高效液相色谱法
高效液相色谱法
2.高效液相色谱法与气相色谱法的比较
(l)气相色谱法:分析对象仅占有机物总数的20%。 高效液相色谱法:分离和分析占有机物总数近80%的那些 高沸点、热稳定性差、离子型化合物及摩尔质量大的物质。
(2)气相色谱:流动相与组分不产生相互作用力,仅起运 载作用。 高效液相色谱法:流动相对组分可产生一定亲和力,并参与 固定相对组分作用的剧烈竞争,流动相对分离起很大作用, 相当于增加了一个控制和改进分离条件的参数;
高压输液泵应符合下列要求:密封性好,输出 流量恒定,压力平稳,可调范围宽,便于迅速 更换溶剂及耐腐蚀。
高压输液泵
常用的输液泵分为恒流泵和恒压泵两种。 恒流泵特点是在一定操作条件下,输出流量保持恒定而与色谱 柱引起阻力变化无关; 恒压泵是指能保持输出压力恒定,但其流量则随色谱系统阻力 而变化,故保留时间的重视性差。 目前主要使用恒流泵,又称机械泵,它又分机械注射泵和机械 往复泵两种,应用最多的是机械往复泵。
(四)检测系统
两种基本类型的检测器: 溶质型检测器:它仅对被分离组分的物理或化学特性有响应, 属于这类检测器的有紫外、荧光、安培检测器等。 总体检测器:它对试样和洗脱液总的物理或化学性质有响应, 属于这类检测器的有示差折光,电导检测器等。 (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电化学检测器
高效液相色谱法
High Performance Liquid Chromatography,HPLC
§1
概 述
Introduction
一、高效液相色谱法概述
高效液相色谱法(HPLC)吸取了气相色谱与经典液相色谱优 点,并用现代化手段加以改进。
引入了气相色谱的理论;
在技术上采用了高压泵、高效固定相和高灵敏度检测器; 具备速度快、效率高、灵敏度高、操作自动化的特点;
高效液相色谱法 HPLC
1)硅胶: <>无定型硅胶 最早使用,传质慢、柱效低 <>薄壳型硅胶 直径为30~40μm的玻璃珠表面涂布一层1~2μm 厚的硅胶微粒,孔径均一、渗透性好、传质 快,但柱容量有限。 <>全多孔球型硅胶 粒度一般为5~10μm,颗粒和孔径的均一性都比 前两种好,柱容量大,为当今液固色谱固定相 的主体,也是键合固定相的主要基质。
2.进样系统 a 隔膜进样(高分子有机硅胶垫→进样室) >GC系统压力较小,可以 >HPLC系统压力太大,须停泵进样(早期) b 阀进样:不必停泵,六通阀
3.分离系统-色谱柱 >直径4~6mm,柱长10~30cm,多为不锈钢材料 >柱效评价:色谱系统适应性试验 R,n,fs(拖尾因子) >色谱柱维护 >预柱和预饱和柱
(二)反相键合相固定相
1.分离机制:疏溶剂理论 正相——流动相与溶质排斥力强, 作用时间↑, k↑,组分tR↑ 反相——流动相与溶质排斥力弱, 作用时间↓, k↓,组分tR↓
二、HPLC与GC差别
1.分析对象的区别 GC:
适于能气化、热稳定性好、且沸点较低的样品; 但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可 检测。(占有机物的20%)
HPLC: 适于溶解后能制成溶液的样品(包括有机介质溶 液),不受样品挥发性和热稳定性的限制,对分 子量大、难气化、热稳定性差的生化样品及高分 子和离子型样品均可检测用途广泛。(占有机物 的80%)
高效液相色谱法简介
高效液相色谱的特点
高压——压力可达150~300 kg/cm2。色谱
柱每米降压为75 kg/cm2以上。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中
同时分离成份可达100种。
高灵敏度——紫外检测器灵敏度可达0.01ng。
同时消耗样品少。
第二节
塑料块 Teflon
1 cm
工作电极 (Pt, Au, 碳糊)
e.电导检测器
电导检测器主要用于离子色谱的检测。 原理: 根据待测物在一些介质中电离后所产 生的电导(电阻的倒数)变化来测量电离物质 的含量。 电导检测器的主要部件是电导池。其响应 受温度影响较大,因此需要将电导池置于恒温 箱中。另外,当 pH>7时,该检测器不够灵敏。 电导检测器不能用于梯度洗脱。
◆恒流泵
注射型泵------输出精确,无脉动,需更换溶剂而中断工作。
往复型泵------造价低廉,溶剂更换方便,但存在脉动。 (使用较多) 对流量变化敏感的检测器会有噪声 干扰,此时可连接一脉动阻尼器。
◆恒压泵--------压力恒定,但流量不恒定(现在已经较少使用)。
输液泵操作注意事项:
防止固体微粒进入泵体 流动相不应含有腐蚀性物质 防止溶剂瓶内的流动相被用完 不超过规定的最高压力 流动相一般应该先脱气
F=2.3QKI0εCl
Q为量子产率,K为荧光效率,ε为摩尔吸光系 数,l为光径长度。
F=KC
特点:选择性好,
专属型检测器,灵敏 度比紫外检测器高 (检测限10-10 g/ml) 对多环芳烃,维 生素 B 、黄曲霉素、 卟啉类化合物、农药 、药物、氨基酸、甾 类化合物等有响应;
c. 示差折光检测器
hplc高效液相色谱法
HPLC高效液相色谱法简介高效液相色谱法(HPLC)是一种利用液体作为流动相,通过高压输液系统,将样品中的各组分在固定相和流动相之间进行分配或吸附等作用而实现分离和检测的色谱技术。
HPLC具有分离效率高、灵敏度高、选择性强、分析速度快、样品适用范围广等优点,已成为化学、生物、医药、环境等领域中最重要的分析方法之一。
本文将简要介绍HPLC的基本原理、仪器组成、常用的色谱模式和应用领域,以期对HPLC感兴趣的读者有所帮助。
一、HPLC的基本原理HPLC的基本原理是利用样品中的各组分在固定相和流动相之间的不同亲和力,使其在色谱柱内以不同的速度移动,从而达到分离的目的。
固定相是填充在色谱柱内的颗粒状物质,可以是固体或涂于固体载体上的液体。
流动相是通过高压泵送入色谱柱的溶剂或溶剂混合物,可以是极性或非极性的。
样品是通过进样器注入流动相中,并随流动相进入色谱柱。
当样品中的各组分经过固定相时,会发生吸附、分配、离子交换、排阻等作用,导致它们在固定相中停留不同的时间。
这个时间称为保留时间(retention time),通常用tR表示。
