试题23答案:解:(1)∵关于x的一元二次方程的一个实数根为 2,∴.……………………………………………………1分整理,得.…………………………………………………… 2分(2)∵,无论p取任何实数,都有≥0,∴无论p取任何实数,都有.∴.………………………………………………………………… 3分∴抛物线与x轴有两个交点.…………………………4分(3)∵抛物线与抛物线的对称轴相同,都为直线,且开口大小相同,抛物线可由抛物线沿y轴方向向上平移一个单位得到,(如图5所示,省略了x轴、y轴)∴EF∥MN,EF=MN=1.∴四边形FEMN是平行四边形.………………5分由题意得.解得.………………………………………7分试题24答案:证明:(1)如图6.∵点B关于直线CH的对称点为D,CH⊥AB于点H,直线DE交直线CH于点F,∴BF=DF,DH=BH.∴∠1=∠2.又∵∠EDA=∠A,∠EDA=∠1,∴∠A=∠2.∴BF∥AC.(2)取FD的中点N,连结HM、HN.∵H是BD的中点,N是FD的中点,∴HN∥BF.由(1)得BF∥AC,∴HN∥AC,即HN∥EM.∵在Rt△ACH中,∠AHC=90°,AC边的中点为M,∴.∴∠A=∠3.∴∠EDA=∠3.∴NE∥HM.∴四边形ENHM是平行四边形∴HN=EM.∵在Rt△DFH中,∠DHF=90°,DF的中点为N,∴,即.∴.………………………………………………………… 4分(3)当AB=BC时,在未添加辅助线和其它字母的条件下,原题图2中所有与BE相等的线段是EF和CE.(只猜想结论不给分)证明:连结CD.(如图8)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴,AB=CD.①∵∠EDA=∠A,∴,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴.∵,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.………………………………………5分∴BE= CE.……………………………………………………………… 6分由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC 可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.……………………………………………………………… 7分∴BE=EF=CE.(阅卷说明:在第3问中,若仅证出BE=EF或BE=CE只得2分)试题25答案:解:(1)∵,∴抛物线的对称轴为直线.∵抛物线与x轴交于点A、点B,点A的坐标为,∴点B的坐标为,OB=3.…………… 1分可得该抛物线的解析式为.∵OB=OC,抛物线与y轴的正半轴交于点C,∴OC=3,点C的坐标为.将点C的坐标代入该解析式,解得a=1.……2分∴此抛物线的解析式为.(如图9)(2)作△ABC的外接圆☉E,设抛物线的对称轴与x轴的交点为点F,设☉E与抛物线的对称轴位于x轴上方的部分的交点为点,点关于x轴的对称点为点,点、点均为所求点.(如图10)可知圆心E必在AB边的垂直平分线即抛物线的对称轴直线上.∵、都是弧AB所对的圆周角,∴,且射线FE上的其它点P都不满足.由(1)可知∠OBC=45°,AB=2,OF=2.可得圆心E也在BC边的垂直平分线即直线上.∴点E的坐标为.………………………………………………… 4分∴由勾股定理得.∴.∴点的坐标为.…………………………………………… 5分由对称性得点的坐标为.……………………………… 6分∴符合题意的点P的坐标为、.(3)∵点B、D的坐标分别为、,可得直线BD的解析式为,直线BD与x轴所夹的锐角为45°.∵点A关于∠AQB的平分线的对称点为,(如图11)若设与∠AQB的平分线的交点为M,则有,,,Q,B,三点在一条直线上.∵,∴作⊥x轴于点N.∵点Q在线段BD上,Q,B,三点在一条直线上,∴,.∴点的坐标为.∵点Q在线段BD上,∴设点Q的坐标为,其中.∵,∴由勾股定理得.解得.经检验,在的范围内.∴点Q的坐标为.…………………………………………… 7分此时.… 8分。

2017北京西城中考数学一模试卷含答案解析

2017北京西城中考数学一模试卷含答案解析


x−5
答案: x ≠ 5
12.
半径为
4 cm,圆心角为
∘ 60
的扇形的面积为
答案: 8
π
3
. 2
cm
13. 分解因式:12m2 − 3 =

答案: 3 (2m + 1) (2m − 1)
14. 如图,△ABC 中,AB = AC ,点 , D E 在 BC 边上,当 加一个适当的条件即可).
时,△ABD ≅ △AC E.(添
A.
B.
C.
