2013届新课标高中数学(理)第一轮总复习第6章第38讲不等式关系与不等式
2013届新课标高中数学(理)第一轮总复习第6章 第38讲 不等式关系与不等式
分类讨论
【例3】 mx 已知m R,a b 1,f x = , x 1 试比较f a 与f b 的大小.
mx x 11 1 【解析】因为f x = =m ( )=m(1+ ), x 1 x 1 x 1 1 1 所以f a =m(1+ ),f b =m(1+ ), a 1 b 1 则 f a - f b 1 1 m (b a ) =m(1+ )-m(1+ )= . a 1 b 1 ( a 1)(b 1) 因为a b 1, 所以a-1 0,b-1 0,b-a 0.
2
故p q.
比较大小
【例1】 1 若x y 0,试比较( x 2+y 2 )( x-y ) 与( x 2-y 2 )( x+y )的大小;
2 设a 0,b 0,且a b,试比较
a a bb与a bb a的大小.
【解析】1 ( x 2+y 2 )( x-y )-( x 2-y 2 )( x+y ) =( x-y )[( x 2+y 2 )-( x+y ) 2 ] =-2xy ( x-y ). 因为x y 0,所以xy 0,x-y 0, 所以-2xy ( x-y ) 0. 所以( x +y )( x-y ) ( x -y )( x+y ).
本题体现的是近几年比较热门的考点— —用函数观点解决不等式问题.将两式相减 得到几个因式的积后,发现符号取决于m的正 x p 负,所以对m进行讨论是必然的.对于 xq (p,q是常数)这样的问题,用分离常数的方法 往往可以使问题得以简化,复习时要多加积 累.另外,本题最后如果没有写上“综上所 述”及其后面的内容,是不完整的.
1.现给出三个不等式:①a 2 1 2a;②a 2 b 2 3 2(a b );③ 7 10 3 14.其中恒 2 成立的不等式共有 2 个.
2013届新课标高考文科数学一轮总复习课件:第38讲 不等关系与不等式的性质
所以 f(-2)=3f(-1)+f(1). 又因为 1≤f(-1)≤2,2≤f(1)≤4, 所以 5≤3f(-1)+f(1)≤10,故 5≤f(-2)≤10.
【解法
2】
f-1=a-b f1=a+b
,即ab= =1212[[ff- 1-1+ f-f11]]
,
所以 f(-2)=4a-2b=3f(-1)+f(1).
其中正确命题的个数是( ) A.0 B.1 C.2 D.3
(2)已知 a,b,c,d 为实数,且 c>d,则“a>b”是 “a-c>b-d”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
(3)
已
知
-
1<2x
-
1<1
,
则
2 x
-
1
的取值范围是
____________.
【分析】不等式性质就其逻辑关系而言,可分为 推出关系(充分条件)和等价关系(充要条件),要深刻理 解不等式性质,把握其逻辑关系.
【解析】(1)①中, abbc>>a0d⇒ac>db. ②ac>bd,两边同乘以 ab,得 bc>ad.
bc>ad ③ bc-ad ⇒ab>0.
ab >0 所以 3 个命题都正确,选 D.
【例 1】 某汽车公司由于发展的需要购进一批汽车, 计划使用不超过 1000 万元的资金买单价分别为 40 万元、 90 万元的 A 型汽车和 B 型汽车,根据需要 A 型汽车至少 买 5 辆、B 型汽车至少买 6 辆,写出满足上述所有不等关 系的不等式.
【解析】 设购买 A 型汽车和 B 型汽车分别为 x 辆、y 辆,
高考数学一轮复习 第6章 不等式 6.1 不等关系与不等式的性质及一元二次不等式课件 理
5.三个二次之间的关系
[诊断自测] 1.概念思辨 (1)a>b⇔ac2>bc2.( × ) (2)若不等式 ax2+bx+c>0 的解集是(-∞,x1)∪(x2,+ ∞),则方程 ax2+bx+c=0 的两个根是 x1 和 x2.( √ ) (3)若方程 ax2+bx+c=0(a≠0)没有实数根,则不等式 ax2+bx+c>0 的解集为 R.( × ) (4)不等式 ax2+bx+c≤0 在 R 上恒成立的条件是 a<0 且 Δ=b2-4ac≤0.( × )
第6章 不等式
6.1 不等关系与不等式的 性质及一元二次不等式
基础知识过关
[知识梳理] 1.两个实数比较大小的依据 (1)a-b>0⇔a > b. (2)a-b=0⇔a = b. (3)a-b<0⇔a < b.
2.不等式的基本性质 (1)对称性:a>b⇔ b<a . (2)传递性:a>b,b>c⇒ a>c . (3)可加性:a>b⇒a+c>b+c. (4)可乘性:a>b,c>0⇒ ac>bc ;a>b,c<0⇒
A.x-1<x<12
C.{x|-2<x<1}
B.xx<-1或x>12
D.{x|x<Biblioteka 2 或 x>1}解析 由题意知 x=-1,x=2 是方程 ax2+bx+2=0 的根.
由韦达定理 -1+2=-ba, -1×2=2a
⇒ab= =- 1. 1,
∴不等式 2x2+bx+a<0,即 2x2+x-1<0.
解析 当 a>1 时,loga(1-x)<0,loga(1+x)>0, ∴|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x) =-loga(1-x2)>0. 当 0<a<1 时,loga(1-x)>0,loga(1+x)<0, ∴|loga(1-x)|-|loga(1+x)|=loga(1-x)+loga(1+x)= loga(1-x2)>0. ∴|loga(1-x)|>|loga(1+x)|.
高三数学高考第一轮复习课件:不等式
第六单元 │ 使用建议
使用建议
1.本单元内容理论性强,知识覆盖面广,因此教学中 应注意:
(1)复习不等式的性质时,要克服“想当然”和“显 然成立”的思维定式,一定使要用注建议意不等式成立的条件,强化 或者弱化了条件都有可能得出错误的结论.
第34讲 │ 编读互动 编读互动
第34讲 │ 知识要点 知识要点
第34讲 │ 知识要点
第34讲 │ 知识要点
第34讲 │ 双基固化 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
第34讲 │ 双基固化
(1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于 它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式|a|-|b|≤|a+b|≤|a|+| b|.
第六单元 │ 复习策略
复习策略
不等式
目录
第34讲 不等式的概念与性质 第35讲 均值不等式 第36讲 不等式的解法 第37讲 不等式的证明 第38讲 含绝对值的不等式
第六单元 不等式
第六单元 │ 知识框架 知识框架
第六单元 │ 考点解读 考点解读
不等式、不等式的基本性质、不等式的证明、不等式的 解法、含绝对值的不等式.
