提高题圆柱与圆锥

合集下载

圆柱与圆锥培优题

圆柱与圆锥培优题

圆柱与圆锥培优题一、圆柱与圆锥1.工厂要生产一节烟囱,烟囱长2.5m,横截面是直径为40cm的圆。

(1)做一节烟囱一共需要铁皮多少平方米?(接头处忽略不计)(2)如果烟囱中充满废气,一节烟囱中最多可以容纳废气多少立方米?【答案】(1)解:40cm=0.4m3.14×0.4×2.5=3.14(m2)答:做一节烟囱一共需要铁皮3.14平方米。

(2)解:3.14×(0.4÷2)2×2.5=0.314(m3)答:一节烟囱中最多可以容纳废气0.314立方米。

【解析】【分析】1cm=0.01m,(1)做一节烟囱一共需要铁皮的平方米数=这节烟囱横截面的周长×长,其中这节烟囱横截面的周长=横截面的半径×2×π;(2)一节烟囱中最多可以容纳废气的立方米数=这节烟囱的容积=πr2h。

据此代入数据作答即可。

2.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?【答案】解:3.14×6×5=94.2(cm²)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

3.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?【答案】解:沙堆的体积: ×3.14×52×1.8= ×3.14×25×1.8=47.1(立方米)沙堆的重量:1.7×47.1≈80.07(吨)答:这堆沙约重80.07吨。

【解析】【分析】根据圆锥的体积公式先计算出沙堆的体积,再乘每立方米沙的重量即可求出这堆沙的重量。

4.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?【答案】解:3.14×3×2+3.14×(3÷2)2=18.84+3.14×2.25=18.84+7.065=25.905(平方米)答:抹水泥的面积是25.905平方米。

人教版数学六年级下册第三单元《圆柱与圆锥》提升测评卷含答案

人教版数学六年级下册第三单元《圆柱与圆锥》提升测评卷含答案

人教版数学六年级下册第三单元《圆柱与圆锥》提升测评卷一、选择题1.圆柱体的底面半径扩大3倍,那么它的体积扩大的倍数是()A.3B.6C.9D.272.一个圆柱体和一个圆锥体的底面积和体积都分别相等,圆柱的高是3分米,圆锥体的高是()A.分米B.1分米C.6分米D.9分米3.一个圆锥与一个圆柱体积相等,高也相等。

已知圆柱的底面积是13dm2,则圆锥的底面积是()dm2。

A.13B.19C.1D.164.李师傅准备用下图左面的长方形铁皮卷成一个圆柱形水桶的侧面,再从下图右面的铁皮中选一个作底面,可直接选用的底面有()。

(接缝处忽略不计,无盖)(单位:cm)A.③③B.③③C.③③D.③③5.圆锥的体积不变,当底面半径扩大3倍时,则高应()。

A.扩大3倍B.缩小3倍C.缩小9倍6.圆锥的体积是8立方分米,与它等底等高的圆柱的体积是()A.3立方分米B.2立方分米C.24立方分米7.把一个底面直径是6厘米,高是5厘米的圆柱体沿底面直径切开成两个半圆柱后,表面积增加了()平方厘米.A.60B.788.圆柱内的沙子占圆柱体积的,倒入()号圆锥内正好倒满.A.B.C.9.一个矿泉水瓶的容积约为500()。

A.L B.mL C.3m D.千克10.压路机滚筒滚一周,求压路的面积是多少,就是求()。

A.底面积B.—个底面积与侧面积的和C.两个底面积与侧面积的和D.侧面积11.由一个正方体木块加工成的最大圆锥,它的底面半径是5厘米,这个正方体的体积是()立方厘米。

A.125B.6000C.1000D.250二、图形计算12.求圆锥的体积.(单位:厘米)三、填空题13.有一个长是8分米、宽是6分米、高是7分米的长方体木块,它的体积是( )3dm。

如果把两个这样的长方体拼成一个长方体,它的表面积最小是( )2dm。

如果把其中的一个长方体削成一个体积最大的圆柱,这个圆柱的体积是( )3dm。

14.一个圆柱的底面半径是2 cm,高是5 cm,它的侧面积是( ),表面积是( ),体积是( ).15.如果圆锥的体积为628立方厘米,高为6厘米,那么它的底面半径是厘米.16.一个圆柱的底面直径和高都是8厘米,它的侧面积是,表面积是,体积是.17.圆柱的上、下两个底面都是____形,而且大小____,圆柱的侧面沿高展开是____形或____形,它的一边是圆柱的____,相邻的另一边是圆柱的____。

苏教版数学六年级下册第二单元《 圆柱和圆锥》学习力提升练习卷(含答案)

苏教版数学六年级下册第二单元《  圆柱和圆锥》学习力提升练习卷(含答案)

苏教版版数学六年级下册单元学习力提升练习卷第二单元《圆柱和圆锥》哈喽,孩子们好!美好的一天开始啦!提高学习力才能达到真正意义上的减负!学习力分为三个阶段,从知识层面的接受,到技能层面的模仿,再到知识层面的内化。

“磨刀不误砍柴工”,只有打好能力基础,才能高效学习。

让我们以解决问题为目的,以学习力为帆,以内驱力为桨,展开新的征程。

提升学习力,我能行!名师指导:例1.13.圆柱体的底面半径和高都扩大3倍,它的底面积扩大到原来的________倍;它的侧面积扩大到原来的________倍;它的体积扩大到原来的________倍。

例2:小明用彩纸做了一个圆柱体的灯笼.他在灯笼的上、下底面的中间,分别留下一个直径是18.84厘米的圆形口(如右图)。

小明做这个灯笼至少要用________平方厘米的彩纸?(图中单位:厘米,得数保留整数)例3:有一根半径是2厘米,高6厘米的圆柱形钢材,加工成与它等底等高的圆锥,要切去( )立方厘米钢材。

【考点】圆柱体的表面积。

【分析】根据题意,要求这个灯笼需要多少平方厘米的纸,就是求灯笼的表面积,用侧面积+底面积×2=表面积,侧面积公式:S=πdh ,底面是两个圆环,依据圆环的面积公式:S=π(R 2-r 2),据此求出一个底面积,然后乘2,最后相加即可求出表面积,据此解答。

解:37.68÷2=18.84(厘米) 18.84÷2=9.42(厘米) 3.14×37.68×30+3.14×(18.842-9.422)×2 =118.3152×30+3.14×(354.9456-88.7364)×2=3549.375+3.14×266.2092×2=3549.375+835.896888×2=3549.375+1671.793776=5221.168776(平方厘米)≈5221(平方厘米)故答案为:5221. 【考点】圆柱圆锥的容积。

圆柱及圆锥综合练习题(提高篇)98412备课讲稿

圆柱及圆锥综合练习题(提高篇)98412备课讲稿

圆柱和圆锥复习提高题一、解决问题。

1.用铁皮做一个底面半径是20cm,高是50cm的圆柱形无盖水桶,至少需要多少平方米的铁皮 ?2.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米 ?3.小明有一个百宝箱,上部是一个圆柱的一半,下部是一个长50cm,宽40cm,高20cm的长方体,小明这个百宝箱的表面积是多少 ?4.一个圆柱的体积是602.88m3,底面周长是50.24m,这个圆柱的高是多少米?5.一瓶2.5升的果汁,倒入底面直径为4cm,高为5cm的圆柱形杯子里,可以倒几杯?(得数保留整数) 6.爸爸要用一块面积为282.6dm2的铁皮,做一个底面直径为1.5dm的通风管,所做的通风管最长是多少 ?7.自来水管的内半径是2cm,管内水的流速是每秒20cm。

一位同学打开水龙头洗手,走时忘了关,5分钟后被另一名同学发现才关上,请你算一算,大约浪费了多少升水 ?8.如图,想想办法,你能否求出它的体积?( 单位:分米)9、亮亮生日那天,爸爸为亮亮买了一个圆柱形蛋糕,已知蛋糕的底面直径是32cm,高l2cm,这个蛋糕的体积是多少立方分米?10、一个圆柱形侧面展开后上一个正方形,已知这个正方形的高是18.84厘米,这个圆柱形的体积是多少?243精品文档11、用铁皮做一个如下图所示空心零件(单位:厘米),需用铁皮多少平方厘米?12、一个长方形,长5分米,宽3分米,以它的长为轴,旋转一周,所形成的图形的体积是多少立方分米?13、在直径0.8米的水管中,水流速度是每秒2米,那么5分钟流过的水有多少立方米?14、把一个棱长是40厘米的正方体削成一个最大的圆柱体,它的表面积和体积各是多少?15、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少? 16、一个圆柱和与它等底等高的圆锥的体积之和是24平方分米。

北师大版数学六年级下册第一单元圆柱与圆锥质量提升卷(含答案)

北师大版数学六年级下册第一单元圆柱与圆锥质量提升卷(含答案)

北师大版数学六年级下册第一单元圆柱与圆锥质量提升卷学校:___________姓名:___________班级:___________考号:___________一、填空题(共42分)1.(本题6分)3.8升=(________)毫升;500立方厘米=(________)立方分米。

2.(本题3分)一个圆柱的侧面展开得到一个长方形,长方形的长是9.42厘米,宽是3厘米,这个圆柱体的侧面积是(______)平方厘米。

3.(本题9分)以一个长8厘米,宽6厘米的长方形的长为轴旋转一周,得到一个(________),底面直径是(________)厘米,高是(________)厘米。

4.(本题6分)一个圆柱的侧面展开图是一个正方形,这个圆柱的高是12.56cm,那么圆柱的底面周长是(________)cm,底面直径是(________)cm。

5.(本题6分)把一个底面半径为3dm、高20cm的圆柱平均分成若干份,拼成近似的长方体,长方体的表面积增加了(________)dm2,体积是(________)dm3。

6.(本题6分)一个圆柱和一个圆锥等底等高,它们的体积相差18立方分米,那么这个圆锥的体积是(________)立方分米,圆柱的体积是(________)立方分米。

7.(本题3分)一个底面半径为12cm的圆柱形容器里完全浸没了一个高为18cm的圆锥,把圆锥拿出来后水面下降了2cm,则圆锥的底面积为(________)2cm。