D. 答案: A
7. 如图,线段 AB 是 ⊙O 的直径,弦 C D ⊥ AB,如果 ,那么 ∠BOC = 70∘ ∠BAD 等于 (
)
A.20∘ 答案: C
B.30∘
C.35∘
D.70∘
8. 在平面直角坐标系 xOy 中,第一象限内的点 P 在反比例函数图象上,如果点 P 的纵坐标是 3, OP = 5,那么该函数的表达式为 ( )
单位长度至 A1 ,第 2 次点 A1 向右移动 6 个单位长度至 A2 ,第 3 次从点 A2 向左移动 9 个单
位长度至 A3 ,⋯,按照这种移动方式进行下去,点 A4 表示的数是
,如果点 An 与原点
的距离不小于 20,那么 n 的最小值是

答案: ; 7 13
解析: A 表示的数为:1;
A1 表示的数为:1 − 3 × 1 = ; −2
A. 12 y= x
答案: A
B. 12 y=− x
C. 15 y= x
D. 15 y=− x
解析:
过点 P 作 P Q ⊥ y轴 于点 Q,则 OQ = 3.
−−−−−−−−−−
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2017年九年级统一测试数学试卷一、选择题(本题共30分,每小题3分)1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9608000人次,将9608000用科学记数法表示为( ).A .3960810⨯B .4960.810⨯C .596.0810⨯D .69.60810⨯ 2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是( ). b1aA .0a b +=B .0a b -=C .||||a b <D .0ab >3.如图,AB CD ∥,DA CE ⊥于点A .若55EAB ∠=︒,则D ∠的度数为( ).A .25︒B .35︒C .45︒D .55︒4.右图是某几何体的三视图,该几何体是( ).A .三棱柱B .长方体C .圆锥D .圆柱5.若正多边形的一个外角是40︒,则这个正多边形是( ).A .正七边形B .正八边形C .正九边形D .正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为( ).A .2(3)4x -=B .2(3)14x -=C .2(9)4x -=D .2(9)14x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面的距离为1.5m ,则旗杆的高度为(单位:m )( ).A .163B .9C .12D .6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20D BC AE元”.若某商品的原价为x 元(100x >),则购买该商品实际付款式的金额(单位:元)是( ). A .80%20x - B .80%(20)x -- C .20%20x - D .20%(20)x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:A .平均数、中位数B .平均数、方差C .众数、中位数D .众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( ).A .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B .以低于80km/h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C .以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油D .以80km/h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二.填空题(本题共18分,每小题3分) 11.分解因式:22ax ax a -+=__________.12.若函数的图象经过点(1,2)A ,点(2,1)B ,写出一个符合条件的函数表达式__________. 13.下表记录了一名球员在罚球线上罚篮的结果:14.如图,四边形ABCD 是⊙O 内接四边形,若30BAC ∠=︒,80CBD ∠=︒,则BCD ∠的度数为_______︒.15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将AOB △顺时针旋转90︒得到A OB ''△,其中点A '与)点A 对应,点B '与点B 对应.若点(3,0)A -,(1,2)B -,则点A '的坐标为__________,点B '的坐标为__________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P .Pl求作:直线l 的平行直线,使它经过点P . 作法:如图2.m(1)过点P 作直线m 与直线l 交于点O ;(2)在直线m 上取一点()A OA OP <,以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3)以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ; (4)作直线PD .所以直线PD 就是所求作的平行线. 请回答:该作图的依据是______________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17.计算:(1122sin 6022-⎛⎫---︒ ⎪⎝⎭.18.解不等式组:5234722x x x x <≥-+⎧⎪⎨+⎪⎩.19.已知2x y =,求代数式222112x xy y y x x y ⎛⎫-+-÷ ⎪⎝⎭的值.20.如图,在ABC △中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE .