六年级奥数.几何.圆柱与圆锥(AB级).学生版

合集下载

圆柱、圆锥、球体(学生版)

 圆柱、圆锥、球体(学生版)

学科培优 数学 圆柱、圆锥、球体 学生姓名授课日期 教师姓名授课时长 知识定位 立体图形,主要考点集中在不规则形体的表面积与体积计算。

其中有自成一类的“染色问题”,也是经常见到的“几何奥数题”。

小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,本讲重点讲解立体图形中的圆柱、圆锥和球体。

重难点在于:1.圆柱、圆锥和球体的表面积和体积计算。

2.间接利用或逆用公式求解圆柱圆锥球体中的其它量。

3.圆柱圆锥球体等立体图形的组合图形主要的考点是:1.常见较复杂的组合图形计算。

2.灵活运用公式求解体积表面积外的其余量知识梳理一、圆柱、圆锥、球体圆柱体:如右图,圆柱体的底面是圆,其半径为r ;圆柱体的侧面展开图是一个长方形,长方形的宽相当于圆柱体的高,长相当于圆柱体的底面周长。

圆柱体的表面积:S 圆柱=侧面积+2个底面积=2πrh+2πr 2。

圆柱体的体积:2V r h π=圆柱圆锥体:如右图,圆锥体的底面是圆,其半径为r ;圆锥体r的侧面展开图是一个扇形。

圆锥体的体积:213V r h π=圆锥体 球体:343V r π=球体 求圆柱体的表面积.一般的方法是先求出圆柱体的侧面积,然后再加上圆柱的两个底面积。

求圆锥体的表面积需要先求出侧面积(扇形),再求出底面积(圆),两者相加即可。

例题精讲【试题来源】【题目】一个底面半径的是5厘米.高是15厘米的圆柱体,试求出它的表面积。

【试题来源】【题目】一段圆柱体木料,如果截成两段,它的表面积增加25.12平方厘米;如果沿着直径劈成两个半圆柱体,它的表面积将增加100平方厘米。

求圆柱体的表面积。

【试题来源】【题目】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米。

将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π=3.14)【试题来源】【题目】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(3π=)【试题来源】【题目】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【试题来源】【题目】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【试题来源】【题目】一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________。

小学六年级奥数教案—圆柱圆锥

小学六年级奥数教案—圆柱圆锥

一、教学目标:1.让学生了解圆柱体和圆锥体的概念。

2.能够正确计算圆柱体和圆锥体的体积和表面积。

3.培养学生的观察能力和分析问题的能力。

二、教学重难点:1.圆柱体和圆锥体的概念及特点。

2.计算圆柱体和圆锥体的体积和表面积的方法。

三、教学步骤:1.导入新知识(5分钟)通过几个简单的问题引导学生了解圆柱体和圆锥体的概念:(提问)大家知道什么是圆柱体吗?(学生回答)(提问)什么是圆锥体呢?(学生回答)(解释)圆柱体就是由两个底面相等且平行的圆所围成的立体,而圆锥体则是由一个底面和一个顶点围成的立体。

2.讲解圆柱体的性质及计算体积和表面积的方法(10分钟)(解释)圆柱体的体积公式为V=πr²h,其中r代表底面半径,h代表高度。

表面积公式为S=2πrh+2πr²。

(举例)现在有一个圆柱体,底面半径为4cm,高度为8cm,我们来计算一下它的体积和表面积。

(计算)V=π×4²×8=128π≈401.92,S=2π×4×8+2π×4²≈200.96+100π≈601.923.针对圆柱体的练习(15分钟)(出题)现有一个圆柱体,底面半径为6cm,高度为12cm,分别计算它的体积和表面积。

4.讲解圆锥体的性质及计算体积和表面积的方法(10分钟)(解释)圆锥体的体积公式为V=1/3πr²h,其中r代表底面半径,h 代表高度。

表面积公式为S=πr(r+√(r²+h²))。

(举例)现在有一个圆锥体,底面半径为3cm,高度为8cm,我们来计算一下它的体积和表面积。

(计算)V=1/3π×3²×8=72π≈226.2,S=π×3(3+√(3²+8²))=3π(3+√(9+64))=3π(3+√73)≈303.925.针对圆锥体的练习(15分钟)(出题)现有一个圆锥体,底面半径为5cm,高度为10cm,分别计算它的体积和表面积。

