绕线式三相异步电动机启动方式
三相绕线式异步电动机的启动控制
三相绕线式异步电动机的启动控制绕线式异步电动机R与鼠笼式异步电动机的主要区别是绕线式异步电动机的转子采用三相对称绕组,启动时通常采用转子串电阻启动,或者是采用频敏变阻器启动。
一、绕线式异步电动机转子串电阻启动1.方法启动时,在绕线式异步电动机的转子回路中串入合适的三相对称电阻,如果正确选取电阻器的电阻值,使转子回路的总电阻值R2=X20,由前面分析可知,此时S m=1,即最大转矩产生在电动机启动瞬间,从而缩短起动时间,达到减小启动电流增大启动转矩的目的。
随着电动机转速的升高,可变电阻逐级减小。
启动完毕后,可变电阻减小到零,转子绕组被直接短接,电动机便在额定状态下运行。
这种启动方法的优点是不仅能够减少启动电流,而且能使启动转矩保持较大范围,故在需要重载启动的设备如桥式起重机、卷扬机、龙门吊车等场合被广泛采用。
其缺点是所需的启动设备较多,一部分能量消耗在启动电阻,而且启动级数较少。
2.绕线式异步电动机转子串电阻启动控制线路串接在三相转子回路的启动电阻,一般接成星形。
利用时间继电器控制电阻自动切除,即转子回路三段启动电阻的短接是依靠KT1、KT2、KT3三个时间继电器及KM1、KM2、KM3三个接触器的相互配合来实现。
图2-70绕线式异步电动机转子串电阻控制线路线路工作原理分析:与启动按钮SBl串接的接触器KMl、KM2、和KM3常闭辅助触头的作用是保证电动机在转子绕组中接入全部外加电阻的条件下才能启动。
如果接触器KMl、KM2、和KM3中任何—个触头因熔焊或机械故障而没有释放时,启动电阻就没有被全部接入转子绕组中,从而使启动电流超过规定的值。
把KMl、KM2和KM3的常闭触头与SBl串接在一起,就可避免这种现象的发生,因三个接触器中只要有一个触头没有恢复闭合,电动机就不可能接通电源直接启动。
停止时按下SB2即可。
二、转子回路串接频敏变阻器启动控制绕线式异步电动机转子绕组串接电阻的启动方法:若想获得良好的启动特性,一般需要较多的启动级数,所用电器多,控制线路复杂,设备投资大,维修不便,同时由于逐级切除电阻,会产生一定的机械冲击力。
绕线转子异步电动机起动控制线路
一般采用三相绕线式异步电动机转子绕组串电阻
启动控制系统。
传统继电器控制的行车串电阻降压启动
电源开关
热继电器 停止按钮 启动按钮
切除第三组电 阻R3接触器
电源接触器
切除第一组电 阻R1接触器
切除第二组电 阻R2接触器
为了限制启动电流,电路用3个时间继电器KT1、KT2、KT3 分别控制3个接触器KM1、KM2、KM3按顺序依次吸合,自动切除转 子绕组中的三级电阻。串接在三相转子绕组中的起动电阻,一般 都接成星形接线。在起动前,起动电阻全部接入电路,在起动过 程中,起动电阻被逐步地短接。 KM1、KM2和KM3 3个常闭辅助触 头与启动按钮SB1串接的作用 保证电动机在转子绕组中接入全部启动电阻的条件 下才能启动,如果接触器KM1、KM2、KM3中任何一个触头 因熔焊或机械故障没有释放恢复闭合时,电动机M就不能 接通电源直接启动。
按下停止按钮SB1,KM、KM3失电,电机停转。
传统继电器控制的行车串电阻降压启动
传统继电器控
三相绕线式异步电动机可以通过滑环在转子 绕组回路串入适当的电阻来限制启动电流,增大 启动转矩。因此,重载启动要求启动转矩大的设 备如桥式起重机、卷扬机、龙门吊车等生产机械 常使用三相绕线式异步电动机。
制的行车串电
阻降压启动
对启动控制频繁,启动转矩要求大的场所,
传统继电器控制的绕线式电机串电阻启动
XXXXX 传统继电器控制的行车串电阻降压启动
三相鼠笼式异步电动机存在 异步电动机的转子绕组, 除了笼形以外还有绕线转 子式,故称绕线转子异步 电动机。 启动电流大、启动转矩不大 的缺点,只能用于空载或轻 载启动。
一、绕线式电机串电阻启动