保留时间是反映样品组分在色谱柱内分离程度的重要参数,不同的组分有不同的保留时间。
当样品组分从色谱柱出口流出时,会被检测器检测到,并产生一个信号。
这个信号随时间变化而变化,形成一个色谱峰(chromatographic peak)。
色谱峰的位置反映了样品组分的保留时间,色谱峰的面积或高度反映了样品组分的含量或浓度。
将检测器信号随时间变化而绘制出来,就得到了一条色谱图(chromatogram)。
色谱图上可以看到不同的色谱峰,每个峰对应一个样品组分。
通过比较保留时间和色谱峰面积或高度,就可以对样品进行定性和定量分析。
二、HPLC仪器组成HPLC仪器主要由以下几个部分组成:溶剂供给系统(solvent delivery system):负责提供恒定压力和流速的流动相,并将溶剂混合成所需比例。
高效液相色谱法
第八章高效液相色谱法(High Performance Liquid Chromatograph)第一节概述(Generalization)以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。
HPLC是20世纪70年代初发展起来的一种新的色谱分离分析技术。
具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)的特点,适用于高沸点、热不稳定有机及生化试样的分离分析。
HPLC基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、或数据处理系统记录色谱信号再进行数据处理而得到分析结果。
高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。
目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。
将固定液的官能团键合在载体上,形成的固定相称为化学键合相,具有固定液不易流失的特点,一般认为有分配与吸附两种功能,常以分配作用为主。
C18(ODS)是最常使用的化学键合相。
根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。
《中国药典》中有50种中成药的定量分析采用HPLC法,在中药制剂分析中,大多采用反相键合相色谱法。
一、高效液相色谱法的特点目前经典LC主要用于制备,若用于分析则采用脱机或非连续检测。
经典LC填料缺陷,通常是填料粒度大、范围宽、不规则,不易填充均匀,扩散和传质阻力大,谱带展宽加大。
它存在致命弱点:速度慢、效率低和灵敏度低。
HPLC填料(高效固定相)颗粒细、直径范围窄、能承受高压。
高效液相色谱法
高效液相色谱法高效液相色谱法(《中国药典》2010年版二部附录V D)系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。
注入的供试品,由流动相带人柱内,各组分在柱内被分离,并依次进入检测器,由积分仪或数据处理系统记录和处理色谱信号。
1 对仪器的一般要求所用的仪器为高效液相色谱仪,由输液泵、进样器、色谱柱、检测器和色谱数据处理系统组成,仪器应按现行国家技术监督局"液相色谱仪检定规程"定期检定并符合有关规定。
1.1 色谱柱最常用的色谱柱填充剂为化学键合硅胶。
反相色谱系统使用非极性填充剂,以十八烷基硅烷键合硅胶最为常用,辛基硅烷键合硅胶和其他类型的硅烷键合硅胶(如氰基键合硅烷和氨基键合硅烷等〉也有使用。
正相色谱系统使用极性填充剂,常用的填充剂有硅胶等。
离子交换色谱系统使用离子交换填充剂;分子排阻色谱系统使用凝胶或高分子多孔微球等填充剂;对映异构体的分离通常使用手性填充剂。
填充剂的性能(如载体的形状、粒径、孔径、表面积、键合基团的表面覆盖度、含碳量和键合类型等)以及色谱柱的填充,直接影响供试品的保留行为和分离效果。
孔径在15nm(lnm= lOA)以下的填料适于分析分子量小于2000的化合物,分子量大于2000的化合物则应选择孔径在30nm以上的填料。
除另有规定外,分析柱的填充剂粒径一般在3~10µm之间。
粒径更小(约2µm)的填充剂常用于填装微径柱(内径约2mm)。
使用微径柱时,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也需作适当的调整。
当对其测定结果产生争议时,应以品种正文规定的色谱条件的测定结果为准。
以硅胶为载体的键合固定相的使用温度通常不超过40°C,为改善分离效果可适当提高色谱柱的使用温度,但不宜超过60°C。
流动相的pH值应控制在2~8之间。
当pH值大于8时,可使载体硅胶溶解;当pH值小于2时,与硅胶相连的化学键合相易水解脱落。
高效液相色谱法(HPLC)
4.离子对色谱法:将一种(或数种)与溶质离子电荷相 反的离子(称对离子或反离子)加到流动相或固定相中, 使其与溶质离子结合形成离子对,从而控制溶质离子保 留行为的一种色谱法。
17
5.离子色谱法:用离子交换树脂为固定相,电解质溶液为流动相,以电导检测器检 测组分含量,用抑制柱消除强电解质背景离子对电导检测器的干扰。(与离子交换 色谱法不同的是分离组分的检测器不同)
1.分离原理 液液分配色谱的分离原理基本与液液萃取相同,都是根据物质在两种互不相 溶的液体中溶解度的不同,具有不同的分配系数。所不同的是液液色谱的分配是 在柱中进行的,使这种分配平衡可反复多次进行,造成各组分的差速迁移,提高 了分离效率,从而能分离各种复杂组分。
19
2、固定相 (1)担体(表面多孔型) 它是30~ 40μm的玻璃微球,表面附着一层厚度为 1 ~ 2μm的多孔硅胶。由 于固定相仅是表面很薄一层,因此,传质速度快,加之是直径很小的均匀球体,装 填容易,重现性好,现已广泛使用! 但表面积小,柱容量低,需用高灵敏度检测器。
高效液相色谱法(HPLC)
High Performance Liquid Chromatography
1
2
3
4
§3- 1 高效液相色谱法概述
一、定义 以高压输出液体为流动相,以小粒径填料填充色谱柱的色谱分析方法。
高效液相色谱法是继气相色谱之后,70年代初期发展起来的一种以液体做 流动相的新色谱技术.