(完整版)六年级奥数培优----圆柱和圆锥表面积

(完整版)六年级奥数培优----圆柱和圆锥表面积

六年级下册------圆柱和圆锥圆柱和圆锥----外表积例1、一个圆柱体木块,底面半径是6厘米,高是10厘米,现将它截成两个圆柱体小木块,那么外表积要增加多少平方厘米?练习1、一个圆柱体木头,底面半径是8厘米,高是230厘米,现将它截成两段圆柱体小木头,那么外表积要增加多少平方厘米?练习2、把一根直径20厘米的圆柱形木头锯成3段,外表积要增加多少?例2、一个圆柱体,高减少2厘米,外表积就减少了18.84平方厘米,求这个圆柱的底面积是多少?练习1、一个圆柱体,高减少4厘米,外表积就减少75.36平方厘米,求这个圆柱体的底面积?练习2、一根长2米的圆柱形木头,截去2分米长的一段圆柱形小木块后,外表积减少了12.56平方分米,那么原来这根木头的体积是多少?例3、如下列图高是10厘米,底面半径分别是3厘米和6厘米的两个圆柱组成的几何体,求这个物体的外表积? 练习1、高都是2分米,底面半径分别是2分米和5分米的两个圆柱组成的几何体,求这个物体的外表积练习2、如图由高是1米,底面半径分别是0.5米,1米和1.5米的三个圆柱组成的几何体,求这个物体的体积?例4、如图,在一个边长为4厘米的正方体的前后左右上下各面的中心位置挖去一个底面半径为1厘米,深1.5厘米的圆柱,求它的外表积?练习1、在一个长为4厘米的正方体的前后左右上下各面的中心位置各挖去一个底面半径为1厘米,高为1厘米的圆柱,求它的外表积?练习2、在一个边长为3厘米的大立方体的顶部中央挖去一个边长为1厘米的小正方体,求挖去后这个物体的外表积?例5、一个圆柱体的外表积和长方形的面积相等,长方形的长等于圆柱体的底面周长,长方形的面积是251.2平方厘米,圆柱体的底面半径是2厘米,圆柱体的高是多少?练习1、一个圆柱体的外表积和长方形的面积相等,长方形的长等于圆柱体的底面周长,长方形的面积是50.24平方厘米,圆柱体的底面半径是1,厘米,圆柱体的高是多少厘米?练习2、一个圆柱的外表积是314平方厘米,这个圆柱的底面半径是高的14,这个圆的侧面积是多少?例6、一段圆柱体木料,如果截成两个小圆柱体,它的外表积增加6.28平方厘米,如果沿着直径劈成两个半圆柱体,它的外表积将增加80平方厘米,求原圆柱体的外表积?练习1、一个圆柱体,如果沿着直径劈成两个半圆柱体,它的外表积将增加200平方厘米,如果截成两个小圆柱体,它的外表积增加25.2平方厘米,求原圆柱体的外表积?练习2、一个圆柱体,如果截成两个小圆柱体,它的外表积增加了12.56平方厘米,如果沿着直径劈成两个半圆柱体,它的外表积将增加100平方厘米,求圆柱体的外表积?例7、设计一个圆锥形的烟囱帽,底面的半径是40厘米,高是30厘米,需要材料多少平方厘米?练习1、将一块半径为10厘米的圆形铁片去掉14圆后,做成一个圆锥形的烟筒帽,此烟筒帽的底面半径是多少厘米?。

小学六年级奥数 第十九章 圆锥和圆柱

小学六年级奥数 第十九章 圆锥和圆柱

第十九章圆锥和圆柱知识要点圆柱、圆锥的意义,表面积、体积的计算方法及计算公式是相互关联的,理解掌握计算公式是非常重要的。

名称意义表面积计算公式体积计算公式圆柱体一个长方形以它的一边为轴旋转一周形成的几何体表面积=侧面积+底面积×2S=Ch+2πr体积=底面积×高V=Sh圆锥一个直角三角形以它的一条直角边为轴旋转一周形成的几何体表面积=侧面积+底面积S=πr l+πr2体积=13×底面积×高V=13πr2h(其中r表示底面圆的半径,h表示高,C表示底面周长,V表示体积,S表示面积,l表示母线长)计算圆柱和圆锥的表面积和体积时,要注意分析题中的已知条件,善于发现所求问题和已知条件的关系,通过转换或变换找出内在的联系。

例1 一个圆柱体,高4厘米,把它的底面分成许多个相等的扇形,然后切开,拼成一个与圆柱体等底、等高的近似长方体,这时长方体的表面积比圆柱的表面积增加了48平方厘米。

求圆柱体的体积是多少立方厘米。

点拨长方体的六个面,其中有四个面是由圆柱转换来的,有两个面即被切开后没有盖住的两个长方形,长都是圆柱的高,宽都是底面的半径。

解圆柱的底面半径:48÷2÷4=6(厘米)圆柱的底面积:62×3.14=37.68(平方厘米)圆柱的体积:37.68×4=150.72(立方厘米)答:圆柱的体积是150.72立方厘米。

例2 一个圆柱形钢材被切割成如下形状,求圆柱形钢材剩下的侧面积是多少?点拨我们可以发挥一下想象:剩下的侧面展开后会是一个什么形状?(可做实验)我们会发现是两个一样的梯形,所以我们求两个梯形的面积问题可解。