第六单元 │ 考点解读
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
第35讲 │ 双基固化
高中数学知识点总结 第六章不等式
高中数学知识点总结(zǒngjié) 第六章不等式高中数学知识点总结(zǒngjié) 第六章不等式高中数学第六章-不等式考试内容:不等式.不等式的根本(gēnběn)性质.不等式的证明.不等式的解法.含绝对值的不等式.考试(kǎoshì)要求:〔1〕理解不等式的性质(xìngzhì)及其证明.〔2〕掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.〔3〕掌握分析法、综合法、比拟法证明简单的不等式.〔4〕掌握简单不等式的解法.〔5〕理解不等式│a│-│b│≤│a+b│≤│a│+│b│06.不等式知识要点1.不等式的根本概念〔1〕不等〔等〕号的定义:ab0ab;ab0ab;ab0ab.〔2〕不等式的分类:绝对不等式;条件不等式;矛盾不等式.〔3〕同向不等式与异向不等式.〔4〕同解不等式与不等式的同解变形.2.不等式的根本性质〔1〕abba〔对称性〕〔2〕ab,bcac〔传递性〕〔3〕abacbc〔加法单调性〕〔4〕ab,cdacbd〔同向不等式相加〕〔5〕ab,cdacbd〔异向不等式相减〕〔6〕a.b,c0acbc〔7〕ab,c0acbc〔乘法单调性〕〔8〕ab0,cd0acbd〔同向不等式相乘〕(9)ab0,0cdabcd〔异向不等式相除〕(10)ab,ab011〔倒数关系〕ab〔11〕ab0anbn(nZ,且n1)〔平方法那么〕〔12〕ab0nanb(nZ,且n1)〔开方法那么〕3.几个重要不等式〔1〕假设aR,那么|a|0,a20〔2〕假设a、bR,那么a2b22ab(或a2b22|ab|2ab)〔当仅当a=b时取等号〕〔3〕如果a,b都是正数,那么abab.〔当仅当a=b时取等号〕2极值定理:假设某,yR,某yS,某yP,那么:1如果P是定值,那么当某=y 时,S的值最小;○2如果S是定值,那么当某=y时,P的值最大.○利用极值定理求最值的必要条件:一正、二定、三相等.(4)假设a、b、cR,那么abc3abc〔当仅当a=b=c时取等号〕ba(5)假设ab0,那么2〔当仅当a=b时取等号〕ab(6)a0时,|某|a某2a2某a或某a;|某|a某2a2a某a〔7〕假设a、bR,那么||a||b|||ab||a||b|4.几个著名不等式〔1〕平均不等式:如果a,b都是正数,那么211abababa2b2〔当仅当.22a=b时取等号〕即:平方平均≥算术平均≥几何平均≥调和平均〔a、b为正数〕:2222abababab22特别地,ab(〔当a=b时,())ab〕2222a2b2c2abc(a,b,cR,abc时取等)3322...an幂平均不等式:a12a221(a1a2...an)2n注:例如:(acbd)2(a2b2)(c2d2).常用不等式的放缩法:①2(n2)nn1n(n1)nn(n1)n1n②n1n1nn112n1nn1nn1(n1)〔2〕柯西不等式:假设a1,a2,a3,,anR,b1,b2,b3,bnR;那么〔a1b1a2b2a3b3anbn)aaaa当且仅当123n时取等号b1b2b3bn22(a12a22a32an)(b122b22b32bn)〔3〕琴生不等式〔特例〕与凸函数、凹函数假设定义在某区间上的函数f(某),对于定义域中任意两点某1,某2(某1某2),有f(某1某2f(某1)f(某2))或22f(某1某2f(某1)f(某2)).22那么称f(某)为凸〔或凹〕函数.5.不等式证明的几种常用方法比拟法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法〔1〕整式不等式的解法〔根轴法〕.步骤:正化,求根,标轴,穿线〔偶重根打结〕,定解.特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b某+c>0(a≠0)解的讨论.〔2〕分式不等式的解法:先移项通分标准化,那么f(某)0f(某)g(某)0;g(某)f(某)g(某)0f(某)0g(某)g(某)0〔3〕无理不等式:转化为有理不等式求解○1f(某)g(某)g(某)0定义域f(某)g(某)f(某)0○2f(某)0f(某)0○3f(某)g(某)g(某)0或g(某)02f(某)[g(某)]f(某)0f(某)g(某)g(某)02f(某)[g(某)]〔4〕.指数不等式:转化为代数不等式af(某)ag(某)(a1)f(某)g(某);af(某)ag(某)(0a1)f(某)g(某)af(某)b(a0,b0)f(某)lgalgb〔5〕对数不等式:转化为代数不等式f(某)0logaf(某)logag(某)(a1)g(某)0;f(某)g(某)f(某)0logaf(某)logag(某)(0a1)g(某)0f(某)g(某)〔6〕含绝对值不等式1应用分类讨论思想去绝对值;○2应用数形思想;○3应用化归思想等价转化○g(某)0|f(某)|g(某)g(某)f(某)g(某)g(某)0|f(某)|g(某)g(某)0(f(某),g(某)不同时为0)或f(某)g(某)或f(某)g(某)注:常用不等式的解法举例〔某为正数〕:①某(1某)(1某)(1某)()2(1某2)(1某2)②y某(1某)y()y类似于ysin某cos某sin某(1sin某),③|某1||某||1|(某与1同号,故取等)2扩展阅读:高中数学知识点总结_第六章不等式[1]高中数学第六章-不等式考试内容:不等式.不等式的根本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:〔1〕理解不等式的性质及其证明.〔2〕掌握两个〔不扩展到三个〕正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.〔3〕掌握分析法、综合法、比拟法证明简单的不等式.〔4〕掌握简单不等式的解法.〔5〕理解不等式│a│-│b│≤│a+b│≤│a│+│b│06.不等式知识要点1.不等式的根本概念〔1〕不等〔等〕号的定义:ab0ab;ab0ab;ab0ab.〔2〕不等式的分类:绝对不等式;条件不等式;矛盾不等式.〔3〕同向不等式与异向不等式.〔4〕同解不等式与不等式的同解变形.2.不等式的根本性质〔1〕abba〔对称性〕〔2〕ab,bcac〔传递性〕〔3〕abacbc〔加法单调性〕〔4〕ab,cdacbd〔同向不等式相加〕〔5〕ab,cdacbd〔异向不等式相减〕〔6〕a.b,c0acbc〔7〕ab,c0acbc〔乘法单调性〕〔8〕ab0,cd0acbd〔同向不等式相乘〕(9)ab0,0cdabcd〔异向不等式相除〕(10)ab,ab011〔倒数关系〕ab〔11〕ab0anbn(nZ,且n1)〔平方法那么〕〔12〕ab0nanb(nZ,且n1)〔开方法那么〕3.几个重要不等式〔1〕假设aR,那么|a|0,a20〔2〕假设a、bR,那么a2b22ab(或a2b22|ab|2ab)〔当仅当a=b时取等号〕〔3〕如果a,b都是正数,那么abab.〔当仅当a=b时取等号〕2极值定理:假设某,yR,某yS,某yP,那么:1如果P是定值,那么当某=y 时,S的值最小;○2如果S是定值,那么当某=y时,P的值最大.○利用极值定理求最值的必要条件:一正、二定、三相等.(4)假设a、b、cR,那么abc3abc〔当仅当a=b=c时取等号〕ba(5)假设ab0,那么2〔当仅当a=b时取等号〕ab(6)a0时,|某|a某2a2某a或某a;|某|a某2a2a某a〔7〕假设a、bR,那么||a||b|||ab||a||b|4.几个著名不等式〔1〕平均不等式:如果a,b都是正数,那么211abababa2b2〔当仅当.22a=b时取等号〕即:平方平均≥算术平均≥几何平均≥调和平均〔a、b为正数〕:2222abababab22特别地,ab(〔当a=b时,())ab〕2222a2b2c2abc(a,b,cR,abc时取等)3322...an幂平均不等式:a12a221(a1a2...an)2n注:例如:(acbd)2(a2b2)(c2d2).常用不等式的放缩法:①2(n2)nn1n(n1)nn(n1)n1n②n1n1nn112n1nn1nn1(n1)〔2〕柯西不等式:假设a1,a2,a3,,anR,b1,b2,b3,bnR;那么〔a1b1a2b2a3b3anbn)aaaa当且仅当123n时取等号b1b2b3bn22(a12a22a32an)(b122b22b32bn)〔3〕琴生不等式〔特例〕与凸函数、凹函数假设定义在某区间上的函数f(某),对于定义域中任意两点某1,某2(某1某2),有f(某1某2f(某1)f(某2))或22f(某1某2f(某1)f(某2)).22那么称f(某)为凸〔或凹〕函数.5.不等式证明的几种常用方法比拟法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法〔1〕整式不等式的解法〔根轴法〕.步骤:正化,求根,标轴,穿线〔偶重根打结〕,定解.特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b某+c>0(a≠0)解的讨论.〔2〕分式不等式的解法:先移项通分标准化,那么f(某)0f(某)g(某)0;g(某)f(某)g(某)0f(某)0g(某)g(某)0〔3〕无理不等式:转化为有理不等式求解○1f(某)g(某)g(某)0定义域f(某)g(某)f(某)0○2f(某)0f(某)0○3f(某)g(某)g(某)0或g(某)02f(某)[g(某)]f(某)0f(某)g(某)g(某)02f(某)[g(某)]〔4〕.指数不等式:转化为代数不等式af(某)ag(某)(a1)f(某)g(某);af(某)ag(某)(0a1)f(某)g(某)af(某)b(a0,b0)f(某)lgalgb〔5〕对数不等式:转化为代数不等式f(某)0logaf(某)logag(某)(a1)g(某)0;f(某)g(某)f(某)0logaf(某)logag(某)(0a1)g(某)0f(某)g(某)〔6〕含绝对值不等式1应用分类讨论思想去绝对值;○2应用数形思想;○3应用化归思想等价转化○g(某)0|f(某)|g(某)g(某)f(某)g(某)g(某)0|f(某)|g(某)g(某)0(f(某),g(某)不同时为0)或f(某)g(某)或f(某)g(某)注:常用不等式的解法举例〔某为正数〕:①某(1某)(1某)(1某)()2(1某2)(1某2)②y某(1某)y()y类似于ysin某cos某sin某(1sin某),③|某1||某||1|(某与1同号,故取等)2内容总结(1)○2应用数形思想。
2013版高考数学人教A版一轮复习课件第6单元-不等式(理科)
第六单元 │ 使用建议
(2)从高考的客观情况看,二元一次不等式(组)所表示 的平面区域和简单的线性规划问题,是高考必考的两个知 识点,我们把探究点不是设置为简单的线性规划问题,而 是设置为目标函数的最值(这样可以涵盖线性规划和非线性 规划),含有参数的平面区域以及生活中的优化问题,这样 在该讲就覆盖了高考考查的基本问题. (3)在各个讲次穿插了不等式的应用,但不涉及过度综 合的题目,其目的是使学生认识到不等式应用的广泛性, 不等式更多的、更综合的应用我们留在其余各讲中.
第六单元 │ 网络解读
x-a (3)简单的分式不等式 >0可以转化为一元二次不等式 x-b x-a (x-a)(x-b)>0,在解这类不等式时,如果是 >c(c≠0),那 x-b 么应把一端化为零再进行转化.
第六单元 │ 网络解读
3.二元一次不等式(组)和简单的线性规划问题 (1)一个二元一次不等式表示一个半平面,几个二元一次不 等式组成的不等式组就表示这些半平面的交集,也就是一个平 面上的区域,要会根据特殊点的位置确定不等式表示的半平 面,正确求出不等式组表示的平面区域. (2)简单的线性规划问题有两类,一类是不含实际背景的线 性规划问题,一类是必须首先建立模型的含有实际背景的线性 规划问题,难点是后者,在解这类试题时要注意准确提炼线性 规划模型,不要忽视了必要的限制条件.