(用含有 的式子表示)8.(本题3分)一圆柱状木头,横截面直径是2cm,把这根木头截成4段,它的表面积增加(______)2cm。

二、判断题(共15分)9.(本题3分)等底等高的圆柱的体积是圆锥体积的3倍。

(______)10.(本题3分)底面积与高一样的圆锥和圆柱体积比为1∶2。

(________)11.(本题3分)圆柱的底面半径扩大到原来的3倍,高不变,它的侧面积和底面积都扩大到原来的3倍。

苏教版数学六年级下册圆柱的侧面积、表面积和体积重难点题型提高练【含答案】

苏教版数学六年级下册圆柱的侧面积、表面积和体积重难点题型提高练【含答案】

苏教版数学六年级下册重难点题型提高练第二单元《圆柱和圆锥》第4课时:圆柱的侧面积、表面积和体积一.选择题1.(鄞州区)李明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器.当水全部倒完后,发现从圆锥形容器内溢出36.2毫升水.这时,圆锥形容器内还有水 (毫升.)A .36.2B .54.3C .18.1D .108.6解:36.2(31)÷-36.22=÷(毫升),18.1=答:圆锥形容器内还有水18.1毫升.故选:.C 2.(春•卢龙县期末)长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是 ()A .长方体、正方体和圆柱的体积相等B .正方体体积是圆锥体积的3倍C .圆锥体积是圆柱体积的13D .长方体、正方体和圆柱的表面积相等解:.如果长方体、正方体、圆柱体的底面积和高相等,那么长方体、正方体、圆柱体的体积一A 定相等,因此,长方体、正方体和圆柱的体积相等.此说法正确..因为等底等高的圆柱的体积是圆锥体积的3倍.正方体和圆柱的底面积相等、高也相等,所以B 正方体的体积是圆锥体积的3倍.此说法正确..因为圆柱和圆锥的底面积相等、高也相等,所以圆锥的体积是圆柱体积的.此说法正确.C 13.当长方体、正方体、圆柱和圆锥的底面积相等、高也相等时,圆锥的表面积最小.因此,长方D 体、正方体和圆柱的表面积相等.此说法错误.故选:.D 3.(湘潭模拟)一个底面半径是10厘米的圆锥,它的高如果增加3厘米,它的体积将会增加 (立方厘米.)A .3.14B .78.5C .314D .7.85解:21 3.141033⨯⨯⨯1 3.1410033=⨯⨯⨯(立方厘米),314=答:它的体积将会增加314立方厘米.故选:.C 4.(兴化市)图中的正方体、圆柱体和圆锥体的底面积相等,高也相等,下面说法正确的是? ()A .圆锥的体积与圆柱的体积相等B .圆柱的体积比正方体的体积大一些C .圆锥的体积是正方体体积的13D .以上说法都不对解:正方体、圆柱体和圆锥体的底面积相等,高也相等,正方体和圆柱的体积就相等,圆锥的体积是圆柱体积(正方体体积)的.13故选:.C 5.有一个圆柱和一个圆锥的体积相等,圆柱的高是圆锥的一半,圆锥的底面积是,圆柱的底29cm 面积是 (2)cm A .6B .3C .9解:1932h h ⨯⨯÷23h h =⨯(平方厘米)6=答:圆柱的底面积是6平方厘米.故选:.A 二.填空题6.(西安模拟)如果分别从两个体积之和为的正方体木块中挖去最大的圆锥做成两个如图3120cm 所示的工件模具,那么这两个模具的体积之和为 88.6 .取3cm (π 3.14)解:设大正方体的棱长是,小正方体的棱长是,则:a b ()V V V V +-+大正方体小正方体大圆锥小圆锥332211[((]3232a b a b a b ππ=+-+33331111[]3434a b a b ππ=+-⨯+⨯333311[]1212a b a b ππ=+-+33331()12a b a b π=+-+331(1)()12a b π=-+1(1)12012π==-⨯112012012π=-⨯12010π=-12010 3.14=-⨯12031.4=-(立方厘米)88.6=答:这两个模具的体积之和为.388.6cm 故88.6.7.(揭阳期中)求下面圆锥的体积.解:21 3.14(82)63⨯⨯÷⨯3.14162=⨯⨯(立方厘米)100.48=答:这个圆锥的体积是100.48立方厘米.8.(春•上海月考)一个直角三角形的三条边长分别是、和,若以直角边为轴旋转一3cm 4cm 5cm 圈,旋转一圈形成的图形体积是 37.68或50.24 立方厘米.取(π 3.14)解:21 3.14343⨯⨯⨯1 3.14943=⨯⨯⨯(立方厘米);37.68=21 3.14433⨯⨯⨯1 3.141633=⨯⨯⨯(立方厘米);50.24=答:形成图形的体积是37.68立方厘米或50.24立方厘米.故37.68、50.24.9.(春•成武县期末)底面积是,高是的圆锥的体积是 50 ,与它等底等高的圆230cm 5cm 3cm 柱的体积是 .3cm 解:(立方厘米),1305503⨯⨯=(立方厘米),503150⨯=答:这个圆锥的体积是50立方厘米,与它等底等高的圆柱的体积是150立方厘米.故50、150.10.(防城港模拟)一个底面直径是12厘米的圆锥,从顶点沿高将它切成两半后,表面积增加了96平方厘米,这个圆锥的高是 8 厘米.解:(平方厘米)96248÷=48212⨯÷9612=÷(厘米)8=答:这个圆锥的高是8厘米.故8.11.(防城港模拟)学校食堂运进一堆煤,堆放成一个近似的圆锥.它的底面直径是6米,高是1.3米.如果每立方米煤重1.8吨,这堆煤重 22.0428吨 .解:2613.14() 1.323⨯⨯⨯3.143 1.3=⨯⨯(立方米)12.246=(吨1.812.24622.0428⨯=)答:这堆煤重22.0428吨.故22.0428吨.三.判断题12.(益阳模拟)一个圆柱体和一个圆锥体的体积和底面积分别相等,那么圆柱体的高是圆锥体的高的. (判断对错)13√解:由分析得:等底等高的圆柱的体积是圆锥体积的3倍,当圆柱与圆锥的体积相等、底面积相等时,圆柱的高是圆锥高的.13因此,一个圆柱体和一个圆锥体的体积和底面积分别相等,那么圆柱体的高是圆锥体的高的.这13种说法是正确的.故.√13.(邵阳模拟)一个圆锥的体积是,底面半径是,求它的高的算式是:39.42dm 3dm . (判断对错)219.42(3.143)3h =÷⨯⨯⨯解:29.423(3.143)⨯÷⨯所以本题列式错误;故.⨯14.(春•沛县月考)一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍. .(判断对错)√解:依据分析可得:一个圆锥的底面积扩大5倍,高不变,体积也扩大5倍,所以原题说法正确.故.√15.(衡阳模拟)一个圆锥的体积是一个圆柱的,那么它们一定等底、等高. (判断对错)13⨯解:设圆柱的底面积为12,高为3,则圆柱的体积为:;12336⨯=圆锥的底面积为6,高为6,则圆锥的体积为:;166123⨯⨯=此时圆锥的体积是圆柱的体积的,但是它们的底面积与高都不相等,13所以原题说法错误.故.⨯四.计算题16.(保定模拟)计算圆锥的体积.解:21 3.142153⨯⨯⨯1 3.144153=⨯⨯⨯(立方分米),62.8=答:它的体积是62.8立方分米.17.(保定模拟)计算下面圆柱的表面积和体积,计算圆锥体的体积.(单位:厘米)解:(1)23.1466 3.14(62)2⨯⨯+⨯÷⨯18.846 3.1492=⨯+⨯⨯113.0456.52=+(平方厘米)169.56=23.14(62)6⨯÷⨯3.1496=⨯⨯(立方厘米)169.56=答:圆柱的表面积是169.56平方厘米,体积是169.56立方厘米.(2)21 3.14263⨯⨯⨯1 3.14243=⨯⨯3.148=⨯(立方厘米)25.12=答:圆锥体的体积是25.12立方厘米.五.应用题18.(靖州县期末)有一堆混凝土呈圆锥形,底面半径为10米,高3米,用它在东庄修一条宽4米,厚0.2米的水泥路,能修多长?(得数保留整数)解:21 3.14103(40.2)3⨯⨯⨯÷⨯1 3.1410030.83=⨯⨯⨯÷3140.8=÷(米392≈)答:能铺392米长.19.(保定模拟)李大伯将一些稻谷堆在墙角处,形状如下图.你有办法测量这堆稻谷的体积吗?请先设计一个可行的测量方案,再假设所需要的数据,算出稻谷的体积.解:先量出底面周长也就是圆周长的,再测量高,14设稻谷堆的底面周长是6.28米,高是1.5米,6.284 3.142⨯÷÷25.12 3.142=÷÷(米4=)21 3.144 1.53⨯⨯⨯1 3.1416 1.53=⨯⨯⨯(立方米)25.12=答:这堆稻谷的体积是25.12立方米.20.(亳州模拟)这块冰激凌的体积是多少?解:22113.14(62)4 3.14(62)933⨯⨯÷⨯+⨯⨯÷⨯113.1494 3.149933=⨯⨯⨯+⨯⨯⨯37.6884.78=+3122.46()cm =答:这个冰激凌的体积是.3122.46cm 21.(春•单县期末)在一个底面直径为12厘米,高20厘米,内有水深15厘米的圆柱形玻璃容器中,放入一个底面直径是10厘米的圆锥形铁块,水面升高2厘米,求放入圆锥形铁块的高是多少?解:23.14(122)2⨯÷⨯3.14362=⨯⨯(立方厘米)226.08=(厘米)1025÷=2226.083(3.145)⨯÷⨯678.2478.5=÷(厘米)8.64=答:圆锥形铁块的高是8.64厘米.22.(平舆县)一个圆锥形的沙堆,底面周长是18.84米,高是2米,用这堆沙铺在一条宽10米的公路上,铺5厘米厚,这堆沙能铺多长的公路?解:5厘米米,0.05=21 3.14(18.84 3.142)2(100.05)3⨯⨯÷÷⨯÷⨯1 3.14920.53=⨯⨯⨯÷18.840.5=÷(米,37.68=)答:这堆沙能铺37.68米长的公路.23.(春•亳州期中)将一块底面积是,高是的长方体钢坯铸造成3个完全一样的圆锥231.4cm 6cm 形铅锤,每个铅锤的底面半径是,高是多少厘米?2cm 解:(立方厘米),31.46188.4⨯=21188.43(3.142)3÷÷÷⨯62.8312.56=⨯÷188.412.56=÷(厘米),15=答:高是15厘米.六.操作题24.(汨罗市期中)画一个直径是,高的圆锥,并求出它的体积.4cm 6cm 解:所画圆锥如下图所示:圆锥的体积:213.14(42)63⨯÷⨯⨯13.14463=⨯⨯⨯,12.562=⨯(立方厘米)25.12=答:圆锥的体积是25.12立方厘米.25.求圆锥的体积.解:21 3.14 1.5(41)3⨯⨯⨯-1 3.14 2.2533=⨯⨯⨯(立方厘米)7.065=答:圆锥的体积是7.065立方厘米.七.解答题26.(亳州模拟)一个圆柱和一个圆锥的体积和高都相等,圆柱底面积是,圆锥底面积是 212cm 36 .2cm解:(平方厘米),12336⨯=答:圆锥的底面积是36平方厘米.故36.27.(衡阳模拟)如图,一个立体图形从正面看得到的是图形,从上面看得到的是图形,这个A B 图形的体积是多少立方厘米?解:21 3.14363⨯⨯⨯1 3.14963=⨯⨯⨯(立方厘米),56.52=答:这个图形的体积是56.52立方厘米.28.(春•江城区期中)计算下面各圆锥的体积.解:(1)(立方米)19 3.610.83⨯⨯=答:圆锥的体积是10.8立方米.(2)21 3.14383⨯⨯⨯1 3.14983=⨯⨯⨯3.1424=⨯(立方分米)75.36=答:圆锥的体积是75.36立方分米.(3)21 3.14(82)123⨯⨯÷⨯1 3.1416123=⨯⨯⨯3.1464=⨯(立方厘米)200.96=答:圆锥的体积是200.96立方厘米.29.(长沙模拟)图沿着图中虚线旋转一周可以得到一个立体图形(单位:厘米)(1)这个图形的名称叫 圆锥 .(2)计算这个立体图形的体积.解:(1)沿着图中的虚线旋转一周,可以得到一个立体图形,这个立体图形叫做圆锥.(2)圆锥的体积21 3.143 4.53=⨯⨯⨯1 3.149 4.53=⨯⨯⨯9.42 4.5=⨯(立方厘米);42.39=答:这个立体图形的体积是42.39立方厘米.故圆锥.30.(高邮市)把三角形沿着边或分别旋转一周,得到两个圆锥(如图1、图,ABC AB BC 2)(单位:厘米)谁的体积大?大多少立方厘米?解:图21:3.14363⨯⨯÷3.14963=⨯⨯÷(立方厘米)56.52=图22:3.14633⨯⨯÷3.143633=⨯⨯÷(立方厘米)113.04=(立方厘米)113.0456.5256.52-=答:图2的体积大,大56.52立方厘米.31.(衡阳模拟)一个圆锥形沙堆的体积是47.1立方米,高是5米,这个沙堆占地多少平方米?解:47.135⨯÷141.35=÷(平方米),28.26=答:这个沙堆占地28.26平方米.。

圆柱与圆锥能力提升题

圆柱与圆锥能力提升题

1、等底等高的圆柱和圆锥,如果先在圆锥容器中注满水,水面高12厘米,再全部倒入圆柱形容器中,水面高()厘米;如果先在圆柱容器中注满水,再把水倒入圆锥形容器直到注满,这时圆柱形容器中的水面高()厘米。

2、一个长方形长5厘米,宽4厘米,如果以宽为轴旋转一周得到一个立体图形,得到的是(),这个图形的体积是()立方厘米。

3、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.4、下面()图形是圆柱的展开图。

(单位:cm)5、一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深12厘米,把酒瓶塞紧后倒置(瓶口向下),这时酒深20厘米,你能算出酒瓶的容积是多少毫升吗?6、有一根长20厘米,半径为2厘米的圆钢,在它的两端各钻了一个深为4厘米,底面半径为2厘米的圆锥形小孔做成一个零件,如图这个零件的体积是多少立方厘米?7、有A、B两个容器,如图,先把A容器装满水,然后将水倒入B容器,B容器中水的深度是多少厘米?8、从纸上剪下一个半径是10厘米的扇形做一个圆锥,圆锥的底面直径是16厘米,求圆锥的体积。

9、一个直角三角形的三条边分别长6厘米、8厘米、10厘米,分别以两条直角边为轴旋转一周,可得什么形体?它的体积最大是多少立方厘米?8厘米10、一个圆柱体的侧面积是942平方厘米,体积是2355立方厘米。

这个圆柱体的底面积是多少?11、一个圆柱体玻璃杯底面半径是10厘米,里面装了水,睡得高度是12厘米,把一小块铁块放进杯中,水上升到15厘米,这块铁块的体积是多少?12、仓库将底面半径是25.12米,高3米的一堆圆锥形小麦装进底面直径8厘米的圆柱形的粮仓,正好装满,这个圆柱形的高是多少?13、一个圆锥形的小麦堆,底面周长是 12.56米,高是2.7米,现在把这些小麦放到圆柱形的粮囤中去,恰好占这粮囤容积的78.5%。