解 (4+5)×(3.14×2×12)×12×2=9×3.14=28.26(平方分米)其中3.14×2×12是底面周长的一半,即梯形的高。

(小学奥数)圆柱与圆锥

(小学奥数)圆柱与圆锥

立體圖形 表面積體積 圓柱h r 222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱 圓錐h r 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母線,即從頂點到底面圓上的線段長21π3V r h =圆锥体板塊一 圓柱與圓錐【例 1】 如圖,用高都是1米,底面半徑分別為1.5米、1米和0.5米的3個圓柱組成一個物體.問這個物體的表面積是多少平方米?(π取3.14)11111.50.5【例 2】 有一個圓柱體的零件,高10釐米,底面直徑是6釐米,零件的一端有一個圓柱形的圓孔,圓孔的直徑是4釐米,孔深5釐米(見右圖).如果將這個零件接觸空氣的部分塗上防銹漆,那麼一共要塗多少平方釐米?例題精講圓柱與圓錐【例 3】(希望杯2試試題)圓柱體的側面展開,放平,是邊長分別為10釐米和12釐米的長方形,那麼這個圓柱體的體積是________立方釐米.(結果用π表示)【例 4】如右圖,是一個長方形鐵皮,利用圖中的陰影部分,剛好能做成一個油桶(接頭處忽略不計),求這個油桶的容積.(π 3.14=)【鞏固】如圖,有一張長方形鐵皮,剪下圖中兩個圓及一塊長方形,正好可以做成1個圓柱體,這個圓柱體的底面半徑為10釐米,那麼原來長方形鐵皮的面積是多少平方釐米?(π 3.14=)【例 5】把一個高是8釐米的圓柱體,沿水準方向鋸去2釐米後,剩下的圓柱體的表面積比原來的圓柱體表面積減少12.56平方釐米.原來的圓柱體的體積是多少立方釐米?【鞏固】一個圓柱體底面周長和高相等.如果高縮短4釐米,表面積就減少50.24平方釐米.求這個圓柱體的表面積是多少?【例 6】一個圓柱體形狀的木棒,沿著底面直徑豎直切成兩部分.已知這兩部分的表面積之和比圓柱體的表面積大22008cm,則這個圓柱體木棒的側面積是________2cm.(π取3.14)第2题【鞏固】已知圓柱體的高是10釐米,由底面圓心垂直切開,把圓柱分成相等的兩半,表面積增加了40平方釐米,求圓柱體的體積.(π3=)【例 7】一個圓柱體的體積是50.24立方釐米,底面半徑是2釐米.將它的底面平均分成若干個扇形後,再截開拼成一個和它等底等高的長方體,表面積增加了多少平方釐米?(π 3.14=)【例 8】右圖是一個零件的直觀圖.下部是一個棱長為40cm的正方體,上部是圓柱體的一半.求這個零件的表面積和體積.【例 9】 輸液100毫升,每分鐘輸2.5毫升.如圖,請你觀察第12分鐘時圖中的數據,問:整個吊瓶的容積是多少毫升?【例 10】 一個擰緊瓶蓋的瓶子裏面裝著一些水(如圖),由圖中的數據可推知瓶子的容積是_______ 立方釐米.(π取3.14) 8(单位:厘米)4106【鞏固】一個酒精瓶,它的瓶身呈圓柱形(不包括瓶頸),如圖.已知它的容積為26.4π立方釐米.當瓶子正放時,瓶內的酒精的液面高為6釐米;瓶子倒放時,空餘部分的高為2釐米.問:瓶內酒精的體積是多少立方釐米?合多少升?【鞏固】一個酒瓶裏面深30cm,底面內直徑是10cm,瓶裏酒深15cm.把酒瓶塞緊後使其瓶口向下倒立這時酒深25cm.酒瓶的容積是多少?(π取3)253015【鞏固】一個蓋著瓶蓋的瓶子裏面裝著一些水,瓶底面積為10平方釐米,(如下圖所示),請你根據圖中標明的數據,計算瓶子的容積是______.【鞏固】一個透明的封閉盛水容器,由一個圓柱體和一個圓錐體組成,圓柱體的底面直徑和高都是12釐米.其內有一些水,正放時水面離容器頂11釐米,倒放時水面離頂部5釐米,那麼這個容器的容積是多少立方釐米?(π3 )5cm【例 11】(希望杯2試試題)如圖,底面積為50平方釐米的圓柱形容器中裝有水,水面上漂浮著一塊棱長為5釐米的正方體木塊,木塊浮出水面的高度是2釐米.若將木塊從容器中取出,水面將下降________釐米.【例 12】有兩個棱長為8釐米的正方體盒子,A盒中放入直徑為8釐米、高為8釐米的圓柱體鐵塊一個,B盒中放入直徑為4釐米、高為8釐米的圓柱體鐵塊4個,現在A盒注滿水,把A盒的水倒入B盒,使B盒也注滿水,問A盒餘下的水是多少立方釐米?【例 13】蘭州來的馬師傅擅長做拉麵,拉出的麵條很細很細,他每次做拉麵的步驟是這樣的:將一個麵團先搓成圓柱形面棍,長1.6米.然後對折,拉長到1.6米;再對折,拉長到1.6米……照此繼續進行下去,最後拉出的麵條粗細(直.問:最後馬師傅拉出的這些細麵條的總長有多少徑)僅有原先面棍的164米?(假設馬師傅拉麵的過程中.麵條始終保持為粗細均勻的圓柱形,而且沒有任何浪費)【例 14】一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鐘時水面恰好沒過長方體的頂面.