新课标·人教A版
第六单元
不等式
第六单元 │ 知识网络 知识网络
第六单元 │ 网络解读
网络解读
本单元包括不等关系与不等式、一元二次不等式、二元一 次不等式(组)表示的平面区域和简单的线性规划问题、基本不 等式. 1.不等关系和不等式,主要内容是不等式的概念、不等 式的性质、两个数式比较大小
高考数学一轮总复习第6章6.1不等关系与不等式课件理159.ppt
延伸探究 1 将本例条件改为-1<x<y<3,求 x-y 的取 值范围.
解 ∵-1<x<3,-1<y<3, ∴-3<-y<1, ∴-4<x-y<4.① 又∵x<y,∴x-y<0,② 由①②得-4<x-y<0.故 x-y 的取值范围为(-4,0).
延伸探究 2 若将本例条件改为“-1<x+y<4,2<x- y<3”,求 3x+2y 的取值范围.
④中,因为 b<a<0,根据 y=x2 在(-∞,0)上为减函数, 可得 b2>a2>0,而 y=ln x 在其定义域上为增函数,
所以 ln b2>ln a2,故④错误. 由以上分析,知①③正确,故选 C.
解法二:因为1a<1b<0,故可取 a=-1,b=-2. 因为|a|+b=1-2=-1<0,所以②错误; 因为 ln a2=ln (-1)2=0,ln b2=ln (-2)2=ln 4 >0,所以 ④错误. 综上所述,②④错误,选 C.
解法二:设xy34=xy2m(xy2)n, 则 x3y-4=x2m+ny2n-m,
所以22mn- +mn= =3-,4, 即mn= =- 2,1. 又∵16 ≤xy22≤81,18≤(xy2)-1≤13, ∴2≤xy34≤27,故xy34的最大值为 27.
4.[2017·金版创新]设 c>0,则下列各式成立的是(
)
A.c>2c C.2c<12c
B.c>12c D.2c>12c
解析 c>0 时,2c>1,12c<1,所以 2c>12c.
板块二 典例探究·考向突破
高三数学一轮复习教案第六章不等式汇总
不等式【知识图解】【方法点拨】不等式是高中数学的重要内容之一,不等式的性质是解、证不等式的基础,两个正数的算术平均数不小于它们的几何平均数的定理及其变形在不等式的证明和解决有关不等式的实际问题中发挥着重要的作用.解不等式是研究方程和函数的重要工具,不等式的概念和性质涉及到求最大(小)值,比较大小,求参数的取值范围等,不等式的解法包括解不等式和求参数,不等式的综合题主要是不等式与集合、函数、数列、三角函数、解析几何、导数等知识的综合,综合性强,难度较大,是高考命题的热点,也是高考复习的难点.1.掌握用基本不等式求解最值问题,能用基本不等式证明简单的不等式,利用基本不等式求最值时一定要紧扣“一正、二定、三相等”这三个条件。
2.一元二次不等式是一类重要的不等式,要掌握一元二次不等式的解法,了解一元二次不等式与相应函数、方程的联系和相互转化。
3.线性规划问题有着丰富的实际背景,且作为最优化方法之一又与人们日常生活密切相关,对于这部分内容应能用平面区域表示二元一次不等式组,能解决简单的线性规划问题。
同时注意数形结合的思想在线性规划中的运用。
第1课 基本不等式【考点导读】1. 能用基本不等式证明其他的不等式,能用基本不等式求解简单的最值问题。
2. 能用基本不等式解决综合形较强的问题。
【基础练习】1.“a >b >0”是“ab <222a b +”的充分而不必要条件(填写充分而不必要条件、必要而不充分条件、充分必要条件、既不充分也不必要条件)2.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为12-3.已知下列四个结论①当2lg 1lg ,10≥+≠>x x x x 时且;②21,0≥+>x x x 时当;③x x x 1,2+≥时当的最小值为2;④当xx x 1,20-≤<时无最大值。
则其中正确的个数为1个4.已知,x y R +∈,且41x y +=,则x y ⋅的最大值为1615.已知lg lg 1x y +=,则52x y+的最小值是2 【范例导析】 【例1】 (1)已知54x <,求函数14245y x x =-+-的最大值. (2)求函数1422++=x x y 的最小值,并求出取得最小值时的x 值. 分析:问题(1)中由于450x -<,所以首先要调整符号;问题(2)中要注意利用基本不等式时等号成立条件. 解: (1)∵54x <∴540x -> ∴y=4x-2+145x -=154354x x ⎛⎫--++ ⎪-⎝⎭≤-2+3=1当且仅当15454x x-=-,即x=1时,上式成立,故当x=1时,max 1y =. (2)求22242y x x =--+的最大值解:2226(2)2y x x =-+++ (若由2222262(2)22y x x x ≤-+=+=+则即无解“=”不成立) 令2222,6()u x y u u=+≥=-+则,可以证明y(u)在)+∞递减∴u=2,即x=0时,y max =3点拨:在运用均值不等式求最值时,必须保证“一正,二定,三等”.凑出定值是关键!“=”成立必须保证,若两次连用均值不等式,要注意等号的取得条件的一致性,否则就会出错.例2.(1)已知a ,b 为正常数,x 、y 为正实数,且1a b+=x y,求x+y 的最小值。
2013届高考数学(文科)大纲版一轮总复习课件6.3不等式的证明(第1课时)
是______.
•
解:(x3+13a2x)-(5ax2+9a3)
•
=x3-5ax2+13a2x-9a3
•
=(x-a)(x2-4ax+9a2)
•
=(x-a)[(x-2a)2+5a2]>0.
• 因为当x≠2a≠0时,有(x-2a)2+5a2>0.
• 由题意知只需x-a>0,即x>a,以上
第一课时
题型1 用均值不等式证明不等式
ab
已知a、b∈ ,求
•
证a 明b :2 因ab 为a、b∈R+,
•
所以 a b 1 2 ab 1 2 2 ab 1 2 2.
ab
ab
ab
•
所以
题型2
用比较法证不等式
•
2. 已知a>0,b>0b,a2 求ab2 证a b:.
•
证法1: b2 a2 - (a b) (b2 - a) ( a2 - b)
•
所ab以a+b>2 ,从而2ab>
2 >0,
•
所以 >1,即ab>1.
•
1. 作差比较法证明不等式时,
通常是进行因式分解,利用各因式
的符号进行判断,或配方利用非负
数的性质进行判断.
•
2. 综合法证明不等式,主要
利用重要不等式,函数的单调性及
不等式的性质,在严密的演绎推理
下推导出结论.
证法2:由于 b2 a2 a b
a3 b3
a2 - ab b2 2ab - ab 1,
a b ab(a b)
ab
ab
b2 a2 0,a b0,
高三数学一轮总复习 第六章 不等式、推理与证明 6.1 不等关系与不等式课件.ppt
□ 性质(5):a>b,c>d⇒a+c 12 _>___b+d(加法法则)。 □ 性质(6):a>b>0,c>d>0⇒ac 13 _>___bd(乘法法则)。 □ 性质(7):a>b>0,n∈N*,n>1⇒an 14 __>____bn(乘方法则)。 □ 性质(8):a>b>0,n∈N*,n>1⇒n a 15 __>____n b(开方法则)。 □ 性质(9):ab>0,a>b⇒1a 16 ___<___b1(倒数法则)。
9
1.下列命题正确的是( A.若 ac>bc,则 a>b C.若1a>1b,则 a<b
) B.若 a2>b2,则 a>b
D.若 a< b,则 a<b
解析:若 a< b,则( a)2<( b)2,即 a<b,选 D。 答案:D
10
2.若 x+y>0,a<0,ay>0,则 x-y 的值( )
A.大于 0
14
课堂学案 考点通关
考点例析 通关特训
15
考点一
比较两个数(式)的大小
【例 1】 (1)设 x<y<0,比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小;
解析:(1)(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y)。 ∵x<y<0,∴xy>0,x-y<0。 ∴-2xy(x-y)>0。 ∴(x2+y2)(x-y)>(x2-y2)(x+y)。
18
通关特训 1 (1)已知等比数列{an}中,a1>0,q>0,前 n 项和为 Sn,比较aS33与Sa55 的大小。
解析:(1)当 q=1 时,aS33=3,Sa55=5,故aS33<Sa55;当 q>0 且 q≠1 时,Sa33-Sa55=aa11q21-1-q3q -aa11q41-1-q5q=q21-qq431--q1-q5=q4q21--1q=-q+q4 1<0,故aS33<Sa55。综上,Sa33<Sa55。
高考数学第一轮知识点总复习 第六单元 不等式
1
2
1
ab - 2ab (a b) ab - 2ab
ab
ab
ab
ab(a - 2 ab b) ab
ab( a - b)2
即aH<b G;
0,
由 A - G a b - ab a - 2 ab ,即b G <( Aa ;- b)2 0
2
2
2
由 Q - A a2 b2 - a b ,即2(aA2 <bQ2).- a b
∴T>2t,故乙先到教室.
际举意一义反,三本题中容易忽视“x,y∈N*”.