合上电源开关QS,按下起动按钮SB2,接触器KM线圈通电并 自锁,KT1同时通电,KT1常开触头延时闭合,接触器KM1通电动作, 使转子回路中KM1常开触头闭合,切除第一级起动电阻 R1,同时使 KT2通电,KT2常开触头延时闭合,KM2通电动作,切除第二级起动电 阻R2,同时使KT3通电,KT3常开触头延时闭合,KM3通电并自锁,切 除第三级起动电阻R3,KM3的另一副常闭触点断开,使KT1线圈失电, 进而KT1的常开触头瞬时断开,使KM1、KT2、KM2、KT3依次断电子释 放,恢复原位。只有接触器KM3保持工作状态,电动机的起动过程结 束,进行正常运转。
三相异步电动机的起动方法
三、三相绕线式异步电动机起动电阻的计算(略)
三相异步电动机起动
~ ~
KM1 KM2
W1 U1 I 2 a 1 W2 U 2 I1
起动时接触器KM2和KM3 的主触头闭合,转速上升到 一定值时,KM2和KM3断开 KM1闭合,电机全压运行。
M 3~
KM3
三相异步电动机起动
起动电流和起动转矩
I st U1 U1 U1 a 1 a U1 U 2 I 2 U1
三相异步电动机起动
二、转子串频敏变阻器起动
三相异步电动机起动
铁心损耗越大,则Rm越大。而铁耗与磁通的频率(等于转 子频率f2=sf1)的平方成比例。开始起动时,s较大,故f2较 大,Rm也较大;随着起动过程的进行,s逐渐变小,所以f2 变小,所以Rm变小。 起动完毕后,将转子回路短路。 频敏变阻器静止无触点,结构简单,成本低,所以应用较 为广泛
~~
三相异步电动机起动
M 3~
三相异步电动机起动
1C闭合,2C,3C,4C断开,额定电压,串入电阻 (R'+R''+R'''),起动点在3的a点,起动转矩T2<TM; 转速上升到b时,T=T1,闭合2C,切除电阻R''',则工作点 从3的b跳到2的c,T=T2 转速上升到d时,T=T1,闭合3C,切除电阻R'',则工作点 从2的d跳到1的e,T=T2 转速上升到f时,T=T1,闭合4C,切除电阻R',则工作点 从1的f跳到0的g,T=T2 转速继续上升经h到达稳定运行点j。 起动电阻器有金属丝电阻器/铸铁电阻器/水电阻器等,但 都按短时方式设计。
三相鼠笼式异步电动机的起动方法 起动方法有:直接起动/降压起动 一、直接起动(全压起动) 通过三相闸刀或磁力起动器直接接通额定电压电源 方法简单,操作方便,起动电流大(4~7倍额定电流)
三相绕线式异步电动机启动控制与实现概述重点难点(精)
任务六三相绕线式异步电动机起动控制与实现
一、单元概述
本单元首先介绍了控制电路常用低压电器中的组合开关、电流继电器、主令控制器和凸轮控制器。
其中组合开关由若干个动触点及静触点分别装在数层绝缘件内组成,手柄转动时动触点随之变换位置通、断电路。
电流继电器属保护电器,它的线圈串接在被保护电路中,当保护电路中的电流增大时,线圈电流高于整定值,继电器动作。
主令控制器常用来控制频繁操作的多回路控制电路,如起重机械升降控制电路。
凸轮控制器靠凸轮运动来使触头动作,主要用于控制绕线电机的起动和调速,在起重机械的升降控制电路中应用较广泛。
本单元介绍了三相绕线式异步电动机转子串电阻起动控制,在绕线型异步电动机转子串电阻的起动方法中,首先串入全部起动电阻起动,此时具有小的起动电流和较大的起动转矩,起动一段时间后,转子电阻中第一级被切除,电动机转矩加大转速提升,随后转子电阻中第一级和第二级同时被切除,电动机在大转矩下正向转动,然后依次切除起动电阻,电动机起动完毕进入正常运行状态。
二、重点
三相绕线式异步电动机转子串电阻起动过程
三、难点
主令控制器通断表、凸轮控制器触头分和表。
三相异步电动机的起动与调速实验报告
三相异步电动机的起动与调速实验报告LELE was finally revised on the morning of December 16, 2020实验五三相异步电动机的起动与调速—・实验目的通过实验掌握异步电动机的起动和调速的方法。
二.预习要点1.复习异步电动机有哪些起动方法和起动技术指标。
2.复习异步电动机的调速方法。
三.实验项目1-异步电动机的直接起动。
2•异步电动机星形——三角形(*△)换接起动。