而在液相色谱中,流动相液体也与固定相争夺样品组分分子,为提高选择性 增加了一个因素。还可选用不同比例的两种或两种以上的液体作流动相,增大 分离的选择性(能同时选择固定相和流动相) 。
12
②液相色谱固定相类型多,如离子交换色谱和排阻色 谱等,作为分析时选择余地大;而气相色谱是不 可能的。 ③ 液相色谱通常在室温下操作,较低的温度,一般 有利于色谱ห้องสมุดไป่ตู้离条件的选择。
高效液相色谱法
(2)化学键合固定相 ) B. 极性键合相 极性键合相指键合有机分子 中含某些极性基团,与空白硅胶相比, 中含某些极性基团,与空白硅胶相比,其极性 键合相表面能量分布均匀,是一种改性的硅胶, 键合相表面能量分布均匀,是一种改性的硅胶, 常用的极性键合相有氨基、氰基等。 常用的极性键合相有氨基、氰基等。氨基键合 相是分离糖类最常用的固定相,常用乙腈-水 相是分离糖类最常用的固定相,常用乙腈 水
二、液相色谱的流动相
1. 流动相特性
(mobile phases of LC) )
(2)化学键合固定相 )
化学键合固定相是应用最广的色谱法。 化学键合固定相是应用最广的色谱法。将固定液的官能团键
合在载体上形成的固定相称为化学键合相,其特点是不流失, 合在载体上形成的固定相称为化学键合相,其特点是不流失, 一般认为有分配与吸附两种功能。 一般认为有分配与吸附两种功能。 a. 硅氧碳键型: 硅氧碳键型: ≡Si—O—C b. 硅氧硅碳键型:≡Si—O—Si — C 硅氧硅碳键型: 稳定,耐水、耐光、耐有机溶剂,应用最广 稳定,耐水、耐光、耐有机溶剂, c. 硅碳键型: 硅碳键型: d. 硅氮键型: 硅氮键型: ≡Si—C ≡Si—N
4.6
高效液相色谱法
高效液相色谱法(high pressure Liquid 高效液相色谱法 chromatography,HPLC)是利用物质在两 , 是利用物质在两 相之间吸附或分配的微小差异达到分离的目的。 相之间吸附或分配的微小差异达到分离的目的。 当两相作相对移动时, 当两相作相对移动时,被测物质在两相之间做 反复多次的分配, 反复多次的分配,这样使原来微小的差异产生 了很大的分离效果,达到分离、 了很大的分离效果,达到分离、分析和测定一 些理化常数的目的。 些理化常数的目的。
高效液相色谱法
正相色谱:以极性物质做固定相,非极性物质作
流动相,即流动相的极性<固定相的极性。正相色 谱适用于极性化合物的分离,极性小的先出柱, 极性大的后出柱。(反之为反相色谱)
高效液相色谱仪
压力表 储液器 高压泵
进样器
梯度洗 提装置
色 谱 柱
记录仪 检测器
馏分收集器
一 高压输液系统 1.贮液器:1-2L的玻璃瓶,配有溶剂过滤器(Ni 合金),其孔径约2 m,可防止颗粒物进行 泵内。 2.脱气:超声波脱气或真空加热脱气。溶剂通 过脱气器中的脱气膜,相对分子量小的气 体透过膜从溶剂中除去。 3.高压泵: 对输液泵的要求:密封性好、输液流量稳 定无脉动、可调范围宽、耐腐蚀。
二 分离和进样系统 (一)进样系统 与GC相比,HPLC柱要短得多,因此由于柱 本身所产生的峰形展宽相对要小些。即, HPLC的展宽多因一些柱外因素引起。这些 因素包括:进样系统、连接管道及检测器 的死体积。进样装置包括两种。 1. 隔膜注射进样:使用微量注射器进样。装 置简单、死体积小。但进样量小且重现性 差。
2.化学发光检测器
是近年发展起来的高选择性、高灵敏度
(二)荧光检测器(FD) 早期的荧光检测器是具有滤光片的荧光 光度计,已基本淘汰。 目前使用的荧光检测器多是具有流通池 的荧光分光光度计(直角光路)。 检测限可达 1× 10-10g / ml ,比紫外检测 器灵敏,但只适用于能产生荧光或其衍生 物能发荧光的物质。
主要用于氨基酸、
多环芳烃、维生素、 甾体化合物、酶类、 黄曲霉素、卟啉类 化合物、农药等的 检测。
利用固定相与流动相之间对待分离组分子溶解
度的差异来实现分离。分配色谱的固定相一般 为液相的溶剂,依靠图布、键合、吸附等手段
仪器分析-高效液相色谱法
流动相的选择与制备
选择合适的流动相
根据被分析化合物的性质, 选择适当的流动相,如有 机溶剂、缓冲液等。
流动相的配制
按照实验要求,准确称量 流动相组分,混合均匀, 并进行过滤和脱气处理。
流动相的梯度洗脱
对于多组分分离,可以采 用梯度洗脱技术,以提高 分离效果。
仪器的开机与平衡
开机
按照仪器说明书,打开仪器电源, 启动仪器操作系统。
药物制剂质量控制
高效液相色谱法可以用于药物制剂的质量控制, 检测制剂中药物的含量、纯度和稳定性等指标。