1. 用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受阻力 会越来越大,使得每次钉入木板的钉子长度满足后一次为前一次的
2. 1 (k∈N*),已知一个铁钉受击3次后全部进入木板,且第一次受击后
k
3. 进入木板部分的铁钉长度是钉长的4 ,请从这个实例中提炼出一个不
文字语言 大于 小于
大于等于 小于等于
数学符号 > < ≥ ≤
文字语言 至多 至少
不少于 不多于
数学符号 ≤ ≥ ≥ ≤
(2)注意区分“不等关系”和“不等式”的异同,不等关系强调的 是“关系”,可用“>”、“<”、“≥”、“≤”、“≠”表示,不 等式则是表现不等关系的“式子”.对于实际问题中的不等关系可以 从“不超过”、“至少”、“至多”等关键词上去把握,并考虑到实
a b ab
又a>b,∴a>0,b<0为真命题. 综上可知真命题有4个,故选C.
学后反思 (1)准确记忆不等式性质成立的条件,是正确应用性质的前提. (2)在不等式的判断中,举反例推翻结论是常用方法,如本例题①中令c=0, 则知结论错误.
高三数学高考一轮复习系列教案第六章 不等式 大纲版
第六章不等式知识结构高考能力要求1.理解不等式的性质及其证明.2.掌握两个(注意不扩展到三个)正数的算术平均数不小于它们的几何平均数定理,并会简单应用.3.掌握分析法、综合法、比较法证明简单的不等式.4.掌握简单不等式的解法.5.理解不等式| a |-| b| ≤| a+b |≤| a |+| b |.高考热点分析不等式部分的内容是高考较为稳定的一个热点,考查的重点是不等式的性质、证明、解法及最值方面的应用.高考试题中有以下几个明显的特点:1.不等式与函数、方程、三角、数列、几何、导数、实际应用等有关内容综合在一起的综合试题多,单独考查不等式的问题很少,尤其是不等式的证明题.2.选择题,填空题和解答题三种题型中均有各种类型不等式题,特别是应用题和综合题几乎都与不等式有关.3.不等式的证明考得比较频繁,所涉及的方法主要是比较法、综合法和分析法,而放缩法作为一种辅助方法不容忽视.高考复习建议1.复习不等式的性质时,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据.2.不等式的证明方法除比较法、分析法、综合法外,还有反证法、换元法、放缩法、判别式法、构造法、几何法,这些方法可作了解,但要控制量和度.3.解(证)某些不等式时,要把函数的定义域、值域和单调性结合起来.4.注意重要不等式和常用思想方法在解题中的作用.5.利用平均值定理解决问题时,要注意满足定理成立的三个条件:“一正、二定、三相等”.6.对于含有绝对值的不等式(问题),要紧紧抓住绝对值的定义实质,充分利用绝对值的几何意义.7.要强化不等式的应用意识,同时要注意到不等式与函数方程的对比与联系.6.1 不等式的概念和性质知识要点1、实数的大小比较法则:设a,b∈R,则a>b⇔;a=b⇔;a<b⇔ .实数的大小比较法则,它是比较两个实数大小的依据,要比较两个实数的大小,只要考察它们的就可以了.实数的大小比较法则与实数运算的符号法则一起构成了证明其它不等式性质的基础.2、不等式的5个性质定理及其3条推论定理1(对称性)a>b ⇔定理2(同向传递性)a>b,b>c定理3 a>b⇔a+c > b+c推论a>b,c>d⇒定理4 a>b,c>0⇒a>b,c<0⇒推论1 (非负数同向相乘法)a>b≥0,c>d≥0⇒推论2 a>b>0⇒nn ba>(n∈N且n>1)定理5 a>b>0⇒>n a n b(n∈N且n>1)例题讲练【例1】(1) 若x<y<0. 试比较(x2-y2)(x+y)与(x2+y2)(x-y)的大小.(2) 设a>0,b>0,且a≠b,试比较a a b b与a b b a的大小.【例2】 设f (x )=1+log x 3,g(x )=2log x 2,其中x >0,x ≠1.比较f (x )与g(x )的大小. .【例3】 函数)(x f =ax 2+bx 满足:1≤)1(-f ≤2,2≤)1(f ≤4,求)2(-f 的取值范围.【例4】 已知函数f (x )=x 2+ax +b ,当p 、q 满足p +q =1时,试证明:pf (x )+qf (y )≥f (px +qy )对于任意实数x 、y 都成立的充要条件是o ≤p ≤1.小结归纳 1.不等式的性质是证明不等式与解不等式的重要而又基本的依据,必须要正确、熟练地掌握,要弄清每一性质的条件和结论.注意条件的放宽和加强,条件和结论之间的相互联系.2.使用“作差”比较,其变形之一是将差式因式分解,然后根据各个因式的符号判断差式的符号;变形之二是将差式变成非负数(或非正数)之和,然后判断差式的符号.3.关于数(式)比较大小,应该将“相等”与“不等”分开加以说明,不要笼统地写成“A ≥B(或B ≤A)”.基础训练题 一、选择题1. 设a 、b ∈+R 且a ≠b ,x =a 3+b 3,y =a 2b +ab 2;则x与y 的大小关系为 ( ) A .x >y B .x =y C .x < y D .不能确定 2. 如果-1<a <b <0,则有 ( )A .a b 11<<b 2<a 2B .a b 11<<a 2<b 2 C .ba 11<<b 2<a 2D .ba 11<<a 2<b 23. 下列判断:① a 1>b ,a 2>b ,则a 1>a 2;② 若ac >bc ,则c >0;③ 由lg 41>lg 51,2>1;有2lg 41>lg 51;④ a >b ,则a 1<b1,其中不能成立的个数是 ( )A .1个B .2个C .3个D .4个4. 若p =a +21-a (a >2),q =2242-+-a a ,则 ( )A .p >qB .p <qC .p ≥qD .p ≤q5. 已知三个不等式:ab >0,bc -ad >0,a c-bd >0(其中a 、b 、c 、d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A .0B .1C .2D .36. 若a ,b ∈R ,a >b ,则下列不等式成立的是 ( )A .a 1<b 1B .a 2>b 2C .12+c a >12+c bD .a | c |>b | c |二、填空题7. 若1<α<3,-4<β<2,则α-|β|的取值范围是 .8. a >b >0,m >0,n >0,则a b ,ba ,m a mb ++,n b na ++的由大到小的顺序是 .9.使不等式a 2>b 2,ba >1,lg(a -b )>0,2a >2b -1都成立的a 与b 的关系式是 .10.若不等式(-1)na <2+nn 1)1(+-对于任意正整数n 恒成立,则实数a 的取值范围是 .三、解答题11.已知a >2,b >2,试比较a +b 与ab 的大小. .12.设a 1≈2,令a 2=1+111a +. (1) 证明2介于a 1、a 2之间; (2) 求a 1、a 2中哪一个更接近于2;(3) 你能设计一个比a 2更接近于2的一个a 3吗?并说明理由.13.某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果甲、乙两家旅行社的原价(一张票)相同,请问该家庭选择哪家旅行社外出旅游合算?提高训练题14.已知a >b >c ,a +b +c =0,方程ax 2+bx +c =0的两个实数根为x 1、x 2.(1)证明:-21<a b<1;(2)若x 21+x 1x 2+x 22=1,求x 21-x 1x 2+x 22; (3)求| x 21-x 22|.15.函数f (x )=x 2+(b -1)x +c 的图象与x 轴交于(x 1,0)、(x 2,0),且x 2-x 1>1. 当t <x 1时,比较t 2+bt +c 与x 1的大小.6.2 算术平均数与几何平均数知识要点1.a >0,b >0时,称 为a ,b 的算术平均数;称 为a ,b 的几何平均数.2.定理1 如果a 、b ∈R ,那么a 2+b 2 2ab (当且仅当 时 取“=”号)3.定理2 如果a 、b ∈+R ,那么2ba +≥ (当且仅当a =b 时取“=”号)即两个数的算术平均数不小于它们的几何平均数.4.已知x 、y ∈+R ,x +y =P ,xy =S. 有下列命题: (1) 如果S 是定值,那么当且仅当x =y 时,x +y 有最小值 .(2) 如果P 是定值,那么当且仅当x =y 时,xy 有最大值 .例题讲练【例1】 设a 、b ∈R +,试比较2ba +,ab ,222b a +,ba 112+的大小.【例2】 已知a ,b ,x ,y ∈R +(a ,b 为常数),1=+y b x a ,求x +y 的最小值.【例3】 在某两个正数x 、y 之间,若插入一个正数a ,使x ,a ,y 成等比数列,若插入两个正数b 、c ,使x 、b 、c 、y 成等差数列,求证:(a +1)2≤(b +1)(c +1).【例4】 甲、乙两地相距S (千米),汽车从甲地匀速行驶到乙地,速度最大不得超过c (千米/小时).已知汽车每小时的运输成本(元)由可变部分与固定部分组成.可变部分与速度v (千米/小时)的平方成正比,且比例系数为正常数b ;固定部分为a 元.(1) 试将全程运输成本Y (元)表示成速度V(千米/小时)的函数.(2) 为使全程运输成本最省,汽车应以多大速度行驶?小结归纳1.在应用两个定理时,必须熟悉它们的常用变形,同时注意它们成立的条件.2.在使用“和为常数、积有最大值”和“积为常数、和有最小值”这两个结论时,必须注意三点:“一正”——变量为正数,“二定”——和或积为定值,“三相等”——等号应能取到,简记为“一正二定三相等”.基础训练题一、选择题1.设,b ,a 00>>则以下不等式中不恒成立....的是 ( ) A .4)11)((≥++ba b aB .2332ab b a ≥+C .b a b a 22222+≥++D .b a |b a |-≥- 2. 若x 2log+y 2log≥4,则x +y 的最小值为( )A .8B .42C .2D .43. 设a 、b ∈R ,已知命题p :a =b ;命题q :(2b a +)2≤222b a +( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 4. 