再過18分鐘水灌滿容器.已知容器的高為50釐米,長方體的高為20釐米,求長方體底面面積與容器底面面積之比.【例 15】一只裝有水的圓柱形玻璃杯,底面積是80平方釐米,高是15釐米,水深8釐米.現將一個底面積是16平方釐米,高為12釐米的長方體鐵塊豎放在水中後.現在水深多少釐米?【鞏固】一只裝有水的圓柱形玻璃杯,底面積是80平方釐米,高是15釐米,水深10釐米.現將一個底面積是16平方釐米,高為12釐米的長方體鐵塊豎放在水中後.現在水深多少釐米?【鞏固】一只裝有水的圓柱形玻璃杯,底面積是80平方釐米,高是15釐米,水深13釐米.現將一個底面積是16平方釐米,高為12釐米的長方體鐵塊豎放在水中後.現在水深多少釐米?【例 16】一個圓柱形玻璃杯內盛有水,水面高2.5釐米,玻璃杯內側的底面積是72平方釐米.在這個杯中放進棱長6釐米的正方體鐵塊後,水面沒有淹沒鐵塊.這時水面高多少釐米?【例 17】一個盛有水的圓柱形容器,底面內半徑為5釐米,深20釐米,水深15釐米.今將一個底面半徑為2釐米,高為17釐米的鐵圓柱垂直放入容器中.求這時容器的水深是多少釐米?【例 18】有甲、乙兩只圓柱形玻璃杯,其內直徑依次是10釐米、20釐米,杯中盛有適量的水.甲杯中沉沒著一鐵塊,當取出此鐵塊後,甲杯中的水位下降了2釐米;然後將鐵塊沉沒於乙杯,且乙杯中的水未外溢.問:這時乙杯中的水位上升了多少釐米?【鞏固】有一只底面半徑是20釐米的圓柱形水桶,裏面有一段半徑是5釐米的圓柱體鋼材浸在水中.鋼材從水桶裏取出後,桶裏的水下降了6釐米.這段鋼材有多長?【例 19】一個盛有水的圓柱形容器底面內半徑為5釐米,深20釐米,水深15釐米.今將一個底面半徑為2釐米,高為18釐米的鐵圓柱垂直放人容器中.求這時容器的水深是多少釐米?【例 20】如圖11-7,有一個圓柱和一個圓錐,它們的高和底面直徑都標在圖上,單位是釐米.那麼,圓錐體積與圓柱體積的比是多少?【例 21】一個圓錐形容器高24釐米,其中裝滿水,如果把這些水倒入和圓錐底面直徑相等的圓柱形容器中,水面高多少釐米?【例 22】(”希望杯”一試六年級)如圖,圓錐形容器中裝有水50升,水面高度是圓錐高度的一半,這個容器最多能裝水升.,乙容器中水的【例 23】如圖,甲、乙兩容器相同,甲容器中水的高度是錐高的13,比較甲、乙兩容器,哪一只容器中盛的水多?多的是少高度是錐高的23的的幾倍?乙甲【例 24】張大爺去年用長2米、寬1米的長方形葦席圍成容積最大的圓柱形糧囤.今年改用長3米寬2米的長方形葦席圍成容積最大的圓柱形的糧囤.問:今年糧囤的容積是去年糧囤容積的多少倍?【例 25】(仁華考題)如圖,有一卷緊緊纏繞在一起的塑膠薄膜,薄膜的直徑為20釐米,中間有一直徑為8釐米的卷軸,已知薄膜的厚度為0.04釐米,則薄膜展開後的面積是平方米.20cm8cm100cm【鞏固】圖為一卷緊繞成的牛皮紙,紙卷直徑為20釐米,中間有一直徑為6釐米的卷軸.已知紙的厚度為0.4毫米,問:這卷紙展開後大約有多長?【鞏固】如圖,厚度為0.25毫米的銅版紙被卷成一個空心圓柱(紙卷得很緊,沒有空隙),它的外直徑是180釐米,內直徑是50釐米.這卷銅版紙的總長是多少米?【例 26】(人大附中分班考試題目)如圖,在一個正方體的兩對側面的中心各打通一個長方體的洞,在上下底面的中心打通一個圓柱形的洞.已知正方體邊長為10釐米,側面上的洞口是邊長為4釐米的正方形,上下底面的洞口是直徑為4釐米的圓,求此立體圖形的表面積和體積.板塊二旋轉問題【例 27】如圖,ABC是直角三角形,AB、AC的長分別是3和4.將ABC∆繞AC旋轉一周,求ABC∆掃出的立體圖形的體積.(π 3.14=)CB A4 3【例 28】 已知直角三角形的三條邊長分別為3cm ,4cm ,5cm ,分別以這三邊軸,旋轉一周,所形成的立體圖形中,體積最小的是多少立方釐米?(π取3.14)【鞏固】如圖,直角三角形如果以BC 邊為軸旋轉一周,那麼所形成的圓錐的體積為16π,以AC 邊為軸旋轉一周,那麼所形成的圓錐的體積為12π,那麼如果以AB 為軸旋轉一周,那麼所形成的幾何體的體積是多少?ABC【例 29】 如圖,ABCD 是矩形,6cm BC =,10cm AB =,對角線AC 、BD 相交O .E 、F 分別是AD 與BC 的中點,圖中的陰影部分以EF 為軸旋轉一周,則白色部分掃出的立體圖形的體積是多少立方釐米?(π取3)A BA B【鞏固】(華杯賽決賽試題)如圖,ABCD 是矩形,6cm BC =,10cm AB =,對角線AC 、BD 相交O .圖中的陰影部分以CD 為軸旋轉一周,則陰影部分掃出的立體的體積是多少立方釐米?B A【例 30】 如圖,從正方形ABCD 上截去長方形DEFG ,其中AB=1釐米,DE=12釐米,DG=13釐米。