环境样品分析中的应用
污染物检测
高效液相色谱法可以用 于检测环境中的有机污 染物,如农药、多环芳 烃等,为环境污染控制 和治理提供依据。
饮用水质量检测
通过高效液相色谱法可 以检测饮用水中的有害 物质,如消毒副产物、 微量有机物等,保障公 众的饮用水安全。
粒径
色谱柱的粒径影响分离效 果和分离时间。粒径越小, 分离效果越好,但分离时 间越长。
长度
色谱柱的长度影响分离效 果和载样量。长度越长, 分离效果越好,但载样量 越小。
检测器
类型
常用的检测器有紫外-可见光检测器、荧 光检测器、电导检测器等,根据被测物质 的性质和检测需求选择合适的检测器。
响应速度
线性范围
质。
测定水体、土壤、空气 中的污染物和有害物质。
用于蛋白质、核酸、细 胞等生物大分子的分离
和检测。
高效液相色谱法的优势与局限性
优势
高分离效能、高灵敏度、高选择 性、应用范围广。
局限性
需要专业操作人员、仪器昂贵、 样品前处理复杂、耗时长。
02 高效液相色谱法的仪器构成
CHAPTER
第五章高效液相色谱法
9
基本理论
热力学理论:塔板理论——平衡理论 热力学理论:塔板理论——平衡理论 动力学理论:速率理论—— 范第姆特 动力学理论:速率理论 ——范第姆特 方程 色谱图的基本参数:与气相色谱法类 似
10
各类高效液相色谱法的分离原理及选 择
液-固吸附色谱 液-液分配色谱 离子交换色谱 体积排阻色谱 亲和色谱
3
高效液相色谱法的类型
根据固定相的不同 液-固色谱 液-液色谱 根据分离机理的不同 分配色谱 吸附色谱 离子交换色谱 体积排阻色谱 亲和色谱
4
分配色谱:分离组分在两相中的分配系数不 同 吸附色谱:固定相对分离组分的吸附能力不 同 离子交换色谱:不同离子与固定相上的相反 电荷离子间作用力大小不同 体积排阻色谱:根据样品分子尺寸的不同按 分子大小分开 亲和色谱:不同基体上键合多种不同特性的 配位体作固定相,用具有不同pH的缓冲溶液 做流动相,依据生物分子与基体上键联的配 位体之间存在的特异性亲和作用力不同
30
流动相
1. 流动相特性
(1)液相色谱的流动相又称为:淋洗液,洗脱剂 液相色谱的流动相又称为:淋洗液, 液相色谱的流动相又称为 。流动相组成改变,极性改变,可显著改变组分 流动相组成改变,极性改变, 分离状况; 分离状况; (2)亲水性固定液常采用疏水性流动相 , 即流 亲水性固定液常采用疏水性流动相, 亲水性固定液常采用疏水性流动相 动相的极性小于固定相的极性, 动相的极性小于固定相的极性,称为正相液液色 谱法,极性柱也称正相柱。 谱法,极性柱也称正相柱。 (3)若流动相的极性大于固定液的极性 , 则称 若流动相的极性大于固定液的极性, 若流动相的极性大于固定液的极性 为反相液液色谱,非极性柱也称为反相柱。 为反相液液色谱,非极性柱也称为反相柱。组分 31 在两种类型分离柱上的出峰顺序相反。 在两种类型分离柱上的出峰顺序相反。
高效液相色谱法
31
特点: 特点: 氰基键合相选择性与硅胶类似 键合相选择性与硅胶类似, ① 氰基键合相选择性与硅胶类似, 但极性更小。相同流动相, 但极性更小。相同流动相,组分保留 时间小于硅胶。 时间小于硅胶。 氨基键合相 主要用于糖类分析, ② 氨基键合相 主要用于糖类分析, 糖类分析专用柱 分析专用柱。 是糖类分析敏度: 紫外、荧光、电化学、 紫外、荧光、电化学、质谱等高灵敏 度检测器使用。 度检测器使用。 最小检测量: 最小检测量: 10-9 ~10-11 g 4. 高度自动化: 高度自动化: 采用色谱专家系统为核心的色谱智 能化和仿真优化技术, 能化和仿真优化技术,使 HPLC不仅能 不仅能 自动处理数据,绘图和打印分析结果, 自动处理数据,绘图和打印分析结果, 而且还可以自动控制色谱条件。 而且还可以自动控制色谱条件。
32
2. 流动相极性与容量因子的关系 流动相极性大,洗脱能力增加, 流动相极性大,洗脱能力增加, k 减小,tR 减小;反之, k 与 tR 均 减小, 减小;反之, 增加。 增加。 极性小的组分先出柱
33
四、正、反相色谱法 正相HPLC(normal phase HPLC) ( 正相 ) 固定相: 固定相:极性 常用:改性硅胶 硅胶、 常用:改性硅胶、氰基柱 流动相: 非极性(或弱极性) 流动相 非极性(或弱极性) 常用: 正己烷 常用: 流动相极性小于固定相极性
11
第二节 分离机制 一、液-固吸附色谱法 固吸附色谱法
(Liquid-Solid Chromatography)