3.绕线式异步电动机转子绕组串入可变电阻器起动。
4.绕线式异步电动机转子绕组串入可变电阻器调速。
四.实验设备及仪器1- SMEL电力电子及电气传动教学实验台主控制屏。
2.电机导轨及测功机、转矩转速测量(NMEL-13F)。
3.电机起动箱(NMEL-09)。
5-鼠笼式异步电动机(M04)。
6.绕线式异步电动机(M09)。
7.开关板(NMEL-0B5)。
五.实验方法图5-1异步电动机直接启动接线1.三相笼型异步电动机直接起动试验。
按图5-1接线,电机绕组为△接法。
起动前,把转矩转速测量实验箱(NMEL-13F)中“转矩设定"电位器旋钮逆时针调到底,“转速控制"、“转矩控制”选择“转矩控制”,检查电机导轨和NMEL-13F的连接是否良好。
a.把三相交流电源调节旋钮逆时针调到底,合上绿色“闭合"按钮开关。
调节调压观察起动瞬器,使输出电压达电机额定电压220伏,使电机起动旋转。
(电机起动后,观 察NMEL-13F 中的转速表,如出现电机转向不符合要求,则须切断电源,调整 次序,再重新起动电机。
)b .断开三相交流电源,待电动机完全停止旋转后,接通三相交流电源,使 电机全压起动,观察电机起动瞬间电流值,读取电压值U K 、电流值I K 、转矩值 T K ,填入表5-1中。
U N :电机额定电压,V ;表5-1测量值U K (V )I K (A )T K O图5-3绕线式异步电动机转子绕组串电阻启动接线图2. 星形——三角形(丫-/\)起动 按图5-2接线,电压表、电流表 的选择同前,开关S 选用MEL-05.a •起动前,把三相调压器退到零 位,三刀双掷开关合向右边(Y )接 法。
三相绕线式异步电动机启动控制
KM1
KA KM2 KM3 KM4
控制电路
一、转子绕组串电阻启动控制线路
3.电流原则控制
➢工作原理:
电动机启动时转子电流最大,KA1、KA2、KA3都吸合,其常闭触头 都打开,KM2、KM3、KM4主触头处于断开状态,全部启动电阻均串 接在转子绕组中。
电动机转速逐渐升高,转子电流逐渐减小,当电流减小至KA1的释放 电流时,KA1首先释放,其常闭触头复位,使接触器KM1得电主触头 闭合,切除第一级电阻R1。
三相绕线式异步电动机启动控制
绕线异步电动机的优点:
可以在转子绕组中串接电阻来改善电动 机的机械特性,从而达到减小启动电流、 增大启动转矩及平滑调速之目的。
绕线异步电动机降压启动原理:
起动时,在转子回路中串入三相起动变阻器,并把起动电阻调到最大 值,以减小起动电流,增大起动转矩。随着电动机转速的升高,起动电 阻逐级减小。
➢电气原理图:
FU1
KM1
三个欠电流继电器的线圈串 FR 接在转子回路中,电流继电 器的吸合电流一样,但释放 电流不同,KA1的释放电流 最大,KA2其次,KA3最小。
3M~
KM4 R3
KI3 KM3
R2
KI2
KM2 R1
KI1
主电路
FR
SB1
SB2
KM1 KM1
KA
KM2 KM3 KM4
KI1 KI2 KI3
铁心损耗很大的三相电抗器,由铸铁板或钢板叠成的三柱式铁心,在每个铁心 上装有一个线圈,线圈的一端与转子绕组相连,另一端作星形连接。 频敏变阻器的等效阻抗值与频率有关,电动机刚启动时,转速较低,转子电流 的频率较高,相当于在转子回路中串接一个阻抗很大的电抗器,随着转速的升 高,转子频率逐渐降低,其等效阻抗自动减小,实现了平滑无级启动。
三相异步电机的启动及软启动
三相异步电机的软启动08机械(0816401057)章志鹏苏州大学应用技术学院摘要三相异步电机因具有结构简单,知道方便,运行可靠,价格低廉等优点,而广泛应用在工业,农业,交通运输业,国防工业及其他各行业中。
但是它也有明显的缺点,那就是起动转矩小,起动电流过大。
这种情况对电机本身及周围电网都有非常不利的影响。
为了减小异步电机启动过程对电网的冲击,改善异步电机的起动特性,本文对三相异步电机的软启动进行讨论。
本文首先阐述三相异步电机的各种起动方式及其主电路和控制电路图,并对其分析。