六年级奥数专题十二:圆柱与圆锥

六年级奥数专题十二:圆柱与圆锥

六年级奥数专题十二:圆柱与圆锥————————————————————————————————作者:————————————————————————————————日期:六年级奥数专题十二:圆柱与圆锥关键词:圆柱圆锥升水倒放圆柱形奥数容积容器体积厘米这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。

例1 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。

这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。

例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)分析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。

时桶的容积是桶的容积是例3 有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。

比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积应当相同。

将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为20+5=25(厘米)例4 皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶中后,水桶中的水面升高了多少厘米?解:皮球的体积是水面升高的高度是450π÷900π=0.5(厘米)。

答:水面升高了0.5厘米。

例5 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。

小学六年级奥数教案—圆柱圆锥

小学六年级奥数教案—圆柱圆锥

小学六年级奥数教案—圆柱圆锥圆柱与圆锥小学六年级奥数教案—圆柱圆锥例1如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解;本题的关键是要找出容器上半部分的体积与下半部分的关系。

这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。

例2 用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)分析与解;铁桶有以60厘米的边为高和以40厘米的边为高两种做法。

时桶的容积是桶的容积是例3有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问;瓶内现有饮料多少立方分米?分析与解;瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。

比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积应当相同。

将正放与倒放的空余部分变换一下位置,可以看出饮料瓶的容积应当等于底面积不变,高为 20+5=25(厘米)例4皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶中后,水桶中的水面升高了多少厘米?解;皮球的体积是水面升高的高度是450π÷900π=0,5(厘米)。

答;水面升高了0,5厘米。

例5有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?分析与解;需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。

涂漆面积为例6将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

六年级奥数.几何.圆柱与圆锥(AB级).学生版

六年级奥数.几何.圆柱与圆锥(AB级).学生版

立体图形 表面积体积圆柱222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体◆ 求表面积时要注意几点:一、有几个底面。

二、结果近似数,进一法、去尾法、四舍五入法.............。

三、单位是否统一。

◆ 圆柱与圆锥的关系等底等高的圆柱和圆锥:圆柱的体积是圆锥体积的3倍;等底等体积的圆柱和圆锥:圆锥的高是圆柱的高的3倍; 等高等体积的圆柱和圆锥:圆锥的底面积是圆柱的底面积的3倍板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?hrh r1110.511.5知识框架例题精讲圆柱与圆锥有一个底面 无底面鱼缸、厨师帽、 烟囱、排水管、压路机【例 3】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是立方厘米.(结果用π表示)【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 5】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是2cm.(π取3.14)【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?4cm【例 10】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是 立方厘米.(π取3.14)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.(单位:厘米)253015【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3 )【例 11】 (第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降厘米.【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.5cm【巩固】有甲、乙两个圆柱形容器,甲容器的底面积是690 2,乙容器的底面积是230 2,甲容器中的水深36,现将其中一部分水倒入空着的乙容器中,使甲、乙两容器内的水深一样,则甲、乙容器中水深多少厘米?【巩固】甲乙两个圆柱形水杯,甲的底面半径3厘米,里面盛有高13厘米的水,乙圆柱底面半径2厘米,里面没有水,甲杯水倒入乙杯一部分,使两杯水面一样高,求现在乙杯水的高度。