已知粮囤底面的周长是9.42米,求这个粮囤的高。

(得数保留两位小数)14、把3完全一样的圆柱,连接成一个大圆柱,长9厘米,表面积减少12.56平方分米。

第三单元《圆柱和圆锥》(提高)—·数学六年级下册单元冲关检测卷(原卷)人教版

第三单元《圆柱和圆锥》(提高)—·数学六年级下册单元冲关检测卷(原卷)人教版

人教版数学六年级下册单元冲关检测卷(提高)第三单元圆柱和圆锥考试时间:90分钟试卷满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三四五六总分得分评卷人得分一.选择题(共5小题,满分10分,每小题2分)1.(2019•建湖县)一张长方形纸可以沿较长边或较短边围成不同的圆柱形纸筒(如图).如果给两个纸筒都配上两个底面,则圆柱A的表面积与圆柱B的表面积相比,()A.A>B B.A<B C.A=B D.无法比较2.(2019•南开区)如图中瓶子的底面积和圆锥形杯口的面积相等,若将瓶子中的液体倒入圆锥形杯子中,能倒满()杯.A.3 B.4 C.6 D.9 3.(2019•徐州)如图,把一个圆柱切成若干等份,拼成一个近似的长方体,表面积增加了40平方厘米.圆柱的侧面积是()平方厘米.A.40 B.20πC.40πD.160π4.(2018•兴化市模拟)图中的正方体、圆柱体和圆锥体的底面积相等,高也相等,下面说法正确的是?()A.圆锥的体积与圆柱的体积相等B.圆柱的体积比正方体的体积大一些C.圆锥的体积是正方体体积的D.以上说法都不对5.如果一个圆柱和一个长方体的底面周长和高都分别相等,那么这个圆柱的体积与这个长方体的体积相比,()A.一样大B.圆柱的体积大C.长方体的体积大D.无法比较评卷人得分二.填空题(共8小题,满分10分)6.(2021•海安市)如图,一个底面直径6厘米的圆柱体木头,沿底面虚线处垂直切成一个最大的正方体,这个正方体的表面积是平方厘米。

7.(2021•永定区)一根圆柱体木料截去1.5m后,剩下圆柱体木料的表面积比原来减少了94.2dm2。

再把剩下的圆柱体木料沿着直径竖着切成两个半圆柱,这两个半圆柱的表面积之和又比剩下的圆柱体木料的表面积增加了160dm2。

原来这根圆柱体木料的体积是dm3。

8.(2021•台山市)把一块体积是60cm3的正方体木块削成一个最大的圆柱体,圆柱体的体积是。

圆柱与圆锥应用题专项提升题训练(应用题)人教版六年级下册数学

圆柱与圆锥应用题专项提升题训练(应用题)人教版六年级下册数学

圆柱与圆锥应用题专项训练六年级下册数学(R版)一、解答题1.一张长方形铁皮,按照如图剪下阴影部分,制成一个底面直径为4dm圆柱状的油漆桶,求它的容积(铁皮厚度忽略不计)。

2.下图的两个圆柱高是20厘米,底面直径之比是4∶3,它们的体积之比是多少?3.一个高30cm的酒瓶中盛有酒,如果把它倒置在桌面上(如图所示),求酒瓶的容积是多少?(单位:cm)4.一根圆柱形钢材长是3米,横截面的直径是2厘米,每立方厘米钢重7.8克.这根钢材重多少克?5.如图,在一张长方形纸上,剪下阴影部分可围成一个圆柱,求这个圆柱的表面积。

6.一个圆柱形水池,底面直径为10m,高为5m,要在它的四周和底面抹上水泥。

(1)抹水泥部分的面积是多少平方米?(2)如果抹水泥的人工费是每平方米12元,抹完整个水池一共需要人工费多少钱?7.一个圆柱体,沿它的上下底面直径剖开后,表面积增加了24cm2,且剖开面为正方形。

求这个圆柱体的表面积。

(π取3)8.红红买了一盒橡皮泥,里面有12个高5厘米,底面直径2厘米的圆柱形橡皮泥。

把这些橡皮泥全揉在一起,做成一个底面直径10厘米的圆锥,这个圆锥的高是多少厘米?9.有块正方体木料,它的棱长是4分米。

把这块木料加工成一个最大的圆柱(如图)。

这个圆柱的表面积、体积分别是多少?10.将一根底面直径是6dm的圆柱形木料,沿高切成形状、大小完全相同的两块后,表面积增加了2360dm。

这根圆柱形木料的体积是多少立方分米?11.奶奶过生日,爸爸买了一个大蛋糕。

蛋糕盒是圆柱形的,爸爸准备用十字交叉的方法系一条丝带并打一个蝴蝶结(如图),至少需要买多长的丝带?(蝴蝶结需要3.5分米丝带)12.一个圆柱的侧面展开图是正方形,如果高增加1cm,它的侧面积就增加6.28cm²。

这个圆柱的体积是多少立方厘米?13.用塑料板制作一个无盖的圆柱米桶,桶的底面直径是6分米,高是8分米。

做这个桶至少需用塑料板多少平方米?14.工地上有一堆沙子,近似于一个圆锥(如下图)。

六下 第三单元圆柱与圆锥提高题和奥数题(附答案)

六下 第三单元圆柱与圆锥提高题和奥数题(附答案)

六下第三单元圆柱与圆锥提高题和奥数题(附答案)板块一圆柱的认识例题1.选择哪些材料恰好能做成一个圆柱形的盒子?d=2cm d=3cm d=4cmA B C练习1.在下面的材料中,选择()能做成圆柱。

3号4号 5号A.1号、2号和3号B.1号、4号和5号C.1号、2号和4号例题2.一个圆柱的底面直径是6.28cm,高是4.5cm.如果沿底面直径垂直于底面把这个圆柱切成完全相同的两半,那么切面的面积是多少?练习2.(1)一个底面周长是9.42厘米,商是5厘米的圆柱,沿底面直径垂直于底面把它切割成两个半圆柱后,切面的面积一共是多少平方厘米?(2)把一个圆柱的侧面沿高展开后得到一个正方形,这个圆柱的商与底面直径的比是多少?例题3.一个圆柱形蛋糕盒的底面直径是20厘米,高是15厘米,用彩绳将它捆扎(如右图),打结处在圆心,打结部分长30厘米。

求所用彩绳的全长是多少厘米?练习3.一个圆柱形蛋糕用彩绳捆扎,如果打结部分用了35厘米,打结处在圆心,一共用了多长彩绳?板块二圆柱的表面积例题1.一块长方形的钢板,利用图中阴影部分刚好能做成一个圆柱形的带盖水桶(接头处忽略不计),求这个水桶的表面积。

练习 1.(1)如下图,有一张长方形铁皮,剪下两个圆及一个长方形,正好可以做成一个圆柱,这个圆柱的底面半径为10厘米,原来这张长方形铁皮的面积是多少平方厘米?(2)有一张长方形铁皮(尺寸如图所示),剪下阴影部分正好能围成一个圆柱,求圆柱的表面积是多少。