(一)吸附机理 根据吸附剂对样品中各组分的吸 根据吸附剂对样品中各组分的吸 附能力差异而分离 而分离。 附能力差异而分离。 吸附过程是被分离组分的分子 与流动相分子争夺吸附剂表面活性 中心(active center)的结果。 的结果。 中心 的结果
高效液相色谱法
60年代研制出气动放大泵、注射泵及低流量往复式 柱塞泵,但后者的脉冲信号很大,难以满足高效液 相色谱的要求。1970年代,往复式双柱塞恒流泵, 解决了这一问题1970年代后,科克兰制备出全多孔 球形硅胶,平均粒径只有7μm,具有极好的柱效, 并逐渐取代了无定形微粒硅胶。之后又制造出的键 合固定相使柱的稳定性大为提高,多次使用成为可 能。1970年后,适合分离生物大分子的填料又成为 研究的热点。1980年后,改善分离的选择性成为色 谱工作者的主要问题,人们越来越认识到改变流动 相的组成是提高选择性的关键
• 流程:如左图所示,流 动相贮器⑴中的流动相 被泵⑵吸入,经梯控制 器按一定的梯度进行混 合然后输出,测其压力 和流量,导入(3)进样 阀(器)经(4)色谱柱 后到(5)检测器检测, 由(7)记录仪记录色谱 图,(6)为废液。
特点(高效液相色谱法有“四高一广”的特点):
①高压:流动相为液体,流经色谱柱时,受 到的阻力较大,为了能迅速通过色谱柱,必 须对载液加高压。 ②高速:分析速度快、载液流速快, 较经典液体色谱法速度快得多,通常 分析一个样品在15~30分钟,有些样 品甚至在5分钟内即可完成,一般小于 1小时。
HPLC已在环境监测中得到广泛应用,特别 适用于分子量大、挥发性低、热稳定 性差的有机污染物的分离和分析如多 环芳烃、酚类、多环联苯、邻苯二甲 酸酯类、联苯胺类、阴离子表面活性 剂有机农药、除草剂等,其中多数属于 美国环保局(EPA)清洁水法案中颁布的 114项优先有机污染物范围。
5.在药品检验中的应用: 现在,在药品质量标准中,对有关物质检查的要 求越来越高,一个药物从合成原料到制备有 关的制剂,再经过贮备、运输、使用,要经过 一段较为复杂和漫长的过程,在此期间,每一 个过程都有可能产生有关的物质,如生产中 可能带入原料、试剂、中间体、副产物和 异构体等;在贮备和运输过程中,可能产生降 解产物,聚合物等。为了保证药物的安全有 效。同时也要考虑到生产的实际情况。因 此,对药物的研究,可以允许有一定量的无害 或低毒性的有关物质液相仪器各厂家的仪 器展。还有对药品的含量测定
高效液相色谱法HPLC
VS
报告结果
整理分析数据,撰写分析报告,提供各组 分的浓度、纯度等相关信息,为科研或生 产提供决策依据。
THANKS FOR WATCHING
感谢您的观看
实验操作步骤
流动相的准备与平衡
根据实验要求配制流动相,通过泵以适宜的流速 通过色谱柱进行平衡。
洗脱与检测
流动相带着样品经过色谱柱洗脱,各个组分依次 流出并进入检测器进行检测。
ABCD
进样
将样品注入进样器,通过压力将样品送入色谱柱 进行分离。
数据处理与结果分析
对检测器输出的信号进行处理,得到各组分的峰 形和峰面积,进行定性和定量分析。
01
02
03
04
进样
将样品注入色谱柱。
分离
在流动相的带动下,样品中的 组分在色谱柱中进行分离。
检测
检测器对分离后的组分进行检 测,并记录信号。
数据处理
对采集到的数据进行处理、分 析和存储。
高效液相色谱仪的维护和保养
定期清洗色谱柱
使用适当的溶剂清洗色谱柱, 以去除残留物和杂质。
维护和检查检测器
定期检查检测器的性能和准确 性,确保其正常运行。
数据处理系统
用于采集、处理、分析和存储色谱数据,通常采用色谱工 作站。
高效液相色谱仪的操作流程
01
02
03
样品准备
将样品进行适当处理,以 便注入色谱柱。
流动相制备
根据实验要求,选择合适 的流动相,并进行过滤和 脱气处理。
系统平衡
在进样之前,确保色谱系 统达到平衡状态,以提高 分离效果。
高效液相色谱仪的操作流程
样品的预处理
分离
对于复杂样品,需要进行分离操 作以去除杂质或提取目标成分。 常用的分离方法包括离心、过滤、
仪器分析第4讲 高效液相色谱法
经典液相色谱法 75-600 0.01-1.0 1-20 50-200 2-50 1-10
高效液相色谱法 3-50(常用5-10)
20-300 0.05-1.0
2-30 104-105 10-6-10-2
2.高效液相色谱法与气相色谱法
(l)气相色谱法分析对象只限于分析气体和 沸点较低的化合物,它们仅占有机物总数 的20%.对于占有机物总数近80%的那些高 沸点、热稳定性差、摩尔质量大的物质, 目前主要采用高效液相色谱法进行分离和 分析.