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)一、圆柱与圆锥1.计算圆锥的体积。

【答案】解:3.14×2²×15×=3.14×4×5=62.8(dm³)【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式计算体积即可。

2.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。

【解析】【分析】这个蒙古包是由圆锥和圆柱组成,所以这个蒙古包的空间是圆锥的体积和圆柱的体积,圆柱的底面半径=底面直径÷2,圆柱的底面积=圆锥的底面积,所以圆柱的体积=πr2h,那么圆锥的体积=πr2h。

3.在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高1.5米.每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)【答案】解:圆锥的体积: ×[3.14×(4÷2)2]×1.5= ×1.5×12.56=6.28(立方米)这堆沙的吨数:1.7×6.28=10.676(吨)≈11(吨)答:这堆沙约重11吨。

【解析】【分析】这堆沙大约的重量=这堆沙的体积×每立方米大约的重量,其中这堆沙的体积=圆锥的体积=πr2h,得数要保留整数,就是把得出的数的十分位上的数进行“四舍五入”即可。

4.求圆柱体的表面积和体积.【答案】表面积:3.14×5×2×8+3.14×52×2=252.6+157=409.6(平方厘米)体积:3.14×52×8=3.14×25×8=628(立方厘米)答:圆柱的表面积是409.6平方厘米,体积是628立方厘米。

六年级奥数_圆柱和圆锥

六年级奥数_圆柱和圆锥

圆柱和圆锥一个矩形,以它的一条边为轴旋转一周生成的几何体叫做圆柱。

或者说它由一个圆筒形的曲面和两个一样大的圆面围成的几何图形。

这个圆筒形的曲面叫做它的侧面,这两个圆面叫做它的底。

把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面周长,这个长方形的宽等于圆柱的高。

如果用r表示底面圆的半径,h表示高,那么:圆柱侧面积是:S侧=2πrh或S侧=πd h圆柱表面积是:S表=2πrh+2πr2圆柱的体积是:V体=πr2h一个直角三角形,以它的一条直角边为轴旋转一周生成的几何体叫做圆锥。

直角三角形斜边旋转生成的曲面叫做圆锥的侧面,另一条直角边旋转生成的圆面叫做圆锥的底面。

从圆锥的顶点到底面圆心的线段的长是圆锥的高。

圆锥的侧面展开是一个扇形,这个扇形的半径长等于生成圆锥的直角三角形的斜边长,扇形的弧长就是圆锥底面周长。

如果用r表示底面圆的半径,l表示母线(三角形的斜边)长,h 表示高,那么:圆锥侧面积是:S侧=πrl圆锥表面积是:S表=πrl+πr21πr2h圆锥体积是:V体=3例1:有一张长方形铁皮如图所示,剪下阴影部分制成圆柱体(单位:分米),求这个圆柱体的表面积。

(提示:圆桶盖的周长等于长方形铁皮的长)例2:一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米。

求原来圆柱的表面积是多少平方厘米?例3:如图(单位:厘米),以粗线为轴,沿箭头方向旋转一周,试求所形成的立体的体积。

例4:如图,一张扇形薄铁片,弧长18.84分米,它能够围成一个高4分米的圆锥,试求圆锥的容积(接缝处忽略不计)。

例5:如图,圆锥形容器中装有3升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?例6:有两个圆柱形的油桶,形体相似(即底面积半径与高的比值相同),尺寸如图。

两个油桶都装满了油,若小的一个装了2千克油,那么大的一个装了多少千克油?例7:如图,上面是个半圆柱,下半部是一个长方体,它的表面积和体积各是多少厘米?例8:要做一个形如图所示的零件,请问它的体积是多少立方厘米?(14π).3=。

六年级奥数第12次课:圆柱与圆锥(学生版)

六年级奥数第12次课:圆柱与圆锥(学生版)

开心一刻:昨晚正在宿舍用电饭锅煮粥,突然舍友杀进宿舍说:不好啦,院领导带队查宿舍违规电器呢,已经到隔壁了,锅怎么办啊?情急下我直接将锅藏在被窝里。

等老师来了之后,他说:嗯,小蕾(本人)我还是信得过得,就不看你的柜子了。

我暗自侥幸,可老师又接着说:只看看你们用没用电热毯就行了。

结果我就被记过了。

圆柱与圆锥一、考点、热点回顾这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。

二、典型例题例1 、如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?例2、用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)例3 、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?例4、皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶中后,水桶中的水面升高了多少厘米?例5、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)。

如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例6 、将一个底面半径为20厘米、高27厘米的圆锥形铝块,和一个底面半径为30厘米、高20厘米的圆柱形铝块,熔铸成一底面半径为15厘米的圆柱形铝块,求这个圆柱形铝块的高。

三、习题练习1、右图是一顶帽子。

帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。

如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?2、一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?3、用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?容器高度的几分之几?5、右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。

(完整版)学生版—小学六年级奥数教案(圆柱圆锥)