给出四个命题:(1)1222++x x 的最小值为2;(2)xx 432--的最大值为342- (3) x x lg 10log +的最小值为2;(4) xx 22sin 4sin +的最小值为4. 其中正确命题的个数是 ( ) A .0 B .1 C .2 D .35.设x ,y ∈R +,且xy -(x +y )=1,则 ( )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥2(2+1) 6. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 等于( )A .20吨B .15吨C .25吨D .40吨二、填空题7. 设0<x <2,则x (8-3x )的最大值为____________,相应的x 为____________. 8. 要使不等式x +y ≤k y x +对所有正数x ,y 都成立,试问k 的最小值是 .9. 若a >b >0,则a 2+)(16b a b -的最小值是________.10.已知0,0>>b a 且1222=+b a ,则21b a +的最大值________.三、解答题11.设实数x ,y ,m ,n 满足条件122=+n m ,922=+y x ,求ny mx +的最大值.12.若a ,b ,c 是互不相等的正数,求证:a 4+b 4+c 4)(222222c b a abc a c c b b a ++>++>13.已知a ,b ,x ,y ∈R +(a ,b 为常数),a +b =10,1=+y bx a ,若 x +y 的最小值为18,求a ,b 的值.提高训练题 14.已知a 、b 、c ∈R ,求证:)(2222222c b a a c c b b a ++≥+++++15. 某单位决定投资3200元建一长方体状仓库,高度恒定,它的后墙利用旧墙不花钱,正面用铁珊,每米造价40元,两侧墙砌砖,每米造价45元,顶部每平方米造价20元,计算:(1)仓库面积S 的最大允许值是多少?(2)为了使仓库面积S 达到最大,而实际投资又不超过预算,那么正面用铁珊应设计为多长?6.3 不等式证明(一)知识要点 1.比较法是证明不等式的一个最基本的方法,分比差、比商两种形式.(1)作差比较法,它的依据是: ⎪⎩⎪⎨⎧<⇔<-=⇔=->⇔>-b a b a b a b a b a b a 000它的基本步骤:作差——变形——判断,差的变形的主要方法有配方法,分解因式法,分子有理化等.(2) 作商比较法,它的依据是:若a >0,b >0,则⎪⎪⎪⎩⎪⎪⎪⎨⎧<⇔<=⇔=>⇔>b a b ab a b ab a b a111 它的基本步骤是:作商——变形——判断商与1的大小.它在证明幂、指数不等式中经常用到.2.综合法:综合法证题的指导思想是“由因导果”,即从已知条件或基本不等式出发,利用不等式的性质,推出要证明的结论.3.分析法:分析法证题的指导思想是“由果索因”,即从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够确定这些充分条件都已具备,那么就可以判定所要证的不等式成立. 例题讲练【例1】 已知0,0>>b a ,求证:b a ab b a +≥+【例2】 已知a 、b ∈R +,求证:)(22)1)((a b b a b a b a +≥+++【例3】 已知△ABC 的外接圆半径R =1,41=∆ABC S ,a 、b 、c 是三角形的三边,令c b a s ++=,cb a t 111++=.求证:s t >【例4】 设二次函数)0()(2>++=a c bx ax x f ,方程0)(=-x x f 的两个根1x 、2x 满足ax x 1021<<<. (1) 当x ∈(0,x 1)时,证明:x <f (x )<x 1(2) 设函数f (x )的图象关于直线x =x 0对称,证明:x 0<21x .小结归纳 1.比较法是证明不等式的一个最基本的方法,而又以作差比较最为常见.作差比较的关键在于作差后如何变形来达到判断差值符号之目的,变形的方向主要是因式分解和配方.2.综合法证明不等式要找出条件和结论之间的内在联系,为此要着力分析已知与求证之间,不等式左右两端的差异和联系,合理进行变换,去异存同,恰当选择已知不等式,找到证题的突破口.3.分析法是“执果索因”重在对命题成立条件的探索,寻求不等式成立的充分条件,因此有时须先对原不等式化简.常用的方法有:平方,合并,有理化去分母等.但要注意所有这些变形必须能够逆推,书写格式要严谨规范.4.分析法和综合法是对立统一的两个方法.在不等式的证明中,我们常用分析法探索证明的途径后,用综合法的形式写出证明过程.这种先分析后综合的思路具有一般性,是解决数学问题的一种重要数学思想.基础训练题 一、选择题1. 已知∈b a 、+R 则下列各式中不成立的是( )A .221≥++ab b aB .4)11)((≥++ba b aC .ab ab b a 222≥+ D .ab ba ab≥+2 2. 设0<2a <1,M =1-a 2,N =1+a 2,P =a-11,Q =a+11,那么 ( ) A .Q <P <M <N B .M <N <Q <P C .Q <M <N <P D .M <Q <P <N3. 设a >0,且 a ≠1,P =log a (a 3+1),Q =log a (a 2+1),则P ,Q 的大小关系是 ( ) A .P >Q B .P =Q C .P <Q D .P 与Q 的大小与a 有关4. 设a 、b 、c 是△ABC 的三边,且S =a 2+b 2+c 2,P =ca bc ab ++,则( ) A .S ≥2P B .P <S <2P C .S >P D .P ≤S <2P 5. 已知∈b a 、+R ,那么“122<+b a ”是“b a ab +>+1”的 ( ) A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件6.已知p 、q 是两个正数,且关于x 的方程022=++q px x 和022=++p qx x 都有实根,则q p +的最小可能值是( ) A .5 B .6 C .8 D .16二、填空题7. 若1>a ,10<<b ,则abb a l o g l o g +的范围是 .8. 若1=++c b a ,则222c b a ++的最小值为 .9. 已知a <b <c 且a +b +c =0,则方程ax 2+bx +c =0有_______个实根.10.若x 、y 满足2x y =,则代数式87)22(log 2-+y x 的符号是 .三、解答题11.已知a 、b 、x 、y ∈R +且a 1>b1,x >y .求证:a x x +>by y+.12.已知a 、b 、c ∈R ,求证:c b ab c b a 234222++≥+++13.已知a +b +c =0,求证:ab +bc +ca ≤0提高训练题14.已知正数a 、b 、c 满足c b a 2<+,求证:(1) ab c >2 (2) ab c c a ab c c -+<<--2215.是否存在常数C ,使得不等式y x x +2+yx y2+≤C ≤y x x 2++y x y+2对任意正数x 、y 恒成立?试证明你的结论.6.4 不等式证明(二)知识要点证明不等式的其它方法:反证法、换元法、放缩法、判别式法等.反证法:从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原命题是正确的证明方法.换元法:对结构较为复杂,量与量之间关系不甚明了的命题,通过恰当引入新变量,代换原命题中的部分式子,简化原有结构,使其转化为便于研究的形式的证明方法.放缩法:为证明不等式的需要,有时需舍去或添加一些代数项,使不等式的一边放大或缩小,利用不等式的传递性,达到证题的目的,这种方法叫放缩法.判别式法:根据已知的式子或构造出来的一元二次方程的根,一元二次不等式的解集,二次函数的性质等特征,确定其判别式所应满足的不等式,从而推出所证的不等式成立.例题讲练【例1】 已知f (x )=x 2+px +q , (1) 求证:f (1)+f (3)-2f (2)=2;(2) 求证:|f (1)|、|f (2)|、|f (3)|中至少有一个不小于21.【例2】 (1) 已知x 2+y 2=1,求证:2211a ax y a +≤-≤+-. (2) 已知a 、b ∈R ,且a 2+b 2≤1, 求证:2222≤-+b ab a .【例3】 若2≥∈n N n ,且,求证:1131211121222<+⋅⋅⋅++<+-n n【例4】 证明:23112122≤+++≤x x x .小结归纳 1.凡是含有“至少”,“至多”,“唯一”,“不存在”或其它否定词的命题适宜用反证法.2.在已知式子中,如果出现两变量之和为正常数或变量的绝对值不大于一个正常数,可进行三角变换,换元法证明不等式时,要注意换元的等价性.3.放缩法证题中,放缩必须有目标,放缩的途径很多,如用均值不等式,增减项、放缩因式等.4.含有字母的不等式,如果可以化成一边为零,另一边是关于某字母的二次三项式时,可用判别式法证明不等式成立,但要注意根的范围和题设条件的限制.基础训练题 一、选择题1. 设∈c b a 、、+R ,那么三个数b a 1+、c b 1+、ac 1+ ( )A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个不小于2 2. 已知∈d c b a 、、、+R ,S =c b a a +++db a b+++a d c c +++b dc d++,则有( )A .20<<sB .21<<sC .32<<sD .43<<s3. 若122=++y xy x 且R y x ∈、,则22y x n +=的取值范围是 ( ) A.10≤<n B.32≤≤nC.2≥nD.232≤≤n4. 已知函数f (x )=(21)x ,a 、b +∈R ,A =f (2b a +),B=f (ab ),C =f (ba ab+2),则A 、B 、C 的大小关系是( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A 5. 