例题2.工人师傅要在一个零件(如右图)的表面涂一层防锈材料。

这个零件是由两个圆柱构成的,小圆柱的直径是4厘米,高是2厘米;大圆柱的直径是6厘米,高是5厘米。

这个零件涂防锈材料的面积是多少?练习2.用3个高都是2分米,底面半径分别为2分米、1分米和0.5分米的圆柱组成一个物体(如图),求该物体的表面积。

例题3.如图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周。

求所形成的立体图形的表面积。

圆柱和圆锥精选拓展提高专项训练(一)附答案

圆柱和圆锥精选拓展提高专项训练(一)附答案

圆柱和圆锥精选拓展提高专项训练(一)2017年2月一.解答题(共30小题)1.(2011•龙湖区)一个高为20厘米的圆柱体,如果它的高增加3厘米,则它的表面积增加150.72平方厘米,求原来圆柱体的体积是多少立方厘米?2.(2008•高邮市)如图中是一块长方形铁皮(每个方格的边长表示1平方分米),剪下图中的涂色部分可以围成一个圆柱.这个圆柱的侧面积是多少平方分米?体积是多少立方分米?3.如图是一个油桶,里面装了一些油(图中阴影部分),求油有多少升?4.求表面积(单位:厘米)5.只列式,不计算.(1)做30根圆柱形铁皮通风管,每根底面直径为26厘米,长85厘米,至少需要多少铁皮?(2)明珠灯泡厂原计划30天生产4.2万只,实际提前4天完成任务,实际每天生产多少只?6.A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.7.(2013•陆良县模拟)一个圆柱体的底面半径与一个圆锥体的底面半径之比为4:1,该圆锥体的底面积为12.56平方米,已知圆柱体的高为3厘米,试求圆柱体的体积是多少?8.(2005•华亭县模拟)看图计算:右边是一个圆柱体的表面展开图,根据所给的数据,求原来圆柱体的体积.9.在方格纸上画出右边圆柱的展开图(每个方格边长1cm).算出制作这个圆柱所用材料的面积.10.选择下面合适的图形围成最大的圆柱.(单位:厘米)(1)你会选择_________图形(填编号)(2)计算它的表面积和体积.11.一个圆柱形玻璃缸,底面直径20厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积.(π取3.1)12.一个圆柱侧面展开是一个正方形,这个圆柱的底面直径是4厘米,高是多少?13.将下面的长方形(图1)绕着它的一条边旋转一周,得到一个圆柱体(图2),求旋转所形成的圆柱体的体积.(单位:厘米)14.计算下面图形的表面积.(单位:分米)15.制作一个底面直径是4厘米,高也是4厘米的圆柱.(1)模型是否已经制作?_________(2)画出侧面展开图的草图,并标上有关数据:(3)画出该圆柱沿直径劈成相等的两半,所得到的截面的草图,并标出相关数据:(4)求出这个圆柱的表面积(写出每一步的计算公式).(5)求出圆柱的体积(写出每一步的计算公式).(6)如果把这圆柱看作是一块圆柱形木料,沿横截面切成两段,表面积多出多少?(7)如果把这圆柱看作是一块圆柱形木料,沿直径劈成相等的两半,表面积多出多少?16.一根圆柱形钢材长2米,如果把它锯成两段,表面积比原来增加6.28平方分米,求这根2米长钢材的质量.(每立方分米钢重7.8千克)17.在一个底面直径为20厘米的圆柱形容器中装有水,将一个底面直径为10厘米的圆柱铁锤放入水中,当铁锤从圆柱形容器中取出后,水面下降1厘米,求铁锤的高.18.一个圆柱形玻璃容器的底面直径是10厘米.把一块铁块从这个容器的水中取出后,水面下降2厘米,这块铁块的体积是多少?19.把一个高3分米的圆柱体的底面分成许多相等的扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米,求这个圆柱体的体积.20.求表面积.(单位:厘米)21.一个圆柱形量筒,底面半径是5厘米,把一块铁块从这个量筒里取出后,水面下降3厘米,这块铁块的体积是多少?(π取3.14)22.用铁皮做20节同样大小的圆柱形烟囱,每节长8分米,底面直径是10厘米,至少需要铁皮多少平方分米?23.两个底面积相等的圆柱,高的比是5:8,第一个圆柱的体积是90立方厘米,第二个圆柱的体积是多少立方厘米?24.一个圆柱体的直径是8厘米,沿这个圆柱体的直径竖直分成相同的两块,表面积增加了112平方厘米.求这个圆柱体的体积?25.一个圆柱形水槽,底面半径是8厘米,水槽中完全浸没着一块铁件,当铁件取出时,水面下降了5厘米.这块铁件的体积是多少立方厘米?26.一个圆柱体木块的高是8厘米,沿直径竖直从中间切开,表面积增加了96平方厘米,这个圆柱体的表面积是多少平方厘米?27.一个长方形长5厘米,宽2厘米,若以长为轴旋转一周,得到的几何体的体积是多少立方厘米?若以宽为轴旋转一周,得到的几何体的体积是多少立方厘米?28.一个长为8厘米,宽为2厘米的长方形,以长为旋转轴旋转一周得到的立方体是一个_________.(1)它的高是_________厘米,底面圆的半径是_________厘米;(2)它的底面积是多少?(3)它的侧面积为多少?(4)这个立方体的表面积是多少平方厘米?29.一个长方形的长是5厘米,宽是2厘米,以其中的一条边为轴旋转一周,可以得到一个圆柱,圆柱体积最大是多少立方厘米?30.一个长方形的长是8厘米,宽是4厘米,以长为轴旋转一周,形成的圆柱体的体积是多少立方厘米?2014年3月yang_194911的小学数学组卷参考答案与试题解析一.解答题(共30小题)1.(2011•龙湖区)一个高为20厘米的圆柱体,如果它的高增加3厘米,则它的表面积增加150.72平方厘米,求原来圆柱体的体积是多少立方厘米?考点:圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:增加的表面积就是增加的圆柱的侧面积,可用增加的侧面积除以3得到这个圆柱的底面周长,然后再利用圆的周长公式C=2πr和圆的面积公式S=r2π计算出圆柱的底面积,最后再根据圆柱的体积公式底面积×高进行计算即可得到答案.解答:解:圆柱的底面周长为:150.72÷3=50.24(厘米),圆柱的底面半径为:50.24÷3.14÷2=8(厘米),原来圆柱的体积为:3.14×82×20=200.96×20,=4019.2(立方厘米),答:原来圆柱体的体积是4019.2立方厘米.点评:解答此题的关键是确定计算出圆柱的底面周长进而计算出圆柱的底面半径,然后再按照圆柱体的体积公式进行计算即可.2.(2008•高邮市)如图中是一块长方形铁皮(每个方格的边长表示1平方分米),剪下图中的涂色部分可以围成一个圆柱.这个圆柱的侧面积是多少平方分米?体积是多少立方分米?考点:圆柱的侧面积、表面积和体积;圆柱的展开图.分析:圆柱的侧面积就是这个长方形铁皮的面积,长方形的宽等于圆柱的高即2分米;长即6.28分米等于圆形底面的周长,所以可以求出底面半径列式为:6.28÷3.14÷2=1(分米),然后利用圆柱的体积公式V=Sh和长方形的面积公式S=ab即可解答.解答:解:侧面积:6.28×2=12.56(平方分米);体积:6.28÷3.14÷2=1(分米),12×3.14=3.14(立方分米);答:这个圆柱的侧面积是12.56平方分米;体积是3.14立方分米.点评:本题考查了圆柱的体积公式V=Sh和长方形的面积公式S=ab的灵活应用,知道求圆柱的侧面积就是求这个长方形铁皮的面积是本题解答的关键.3.如图是一个油桶,里面装了一些油(图中阴影部分),求油有多少升?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式V=sh=π(d÷2)2h,把直径10厘米,高18﹣12厘米代入公式,解答即可.解答:解:3.14×(10÷2)2×(18﹣12),=3.14×25×6,=3.14×150,=471(立方分米),471立方分米=471升;答:油有471升.点评:本题主要是利用圆柱的体积公式V=sh=π(d÷2)2h解决生活中的实际问题.4.求表面积(单位:厘米)考点:圆柱的侧面积、表面积和体积.分析:此图形是由两个圆柱组成的,要求此图形的表面积,只要求出大圆柱的表面积与小圆柱的侧面积即可,用大圆柱的表面积加小圆柱的侧面积就是此题图形的表面积.解答:解:大圆柱的侧面积为:3.14×8×5,=3.14×40,=125.6(平方厘米);大圆柱的底面积是:3.14×(8÷2)2,=3.14×16,=50.24(平方厘米);大圆柱的表面积:125.6+50.24=175.84(平方分米);小圆柱的侧面积是:3.14×6×3,=3.14×18,=56.52(平方厘米),表面积:175.84+56.52=232.36(平方厘米),答:该图形的表面积是232.36平方厘米.点评:解答此题的关键是,观察该图形的表面都是由哪些面组成的,再根据相应的公式解决问题.5.只列式,不计算.(1)做30根圆柱形铁皮通风管,每根底面直径为26厘米,长85厘米,至少需要多少铁皮?(2)明珠灯泡厂原计划30天生产4.2万只,实际提前4天完成任务,实际每天生产多少只?考点:圆柱的侧面积、表面积和体积;整数、小数复合应用题.分析:(1)要求做圆柱形铁皮通风管需要的铁皮,实际是求圆柱形铁皮通风管的侧面积,根据圆柱的侧面积公式,S=ch,求出做一根圆柱形铁皮通风管需要的铁皮,进而求出做30根圆柱形铁皮通风管需要的铁皮;(2)要求实际每天生产灯泡的只数,必须知道生产灯泡的总只数与实际生产的天数,用30﹣4就是实际生产的天数,由此列式解决问题.解答:解:(1)3.14×26×85×30;(2)4.2万只=42000只,42000÷(30﹣4).点评:解答此题的关键是根据两个题目的特点,知道做铁皮通风管需要的铁皮实际是求圆柱形铁皮通风管的侧面积;在解答有关计划与实际的问题时,找出各个量之间的关系,由问题到条件,一步一步的确定列式方法.6.A和B都是高度为12厘米的圆柱形容器,底面半径分别是1厘米和2厘米,一水龙头单独向A注水,一分钟可注满.现将两容器在它们的高度的一半出用一根细管连通(连通管的容积忽略不计),仍用该水龙头向A注水,求(1)2分钟容器A中的水有多高?(2)3分钟时容器A中的水有多高.考点:等积变形(位移、割补);圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:已知B容器的底面半径是A容器的2倍,高相等,B容器的容积就是A容器的4倍;因此,单独注满B容器需要4分钟,要把两个容器都注满一共需要1+4=5(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即12÷2=6(厘米)(其余的水流到B容器了);由此可知,用2.5分钟的时间两个容器中的水的高度相等,都是6厘米;以后的时间两个容器中的水位同时上升,用3﹣2.5=0.5(分钟)分钟注入两个容器的高度加上6厘米即是3分钟后的高度.解答:解:(1)A容器的容积是:3.14×12=3.14×1=3.14(立方厘米),B容器的容积是:3.14×22=3.14×4=12.56(立方厘米),12.56÷3.14=4,即B容器的容积是A容器容积的4倍,因为一水龙头单独向A注水,一分钟可注满,所以要注满B容器需要4分钟,因此注满A、B两个容器需要1+4=5(分钟),已知现在两个容器在它们高度一半处用一个细管连通,2分钟后A中的水位是容器高的一半,即12÷2=6(厘米);(2)因为注满A、B两个容器需要1+4=5(分钟),所以5÷2=2.5(分钟)时,A、B容器中的水位都是容器高的一半,即6厘米,2.5分钟后两容器中的水位是同时上升的,3分钟后,实际上3﹣2.5=0.5(分钟)水位是同时上升的,0.5÷5=,12×=1.2(厘米),6+1.2=7.2(厘米);答:2分钟时,容器A中的高度是6厘米,3分钟时,容器A中水的高度是7.2厘米.点评:此题主要考查圆柱的体积(容积)的计算,解答关键是理解现在两个容器在它们高度一半处用一个细管连通,当A中的水高是容器高的一半时,其余的水流到B容器了;以后的时间两个容器中的水位同时上升,即注满两容器时间的乘容器高就是0.5分钟上升的水的高度.7.(2013•陆良县模拟)一个圆柱体的底面半径与一个圆锥体的底面半径之比为4:1,该圆锥体的底面积为12.56平方米,已知圆柱体的高为3厘米,试求圆柱体的体积是多少?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:先根据圆的面积公式求出这个圆锥的底面半径,再利用圆柱体的底面半径与一个圆锥体的底面半径之比,求出圆柱的底面半径,圆柱的高已知,据此利用圆柱的体积公式即可解答问题.解答:解:12.56÷3.14=4,因为4=2×2,所以圆锥的底面半径是2米,则圆柱的底面半径就是2×4=8(米),3厘米=0.03米,所以圆柱的体积是:3.14×82×0.03,=3.14×64×0.03,=6.0288(立方米),答:这个圆柱的体积是6.0288立方米.点评:此题主要考查圆柱的体积公式的计算应用,关键是求得圆锥的底面半径,从而得出圆柱的底面半径,要注意单位名称的统一.8.(2005•华亭县模拟)看图计算:右边是一个圆柱体的表面展开图,根据所给的数据,求原来圆柱体的体积.考点:圆柱的展开图;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:观察图形可知,圆柱的底面周长是25.12厘米,高是5厘米,先利用圆柱的底面周长求出这个圆柱的底面半径:25.12÷3.14÷2=4厘米,再利用圆柱的体积公式V=sh=πr2即可解答.解答:解:底面半径是:25.12÷3.14÷2=4(厘米),体积是:3.14×42×5,=3.14×80,=251.2(立方厘米),答:原来圆柱的体积是251.2立方厘米.点评:此题考查圆柱的底面周长和体积公式的综合应用,熟记公式即可解答.9.在方格纸上画出右边圆柱的展开图(每个方格边长1cm).算出制作这个圆柱所用材料的面积.考点:圆柱的展开图;画指定周长的长方形、正方形;画圆;圆柱的侧面积、表面积和体积.分析:(1)应明确圆柱由三部分组成:圆柱的侧面、圆柱的上、下两个底面;由题意可知:该圆柱的底面直径是2厘米,高为3厘米,根据“圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高”可知:先根据圆的周长=πd求出圆柱侧面展开后的长,宽为圆柱的高;圆柱的上下两个底面为直径为2厘米的圆,画出即可;(2)根据“圆柱的表面积=侧面积+2个底面积=πdh+π(d÷2)2×2”代入数值解答即可.解答:解:(1)长方形的长:3.14×2=6.28(厘米),宽为3厘米;两个直径为2厘米的圆;画图如下:(2)3.14×2×3+3.14×(2÷2)2×2,=18.84+6.28,=25.12(平方厘米);答:这个圆柱所用材料的面积为25.12平方厘米.点评:此题主要考查了圆柱的特征以及圆柱的表面积的计算方法.10.选择下面合适的图形围成最大的圆柱.(单位:厘米)(1)你会选择③⑥⑨图形(填编号)(2)计算它的表面积和体积.考点:圆柱的侧面积、表面积和体积;圆柱的展开图.分析:圆柱侧面展开图是个长方形,长方形的长等于圆柱底面周长,宽等于圆柱的高,可选出3组图形围成圆柱,其中底面积最大的圆柱,它的体积为最大,再根据表面积和体积公式,即可列式解答.解答:解:(1)3.14×2×2=12.56(厘米),3.14×2×3=18.84(厘米),3.14×2×4=25.12(厘米),所以②④⑦、①⑤⑧、③⑥⑨每三个图形能围成圆柱,其中底面积最大的是⑥⑨,因此③⑥⑨能围成最大的圆柱;故答案为:③⑥⑨.(2)侧面积:25.12×5+3.14×42×2,=125.6+100.48,=226.08(平方厘米),体积:3.14×42×5,=3.14×80,=251.2(立方厘米);答:它的表面积是226.08平方厘米,体积是251.2立方厘米.点评:此题主要考查圆柱的侧面展开图(长方形)与圆柱之间的关系及圆柱的侧面积、体积公式及其计算.11.一个圆柱形玻璃缸,底面直径20厘米,把一个钢球放入水中,缸内水面上升了2厘米,求这个钢球的体积.(π取3.1)考点:探索某些实物体积的测量方法;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据题意知道,圆柱形玻璃缸的水面上升的2厘米的水的体积就是钢球的体积,由此根据圆柱的体积公式,V=sh=πr2h,代入数据,列式解答即可.解答:解:3.1×(20÷2)2×2,=3.1×100×2,=620(立方厘米);答:这个钢球的体积是620立方厘米.点评:把钢球完全放入水中,水上升的部分的体积就是钢球的体积,由此利用圆柱的体积公式,列式解答即可.12.一个圆柱侧面展开是一个正方形,这个圆柱的底面直径是4厘米,高是多少?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:由题意知,圆柱的侧面展开正好是一个正方形,也就是说,它的底面周长和高是相等的,要求圆柱的高,只要求出圆柱的底面周长是多少即可.解答:解:3.14×4=12.56(厘米);答:高是12.56厘米.点评:此题是有关圆柱侧面的问题,圆柱的侧面展开图的长和宽分别是圆柱的底面周长和高.13.将下面的长方形(图1)绕着它的一条边旋转一周,得到一个圆柱体(图2),求旋转所形成的圆柱体的体积.(单位:厘米)考点:圆柱的侧面积、表面积和体积.分析:根据题意可知,圆柱的底面半径是2厘米,高是4厘米,圆柱的体积公式是:v=sh,代入数据计算即可.解答:解:3.14×22×4=3.14×4×4=12.56×4=50.24(立方厘米);答:这个圆柱体的体积是50.24立方厘米.点评:此题主要考查圆柱体的体积计算,关键是理解圆柱是由一个矩形(长方形),以一条边为轴旋转得到的立体图形,作为轴的一边就是圆柱的高,它的邻边就是圆柱的底面半径;根据圆柱的体积公式v=sh,列式解答即可.14.计算下面图形的表面积.(单位:分米)考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据图示可知,图示的表面积为底面直径为8分米,高为12分米的圆柱体表面积的一半再加长为12分米,宽为8分米的长方形的面积,根据圆柱体的表面积公式和长方形的面积公式进行解答即可.解答:解:[3.14×8×12+2×3.14×()2]÷2+8×12,=[301.44+100.48]÷2+96,=401.92÷2+96,=200.96+96,=296.96(平方分米);答:图形的表面积是296.96平方分米.点评:此题主要考查的是圆柱体表面积计算公式的灵活应用.15.制作一个底面直径是4厘米,高也是4厘米的圆柱.(1)模型是否已经制作?已制作(2)画出侧面展开图的草图,并标上有关数据:(3)画出该圆柱沿直径劈成相等的两半,所得到的截面的草图,并标出相关数据:(4)求出这个圆柱的表面积(写出每一步的计算公式).(5)求出圆柱的体积(写出每一步的计算公式).(6)如果把这圆柱看作是一块圆柱形木料,沿横截面切成两段,表面积多出多少?(7)如果把这圆柱看作是一块圆柱形木料,沿直径劈成相等的两半,表面积多出多少?考点:简单的立方体切拼问题;圆柱的特征;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:(1)模型已制作;(2)根据圆柱的特征展开,然后标上数据即可;(3)把圆柱沿直径劈成相等的两半,然后截面的草图,并标上数据即可;(4)根据圆柱的表面积公式计算即可;(5)根据圆柱的体积公式计算即可;(6)沿横截面切成两段后实际上多出了2个底面的面积;(7)沿直径劈成相等的两半后实际多出的两个正方形的面积,正方形的边长为圆柱的直径(或者高)是4厘米.解答:解:(1)模型已制作;(2)根据圆柱的特征展开,然后标上数如下:(3)把圆柱沿直径劈成相等的两半,并标上数据如下:(4)圆柱的表面积:S=π×2+2πrh,=3.14××2+2×3.14××4,=3.14×4×2+2×3.14×2×4,=25.12+25.12,=50.24(平方厘米);(5)圆柱的体积:V=πh,=3.14××4,=3.14×4×4,=50.24(立方厘米);(6)S=π×2,=3.14××2,=3.14×4×2,=25.12(平方厘米);答:表面积多出25.12平方厘米.(7)S=d2×2,=42×2,=16×2,=32(平方厘米);答:表面积多出32平方厘米.点评:此题考查了圆柱的特征,及圆柱的展开图和圆柱的体积,然后代入表面积和体积公式进行计算即可;对于横截面只要区分开是沿那个方向切开即可.16.一根圆柱形钢材长2米,如果把它锯成两段,表面积比原来增加6.28平方分米,求这根2米长钢材的质量.(每立方分米钢重7.8千克)考点:简单的立方体切拼问题;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:6.28平方分米是圆柱形钢材的两个底面的面积,由此根据圆柱的体积公式,V=sh,求出圆柱形钢材的体积,再用体积乘7.8千克就是钢材的重量.解答:解:2米=20分米,(6.28÷2)×20×7.8,=3.14×20×7.8,=62.8×7.8,=489.84(千克);答:这根钢材重489.84千克.点评:关键是知道6.28平方分米是哪部分的面积,再利用相应的公式解决问题.17.在一个底面直径为20厘米的圆柱形容器中装有水,将一个底面直径为10厘米的圆柱铁锤放入水中,当铁锤从圆柱形容器中取出后,水面下降1厘米,求铁锤的高.考点:探索某些实物体积的测量方法;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:此题中下降水的体积就是圆柱铁锤的体积,再用下降水的体积除以圆柱铁锤的底面积,即可解决问题.解答:解:[3.14×(20÷2)2×1]÷[3.14×(10÷2)2],=3.14×100÷[3.14×25],=4(厘米);答:容器的水面下降了4厘米.点评:此题主要考查圆柱的体积公式及其应用,关键要理解下降水的体积即从水中取出物体的体积.18.一个圆柱形玻璃容器的底面直径是10厘米.把一块铁块从这个容器的水中取出后,水面下降2厘米,这块铁块的体积是多少?考点:探索某些实物体积的测量方法;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:只要求出下降水的体积就是这个铁球的体积,由题可知道圆柱的底面直径是10厘米,下降的水深是2厘米,运用圆柱的体积公式v=πr2h解答出来即可.解答:解:3.14×(10÷2)2×2,=3.14×25×2,=157(立方厘米);答:这块铁块的体积是157立方厘米.点评:本题考查了圆柱的体积公式的运用,同时考查了学生的转化思想,即把铁块的体积转化成下降水的体积.19.把一个高3分米的圆柱体的底面分成许多相等的扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,它的表面积比圆柱体的表面积增加了36平方分米,求这个圆柱体的体积.考点:简单的立方体切拼问题;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱体底面平均分成若干扇形,切开后拼成一个与它等底等高的近似长方体,则比原来圆柱的表面积增加了2个以底面半径和高为边长的长方形的面的面积,因为圆柱的高是3分米,由此可以求出圆柱的底面半径是36÷2÷3=6分米,再利用圆柱的体积公式即可计算解答.解答:解:圆柱的底面半径是:36÷2÷3=6(分米),圆柱的体积是:3.14×62×3,=3.14×36×3,=339.12(立方分米);答:这个圆柱的体积是339.12立方分米.点评:解决此类问题的关键是:根据圆柱切割拼组长方体的方法,得出增加了的表面积是以底面半径和高为边长的两个长方形的面的面积.20.求表面积.(单位:厘米)考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:圆柱的体积=πr2h,据此代入数据即可解答.解答:解:10÷2=5(厘米),3.14×(10÷2)2×15,=3.14×25×15,=1177.5(立方厘米),答:圆柱体的体积是1177.5立方厘米.点评:此题主要考查圆柱的体积公式的计算应用.21.一个圆柱形量筒,底面半径是5厘米,把一块铁块从这个量筒里取出后,水面下降3厘米,这块铁块的体积是多少?(π取3.14)考点:探索某些实物体积的测量方法;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:分析条件后可得出“铁块的体积=水面下降后减少的水那一部分的体积”,则求这块铁块的体积是多少,也就是求半径是5厘米,高是3厘米的圆柱形容器里水的体积.解答:解:V=sh,=3.14×52×3,=3.14×75,=235.5(立方厘米);答:这块铁块的体积是235.5立方厘米.点评:本题主要考查不规则物体体积的求法,明确这块铁块的体积,也就是求半径是5厘米,高是3厘米的圆柱形容器里水的体积.22.用铁皮做20节同样大小的圆柱形烟囱,每节长8分米,底面直径是10厘米,至少需要铁皮多少平方分米?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:烟囱要用多少铁皮,求的是圆柱的侧面积,已知底面直径可求底面周长,进而乘圆柱的高可得一节烟囱要用多少铁皮,然后乘20节即可得20节烟囱要用多少铁皮.解答:解:10厘米=1分米,一节烟囱要用铁皮面积:3.14×1×8=25.12(平方分米);20节烟囱要用铁皮的面积:25.12×20=502.4(平方分米);答:至少需要铁片502.4平方分米.点评:此题考查圆柱的侧面积,按公式计算即可,计算时注意别漏了乘20.23.两个底面积相等的圆柱,高的比是5:8,第一个圆柱的体积是90立方厘米,第二个圆柱的体积是多少立方厘米?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据题意,圆柱的体积=底面积×高,可知底面积相等的两个圆柱体高的比等于体积的比,所以可设第二个圆柱的体积为x立方厘米,然后列出比例式,解答即可.解答:解:设第二个圆柱的体积是x立方厘米,5:8=90:x,5x=90×8,5x=720,x=144;答:第二个圆柱的体积是144立方厘米.点评:解答此题的关键是确定底面积相等的两个圆柱体,高的比=体积的比,进行计算即可.24.一个圆柱体的直径是8厘米,沿这个圆柱体的直径竖直分成相同的两块,表面积增加了112平方厘米.求这个圆柱体的体积?考点:圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:沿这个圆柱体的直径竖直分成相同的两块,表面积增加了112平方厘米”,就是增加了两个长是圆柱的高,宽是圆柱的底面直径的长方形.据此可求出圆柱的高,然后再根据圆柱的体积公式进行计算.解答:解:圆柱的高:112÷2÷8=7(厘米),圆柱的体积:3.14×(8÷2)2×7,=3.14×16×7,=351.68(立方厘米);答:这个圆柱的体积是351.68平方厘米.点评:抓住圆柱切割成两个相等的半圆柱的特点,得出增加部分的表面积是以圆柱的高和直径为边长的长方形的面积是解决此类问题的关键.。