(完整版)学生版—小学六年级奥数教案(圆柱圆锥)

圆柱与圆锥这一讲学习与圆柱体和圆锥体有关的体积、表面积等问题。

圆柱体的体枳二冗-h,圆柱体的侧面积=Kf,圆柱体的表面租=2心G+h),园锥体的体积==咒7拍4J T例1如右图所示,圆锥形容器中装有高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系例2用一块长60厘米、宽40厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?(精确到1厘米3)分析与解:铁桶有以60厘米的边为高和以40厘米的边为高两种做法。

例3有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见右图)。

问:瓶内现有饮料多少立方分米?n20 I-分析与解:瓶子的形状不规则,并且不知道底面的半径,似乎无法计算。

比较一下正放与倒放,因为瓶子的容积不变,装的饮料的体积不变,所以空余部分的体积5升水,水面高度正好是圆锥应当相同。

例4皮球掉进一个盛有水的圆柱形水桶中。

皮球的直径为15厘米,水桶底面直径为60厘米.皮球有{的体积楼在水中(见右圈),问,皮球掉进水中后,水桶中的水面升高了多少厘米?(注日半径为F的球的体积是□例5有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图),如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?分析与解:需要涂漆的面有圆柱体的下底面、外侧面、上面的圆环、圆孔的侧面、圆孔的底面,其中上面的圆环与圆孔的底面可以拼成一个与圆柱体的底面相同的圆。

练习121. 一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?2. 用直径为40厘米的圆钢锻造长300厘米、宽100厘米、厚2厘米的长方形钢板,应截取多长的一段圆钢?3. 右上图是一个机器零件,其下部是棱长20厘米的正方体,上部是圆柱形的一半。

【数学】圆柱与圆锥(奥数)

【数学】圆柱与圆锥(奥数)

【数学】圆柱与圆锥(奥数)一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.2.工厂要生产一节烟囱,烟囱长2.5m,横截面是直径为40cm的圆。

(1)做一节烟囱一共需要铁皮多少平方米?(接头处忽略不计)(2)如果烟囱中充满废气,一节烟囱中最多可以容纳废气多少立方米?【答案】(1)解:40cm=0.4m3.14×0.4×2.5=3.14(m2)答:做一节烟囱一共需要铁皮3.14平方米。

(2)解:3.14×(0.4÷2)2×2.5=0.314(m3)答:一节烟囱中最多可以容纳废气0.314立方米。

【解析】【分析】1cm=0.01m,(1)做一节烟囱一共需要铁皮的平方米数=这节烟囱横截面的周长×长,其中这节烟囱横截面的周长=横截面的半径×2×π;(2)一节烟囱中最多可以容纳废气的立方米数=这节烟囱的容积=πr2h。

据此代入数据作答即可。

3.一个圆锥形沙堆,底面周长是31.4米,高是1.2米.每立方米黄沙重2吨,这堆黄沙重多少吨?【答案】解:底面半径:31.4÷(2×3.14)=31.4÷6.28=5(米)这堆沙子的总重量: ×3.14×52×1.2×2=3.14×25×0.4×2=78.5×0.4×2=31.4×2=62.8(吨)答:这堆黄沙重62.8吨。

【解析】【分析】用底面周长除以圆周率的2倍即可求出底面半径。

六年级奥数训练-圆柱和圆锥

六年级奥数训练-圆柱和圆锥

圆柱和圆锥1、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。

圆柱和圆锥的体积分别是多少?2、一个圆锥的体积比与它等底等高的圆柱的体积少6.28立方厘米,那么,这个圆柱的体积是多少立方厘米?3、一个圆柱的底面周长是18.84厘米,沿着底面直径将它切成相等的两半,表面积增加了180平方厘米,原来这个圆柱的表面积和体积各是多少?4、把一个半径为10厘米的圆锥形钢材浸没在一只底面半径是30厘米的圆柱形水桶里,当钢材从水桶中拿出,桶里的水面下降了1厘米。

这个圆锥形钢材的高是多少?5、一个圆柱和一个圆锥的体积相等,圆锥高是圆柱高的三分之二,求圆锥和圆柱的底面积比是多少?6、一段长宽高的比是5:4:3的长方体木材,棱长总和是96厘米,把它加工成一个最大的圆锥,这个圆锥的体积是多少?7、一个底面直径为20厘米的圆柱形木桶里装有水,水中淹没着一个底面直径为18厘米、高为20厘米的铁质圆锥体。

当圆锥体取出后,桶内水面将降低多少?8、用直径为40厘米的圆钢锻造长3米、宽10分米、厚2厘米的长方形钢板,应截取多长的一段圆钢?9、一个圆柱与一个圆锥的体积相等,圆柱的高与圆锥的高之比是4:9,圆锥的底面积是20平方厘米,圆柱的底面积是多少平方厘米?10、一圆柱形水桶内有一段长4厘米,宽3厘米的长方体铁块浸入水中,水面上升8厘米,如果把长方体竖立,露出水面3厘米,则水面下降1.5厘米,求长方体铁块的体积?11、如下图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?12、用一块长6.28厘米、宽3.14厘米的铁皮做圆柱形水桶的侧面,另找一块铁皮做底。