3. 柱外效应
由于色谱柱之外的因 素引起的色谱峰的展 宽,例如进样系统、 连接管路及检测器的 死体积等。
3-3 高效液相色谱的类型及其分离原理
液—液分配色谱及化学键合相色谱 液—固吸附色谱 离子交换色谱 离子色谱 空间排阻色谱
1、 液-液分配色谱
liquid- liquid partition chromatography
4、 离子色谱
ion chromatography
离子色谱法是由离子交换色谱法派生出来的一种 分离方法。由于离子交换色谱法在无机离子的分 析和应用受到限制。例如,对于那些不能采用紫 外检测器的被测离子,如采用电导检测器,由于 被测离子的电导信号被强电解质流动相的高背景 电导信号掩没而无法检测。
2、 液-固吸附色谱
liquid-solid adsorption chromatography
流动相为液体,固定相为固体吸附剂
分离原理:利用溶质分子占据固定相表面吸附 活性中心能力的差异
分离前提:K不等或k不等
液—固吸附色谱
固体吸附剂主要类型: 极性的硅胶(应用最广) 氧化铝 分子筛 非极性的活性炭
1971年科克兰等人出版了《液相色谱的现代实践》一 书,标志着高效液相色谱法(HPLC)正式建立。
仪器分析 第7章 高效液相色谱法
由非极性固定相和极性流动相所组成的 液相色谱体系,与正相 HPLC 体系正好相反。 其代表性的固定相是十八烷基键合硅胶 (ODS 柱),代表性的流动相是甲醇和乙腈。 是当今液相色谱的最主要分离模式。
液-液分配色谱固定相的液体往往容易溶解到流 动相中去,所以重现性很差,不大为人们所采用。 后来发展起来的键合固定相以化学键合的方法 将功能分子结合到惰性载体上,固定相就不会溶解 到流动相中去了。
(3)工作温度: 气相色谱一般都在较高温度下进行的,而 高效液相色谱法则经常可在室温条件下工作。
高效液相色谱法主要类型
类 型 液固吸附色谱 主要分离机理 吸附能,氢键 主要分析对象或应用领域 异构体分离、族分离,制备
液液分配色谱 凝胶色谱 离子交换色谱
手性色谱 亲和色谱
疏水分配作用 溶质分子大小 库仑力
由于离子对化合物A-B+具有疏水性,因而 被非极性固定相(有机相)提取。组分离 子的性质不同,它与反离子形成离子对的 能力大小不同以及形成的离子对疏水性质 不同,导致各组分离子在固定相中滞留时 间不同,因而出峰先后不同。
B. 键合相反相离子对色谱法
离子对色谱法类型很多,根据流动相和 固定相的极性可分为反相离子对和正相离子 对色谱法。其中以键合相离子对色谱法最重 要。这种色谱法的固定相采用非极性的疏水 键合相[如十八烷基键合相( ODS )等], 流动相为加有平衡离子(反离子)的极性溶 液(如甲醇—水或乙睛—水)。
抑制柱离子色谱的原理:
以阴离子分析为例:
分析柱反应:
R—Cl + NaOH R—OH + NaCl
抑制柱反应: + NaOH
R—Na + H2O
以阳离子分析为例:
高效液相色谱法
液相色谱法固定相
(三) 离子交换色谱法固定相
1. 薄膜型离子交换树脂: 即以薄壳玻璃珠为担体, 在它的表面涂约 1% 的离子交换树脂而成。
2. 离子交换键合固定相: 用化学反应将离子交换基 团键合在惰性担体表面。
液相色谱法固定相
(四) 亲和色谱固定相
亲和色谱是一种基于分离物与配体间特异
的生物亲合作用来分离生物大分子的技术,它
五 高效液相色谱分离类型的选择
要正确地选择色谱分离方法,首先必须尽可能多的 了解样品
的有关性质,其次必须熟悉各种色谱方法的主要特点及其应
用范围。选择色谱分离方法的主要根据 是样品的相对分子质 量的大小,在水中和有机溶剂中的溶解度,极性和稳定程度
以及化学结构等物理、化学性质。
1、相对分子质量 对于相对分子质量较低(一般在200以下),挥发性比
的作用越来越大,主要应用如下:
多环芳烃、农药、酚类、真菌毒素、异腈酸酯等
等。 特别是有机农药方面的检测。
1. 有机氯农药残留量分析
固定相:薄壳型硅胶(37 ~50m)
流动相:正己烷
流 速:1.5 mL/min 色谱柱:50cm2.5mm(内径)
检测器:差示折光检测器
可对水果、蔬菜中的农药残 留量进行分析。
极性小的组分先出柱,极性大的组分后出柱
适于分离极性组分
反相色谱——固定液极性 < 流动相极性(RLLC)
极性大的组分先出柱,极性小的组分后出柱 适于分离非极性组分
载体又称担体
(1) 全多孔型担体:
a.
HPLC早期使用的担体与GC类似,是颗粒均匀的多孔球 体,如有氧化铝、氧化硅、硅藻土等制成的 Φ 100μ m全多孔型担体。
高效液相色谱法(HPLC)简介
高效液相色谱法分离过程
主要在于固定相的性质、形状及粒度,其次 差别: 是检测手段和输液设备。
经典液相色谱 固定相: 粒度:60~600μm(多孔) 柱长:10~200cm(d=10~50mm) n 约为 2~50/m
流动相:靠重力输送
经典液相色谱无在线检测器
缺点:
①粒度范围宽、不规则,不易填充均匀,扩散和传质阻 力大。 ②无检测设备,分析速度慢、效率低。 只能作为分离手段
(3)不能完全替代气相色谱
(4)不适于分析受压分解、变性的具有生物活性的
Hale Waihona Puke 生化样品。高效液相色谱法与其他分析方法一样,
不是尽善尽美的。
第二节 高效液相色谱法的基本理论
一、高效液相色谱参数 1.定性参数 tR 、 t 0 、 t’ R t’R= tR- t0 2.柱效参数 σ、 W1/2 、W W=4 σ 或 w=1.699W1/2 n=( tR / σ)2 H=L/n
四、高效液相色谱法的应用范围和局限性
1.应用范围 高效液相色谱法适于分析高沸点、受热不稳定易 分解、分子量大、不同极性的有机化合物;生物活性 物质和多种天然产物;合成和天然高分子化合物。 涉及石油化工产品、食品、药品、生物化工产品 及环境污染物。约占全部有机物的80%。 2.方法的局限性
(1)使用多种溶剂为流动相,成本高,污染环境 (2)缺少通用检测器
美国药典委员会(USPC)成立于1820年,至今近200 年。出版发行了25版药典。 75年(19版)将HPLC载入药典 20版-62项;21版-363项;22版-871项;23版-1188项; 24版-含量测定法:1386项 鉴别:519项 杂质检查:206项
如今:在评价世界各国药典水平时,HPLC法成为 反映各国药典先进性的重要指标之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
☺流动相差别的区别
GC:流动相为惰性,气体组分与流动相无亲合作用 力,只与固定相有相互作用。 HPLC:流动相为液体,流动相与组分间有亲合作用 力,能提高柱的选择性、改善分离度,对分离起 正向作用。且流动相种类较多,选择余地广,改 变流动相极性和pH值也对分离起到调控作用,当 选用不同比例的两种或两种以上液体作为流动相 也可以增大分离选择性。
二、化学键合相色谱法(CBPC)
采用化学键合相的液相色谱称为化学键合相色谱 法,简称键合相色谱。由于键合固定相非常稳定,在使 用中不易流失,适用于梯度淋洗,特别适用于分离容量 因子k值范围宽的样品。适用于种类繁多样品的分离。
键合固定相类型 用来制备键合固定相的载体,几乎都用硅胶。利 用硅胶表面的硅醇基(Si一OH)与有机分子可成键 ,即可得到各种性能的固定相。一般可分三类 (1)疏水基团 如不同链长的烷烃(C8和C18。) 和苯基等 (2)极性基团 如氨丙基,氰乙基、醚和醇等。 (3)离子交换基团 如作为阴离子交换基团的胺 基,季镀盐;作为阳离子交换基团的磺酸基等.