【数学】圆柱与圆锥练习题培优_

【数学】圆柱与圆锥练习题培优_

【数学】圆柱与圆锥练习题(培优)_一、圆柱与圆锥1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?【答案】解:3.14X (2“)2x15+2=23.55 (立方米)答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积+2=大棚内的空间大小,据此列式解答.2.一个酒瓶里面深30cm,底面内直径是10cm,瓶里酒深15cm。

把瓶口塞紧后使其瓶口向下倒立,这时酒深25cm。

求酒瓶的容积。

【答案】解:3.14x (10+2) 2x[15+(30-25)]=1570(cm3)答:酒瓶的容积是1570 cm3。

【解析】【分析】酒瓶的容积相当于高15厘米的圆柱形酒的体积,和高是(30-25)厘米的圆柱形空气的体积,把这两部分体积相加就是酒瓶的容积。

3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2【答案】解:3.14x6x5 = 94.2 (cm2)答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

4.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?【答案】解:3.14x6x10+3.14x (6“) 2= 18.84x10+3.14x9= 188.4+28.26= 216.66 (平方分米)答:做这个水桶大约要用铁皮216.66平方分米。

【解析】【分析】水桶无盖,因此用底面积加上侧面积就是需要铁皮的面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。

5.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?1【答案】解:x3.14x32x2= 3.14x6= 18.84 (立方厘米)答:这个零件的体积是18.84立方厘米。