这样做成的铁桶的容积最大是多少?13、有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是30分米3。

现在瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米(见下图)。

问:瓶内现有饮料多少立方分米?14、有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见下图)。

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)

圆柱与圆锥(奥数)一、圆柱与圆锥1.如下图,已知圆锥底面周长是18.84dm,求圆锥的体积。

【答案】解:18.84÷3.14÷2=3(dm)3.14×3²×5×=3.14×15=47.1(dm²)【解析】【分析】用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高再乘求出体积。

2.图“蒙古包”是由一个近似的圆柱形和一个近似的圆锥形组成,这个蒙古包的空间大约是多少立方米?【答案】解:3.14×(8÷2)2×2+3.14×(8÷2)2×1×=3.14×16×2+3.14×16×1×≈100.48+16.75=117.23(立方米)答:这个蒙古包所占的空间大约是117.23立方米。

【解析】【分析】这个蒙古包是由圆锥和圆柱组成,所以这个蒙古包的空间是圆锥的体积和圆柱的体积,圆柱的底面半径=底面直径÷2,圆柱的底面积=圆锥的底面积,所以圆柱的体积=πr2h,那么圆锥的体积=πr2h。

3.求圆柱体的表面积和体积.【答案】表面积:3.14×5×2×8+3.14×52×2=252.6+157=409.6(平方厘米)体积:3.14×52×8=3.14×25×8=628(立方厘米)答:圆柱的表面积是409.6平方厘米,体积是628立方厘米。

【解析】【分析】圆柱的表面积=2r2+2rh,体积=r2h,据此代入数据解答即可。

4.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?【答案】解: ×3.14×32×2=3.14×6=18.84(立方厘米)答:这个零件的体积是18.84立方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体图形 表面积体积圆柱222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体◆ 求表面积时要注意几点:一、有几个底面。

二、结果近似数,进一法、去尾法、四舍五入法.............。

三、单位是否统一。

◆ 圆柱与圆锥的关系等底等高的圆柱和圆锥:圆柱的体积是圆锥体积的3倍;等底等体积的圆柱和圆锥:圆锥的高是圆柱的高的3倍; 等高等体积的圆柱和圆锥:圆锥的底面积是圆柱的底面积的3倍板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)hrh r1110.511.5知识框架例题精讲圆柱与圆锥有一个底面 无底面鱼缸、厨师帽、 烟囱、排水管、压路机【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?【例 3】 (第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是立方厘米.(结果用π表示)【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【例 5】 把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是2cm.(π取3.14)【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?4cm【例 10】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是 立方厘米.(π取3.14)【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.(单位:厘米)253015【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3 )【例 11】 (第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降厘米.【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)5cm【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【巩固】有甲、乙两个圆柱形容器,甲容器的底面积是6902,乙容器的底面积是230 2,甲容器中的水深36,现将其中一部分水倒入空着的乙容器中,使甲、乙两容器内的水深一样,则甲、乙容器中水深多少厘米?【巩固】甲乙两个圆柱形水杯,甲的底面半径3厘米,里面盛有高13厘米的水,乙圆柱底面半径2厘米,里面没有水,甲杯水倒入乙杯一部分,使两杯水面一样高,求现在乙杯水的高度。

【巩固】一个正方体的体积是50立方分米,已知一个圆锥的底面半径是正方体棱长的2倍,高是棱长的3倍,求圆锥的体积?【巩固】在一个高为30的圆柱体容器内,放着一个棱长为10厘米的正方形铁块,现在打开一个水龙头往容器里注水,3分钟时水面恰好与正方体铁块顶面水平,14分钟时灌满容器,该容器的容积是多少立方厘米?【例 15】乙两圆柱容器的底面积比为4:3,甲中水比乙中水高50%,如果将甲中水的20%倒入乙容器后,水面升高8厘米,原来乙中水的高是多少厘米?【巩固】圆锥形杯子与圆柱形杯子底面半径的比为2:3,高之比为3:5。

现在用圆锥形杯子装满水往空的圆柱形杯子中倒,若干次后圆柱形杯子满了,此时圆锥形杯子中还剩下120毫升的水。

圆柱形杯子的容积是多少毫升?【例 16】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【例 17】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【例 18】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【例 19】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【例 20】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米?【例 21】 (2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【例 22】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?【例 23】 (2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?甲乙【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【例 24】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.板块二 旋转问题【例 25】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC∆扫出的立体图形的体积.(π 3.14=)【例 26】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14)【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?CB A----【例 27】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米?ABC ABBA。

相关文档
最新文档