求证:BCE A ACB ∠=∠+∠.21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表(1)若将质量为4.5 5.5(单位:kg )的西瓜记为优等品,完成下表:(2A B E DC22.在平面直角坐标系xOy 中,直线1y x =-与y 轴交于A ,与双曲线ky x-交于点(),2B m . (1)求点B 的坐标及k 的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交于点D ,若ABC 的面积为6,求直线CD 的表达式.23.如图,在平行四边形ABCD 中,对角线BD 平分ABC ∠,过点A 作AE BD ∥,交CD 的延长线于点E ,过点E 作EF BC ⊥,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形;(2)若45ABC ∠=︒,2BC =,求EF 的长.B C FDEA24.汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.20072015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为_______________万辆,与2015年相比,2016年的增长率约为______________%;(2)从2008年到2015年,_______________年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到_____________万辆,预估理由是_________________.25.如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B 作BE BA⊥,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:ECB EBC∠=∠;(2)连接BF,CF,若6CF=,3sin5FCB∠=,求AC的长.26.阅读下列材料:OHEFCD A B某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y 是时间x 的函数,其中y (单位:℃)表示水箱中水的温度,x (单位:min )表示接通电源后的时间. 下面是小明的探究过程,请补充完整:(1)下表记录了32min 内14个时间点的温控水箱中水有温度y 随时间x 的变化情况(2)①当04x ≤≤时,写出一个符合表中数据的函数解析式______________;当416x <≤时,写出一个符合表中数据的函数解析式_________________;②如图,在平面直角坐标系xOy 中,描出了上表中部分数据对应的点,根据描出的点,画出当032x ≤≤时,温度y 随时间x 变化的函数图象;x(3)如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源___________min .27.在平面直角坐标系xOy 中,二次函数2(21)5y mx m x m =-++-的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当1n x ≤≤时,函数值y 的取值范围是64y n --≤≤,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为2()y a x h k =-+,当2x <时,y 随x 的增大而减小,求k 的取值范围.28.在ABC △中,AB BC =,BD AC ⊥于点D .(1)如图1,当90ABC ∠=︒时,若CE 平分ACB ∠,交AB 于点E ,交BD 于点F .①求证:BEF △是等腰三角形;②求证:1()2BD BC BF =+;(2)点E 在AB 边上,连接CE .若1()2BD BC BE =+,在图2中补全图形,判断ACE ∠与ABC ∠之间的数量关系,写出你的结论,并写出求解ACE ∠与ABC ∠关系的思路.图1图2D ABFEAD B29.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P关于y 轴,直线l 的二次对称点. (1)如图1,点(1,0)A -.①若点B 是点A 关于y 轴,直线1:2l x =的二次对称点,则点B 的坐标为___________________; ②若点(5,0)C -是点A 关于y 轴,直线2:l x a =的二次对称点,则a 的值为___________________; ③若点(2,1)D 是点A 关于y 轴,直线3l 的二次对称点,则直线3l 的表达式为__________________; (2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点'M 是点M 关于y 轴,直线4:l x b =的二次对称点,且点'M在射线(0)y x ≥上,b 的取值范围是_____________________; (3)(,0)E t 是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点'N 是点N 关于y轴,直线5:1l y =+的二次对称点,且点'N 在y 轴上,求t 的取值范围.图2图1xx北京市西城区2017年九年级统一测试数学试卷答案及评分参考2017.4一、选择题(本题共30分,每小题3分)11.2(1)ax -12.答案不唯一,如:2y x= 13.0.601 14.7015.(0,3)A ',(2,1)B '16.三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等两直线平行;两点确定一条直线.三.解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:101(22sin 6022-⎛⎫--︒+⎪⎝⎭2122=--3=-18.