得出各自优缺点。
找出能在满足电动机起动转矩要求及降低电流的前提下是电机能够平稳可靠启动。
关键词:异步电动机;软启动AbstractThree-phase asynchronous motor because of its simple structure, know convenient, reliable operation, price is low wait for an advantage, is widely used in industry, agriculture, transportation, national defense industry and other industries. But it also has the obvious shortcomings, that is starting torque small, starting current is too big. This kind of situation of motor itself around and have a power grid unfavorable influences. In order to reduce asynchronous motor for the impact of the power grid startup process, improve the asynchronous motor start characteristics, this paper the three-phase asynchronous motor soft start are discussed.This paper expounds the three-phase asynchronous motor start-up mode and its various main circuit and control circuit, and its analysis. Draw their respective advantages and disadvantages. Find out in motor can meet the requirements starting torque and reduce the current is the premise of motor can smooth and reliable start.Keywords: asynchronous motor; Soft start第一章绪论第1.1节研究背景与现状三相异步电机发展至今得到了广泛的应用,其性能和功率也不断的提高,电压也从低压发展到高压。
绕线式三相异步电动机启动方式
绕线式三相异步电念头启动方法
1.转子回路串接电阻起动:绕线式三相异步电念头可以在转子回路中串入电阻进行起动,如许就减小了起动电流.一般采取起动变
阻器起动,起动时全体电阻串入转子电路中,跟着电念头转速逐渐
加速,应用掌握器逐级切除起动电阻,最后将全体起动电阻从转子
电路中切除.实用于中小功率低压电念头.
2.转子回路串接频敏变阻器起动:频敏变阻器的电阻(电抗)随线圈中所经由过程的电流频率而变.刚起动时,电机转差率最大,转子电流(即频敏电阻线圈经由过程的电流)频率最高,等于电源频率.是以,频敏变阻器的电阻最大,这就相当于起动时在转子回路中串接一个较大电阻,从而使起动电流减小.跟着电念头转速的加速,转差率逐渐减小,转子电流频率逐渐降低,频敏变阻器电阻也逐渐
减小,最后把电念头的转子绕组短接,频敏变阻器从转子电路中切除.实用于中小功率低压电念头.
3.转子回路串液体变阻器启动:液体变阻器俗称水电阻,顾名思义,在特制的水箱内装有电阻值的液体,液体一般用纯清水参加适量的电解粉按必定比例配制,在水箱的底部有一组静极板,水箱顶部有
一组动极板,动极板在驱动装配的驱动下,在一准时光内降低到与
静极板接触,接触后由外部接触器将水电阻切除,从而实现腻滑启动.实用于大功率高压电念头.