高效液相色谱法
(High Performance Liquid Chromatography,HPLC)
第一节 液相色谱的柱效 第二节 高效液相色谱仪 第三节 高效液相色谱法的分类
概述
高效液相色谱法(HPLC)是20世纪60年 代末70年代初发展起来的一种新型分离分析技 术,随着不断改进与发展,目前已成为应用极 为广泛的化学分离分析的重要手段。它是在经 典液相色谱基础上,引入了气相色谱的理论, 在技术上采用了高压泵、高效固定相和高灵敏 度检测器,因而具备速度快、效率高、灵敏度 高、操作自动化的特点。为了更好地了解高效 液相色谱法优越性,现从两方面进行比较:
(三)离子性键合相色谱法
当以薄壳型或全多孔微粒型硅胶为基质,化学键合 各种离子交换基团,如一SO3H 一CH2NH2、-C00H、 一 CH2N ( CH3 )等时,就形成了离子性键合相色谱的 固定相;流动相一般采用缓冲溶液。其分离原理与离子 交换色谱类同。 归纳键合相色谱的最大优点是:通过改变流动相的组成 和种类,可有效地分离各种类型化合物(非极性、极性 和离子型)。此外,由于键合到载体上的基团不易流失 ,特别适用于梯度淋洗。据统计,在高效液相色谱法中 ,约有8O%的分离问题是用键合相色谱法解决。此法 的最大缺点是不能用于酸、碱度过大或存在氧化剂的缓 冲溶液作流动相的体系。
(二)正相键合相色谱法 此法是以极性的有机基团, CN 、 NH2 双羟基等键合在硅胶表面,作为固定相;而 以非极性或极性小的溶剂(如烃类)中加入 适量的极性溶剂(如氯仿、醇、乙腊等)为 流动相,分离极性化合物。此时,组分的分 配比 k 值随其极性的增加而增大,但随流动 相极性的增加而降低。 这种色谱方法主要用于分离异构体、极 性不同的化合物,特别适用于分离不同类型 的化合物。
(3)硅烷化(≡Si—O-Si-C)键合固定相
这类键会固定相具有热稳定好,不易吸水, 耐有机溶剂的优点。能在70℃以下,PH=2~8范 围内正常工作,应用较广泛.
(一)反相键合相色谱法
此法的固定相是采用极性较小的键合固定相,如硅 胶一C18H37、硅胶一苯基等;流动相是采用极性较强的 溶剂,如甲醇十、乙睛一水、水和无机盐的缓冲溶液等 。它多用于分离多环芳烃等低极性化合物;若采用含一 定比例的甲醇或乙睛的水溶液为流动相,也可用于分离 极性化合物;若采用水和无机盐的缓冲液为流动相,则 可分离一些易离解的样品,如有机酸、有机碱、酚类等 。反相键合相色谱法具有柱效高,能获得无拖尾色谱峰 的优点。
五、附属系统
包括脱气、梯度洗脱、再循环、恒温、自动进样、 馏分收集以及处理装臵。 脱气的目的:防止流动相从高压柱内流出时,释放 出气泡进入检测器而使噪声剧增,甚至不能正常检 测。通常用氦气鼓泡来驱除流动相中溶解的气体。 梯度洗脱:是在分离过程中通过逐渐改变流动相的 组成增加洗脱能力的一种方法。将两种或两种以上 不同性质但可以互溶的溶剂,随着时间改变而按一 定比例混合,以连续改变色谱柱中冲洗液的极性、 离子强度或pH等,从而改变被测组分的相对保留值 ,提高分离效率,加快分离速度。主要应用于分离 分配比k相差很大的复杂混合物。
二、进样系统
注射进样(高分子有机硅胶垫→进样室) 直接注射进样:操作简便,可获得较高柱效, GC 系统压力较小,可以 停流进样: HPLC系统压力太大,必须停泵进样( 早期),操作不便,重现性差。 高压六通阀进样:不必停泵,六通阀(结构完全 与气相色谱中所采用的六通阀相同)。进样量的 可变范围大,耐高压,能在高压状态进样,易于 自动化;易造成谱峰柱前展宽。
第三节 高效液相色谱法的分类
-、液一液分配色谱法(LLPC): 分离原理:基本与液-液萃取相同,都是根据物质在 两种互不相溶的液体中溶解度的不同,具有不同的 分配系数。所不同的是液液色谱的分配是在柱中进 行的,使这种分配平衡可反复多次进行,造成各组 分的差速迁移,提高了分离效率,从而能分离各种 复杂组分。 适用范围:适用于各种样品类型的分离和分析,无 论是极性的和非极性的,水溶性和油溶性的,离子 型的和非离子型的化合物。 缺点:液体固定相容易流失,导致色谱柱上保留行 为的改变,并引起分离试样的污染,不能用于梯度 洗脱。
☺操作条件差别
GC:加温操作 HPLC:室温;高压(液体粘度大,峰展宽小)
第一节 液相色谱的柱效