解:解不等式组为5234722x x x x -+⎧⎪⎨+⎪⎩①②<≥ 解不等式①,得3x <.解不等式②,得73x ≥.∴原不等式组的解集为733x ≤<.19.解:原式22()x y x yxy x y -=⋅-x x y=- 当2x y =时,原式222yy y==- 20.证明:∵DE 垂直平分BC 于点D . ∴BE CE =. ∴BCE CBE ∠=. ∵CBE ACB A ∠=∠+∠. ∴BCE ACB A ∠=∠+∠.CDEB A21.解:(1)(2出的西瓜,质量更稳定,大小更均匀,科研小组应选择乙种种植技术. 22.解:(1)∵点(,2)B m 在直线1y x =-上, ∴12m -=. 解得3m =. ∴点(3,2)B .又∵点(3,2)B 在双曲线ky x=上. ∴6k =.(2)设平移后的直线的表达式为y x b =+. 则它与y 轴交于点(0,)D b . ∵AB CD ∥. ∴ABD ABC S S =△△∴162ABD B S AD x =⋅=△. ∴4AD =.∴14b +=或14b --=. ∴3b =或5b =-.∴平移后的直线的表达式为3y x =+或5y x =-.23.(1)证明:在平行四边形ABCD 中,AB CD ∥. ∴ABD BDC ∠=∠. ∵BD 平分ABC ∠, ∴ABD DBC ∠=∠. ∴BDC DBC ∠=∠. ∴BC CD =.∴四边形ABCD 是菱形.(2)解:由(1)可得,AB CD ∥,2CD BC AB ===. ∴45ECF ABC ∠=∠=︒. ∵AE BD ∥.∴四边形ABDE 是平行四边形. ∴2DE AB ==. ∴4CE =.在Rt ECF △中,45ECF ∠=︒,4CE =. ∴22EF =B C FDEA24.(1)19400.13; (2)2010;(3)答案不唯一.如:2020年我国汽车保育量将达到28000万辆,预估理由合理,支撑预估的数据. 25.(1)证明:∵BE BA ⊥于点B , ∴BE 是⊙O 的切线.∵DE 是⊙O 的切线,C 为切点.∴BE CE =. ∴ECB EBC ∠=∠. (2)解:连接AF . ∵AB 是⊙O 直径, ∴90AFB ACB ∠=∠=︒.BE 是⊙O 的切线,切点为B ,CE 是⊙O 的切线,切点为C . ∴BE CE =,EO 平分BED ∠. ∴EO BC ⊥,CH BH =.∴6BF CF ==,BF CF =,OH AC ∥. ∴FBC BAF FCB ∠=∠=∠.在Rt ABF △中,3sin 5BAF ∠=,6BF =.∴10AB =,5OF =.在Rt FCH △中,3sin 5FCB ∠=,6CF =.∴185FH =. ∴75OH OF FH =-=. ∴1425AC OH ==. O HEFC D AB26.解:(1)50;(2)①答案不唯一,如:当04x ≤≤时,1520y x =+; 当416x <≤时,320y x=;②x(3)56.27.解:(1)∵二次函数2(21)5y mx m x m =-++-的图象与x 轴有两个公共点. ∴[]20(21)4(5)0m m m m ≠⎧⎪⎨-+--⎪⎩> 解得124m ->且0m ≠. ∴m 的取值范围是124m ->且0m ≠. (2)①m 取满足条件的最小的整数,由(1)可知1m =.∴二次函数的解析式为234y x x =--. ②图象的对称轴为直线32x =. 当时312n x ≤≤<,函数值y 随自变量x 的增大而减小. ∵函数值y 的取值范围是64y n --≤≤, ∴当1x =时,函数值为6-. 当x n =时,函数值为4n -. ∴2346n n --=-.解得2n =-或4n =(不合题意,舍去). ∴n 的值为2-. ③由①可知,1a =, 又函数图象经过原点, ∴2k h =-,∵当2x <时,y 随x 的增大而减小, ∴2h ≥, ∴4k -≤.28.证明:在ABC △中,AB BC =,BD AC ⊥于点D . ∴ABD CBD ∠=∠,AD BD =.(1)①∵90ABC ∠=︒,FEACBM∴45ACB ∠=︒. ∵CE 平分ACB ∠∴22.5ECB ACE ∠=∠=︒, ∴67.5BEF CFD BFE ∠=∠=∠=︒, ∴BE BF =.∴BEF △是等腰三角形.②延长AB 至M ,使得BM AB =,连接CM .∴BD CM ∥,12BD CM =.∴45BCM DBC ABD BMC ∠=∠=∠=∠=︒,BFE MCE ∠=∠.∴BC BM =.由①可得,,BEF BFE BE BF ∠=∠=. ∴BFE MCE BEF ∠=∠=∠. ∴EM MC =.∴1()2BD BC BF =+.(2)14ACE ABC ∠=∠.FPBACDa .与(1)②同理可证BD PC ∥,12BD PC =,BP BC =; b .由1()2BD BC BF =+可知PEC △和BEF △分别是等腰三角形;c .由180BEF BFE EBF ∠+∠+∠=︒,90FCD DFC ∠+∠=︒,可知14ACE ABC ∠=∠.29.解:(1)①点B 的坐标为(3,0);②a 的值为2-.③直线3l 的表达式为2y x =-+.(2)112b -≤≤;(3)将点N 关于y 轴的对称点记为点P .∴点P 和点'N关于直线:1l y =+对称,∵直线1y =+和y轴关于直线:1l y =+对称. ∴点P在直线1y +上,∵直线1y =+和直线1y +关于y 轴对称,∴点N在直线1y =+上, ∴符合题意的点N是直线1y x =+与⊙E 的公共点. (i)当直线1y =+与⊙E 相离时,则不存在符合题意的点N . (ii)当直线1y x =+与⊙E 相切时,如图所示. 则符合题意的点N是直线1y x =+与⊙E 相切时的切点,记直线1y =+与x轴交于点R , 若点E 在点R 的左侧,由112E N =,可得14RE =,14OE =-∴14t =-+ 若点E 在点R 的右侧,由222E N =,可得24RE =,24OE =∴24t = (iii)当直线1y x =+与⊙E 相交时,44t -<综上,t的取值范围是:44t -≤.。

相关文档
最新文档