2021年北师大新版数学六年级下册重难点题型提高训练第一单元《圆柱和圆锥》及答案

2021年北师大新版数学六年级下册重难点题型提高训练第一单元《圆柱和圆锥》及答案

2021年北师大新版六年级下册重难点题型提高训练第一单元《圆柱和圆锥》一.选择题1.(2019春•黄冈期末)一个底面半径为20cm,高为15cm的圆柱形铁块,可以熔铸成()个底面半径是10cm,高是15cm的圆锥形铁块.(损耗不计)A.3 B.6 C.12 D.242.(2019•鄞州区)李明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器.当水全部倒完后,发现从圆锥形容器内溢出36.2毫升水.这时,圆锥形容器内还有水( )毫升.A.36.2 B.54.3 C.18.1 D.108.63.(2019春•卢龙县期末)长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是( )A.长方体、正方体和圆柱的体积相等B.正方体体积是圆锥体积的3倍C.圆锥体积是圆柱体积的1 3D.长方体、正方体和圆柱的表面积相等4.(2019•永州模拟)一个圆锥和一个圆柱的高相等,若要使体积一样,圆锥底面积应是圆柱底面积的()A.3倍B.13C.π倍D.1π5.一个圆锥形碎石堆,底面半径1.5米,高1.8米,每立方米碎石约重2吨,这堆碎石约重(得数保留整吨数)()A.4吨B.13吨C.8吨D.6吨6.打谷场上,有一个近似于圆锥体的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约重(得数保留整千克数)()A.11078千克B.3693千克C.15千克D.2654千克7.(2019•山东模拟)把一段圆柱体圆木,削成一个最大的圆锥,圆锥体的体积是9.3立方厘米,削去部分的体积是多少?列式是()A.29.3(1)3÷-B.19.39.33÷-C.229.3(1)33⨯-⨯D.29.3(1)3⨯-8.圆柱、圆锥、正方体和长方体的底面周长和高相等,()的体积最大.A.圆柱B.圆锥C.正方体D.长方体9.等底等高的圆柱体和圆锥体,已知圆柱体体积比圆锥体体积大9.42立方厘米,圆锥体的体积是( )A.4.71立方厘米B.3.14立方厘米C.18.84立方厘米10.一个圆柱和一个圆锥体积和高都相等,那么圆锥的底面积是圆柱底面积的() A.2倍B.3倍C.6倍二.填空题11.(2019春•环江县期中)一个圆柱和一个圆锥等底等高,如果圆柱比圆锥的体积多376dm,则圆柱的体积是3dm,圆锥的体积是3dm.12.(2019春•交城县期中)如图,把一个底面半径为4cm的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了240cm,圆柱的高是cm,体积是3cm.13.(2019春•上海月考)一个直角三角形的三条边长分别是3cm、4cm和5cm,若以直角边为轴旋转一圈,旋转一圈形成的图形体积是立方厘米.(π取3.14)14.(2019春•越秀区期末)在一块平地上挖一个底面半径是4m的圆柱形水池,池深1m,需要挖出3m的土;要在池底和内壁贴上瓷片,贴瓷片的面积是2m.15.(2019春•越秀区期末)如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了ml水;这个瓶子的容积是ml.16.(2019•衡水模拟)一根长1米,横截面直径是20厘米的木头浮在水面上,小明发现它正好是一半露出水面,请你求出这根木头与水接触的面的面积是平方厘米.17.(2013•盐城)把一个圆柱体切拼成一个高不变(高9厘米)的近似长方体,表面积增加了36平方厘米,这个圆柱的底半径是厘米.18.(2012春•泾源县月考)把高为20厘米的圆柱体横截成两段,表面积增加了50.24平方厘米,这个圆柱体的原来体积是.三.判断题19.(2019•永州模拟)圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小.(判断对错)20.(2019•亳州模拟)两个圆锥的底和高各不相等,则两个圆锥的体积也一定不相等.(判断对错)21.(2019春•苍溪县期中)分别以一个长方形的长、宽为轴,旋转一周得到的立体图形的体积相等.(判断对错)22.(2019春•端州区月考)将圆柱的侧面沿高展开有可能是长方形,也有可能是正方形,还有可能是平行四边形.(判断对错)23.(2019•武威)把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的2倍..(判断对错)24.(2019春•镇康县校级月考)一个圆锥的底面半径扩大3倍,它的体积也扩大3倍..(判断对错)25.芳芳中午12点睡觉,下午闹钟2点准时响起,则时针在这段时间旋转了60︒..(判断对错)26.一个圆柱的底面直径和高与正方体的棱长相等,那么它们的体积也相等..(判断对错)27.(2018•江北区)长方体和圆柱的体积都可以用底面积乘以高的方法计算.(判断对错)四.计算题28.(2019•益阳模拟)如图是一种钢制的配件(图中数据单位:)cm,请计算它的表面积和体积.(π取3.14)29.(2019春•兴化市月考)如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.五.应用题30.(2019春•黄冈期末)如图,壮壮测量一个瓶子的容积,测得该瓶子的底面直径是9cm,瓶子深30cm,然后他给瓶子内盛入一些水,正放时水高20cm,拧紧瓶盖倒放时水高25cm.这个瓶子的容积是多少毫升?31.(2019春•越秀区期末)一块底面半径6cm,高12cm的圆锥形钢材,把它熔铸成一根横截面半径是1cm的圆柱形钢条,这根钢条长多少厘米?32.(2019•岳阳模拟)数学活动课上,笑笑把一个底面周长是37.68cm,高是10cm的圆锥形容器灌满水,然后把75%的水倒入了一个底面半径是5cm的圆柱形容器里,圆柱形容器内水面的高度是多少?33.(2019•永州模拟)一个圆锥形沙堆,底面积是218m,高是1.4m.用这堆沙子铺一段宽1.8m、厚23cm的公路,可以铺多少米?34.(2019春•单县期末)在一个底面直径为12厘米,高20厘米,内有水深15厘米的圆柱形玻璃容器中,放入一个底面直径是10厘米的圆锥形铁块,水面升高2厘米,求放入圆锥形铁块的高是多少?35.(2019•武城县)在圆柱体的体积推导过程中,把一个圆柱体平均分成若干等份,然后拼成一个近似的长方体(材料无损耗),拼成的长方体的长是6.28厘米,高是5厘米,这个圆柱体的体积是多少立方厘米?36.(2017春•东莞市月考)如图,用一张长165.6厘米的铁皮,剪下一个最大的圆作为圆柱的底面,剩下的部分围在底面上做成一个无盖的铁皮水桶,算一算这个铁皮水桶的容积是多少?(铁皮厚度不计, 取3.14)37.(2014春•黄山期中)一个圆柱的体积是362.8cm,要把它锻造成一个高为12cm的圆锥,圆锥底面积应是多少?六.解答题38.(2019•防城港模拟)把一个底面积为125.6平方厘米,高18厘米的圆锥体铝锭熔铸成一个长10厘米,宽8厘米的长方体,这个长方体的高是多少厘米?39.(2019•湘潭模拟)赵师傅向下面所示的空容器(由上、下两个圆柱体组成)中匀速注油,正好注满.注油过程中,容器中油的高度与所用时间的关系如图所示.①把下面的大圆柱体注满需分钟.②上面小圆柱体高厘米.③如果下面的大圆柱体底面积是48平方厘米,则大圆柱体积是多少立方厘米?上面小圆柱的底面积是多少平方厘米?(写出计算过程)40.(2019春•高新区期中)一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)41.(2019•株洲模拟)一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的半圆柱体,表面积增加了多少?42.(2019•长沙模拟)一个圆柱的高是20厘米.如果把它的高截短3厘米,它的表面积就减少94.2平方厘米,这个圆柱的表面积原来是多少?参考答案一.选择题1.(2019春•黄冈期末)一个底面半径为20cm ,高为15cm 的圆柱形铁块,可以熔铸成( )个底面半径是10cm ,高是15cm 的圆锥形铁块.(损耗不计) A .3B .6C .12D .24【解答】解:2213.142015( 3.141015)3⨯⨯÷⨯⨯⨯13.1440015( 3.1410015)3=⨯⨯÷⨯⨯⨯188401570=÷12=(个)答:可以熔铸成12个底面半径是10cm ,高是15cm 的圆锥形铁块. 故选:C .2.(2019•鄞州区)李明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器.当水全部倒完后,发现从圆锥形容器内溢出36.2毫升水.这时,圆锥形容器内还有水()毫升. A .36.2B .54.3C .18.1D .108.6【解答】解:36.2(31)÷- 36.22=÷ 18.1=(毫升),答:圆锥形容器内还有水18.1毫升. 故选:C .3.(2019春•卢龙县期末)长方体、正方体、圆柱和圆锥的底面积和高相等,下列说法错误的是()A .长方体、正方体和圆柱的体积相等B .正方体体积是圆锥体积的3倍C .圆锥体积是圆柱体积的13D .长方体、正方体和圆柱的表面积相等【解答】解:A .如果长方体、正方体、圆柱体的底面积和高相等,那么长方体、正方体、圆柱体的体积一定相等,因此,长方体、正方体和圆柱的体积相等.此说法正确.B .因为等底等高的圆柱的体积是圆锥体积的3倍.正方体和圆柱的底面积相等、高也相等,所以正方体的体积是圆锥体积的3倍.此说法正确.C.因为圆柱和圆锥的底面积相等、高也相等,所以圆锥的体积是圆柱体积的13.此说法正确.D.当长方体、正方体、圆柱和圆锥的底面积相等、高也相等时,圆锥的表面积最小.因此,长方体、正方体和圆柱的表面积相等.此说法错误.故选:D.4.(2019•永州模拟)一个圆锥和一个圆柱的高相等,若要使体积一样,圆锥底面积应是圆柱底面积的()A.3倍B.13C.π倍D.1π【解答】解:一个圆锥和一个圆柱的高相等,若要使体积一样,圆锥底面积应是圆柱底面积的3倍.故选:A.5.一个圆锥形碎石堆,底面半径1.5米,高1.8米,每立方米碎石约重2吨,这堆碎石约重(得数保留整吨数)()A.4吨B.13吨C.8吨D.6吨【解答】解:213.14 1.5 1.82 3⨯⨯⨯⨯13.14 2.25 1.823=⨯⨯⨯⨯4.2392=⨯8.478=8≈(吨),答:这堆碎石重约8吨.故选:C.6.打谷场上,有一个近似于圆锥体的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦大约重(得数保留整千克数)()A.11078千克B.3693千克C.15千克D.2654千克【解答】解:213.14(42) 1.2735 3⨯⨯÷⨯⨯13.144 1.27353=⨯⨯⨯⨯5.024735=⨯3693≈(千克)答:这堆小麦大约重3993千克.故选:B .7.(2019•山东模拟)把一段圆柱体圆木,削成一个最大的圆锥,圆锥体的体积是9.3立方厘米,削去部分的体积是多少?列式是( )A .29.3(1)3÷-B .19.39.33÷-C .229.3(1)33⨯-⨯D .29.3(1)3⨯-【解答】解:19.39.33÷- 9.339.3=⨯- 27.99.3=-18.6=(立方厘米),或者229.3(1)33÷-⨯129.333=÷⨯29.333=⨯⨯18.6=(立方厘米),答:削去部分的体积是18.6立方厘米. 故选:B .8.圆柱、圆锥、正方体和长方体的底面周长和高相等,( )的体积最大. A .圆柱B .圆锥C .正方体D .长方体【解答】解:假设它们的底面周长都是12.56厘米,高都是3.14厘米, 则圆柱体(圆锥体)的底面半径为12.56 3.1422÷÷=厘米,所以圆柱的体积是23.142 3.1439.4384⨯⨯=立方厘米;圆锥的体积是139.438413.153⨯≈(立方厘米);正方体的棱长为12.564 3.14÷=厘米,正方体的体积是3.14 3.14 3.1430.96⨯⨯≈立方厘米;因为12.562 6.28÷=,所以长方体的长和宽可以是3.15厘米和3.13厘米,长方体的体积是3.15 3.13 3.1430.95883⨯⨯=立方厘米;39.438430.9630.9588313.15>>>,所以圆柱体的体积最大.故选:A.9.等底等高的圆柱体和圆锥体,已知圆柱体体积比圆锥体体积大9.42立方厘米,圆锥体的体积是( )A.4.71立方厘米B.3.14立方厘米C.18.84立方厘米【解答】解:9.42(31)÷-9.422=÷4.71=(立方厘米)答:圆锥体的体积是4.71平方厘米.故选:A.10.一个圆柱和一个圆锥体积和高都相等,那么圆锥的底面积是圆柱底面积的() A.2倍B.3倍C.6倍【解答】解:因为等底等高的圆锥的体积是圆柱体积的13,所以当圆柱和圆锥体积相等、高相等时,圆锥的底面积是圆柱底面积的3倍.故选:B.二.填空题11.(2019春•环江县期中)一个圆柱和一个圆锥等底等高,如果圆柱比圆锥的体积多376dm,则圆柱的体积是1143dm,圆锥的体积是3dm.【解答】解:76(31)÷-762=÷38=(立方分米)383114⨯=(立方分米)答:圆柱的体积是114立方分米,圆锥的体积是38立方分米.故答案为:114、38.12.