设x >0,y >0,x +y =1,则a y x ≤+恒成立的a的最小值是( )A .22B .2C .2D .226. 设实数x ,y 满足x 2+(y -1)2=1,当x +y +c ≥0时,c 的取值范围是( )A .)12[∞+-,,B . ]12(--∞,,C .)12[∞++,, D .]12(+-∞,,二、填空题 7. 设00>>y x 、,y x y x A +++=1,yyx x B +++=11,则A 、B 大小关系为 .8. 实数y x yx-=,则x 的取值范围是 . 9. 若f (n )=12+n -n ,g (n )=n -12-n ,ϕ(n )=n21,则f (n ),g (n ),ϕ(n )的大小顺序为____________. 10.设a ,b 是两个实数,给出下列条件:①a +b >1; ②a +b =2;③a +b >2;④ a 2+b 2 >2;⑤ab >1,其中能推出:“a 、b 中至少有一个实数大于1”的条件是____.三、解答题11.设二次函数)0()(2≠∈++=a R c b a c bx ax x f 且、、,若函数)(x f y =的图象与直线x y =和x y -=均无公共点.(1) 求证:142>-b ac(2) 求证:对于一切实数x 恒有||41||2a c bx ax >++12.已知二次函数c bx ax x f ++=2)(且0)1(=-f ,问是否存在实数c b a 、、使不等式)1(21)(2x x f x +≤≤对一切实数都成立,并证明你的结论.13.已知f (x ) =12+x , 且a ≠b 求证: | f (a )-f (b ) | <| a -b |.提高训练题14.设f (x )=| x 3-1|,实数a 、b 满足f (a )=f (b )且a <b ,① 求证:a +b <2② 若3f (a )=4f (2ba +),求a 、b 的值15.已知a 、b 为正数,求证:(1) 若a +1>b ,则对于任何大于1的正数x ,恒有ax +1-x x>b 成立;(2) 若对于任何大于1的正数x ,恒有ax +1-x x>b成立,则a +1>b .6.5 绝对值不等式的应用知识要点1、有关绝对值不等式的主要性质:① | x |= ⎪⎩⎪⎨⎧<-=>)0()0(0)0(x x x x x② | x |≥0③ | |a |-|b ||≤|a ±b |≤| a |+| b |④| ab |= ,ba= (b ≠0)特别:ab ≥0,|a +b |= ,|a -b |= . ab ≤0,|a -b |= ,|a +b |= . 2、最简绝对值不等式的解法.① | f (x ) |≥a ⇔ ; ② | f (x ) |≤a ⇔ ; ③ a ≤| f (x ) |≤b . ④ 对于类似a | f (x ) |+b | g (x ) | > c 的不等式,则应找出绝对值的零点,以此划分区间进行讨论求解. 例题讲练【例1】 解不等式:| x 2-3x -4|> x +1【例2】设f(x)=x2-x+b,| x-a |<1,求证:| f(x) -f(a) |<2(| a |+1).【例3】已知f(x)=x,g(x)=x+a(a>0),⑴当a=4时,求)() ()(xfx gaxf-的最小值;⑵若不等式) () ()(xfx gaxf->1对x∈[1, 4]恒成立,求a的取值范围.【例4】设a、b∈R,已知二次函数f(x)=ax2+bx +c,g(x)=cx2+bx+a,当|x|≤1时,|f(x)|≤2⑴求证:|g(1)|≤2;⑵求证:当|x|≤1时,| g(x)|≤4.小结归纳1.利用性质||a|-|b||≤|a+b|≤|a|+|b|时,应注意等号成立的条件.2.解含绝对值的不等式的总体思想是:将含绝对值的不等式转化为不含绝对值的不等式求解.3.绝对值是历年高考的重点,而绝对值不等式更是常考常新,教学中,应注意绝对值与函数问题的结合.基础训练题一、选择题1.方程132+-xxx=132+-xxx的解集是()A.(][)∞+⋃-,30,1B.)3,0()1,(⋃--∞C.),3()1,1(∞+⋃-D.),3()1,(∞+⋃--∞2.x∈R,则(1+x)(1-|x|)>0的解集为()A.{x|-1<x<1} B.{x|x<1}C.{x| x<-1或x>1} D.{x| x<1且x≠-1} 3.f(x)为R上的增函数,y=f(x)的图象过点A(0,-1)和下面哪一点时,能确定不等式|f(x-1)|<1的解集为{x|1<x<4} ()A.(3, 1) B.(4, 1)C.(3, 0) D.(4, 0)4.若不等式|x-4|-|x-3|≤a对一切实数x都成立,则实数a的取值范围是()A.a>1 B.a<1C.a≤1 D.a≥15.下面四个式子中:⑴ |b-a|=| a-b |,⑵| a+b |+| a -b|≥2|a|,⑶aa=-2)(,⑷|)||(|21ba+≥||ab成立的有几个()A.1 B.2C.3 D.46.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1≠x2),| f(x1)-f(x2)|<| x1-x2|恒成立”的只有()A.f(x)=x1B.f(x)=| x |C.f(x)=2x D.f(x)=x2二、填空题7.已知| a |≠| b |,m=||||||baba--,n=||||||baba++,则m,n的大小关系是.8.不等式x2-4| x |+3<0的解集为.9.设|x-2|<a时,不等式|x2-4|<1成立,则正数a的取值范围是.10.已知方程| x |=ax+1有一个负根且无正根,则实数a 的取值范围是.三、解答题11.解不等式:|2x+1|+| x-2 |+| x-1 |>4.12.若a、b∈R,α, β是方程x2+a x+b=0的两根,且|a|+| b |<1,求证:| α |<1且|β|<1.13.已知适合不等式| x 2-4x +p |+| x -3 |≤5的x 的最大值是3,求p 的值.提高训练题14.(1) 已知:| a |<1,| b |<1,求证:|b a ab--1|>1; (2) 求实数λ的取值范围,使不等式|ba ab --λλ1|>1对满足| a |<1,| b |<1的一切实数a 、b 恒成立;(3) 已知| a |<1,若|abba ++1|<1,求b 的取值范围.15.已知函数f (x )=x 3+ax +b 定义在区间[-1,1]上,且f (0)=f (1),又P(x 1,y 1),Q(x 2,y 2)是其图象上任意两点(x 1≠x 2).(1)设直线PQ 的斜率为k ,求证:| k |<2; (2)若0≤x 1<x 2≤1,求证:| y 1-y 2 |<1.6.6 含参数的不等式知识要点含有参数的不等式可渗透到各类不等式中去,在解不等式时随时可见含参数的不等式.而这类含参数的不等式是我们教学和高考中的一个重点和难点.解含参数的不等式往往需要分类讨论求解,寻找讨论点(常见的如零点,等值点等),正确划分区间,是分类讨论解决这类问题的关键.在分类讨论过程中要做到不重,不漏.例题讲练【例1】 已知A ={x | 2ax 2+(2-ab )x -b >0},B ={x | x <-2或x >3},其中b >0,若A ⊇B ,求a 、b 的取值范围.【例2】 已知关于x 的不等式ax ax --25<0的解集为M ,(1) 当a =4时,求集合M ;(2) 若3∈M 且5∉M ,求实数a 的取值范围.【例3】 若不等式2x -1>m (x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围.【例4】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R).小结归纳解含参数的不等式的基本途径是分类讨论,应注意寻找讨论点,以讨论点划分区间进行讨论求解.能避免讨论的应设法避免讨论.基础训练题 一、选择题1. 如果 a >0,b >0,则不等式-b <x1<a 的解集是( ) A .{x |-b 1<x <0或0<x <b1} B .{x | x <-b1或x >a 1}C .{x |-a 1<x <0或0<x <b 1} D .{x |-a 1<x <b1}2. 已知函数f (x )=x 2+bx +c ,且f (-1)=f (3),则( )A .f (1)>c > f (-1)B .f (1)< c < f (-1)C .f (1)<f (-1) < cD .f (1)> f (-1)> c3.设关于x 的不等式ax >b 的解集中有一个元素是3,则( )A .a >0且3a >bB .a <0且3a <bC .a >0且b <0D .以上都不对4. 若不等式x 2+ax +1≥0对于一切x ∈(0,21)成立,则a 的取值范围是 ( ) A .[0,+∞) B .[-2,2]C .[-25,+∞) D .[-25,-2] 5. 设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别为集合M和N ,那么“212121c cb b a a ==”是“M =N ”的( )A .充要条件B .必要非充分条件C .充分非必要条件D .既非充分也非必要条件6. 已知a >0,且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<21,则实数a 的取值范围是 ( )A .]21,0(∪[)∞+,2 B .)1,21[∪(]2,1C .)1,41[∪(]4,1 D .]41,0(∪[)∞+,4二、填空题7. 不等式11<-x ax的解集是{x | x <1或x >2},则a = . 8. 设f (x )=3ax -2a +1,若存在x 0∈(-1,1),使f (x 0)=0,则实数a 的取值范围是 .9. 若不等式122)31(3+->x ax x 对一切实数x 恒成立,则实数a 的取值范围是 .10.若关于x 的不等式组 ⎩⎨⎧>+->01a x ax 的解集不是空集,则实数a 的取值范围是 .三、解答题11.