一、液相色谱的速率理论 ♣ 对液相色谱来说,速率方程与气相色谱速率方程基本 一致,主要区别在于传质阻力项。 ♣ 在液相色谱中,液体的粘度比气体要大得多,故组分 在流动相的扩散系数Dg比在气相色谱中要小105倍, 因此在液相色谱法中组分的纵向扩散较小,一般可以 忽略。对液相色谱来说,影响柱效的主要因素是传质 阻力项。 ♣ 在液相色谱法中可采用减小填料的孔穴深度、粒径, 采用低粘度及低流速流动相,适当提高柱温等方法来 降低板高提高柱效。
二、高压输液系统
组成:由储液罐、高压输液泵、过滤器、压力脉 动阻力器等组成,其中高压输液泵是核心部件。 对高压泵的要求:密封性好,输出流量恒定,压 力充足、平稳,输出流动相的可调范围宽,便于 迅速更换溶剂及耐腐蚀等。 高压泵的分类: 恒流泵:在一定操作条件下,输出的流量保持恒定 ,而与色谱柱等引起的阻力变化无关。往复泵、 注射泵等。 恒压泵:能保持输出压力恒定,而流量随色谱系统 阻力的变化而变化,保留时间的重现性差。气动 放大泵。
高效液相色谱法与经典液相色谱法
高效液相色谱法比起经典液相色谱法的最大 优点在于: ☺高压 流动相为高压输送 ☺高速 在分析速度上比经典液相色谱法快数百倍 。 ☺高效 柱效可达30000塔板/米以上。 ☺高灵敏度 采用高灵敏度检测器。 ☺高自动化。
高效液相色谱法与气相色谱法
☺分析对象的区别:
GC:适于能气化、热稳定性好、且沸点较低的样品 ;但对高沸点、挥发性差、热稳定性差、离子型 及高聚物的样品,尤其对大多数生化样品不可检 测, 占有机物的20% HPLC:适于溶解后能制成溶液的样品(包括有机介 质溶液),不受样品挥发性和热稳定性的限制, 对分子量大、难气化、热稳定性差的生化样品及 高分子和离子型样品均可检测用途广泛,占有机 物的80% ☺由于液体的扩散性比气体的小,因此溶质在液相 中的传质速率慢,柱外效应显著;而在GC中柱外区 域扩张可以忽略不计。
(一)反相键合相色谱法
关于反相键合相色谱的分离机理,可用所谓疏溶 剂作用理论来解释。这种理论把非极性的烷基键合相 看作一层键合在硅胶表面上的十八烷基的“分子毛” ,这种“分子毛”有较强的疏水特性。当用极性溶剂 为流动相来分离含有极性官能团的有机化合物时,一 方面,分子中的非极性部分与固定相表面上的疏水烷 基产生缔合作用,使它保留在固定相中;而另一方面 ,被分离物的极性部分受到极性流动相的作用,促使 它离开固定相,并减小其保留作用。显然,两种作用 力之差,决定了分子在色谱中的保留行为。
键合固定相的制备
(l)硅酸酯(≡Si一OR)键合固定相,它是最先用 于液相色谱的健合固定相。用醇与硅醇基发生酯 化反应: ≡Si-0H+ROH→≡Si-OR+H20 由于这类键合固定相的有机表面是一些单体,具 有良好的传质特性 , 但这些酯化过的硅胶填料易 水解且受热不稳定,因此仅适用于不含水或醇的 流动相。现已淘汰。 (2)≡Si-C或Si一N共价键合固定相 共价键健合固定相不易水解,并且热稳定较硅酸 酯好。缺点是格氏反应不方便;当使用水溶液时 ,必须限制PH在4~8范围内.
流动相 在液液色谱中为了避免固定液的流失。对流动 相的一个基本要求是流动相尽可能不与固定相互溶 ,而且流动相与固定相的极性差别越显著越好。根 据所使用的流动相和固定相的极性程度,将其分为 正相分配色谱和反相分配色谱。如果采用流动相的 极性小于固定相的极性,称为正相分配色谱,它适 用于极性化合物的分离。其流出顺序是极性小的先 流出,极性大的后流出。如果采用流动相的极性大 于固定相的极性,称为反相分配色谱。它适用于非 极性化合物的分离,其流出顺序与正相色谱恰好相 反。
第二节 高效液相色谱仪
一般可分为4个主要部分:高压输液系统,进样系 统,分离系统和检测系统。此外还配有辅助装臵: 如梯度淋洗,自动进样及数据处理等。 其工作过程如下:首先高压泵将贮液器中流动相溶 剂经过进样器送入色谱柱,然后从控制器的出口流 出。当注入欲分离的样品时,流经进样器贮液器的 流动相将样品同时带入色谱柱进行分离,然后依先 后顺序进入检测器,记录仪将检测器送出的信号记 录下来,由此得到液相色谱图。
高效液相色谱仪基本装臵检源自器进样阀 色谱柱流动相
高压泵
注入样品液
流出液
色谱处理机
一、流动相储器和溶剂处理系统
流动相储器一般由玻璃、不锈钢或氟塑料制成 ,容量为0.5到2 L,用来贮存足够数量、符 合要求的流动相。常装有溶剂脱气装臵以脱 去氧、氮等。 脱气方法: 1.搅拌下真空或超声波脱气; 2.通入氦或氮等惰性气体带出溶解在溶剂中的 空气。