(2019春•交城县期中)如图,把一个底面半径为4cm 的圆柱,拼成一个近似的长方体,长方体的表面积比圆柱增加了240cm ,圆柱的高是 5 cm ,体积是 3cm .【解答】解:40245÷÷=(厘米) 23.1445⨯⨯ 3.14165=⨯⨯ 50.245=⨯251.2=(立方厘米)答:圆柱的高是5厘米,体积是251.2立方厘米. 故答案为:5、251.2.13.(2019春•上海月考)一个直角三角形的三条边长分别是3cm 、4cm 和5cm ,若以直角边为轴旋转一圈,旋转一圈形成的图形体积是 37.68或50.24 立方厘米.(π取3.14) 【解答】解:213.14343⨯⨯⨯ 13.14943=⨯⨯⨯ 37.68=(立方厘米);213.14433⨯⨯⨯ 13.141633=⨯⨯⨯ 50.24=(立方厘米);答:形成图形的体积是37.68立方厘米或50.24立方厘米. 故答案为:37.68、50.24.14.(2019春•越秀区期末)在一块平地上挖一个底面半径是4m 的圆柱形水池,池深1m ,需要挖出 50.24 3m 的土;要在池底和内壁贴上瓷片,贴瓷片的面积是 2m .【解答】解:23.1441⨯⨯3.14161=⨯⨯ 50.24=(立方米);23.14(42)1 3.144⨯⨯⨯+⨯3.1481 3.1416=⨯⨯+⨯25.1250.24=+75.36=(平方米);答:需要挖土50.24立方米,贴瓷砖的面积是75.36平方米.故答案为:50.24、75.36.15.(2019春•越秀区期末)如图,一个内直径是6cm的瓶里装满矿泉水,小兰喝了一些后,这时瓶里水的高度是12cm,把瓶盖拧紧后倒置放平,无水部分高8cm.小兰喝了226.08ml水;这个瓶子的容积是ml.【解答】解:2 3.14(62)8⨯÷⨯3.1498=⨯⨯28.268=⨯226.08=(立方厘米)23.14(62)(128)⨯÷⨯+3.14920=⨯⨯28.2620=⨯565.2=(立方厘米)226.08立方厘米226.08=毫升565.2立方厘米565.2=毫升答:小红喝了226.08毫升,这个瓶子的容积是565.2毫升.故答案为:226.08、565.2.16.(2019•衡水模拟)一根长1米,横截面直径是20厘米的木头浮在水面上,小明发现它正好是一半露出水面,请你求出这根木头与水接触的面的面积是3454平方厘米.【解答】解:木头横截面的半径为:20210÷=(厘米),两个底面积:23.14102628⨯⨯=(平方厘米),侧面积:3.1420100⨯⨯ 62.8100=⨯, 6280=(平方厘米),表面积:62862806908+=(平方厘米), 与水接触的面积:690823454÷=(平方厘米) 答:这根木头与水接触的面的面积是3454平方厘米. 故答案为:3454.17.(2013•盐城)把一个圆柱体切拼成一个高不变(高9厘米)的近似长方体,表面积增加了36平方厘米,这个圆柱的底半径是 2 厘米. 【解答】解:3629÷÷ 189=÷2=(厘米)答:这个圆柱的底面半径是2厘米. 故答案为:2.18.(2012春•泾源县月考)把高为20厘米的圆柱体横截成两段,表面积增加了50.24平方厘米,这个圆柱体的原来体积是 502.4立方厘米 . 【解答】解:50.24225.12÷=(平方厘米) 25.1220502.4⨯=(立方厘米)答:这个圆柱原来的体积是502.4立方厘米. 故答案为:502.4立方厘米. 三.判断题19.(2019•永州模拟)圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小. ⨯ (判断对错)【解答】解:因为等底等高的圆柱的体积是圆锥体积的3倍,所以在没有确定圆柱与圆锥是否等底等高这个前提条件下,无法确定圆柱与圆锥体积的大小.因此,圆柱的体积一定比圆锥的体积大,圆锥的体积一定比圆柱的体积小.这种说法是错误的.故答案为:⨯.20.(2019•亳州模拟)两个圆锥的底和高各不相等,则两个圆锥的体积也一定不相等. ⨯ (判断对错)【解答】解:比如:第一个圆锥的底面积是12平方厘米,高是3厘米,第二个圆锥的底面积是6平方厘米,高是6厘米.111236633⨯⨯=⨯⨯,这两个圆锥的体积就相等.因此,两个圆锥的底和高各不相等,则两个圆锥的体积也一定不相等.这种说法是错误的. 故答案为:⨯.21.(2019春•苍溪县期中)分别以一个长方形的长、宽为轴,旋转一周得到的立体图形的体积相等. ⨯ (判断对错)【解答】解:以长方形的一条边为轴旋转一周,会得到一个圆柱,如果以长为轴,那么圆柱的高是长方形的长,底面半径是宽,而如果以宽为轴,那么圆柱的高是长方形的宽,底面半径是长;根据圆柱的体积2V r h π=可知,由于长方形的长和宽不相等,所以两种圆柱的体积不相等.故答案为:⨯.22.(2019春•端州区月考)将圆柱的侧面沿高展开有可能是长方形,也有可能是正方形,还有可能是平行四边形. ⨯ (判断对错)【解答】解:因为把一个圆柱沿高剪开,当圆柱的底面周长等于圆柱的高时,展开的图形是正方形; 当圆柱的底面周长不等于圆柱的高时,展开的图形是长方形;所以,将圆柱的侧面沿高展开有可能是长方形,也有可能是正方形,不可能是平行四边形,所以本题说法错误; 故判断为:⨯.23.(2019•武威)把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的2倍. √ .(判断对错) 【解答】解:3V V =圆柱圆锥()VV V -÷圆柱圆锥圆锥2V V =÷圆锥圆锥2=答:削去部分的体积是圆锥体积的2倍. 所以原题的说法正确.故答案为:√.24.(2019春•镇康县校级月考)一个圆锥的底面半径扩大3倍,它的体积也扩大3倍. ⨯ .(判断对错)【解答】解:2113hπ⨯⨯ 113h π=⨯⨯13h π= 2133h π⨯⨯ 193h π=⨯⨯ 3h π=1393h h ππ÷=即一个圆锥的底面半径扩大3倍,它的体积也扩大3倍是错误的,它体积应扩大9倍. 故答案为:⨯.25.芳芳中午12点睡觉,下午闹钟2点准时响起,则时针在这段时间旋转了60︒. √ .(判断对错)【解答】解:芳芳中午12点睡觉,下午闹钟2点准时响起,则时针在这段时间旋转了60︒,说法正确;故答案为:√.26.一个圆柱的底面直径和高与正方体的棱长相等,那么它们的体积也相等. ⨯ .(判断对错) 【解答】解:由圆柱和正方体的体积公式可知,一个圆柱和一个正方体的底面积和高相等,那么它们的体积也相等;但这里圆柱的底面积与正方体的底面积不一定相等. 故答案为:⨯.27.(2018•江北区)长方体和圆柱的体积都可以用底面积乘以高的方法计算. √ (判断对错) 【解答】解:因为长方体的长⨯宽=长方体的底面积,所以长方体和圆柱的体积都可以用底面积乘以高的方法计算. 故答案为:√. 四.计算题28.(2019•益阳模拟)如图是一种钢制的配件(图中数据单位:)cm ,请计算它的表面积和体积.(π取3.14)【解答】解:(1)表面积:2⨯⨯+⨯⨯+⨯÷⨯3.1444 3.1484 3.14(82)2=++⨯⨯50.24100.48 3.14162=+150.72100.48=(平方厘米)251.2(2)体积:22⨯÷⨯+⨯÷⨯3.14(42)4 3.14(82)4=⨯⨯+⨯⨯3.1444 3.1416450.24200.96=+=(立方厘米)251.2答:它的表面积是251.2平方厘米,体积是251.2立方厘米.29.(2019春•兴化市月考)如图,阴影部分的材料正好可以做成一个圆柱,求这个圆柱的体积.【解答】解:设圆柱的底面直径为x分米,+=3.1416.56x xx=4.1416.56x=.42⨯÷⨯⨯3.14(42)(42)=⨯⨯3.144812.568=⨯=(立方分米),100.48答:这个圆柱的体积是100.48立方分米.五.应用题30.(2019春•黄冈期末)如图,壮壮测量一个瓶子的容积,测得该瓶子的底面直径是9cm,瓶子深30cm,然后他给瓶子内盛入一些水,正放时水高20cm,拧紧瓶盖倒放时水高25cm.这个瓶子的容积是多少毫升?【解答】解:23.14(92)(302520)⨯÷⨯-+3.1420.2525=⨯⨯63.58525=⨯1589.625=(立方厘米)1589.625立方厘米1589.625=毫升答:这个瓶子的容积是1589.625毫升.31.(2019春•越秀区期末)一块底面半径6cm,高12cm的圆锥形钢材,把它熔铸成一根横截面半径是1cm的圆柱形钢条,这根钢条长多少厘米?【解答】解;22 13.14612(3.141) 3⨯⨯⨯÷⨯13.143612 3.143=⨯⨯⨯÷452.16 3.14=÷144=(厘米)答:这根钢条长144厘米.32.(2019•岳阳模拟)数学活动课上,笑笑把一个底面周长是37.68cm,高是10cm的圆锥形容器灌满水,然后把75%的水倒入了一个底面半径是5cm的圆柱形容器里,圆柱形容器内水面的高度是多少?【解答】解:22 13.14(37.68 3.142)1075%(3.145) 3⨯⨯÷÷⨯⨯÷⨯13.1436100.75(3.1425) 3=⨯⨯⨯⨯÷⨯282.678.5=÷3.6=(厘米),答:圆柱形容器内水面的高度是3.6厘米.33.(2019•永州模拟)一个圆锥形沙堆,底面积是218m,高是1.4m.用这堆沙子铺一段宽1.8m、厚23cm的公路,可以铺多少米?【解答】解:23厘米0.23=米,118 1.4(1.80.23)3⨯⨯÷⨯8.40.414=÷20.3≈(米),答:可以铺20.3米.34.(2019春•单县期末)在一个底面直径为12厘米,高20厘米,内有水深15厘米的圆柱形玻璃容器中,放入一个底面直径是10厘米的圆锥形铁块,水面升高2厘米,求放入圆锥形铁块的高是多少?【解答】解:2 3.14(122)2⨯÷⨯3.14362=⨯⨯226.08=(立方厘米)1025÷=(厘米)2226.083(3.145)⨯÷⨯678.2478.5=÷8.64=(厘米)答:圆锥形铁块的高是8.64厘米.35.(2019•武城县)在圆柱体的体积推导过程中,把一个圆柱体平均分成若干等份,然后拼成一个近似的长方体(材料无损耗),拼成的长方体的长是6.28厘米,高是5厘米,这个圆柱体的体积是多少立方厘米?【解答】解:6.282 3.142⨯÷÷12.56 3.142=÷÷42=÷2=(厘米),23.1425⨯⨯3.1445=⨯⨯62.8=(立方厘米),答:这个圆柱的体积是62.8立方厘米.36.(2017春•东莞市月考)如图,用一张长165.6厘米的铁皮,剪下一个最大的圆作为圆柱的底面,剩下的部分围在底面上做成一个无盖的铁皮水桶,算一算这个铁皮水桶的容积是多少?(铁皮厚度不计,π取3.14)【解答】解:设圆柱的底面直径为x厘米,由题意得:3.14165.6x x+=4.14165.6x=4.14 4.14165.6 4.14x÷=÷40x=.23.14(402)40⨯÷⨯3.1440040=⨯⨯125640=⨯50240=(立方厘米),答:这个铁皮水桶的容积是50240立方厘米.37.(2014春•黄山期中)一个圆柱的体积是362.8cm,要把它锻造成一个高为12cm的圆锥,圆锥底面积应是多少?【解答】解:1 62.8123÷÷62.8312=⨯÷15.7=(平方厘米);答:圆锥的底面积应该是15.7平方厘米.六.解答题38.(2019•防城港模拟)把一个底面积为125.6平方厘米,高18厘米的圆锥体铝锭熔铸成一个长10厘米,宽8厘米的长方体,这个长方体的高是多少厘米?【解答】解:1125.618(108) 3⨯⨯÷⨯9.42=(厘米),答:这个长方体的高是9.42厘米.39.(2019•湘潭模拟)赵师傅向下面所示的空容器(由上、下两个圆柱体组成)中匀速注油,正好注满.注油过程中,容器中油的高度与所用时间的关系如图所示.①把下面的大圆柱体注满需113分钟.②上面小圆柱体高厘米.③如果下面的大圆柱体底面积是48平方厘米,则大圆柱体积是多少立方厘米?上面小圆柱的底面积是多少平方厘米?(写出计算过程)【解答】解:①把下面的大圆柱体注满需113分钟.②502030-=(厘米)答:上面小圆柱体高30厘米.③4820960⨯=(立方厘米)119601(21)33÷⨯-12960133=÷⨯480=(立方厘米)4803016÷=(平方厘米)答:大圆柱体积是960立方厘米,上面小圆柱的底面积是16平方厘米.故答案为:113;30.40.(2019春•高新区期中)一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)【解答】解:2 3.142024 3.14(202)⨯⨯+⨯÷62.824 3.14100 =⨯⨯+⨯1821.2=1900≈(平方厘米),答:做这个水桶需要铁皮1900平方厘米.41.(2019•株洲模拟)一个底面周长是43.96厘米,高为8厘米的圆柱,沿着高切成两个同样大小的半圆柱体,表面积增加了多少?【解答】解:底面直径:43.96 3.1414÷=(厘米),1482224⨯⨯=(平方厘米),答:表面积增加了224平方厘米.42.(2019•长沙模拟)一个圆柱的高是20厘米.如果把它的高截短3厘米,它的表面积就减少94.2平方厘米,这个圆柱的表面积原来是多少?【解答】解:底面半径:94.23 3.142÷÷÷31.4 3.142=÷÷102=÷5=(厘米)原圆柱的表面积:23.145220 3.1452⨯⨯⨯+⨯⨯3.14200 3.1450=⨯+⨯3.14250=⨯785=(平方厘米)答:这个圆柱的表面积原来是785平方厘米.。