对于任意的x ∈R ,均有x 2-4ax +2a +30≥0(a ∈R),求关于x 的方程3+a x=| a -1|+1的根的范围.12.解关于x 的不等式01224222>+--a a ax x .13.已知函数f (x )=bax x +2(a 、b 为常数),且方程f (x )-x+12=0有两个实根为x 1=3,x 2=4. (1)求函数f (x )的解析式;(2)设k >1,解关于x 的不等式f (x )<xkx k --+2)1(.提高训练题14.设函数f (x )=| x -a |,g (x )=ax (a >0).(1)解关于x 的不等式| x -a |<ax ;(2)设F(x )=f (x ) -g (x ),若F(x )在(0,+∞)上有最小值,求出这个最小值.15.已知f (x )=lg(x +1),g (x )=2lg(2x +t )( t ∈R ,t 是参数) (1) 当t =-1时,解不等式:f (x ) ≤ g (x )(2) 如果当x ∈[0,1]时,f (x ) ≤ g (x )恒成立,求参数t 的取值范围.6.7 不等式的应用知识要点 1.不等式始终贯穿在整个中学教学之中,诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数的定义域,值域的确定,三角、数列、立体几何,解析几何中的最大值、最小值问题,无一不与不等式有着密切关系.2.能够运用不等式的性质、定理和方法分析解决有关函数的性质,方程实根的分布,解决涉及不等式的应用例题讲练【例1】 若关于x 的方程4x +a ·2x +a +1=0有实数解,求实数a 的取值范围. .【例2】 如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的面积忽略不计).【例3】已知二次函数y=ax2+2bx+c,其中a>b >c且a+b+c=0.(1)求证:此函数的图象与x轴交于相异的两个点.(2)设函数图象截x轴所得线段的长为l,求证:3<l<23.【例4】一船由甲地逆水匀速行驶至乙地,甲乙两地相距S(千米),水速为常量p(千米/小时),船在静水中的最大速度为q(千米/小时)(q>p),已知船每小时的燃料费用(以元为单位)与船在静水中速度v(千米/小时)的平方成正比,比例系数为k.⑴把全程燃料费用y(元)表示为静水中速度v的函数,并求出这个函数的定义域.⑵为了使全程燃料费用最小,船的实际前进速度应为多少?小结归纳不等式的应用主要有两类:⑴一类是不等式在其它数学问题中的应用,主要是求字母的取值范围,这类问题所进行的必须是等价转化.注意沟通各知识点之间的内在联系,活用不等式的概念、方法,融会贯通.⑵一类是解决与不等式有关的实际问题,这类问题首先应认真阅读题目,理解题目的意义,注意题目中的关键词和有关数据,然后将实际问题转化为数学问题,即数学建模,再运用不等式的有关知识加以解决.基础训练题一、选择题1.设M=(a1-1)(b1-1)(c1-1),若a+b+c=1,(a,b,c∈R+)则M的取值范围是()A.[)8,0B.⎪⎭⎫⎢⎣⎡1,81C.[)8,1D.[)∞+,82.已知方程sin2x-4sin x+1-a=0有解,则实数a的取值范围是()A.[-3,6] B.[-2,6]C.[-3,2] D.[-2,2]3.点P(x,y)在椭圆92x+42y=1上移动,则x+y的最大值等于()A.5 B.3C.6 D.134.已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(-∞,-1) B.(-∞,22-1)C.(-1,22-1) D.(-22-1,22-1) 5.一批物资要用11辆汽车从甲地运到360千米外的乙地,若车速为v千米/小时,两车的距离不能小于(10v)2千米,运完这批物资至少需要()A.10小时B.11小时C.12小时D.13小时6.设函数是定义在R上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=132+-mm,则m的取值范围是()A.m<32B.m<32且m≠-1C.-1< m<32D.m>32且m<-1二、填空题7.如果对任意实数x,不等式| x+1 |≥kx恒成立,则实数k的范围是 .8.已知f (x)=⎩⎨⎧<-≥11xx,则不等式x+(x+2)f (x+2)≤5的解集是.9.一个盒中装有红球、白球和黑球,黑球的个数至少是白球个数的一半,至多是红球个数的31,白球与黑球的个数之和至少是55,则红球个数的最小值为 . 10.船在流水中在甲地和乙地间来回行驶一次的平均速度V 1和在静水中的速度V 2的大小关系是 .三、解答题11.已知实数p 满足不等式0212<++x x ,试判断方程Z 2-2Z +5-p 2=0有无实根,并给出证明.12.已知二次函数f (x )=x 2+bx +c (b 、c ∈R ),不论α、β为何实数,恒有f (sin α)≥0,f (2+cos β)≤0. (1) 求证:b +c =-1; (2) 求证:c ≥3;(3) 若函数f (sin α)的最大值为8,求b 、c 的值.13.某游泳馆出售冬季游泳卡,每张240元,使用规定:不记名,每卡每次只限1人,每天只限1次.某班有48名同学,老师们打算组织同学们集体去游泳,除需要购买若干张游泳卡外,每次游泳还要包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元,若使每个同学游泳8次,每人最少交多少钱?提高训练题14.设函数f (x )=x 2+2bx +c (c <b <1),f (1)=0,且方程f (x )+1=0有实根.(1)证明:-3<c ≤-1且b ≥0;(2)若m 是方程f (x )+1=0的一个实根,判断f (m -4)的正负,并加以证明.15.已知定义域为[0,1]的函数f (x )同时满足:① 对于任意x ∈[0,1],总有f (x )≥0;②f (1)=1;③ 若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2). ⑴ 求f (0)的值.⑵ 求函数f (x )的最大值.⑶ 证明:① 当x ∈(21,1]时,有f (x )<2x 成立.② 当x ∈[0,21]时,有f (x )≤21f (2x )成立.单 元 测 试一、选择题1. 关于x 的不等式|x -1|>m 的解集为R 的充要条件是( )A .m <0B .m ≤-1C .m ≤0D .m ≤1 2. 若a 、b 是任意实数,且b a >,则( )A .22b a >B .1<abC .0)lg(>-b aD .b a )21()21(<3. 若,,h a y h a x <-<-则下列不等式一定成立的是( )A .h y x <-B .h y x 2<-C .h y x >-D .h y x 2>-4. 欲证7632-<-,只需证( )A .22)76()32(-<-B .22)73()62(-<-C .22)63()72(+<+D .22)7()632(-<--5. 设x 1,x 2是方程x 2+px +4=0的两个不相等的实根,则 ( ) A .| x 1 |>2且| x 1 |=2 B .| x 1+x 2|>4 C .| x 1+x 2|<4 D .| x 1 |=4且| x 2 |=16. 对一切正整数n ,不等式211++<-n n b b 恒成立,则b 的范围是 ( )A .(0, 32) B .(32,0]C .(52,∞-)),1(∞+⋃D .(52, 1)7. 已知函数f (x )= ⎪⎩⎪⎨⎧<--≥+-)0()0(22x x x x x x ,则不等式f (x )+2>0的解区间是 ( ) A .(-2,2) B .(-∞, -2)∪(2, +∞) C .(-1,1) D .(-∞, -1)∪(1, +∞) 8. 在R 上定义运算⊗.(1)x y x y ⊗=-若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则 ( ) A .11a -<< B .02a <<C .3122a -<< D .1322a -<< 9. 某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为(参考数据lg2=0.3010,lg3=0.4771) ( ) A .5 B .10 C .14 D .1510.(理)集合1{|0}1x A x x -=<+、{}a b x x B <-=,若"1"a =是""Φ≠⋂B A 的充分条件,则b 的取值范围可以是( )A .20b -≤<B .02b <≤C .31b -<<-D .12b -≤< (文)集合1{|0}1x A x x -=<+、{}a x x B <-=1,则"1"a =是""Φ≠⋂B A 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分又非必要条件二、填空题11.若y x y x 2,2416,4230-<<<<则的取值范围是 . 12.若不等式02<--b ax x 的解集为{32<<x x },则=+b a .13.实数x 满足θsin 1log 3+=x ,则91-+-x x 的值为 .14.已知a 、b 、c 为某一直角三角形的三条边长,c 为斜边,若点(m ,n )在直线ax +by +2c =0上,则m 2+n 2的最小值是 .15.对a ,b ∈R ,记max| a ,b |= ⎩⎨⎧<≥ba b ba a ,函数f (x )=max| | x +1 |,| x -2 | | (x ∈R )的最小值是 .三、解答题16. 若a 、b 、c 都是正数,且a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc .17.已知函数f (x )=xax x ++22,x ∈[)∞+,1.(1) 当a =21时,求函数f (x )的最小值;(2) 若对任意x ∈[)∞+,1,f (x )>0恒成立,求实数a的取值范围.18.(理)解关于x 的不等式222(1)21x a x x ax+--≥+(文)解关于x 的不等式:2(1)10,(0)ax a x a -++<>19.设函数y =f (x )的定义域为(0,+∞),且对任意x 、y∈R +,f (xy )=f (x )+f (y )恒成立,已知f (8)=3,且当x >1时,f (x )>0.(Ⅰ)证明:函数f (x )在(0,+∞)上单调递增;(Ⅱ)对一个各项均正的数列{a n }满足f (S n )=f (a n )+f (a n+1)-1 (n ∈N *),其中S n 是数列{a n }的前n 项和,求数列{a n }的通项公式; (Ⅲ)在(Ⅱ)的条件下,是否存在正整数p 、q ,使不等式)1(211121-+>+++q pn a a a n对n ∈N *恒成立,求p 、q 的值.20.对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:1-)(含污物物体质量污物质量)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案甲:一次清洗;方案乙:两次清洗.该物体初次清洗后受残留水等因素影响,其质量变为a (1≤a ≤3).设用x 单位质量的水初次清洗后的清洁度是18.0++x x (x >a -1),用y 质量的水第二次清洗后的清洁度是ay acy ++,其中c (0.8<c <0.99)是该物体初次清洗后的清洁度.(Ⅰ) 分别求出方案甲以及c =0.95时方案乙的用水量,并比较哪一种方案用水量较少;(Ⅱ) 若采用方案乙,当a 为某定值时,如何安排初次与第二次清洗的用水量,使总用水量最少?并讨论a 取不同数值对最少总用水量多少的影响.21. 已知条件p :|5x -1|>a 和条件01321:2>+-x x q ,请选取适当的实数a 的值,分别利用所给的两个条件作为A 、B 构造命题:“若A 则B ”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.。
高三数学第一轮复习教案:第38课时—不等式的概念和性质
高三数学第一轮复习讲义(38)不等式的概念与性质一.复习目标:1.掌握并能运用不等式的性质,灵活运用实数的性质;2.掌握比较两个实数大小的一般步骤.二.知识要点:1.不等式的性质:①对称性:;②传递性:.③加法性质;.④乘法性质:,.⑤乘方性质:;开方性质.2.比较两数大小的一般方法是:.三.课前预习:1.命题(1),(2),(3),(4),(5)(6),(7)其中真命题的是.2.已知,则().3.如果,则()()A()BD.C()()四.例题分析:例1.比较和的大小.例2.设,,比较和的大小,并证明你的结论.例3.在等比数列与等差数列中,,且,比较与,与的大小.a的通项公式是,例4.设数列{}na的单调性;(2)求数列中的最大项.(1)讨论数列{}n五.课后作业:班级学号姓名1.设,则“”是“”成立的()D既不充分也不必要C充要条件()()A充分非必要条件()B必要非充分条件()条件2.下列不等式:(1),(2),(3).其中正确的个数为()()A()B()CD()3.给出下列条件①;②;③.其中,能推出成立的条件的序号是(填所有可能的条件的序号).4.函数是上的减函数,且关于的函数是偶函数,则的大小关系是.5.已知依次成等差数列,依次成等比数列,其中,比较与的大小.6.某人乘坐出租车从地到地,有两种方案:第一种方案,乘起步价为元,每价元的出租车;第二种方案,乘起步价为元,每Km价元的出租车,按出租车管理条例,在起步价内,不同型号的出租车行驶的里路是相等的,则此人从A地到B地选择哪一种方案比较适合?7.设,比较与的大小.8.设,比较与的大小.9.设,其中,比较与的大小.内容总结(1)高三数学第一轮复习讲义(38)不等式的概念与性质。
2013届高考数学(理)一轮复习课件:第七篇-不等式第1讲-不等关系与不等式)
第29页,共32页。
三、中间量法
【示例】► 若 a=20.6,b=logπ3,c=log>b>c
B.b>a>c
C.c>a>b
D.b>c>a
第30页,共32页。
第31页,共32页。
单击此处进入 活页限时训练
第32页,共32页。
第18页,共32页。
考向三 不等式性质的应用 【例 3】►已知函数 f(x)=ax2+bx,且 1≤f(-1)≤2,2≤f(1)≤4.求 f(-2) 的取值范围. [审题视点] 可利用待定系数法寻找目标式 f(-2)与已知式 f(-1),f(1)之 间的关系,即用 f(-1),f(1)整体表示 f(-2),再利用不等式的性质求 f(- 2)的范围.
比较大小的方法常采用作差法与作商法,但题型为选择题时可以用 特殊值法来比较大小.
第13页,共32页。
【训练 1】 已知 a,b∈R 且 a>b,则下列不等式中一定成立的是( ).
A.ab>1
B.a2>b2
C.lg(a-b)>0
D.12a<12b
解析 令 a=2,b=-1,则 a>b,ab=-2,故ab>1 不成立,排除 A;
第22页,共32页。
(1)运用不等式性质解决问题时,必须注意性质成立的条件. (2)同向不等式的可加性与可乘性可推广到两个以上的不等式.
第23页,共32页。
【训练4】 若a>b>0,c<d<0,e<0, 求证:a-e c2>b-e d2. 证明 ∵c<d<0,∴-c>-d>0. 又∵a>b>0,∴a-c>b-d>0. ∴(a-c)2>(b-d)2>0.∴0<a-1 c2<b-1d2. 又∵e<0,∴a-e c2>b-e d2.
第15页,共32页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.对于实数a,b,c,有下列命题:①若ac2 bc2, 则a b;②若a b,则ac2 bc2;③若a b 0, 则a2 ab b2;④若a b,c d,则a c b d.
是 12, 42 .
解析:设S6 6a1 15d ma5 na6 m n a1 4m 5n d,
分类讨论
【例3】
已知m R,a b 1,f x= mx ,
x 1
试比较f a与f b的大小.
【解析】因为f x= mx =m( x 1 1)=m(1+ 1 ),
其中正确的命题共有 3 个.
解析:当c 0时,②不正确,其余都正确.
3.已知a
1,则与1 a的大小关系是
1 1 a
1 a
解析:因为a 1,所以a 1 0.
又因为 1 1 a 1 1 a2 a2 0,
1 a
1 a 1 a
所以 1 1 a. 1 a
则 4BA2 BA
4 2
,即
A
B
1 3 8 3
所以f (2) 1 f (2) 8 f (1).
3
3
因为1 f (-2) 2,所以1 1 f (-2) 2 .
33
3
又3 f 1 4,所以 24 8 f 1 32 .
【变式练习1】
a ln 2,b ln 3,c ln 5,
2
3
5
则a,b,c大小顺序是 _c____a___b__
【解析】(作商比较法)
b 2 ln 3 ln 9 a 3ln 2 ln 8 log8 9 1, 又a 0,所以b a.
a 5ln 2 ln 32 c 2 ln 5 ln 25 log25 32 1, 而c 0,所以a c, 从而b a c.
4.若 ,则a b的取值范围是 (,0) .
2
2
解析:因为 ,
2
2
所以 , .
2
22
2
又 ,所以 0.
5.若p x2 y2 2,q 2x 4y x2 y2 4,
33
3
所以 25 f 2 34 .故f 2的取值范围是[ 25 34 ]
3
3
33
本题是用同向不等式相加性求取值范围问 题.一不小心就会产生如下错误:由
1 3
4a 2b ab
4
2 ,
得
7 6
a
10,10 66
b
15,再代入 6
f 2=4a+2b,求得8 f 2 35.错误的原因是没
3
有考虑到4a-2b与a+b中的a,b不是独立的,而是
相互制约的,以上解法无形中将所求变量的范围
改变了.正确的思路应该是:将f 2用4a-2b和a
+b来表示,再两边分别乘以相应的系数即可.
【变式练习2】
(2011 苏锡常镇一模卷)设等差数列an 的前n项、
和为Sn,若1 a5 4, 2 a6 3,则S6的取值范围
求取值范围
【例2】 设二次函数y=f(x)的图象过原点, 且 1≤f( - 2)≤2,3≤f(1)≤4 , 求 f(2) 的 取 值范围.
【 解 析 】 依 题 意 , 设 f(x) = ax2 + bx(a≠0), 则f(-2)=4a-2b,f(1)=a+b,f(2) =4a+2b. 设f(2)=Af(-2)+Bf(1)=(4A+B)a +(B-2A)b,
aabb与abba的大小.
【解析】1 (x2+y2 )(x-y)-(x2-y2 )(x+y)
=(x-y)[(x2+y2 )-(x+y)2 ] =-2xy(x-y). 因为x y 0,所以xy 0,x-y 0, 所以-2xy(x-y) 0. 所以(x2+y2 )(x-y) (x2-y.
解析:p 2,q x 12 y 22 1 1,
故p q.
比较大小
【例1】
1若x y 0,试比较(x2+y2 )(x-y)
与(x2-y2 )(x+y)的大小;
2设a 0,b 0,且a b,试比较
2
aabb abba
=a
a-bbb-a=(
a b
)a-b
.
①当a b 0时,a 1,a-b 0, b
则( a )a-b 1,于是aabb abba . b
②当b a 0时,0 a 1,ab 0 b
则( a )a-b 1,aabb abba . b
1.现给出三个不等式:①a2 1 2a;②a2 b2
2(a b 3);③ 7 10 3 14.其中恒 2
成立的不等式共有 2 个.
解析:因为a2 2a 1 a 12 0,所以①不恒 成立;对于②,a2 b2 2a 2b 3 a 12 b 12 1 0,所以②恒成立;
综上,当a 0,b 0,且a b时,
总有aabb abba .
比较两个代数式的大小往往可以首先将两 个式子相减,再因式分解,将式子变形为几个 因式的乘积的形式,而后判断各因式的符号, 进而确定差的符号,最终达到比较大小的目 的.当然,当比较大小的两个式子是幂的形式 时,也可以将两个代数式作商,但要注意两代 数 式a 是 同 时 为 正 还 是 同 时 为a负 , 然 后 利 用 “ b >1,a,b>0 a>b”或“ b >1,a,b<0 a<b”来解决 .