人教版六年级下册数学第三单元圆柱与圆锥应用题(易错题提高卷)专项培优卷(人教版)

人教版六年级下册数学第三单元圆柱与圆锥应用题(易错题提高卷)专项培优卷(人教版)

第三单元圆柱与圆锥应用题(易错题提高卷)六年级下册数学专项培优卷(人教版)姓名:___________班级:___________考号:___________1.有一种圆柱形的油漆滚筒刷,如图。

这个滚筒刷滚动一周能粉刷的面积是多少平方厘米?2.一个图柱形的花瓶(如图),从外面测量,底面半径5厘米,高20厘米。

(1)给这个花瓶的整个侧面涂上彩绘,彩绘的面积是多少平方厘米?(2)花瓶的瓶身和瓶底的厚度都是1厘米,往花瓶里装水,水面离瓶口9厘米,这个花瓶里装了多少毫升水?3.一个圆柱形水池,底面直径10米,深3米,里面装水深2米。

在池底和周围贴上瓷砖,贴瓷砖的面积是多少?里面装有水多少方?4.一个密封的长方体容器装了一些水。

当横着放入一个圆柱体铁块时,恰好完全浸没在水中,水深2厘米(如下左图)。

如果把这个容器如下右图放置,圆柱体铁块的14刚好露出水面,且水深5.5厘米。

(1)当把这个容器如下右图放置时,占地面积是多少?(2)这个圆柱体铁块的体积是多少立方厘米?5.一个圆柱形容器,底面直径4分米,高7分米。

它里面装有一些水,水的高度是5分米,现将一个圆锥完全沉入水中,溢出了37.68升水。

这个圆锥的体积是多少?6.一个圆锥的底面半径是3分米。

从圆锥的顶点沿着高将它切成相等的两半后,表面积比原来的圆锥表面积增加了24平方分米。

这个圆锥的体积是多少立方分米?7.把一根长2.4米,底面直径是0.6米的圆柱形钢材平均截成4段,表面积增加了多少平方米?8.唐老鸭用一个圆锥形容器装满了2000mL香油,米老鼠趁唐老鸭不在,在容器的正中间咬了一个洞,然后开始偷油,一直偷到油面与洞口齐平为止(如图,此时油面直径是圆锥形容器底面直径的12)。

问:米老鼠共偷得香油多少mL?(容器厚度忽略不计)9.一个圆柱形容器,底面直径为40厘米,高32厘米,里面盛有一些水,把一个底面半径为10厘米的圆锥形铅锤完全浸没在容器中,容器中的水面升高了2厘米,这个圆锥的高是多少?(容器壁的厚度忽略不计)10.水泥柱的长度是12米,底面半径是2.5米,求水泥柱的表面积是多少平方米?11.在一个数学实验活动中。

苏教版数学六年级下册第二单元《圆柱和圆锥》冲刺提高卷【含答案】

苏教版数学六年级下册第二单元《圆柱和圆锥》冲刺提高卷【含答案】

苏教版数学六年级下册单元冲刺提高卷第二单元《圆柱和圆锥》_________题号一二三四总分评分一、精挑细选(共5题;每题3分,共15分)1. 下面图形中,用“底面积×高”不能直接计算出体积的是()。

A. B. C. D.2. 一个圆锥的底面半径扩大到原来的2倍,高不变,它的体积()。

A. 扩大到原来的2倍B. 扩大到原来的4倍C. 扩大到原来的8倍3. 下面说法错误的是()。

A. 一个圆柱体的底面半径扩大3倍,高不变,则体积扩大9倍。

B. 对图形进行旋转、平移的过程中,图形的位置和形状都发生了变化。

C. 圆有无数条对称轴。

D. 两个不同自然数(0除外)的积一定是这两个数的公倍数。

4. 在数学活动课上,小军把一团圆柱形橡皮泥搓成与它等底的圆锥形,高将()A. 不变B. 缩小为原来的C. 扩大为原来的3倍D. 无法确定5. ( 3分 ) 王叔叔做了一个圆柱体容器和几个圆锥体容器,尺寸如下图所示(单位:cm),将圆柱体内的水倒入()圆锥体内,正好倒满。

A. B. C.二、判断正误(共5题;每题3分,共15分)6. 底面积和高分别相等的长方体、正方体、圆柱体的体积一定相等。

()7. 把一个圆柱体削成个最大的圆锥体,削去部分的体积是圆柱体积的。

()8. 圆柱的高不变,底面半径扩大3倍,圆柱的侧面积也扩大3倍。

()9. 表面积相等的两个圆柱,它们的体积也相等。

()10. 从一个圆锥高的处切下一个圆锥,这个圆锥的体积是原来体积的。

三、仔细想,认真填(共8题;每空1分,共11分)11. 把一根长16米的方木锯成相等的5段,表面积增加了4平方米,这根方木的体积是________立方米。

12. 有一根半径是2厘米,高6厘米的圆柱形钢材,加工成与它等底等高的圆锥,要切去________立方厘米钢材。

13. 一堆6.28立方米的煤,近似于一个圆锥。

测量出底面直径是4米,这堆煤大约高________厘米。

14. 下图中,圆锥的体积是________ cm3,圆柱的侧面积是________ cm2,体积是________cm3。

六年级数学下册-圆柱与圆锥同步练习(人教版) - 解析版

六年级数学下册-圆柱与圆锥同步练习(人教版) - 解析版

(提升篇)六年级下学期圆柱与圆锥同步分层练习(人教版)一、选择题(共6题)1.一个圆柱体的侧面展开图是正方形,这个圆柱体的底面直径与高的比是()。

A.2π∶1B.1∶1C.1∶πD.π∶1【答案】C【分析】根据一个圆柱体的侧面展开图是正方形,可得圆柱体的底面周长等于圆柱的高;然后根据圆的周长等于圆的直径乘π,可得所以这个圆柱体的底面直径与高的比是1∶π,据此解答即可。

【详解】解:设圆柱体的底面直径与高分别是d、h,则πd=h,所以d∶h=1∶π。

故选:C。

【点睛】此题主要考查了比的意义的应用,解答此题的关键是判断出:圆柱体的底面周长等于圆柱的高。

2.把一段圆柱形的木材,削成一个体积最大的圆锥,削去部分的体积是圆锥体积的()A.3倍B.13C.23D.2倍【答案】D 【分析】由题意知,削去的最大圆锥的体积应是圆柱体积的13,也就是说,把圆柱的体积看作单位“1”,是3份,圆锥体积是1份,那么削去的部分应是2份;要求最后的问题,可用除法解答。

【详解】由分析得,把圆柱的体积看作单位“1”,是3份,圆锥体积是1份,那么削去的部分应是2份;2÷1=2故选:D【点睛】此题是考查圆柱、圆锥的关系,解答此题要注意圆柱和圆锥只有在等底等高的条件下才有3倍或13的关系。

3.如图三个立体图形的底面积和高都相等。

下面说法正确的是()。

A.三个立体图形的体积一样大B.圆柱的体积与圆锥的体积相等C.正方体的体积比圆柱的体积大一些D.正方体的体积是圆锥体积的3倍【答案】D【分析】根据圆柱的体积公式:V=Sh,正方体的体积公式:V=Sh,如果圆柱和正方体的底面积和高分别相等,那么它们的体积一定相等,等底等高的圆锥的体积是圆柱体积的13,据此解答即可。

【详解】由分析得:说法正确的是:正方体的体积是圆锥体积的3倍。

故选:D。

【点睛】此题考查的目的是理解掌握圆柱的体积公式、正方体的体积公式、等底等高的圆柱和圆锥体积之间的关系及应用。

人教版小学数学六年级《圆柱与圆锥》练习题(有答案)

人教版小学数学六年级《圆柱与圆锥》练习题(有答案)

圆柱与圆锥立体图形表面积体积h r圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱h r圆锥22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长21π3V r h =圆锥体【基础练习】一、选一选。

(将正确答案的序号填在括号里) 1、下面物体中,( )的形状是圆柱。

A 、B 、C 、D 、2、一个圆锥的体积是36dm 3,它的底面积是18dm 2,它的高是( )dm 。

A 、23 B 、2 C 、6 D 、183、下面( )图形是圆柱的展开图。

(单位:cm )4、下面( )杯中的饮料最多。

5、一个圆锥有( )条高,一个圆柱有( )条高。

A 、一 B 、二 C 、三 D 、无数条6、如右图:这个杯子( )装下3000ml 牛奶。

A 、能B 、不能C 、无法判断二、判断对错。

()1、圆柱的体积一般比它的表面积大。

()2、底面积相等的两个圆锥,体积也相等。

()3、圆柱的体积等于和它等底等高的圆锥体积的3倍。

()4、“做圆柱形通风管需要多少铁皮”是求这个圆柱的侧面积。

()5、把圆锥的侧面展开,得到的是一个长方形。

三、想一想,连一连。

四、填一填。

1、2.8立方米=()立方分米6000毫升=()3060立方厘米=()立方分米5平方米40平方分米=()平方米2、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。

3、用一张长分米,宽分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。

(接口处不计)4、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。

5、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。

五、求下面图形的体积。

(单位:厘米)六、解决问题。

1、⑴制作这个薯片筒的侧面标签,需要多大面积的纸?⑵这个薯片筒的体积是多少?2、在建筑工地上有一个近似于圆锥形状的沙堆,测得底面直径4米,高米。

【典型例题系列】六年级数学下册典型例题系列之第一单元圆柱与圆锥提高篇(一)(解析版)北师大版

【典型例题系列】六年级数学下册典型例题系列之第一单元圆柱与圆锥提高篇(一)(解析版)北师大版

六年级数学下册典型例题系列之第一单元圆柱与圆锥提高篇(一)(解析版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第一单元圆柱与圆锥提高篇(一)。

本部分内容主要选取圆柱与圆锥单元较有难度的题型,也是期末考试常见的考点考题,建议把该部分作为本章核心内容进行讲解,一共划分为十一个考点,欢迎使用。

【考点一】圆柱表面积的三种增减变化:高的变化引起表面积的变化。

【方法点拨】底面积不变,圆柱高的变化引起表面积的变化,由于底面积没有变,所以实际上发生变化的是侧面积,由此可以求出底面周长,进而求出表面积。

底面周长C=变化的表面积÷变化的高度。

【典型例题】一个圆柱被截去10厘米后(如下图),圆柱的表面积减少了628平方厘米,原来圆柱的表面积是多少平方厘米?(π取3.14)解析:圆柱的底面周长:628÷10=62.8(厘米)底面半径:62.8÷2÷3.14=10(厘米)原来圆柱的表面积:3.14×102×2+62.8×(15+10)=628+1570=2198(平方厘米)答:原来圆柱的表面积是2198平方厘米。

【对应练习1】一个圆柱体,高减少2厘米,表面积就减少了50.24平方厘米,圆柱的底面积是多少平方厘米?解析:底面周长:50.24÷2=25.12(厘米)底面圆的半径:25.12÷2÷3.14=4(厘米)底面积:3.14×42=50.24(平方厘米)答:圆柱的底面积是50.24平方厘米。

【对应练习2】一个圆柱的底面直径为4厘米,如果高增加1厘米,表面积增加多少平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等底 等高,体积之和为8.6立方米 。这个圆柱的体积是( )立方米,圆锥的体积是( )立方米。
12
• 3、一个圆柱体和一个圆锥体 等底等高,它们的体积相差 50.24立方厘米。如果圆锥体 的底面半径是2厘米,这个圆 锥体的高( )厘米。
13
• 4、 一个圆柱体和一个圆 锥体的底面积和体积分别 相等,已知圆柱体的高6 厘米,那么圆锥体的高是 ( )厘米。
8
• 7、把3个完全一样的圆柱 ,连接成一个大圆柱,长 9厘米,表面积减少12.56 平方分米。原来每个圆柱 的体积是多少立方厘米?
9
• 8、一个圆柱形玻璃缸, 底面直径20厘米,把一个 钢球放入水中,缸内水面 上升了2厘米,求这个钢 球的体积。
10
• 1、 等底等高的圆柱和圆 锥的体积相差16立方米, 这个圆柱的体积是( )立方米,圆锥的体积是 ( )立方米。
1
提高题圆柱与 圆锥
2
• 1、一个圆柱的高增加 3分米,侧面积就增加 56.52平方分米,它的 体积增加多少立方分米 ?
3
• 2、一个圆柱的侧面展开是一个 正方形。如果高增加2厘米,表 面积增加12.56平方厘米。原来 这个圆柱的侧面积是多少平方 厘米?
4
• 3、一个圆柱体的高和底面周 长相等。如果高缩短2厘米, 表面积就减少12.56平方厘 米,求原来这个圆柱的表面 积。
14
• 5、一个圆柱体和一个圆 锥体的体积相等,它们底 面积的比是3:5,圆柱的 高8厘米,圆锥的高是 ( )厘米。
5
• 4、把一个高是6分米的圆柱 ,沿着底面直径竖直切开, 平均分成两半,表面积增加 48平方分米。原来这个圆柱 的体积是多少立方分米?
6
• 5、把一个长3分米的圆柱 ,平均分成两段圆柱,表 面积增加6.28平方分米。 原来这个圆柱体积是多少 立方分米?
7
• 6、一根圆柱形木材长2米 ,把它截成相等的4段后 ,表面积增加了18.84平 方厘米。截成后每段圆木 的体积是多少立方厘米?
相关文档
最新文档