串电阻启动降压启动变频启动直接启动共四种。
三相异步电动机启动控制原理及接线图
三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。
所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。
典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。
点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。
点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。
2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。
接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。
它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。
欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。
“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。
因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。
三相绕线式异步电动机启动
三相绕线式异步电动机启动三相绕线式异步电动机的转子回路可以通过滑环外接电阻,达到减少启动电流、提高转子功率因数和增大启动转矩的目的。
在要求启动转矩较高的场合,如起重机械、卷扬机等,广泛应用绕线式异步电动机。
按照绕线式异步电动机启动过程中转子串接装置不同,有串电阻启动与串频敏变阻器启动两种方式。
1.转子回路串接电阻启动三相转子回路中的启动电阻一般接成星形。
在启动前,启动电阻全部接入电路,在启动过程中,启动电阻被逐级短接。
短接电阻的方式有三相电阻不平衡短接法和三相电阻平衡短接法。
使用凸轮控制器来短接电阻宜采用不平衡短接法,如桥式起重机就是采用这种控制方式。
使用接触器来短接电阻时宜采用平衡短接法。
下图所示为按电流原则控制的绕线式转子电动机串电阻启动线路,该电路按照电流原则实现控制,利用电流继电器,根据电动机转子电流大小的变化来控制电阻的分级切除。
KA1~KA3为欠电流继电器,其线圈串接于转子回路中,KA1~KA3三个电流继电器的吸合值相同,但释放值不同,KA1 的释放电流最大,首先释放,KA2 次之,KA3 的释放电流最小,最后释放。
刚启动时,启动电流较大,KA1~KA3同时吸合动作,使全部电阻接入。
随着电动机转速升高,电流减小,KA1~KA3依次释放,分别短接电阻,直到将转子串接的电阻全部短接。
启动过程如下:按下启动按钮 SB2,接触器 KM 通电,电动机 M 串入全部启动电阻(R1+R2+R3)启动,中间继电器KA通电,为接触器KM1~KM3通电作准备。
随着电动机转速的升高,启动电流逐步减小,首先KA1释放,KA1常闭触点闭合,使接触器KM1通电,KM1常开触头闭合,短接第一级启动电阻R1;然后KA2释放,KA2常闭触点闭合,使接触器KM2线圈通电,KM2常开触头闭合,短接第二级启动电阻R2;KA3最后释放,KA3常闭触点闭合,KM3线圈通电,KM3常开触头闭合,短接最后一级电阻R3。
至此,电动机启动过程结束。
电机串电阻启动原理及优缺点
绕线式三相异步电动机串频敏变阻器启动绕线式异步电动机与鼠笼式异步电动机的主要区别是绕线式异步电动机的转子采用三相对称绕组,启动时通常采用转子串电阻启动,或者是采用频敏变阻器启动。
一、绕线式异步电动机转子串电阻启动启动时,在绕线式异步电动机的转子回路中串入合适的三相对称电阻,如果正确选取电阻器的电阻值,使转子回路的总电阻值R2=X20,由前面分析可知,此时Sm=1,即最大转矩产生在电动机启动瞬间,从而缩短起动时间,达到减小启动电流增大启动转矩的目的。
随着电动机转速的升高,可变电阻逐级减小。
启动完毕后,可变电阻减小到零,转子绕组被直接短接,电动机便在额定状态下运行。
这种启动方法的优点是不仅能够减少启动电流,而且能使启动转矩保持较大范围,故在需要重载启动的设备如桥式起重机、卷扬机、龙门吊车等场合被广泛采用。
其缺点是所需的启动设备较多,一部分能量消耗在启动电阻,而且启动级数较少。
2.绕线式异步电动机转子串电阻启动控制线路串接在三相转子回路的启动电阻,一般接成星形。
利用时间继电器控制电阻自动切除,即转子回路三段启动电阻的短接是依靠KT1、KT2、KT3三个时间继电器及KM1、KM2、KM3三个接触器的相互配合来实现。
线路工作原理分析:与启动按钮SBl串接的接触器KMl、K M2、和K M3常闭辅助触头的作用是保证电动机在转子绕组中接入全部外加电阻的条件下才能启动。
如果接触器KMl、K M2、和K M3中任何—个触头因熔焊或机械故障而没有释放时,启动电阻就没有被全部接入转子绕组中,从而使启动电流超过规定的值。
把KMl、KM2和KM3的常闭触头与S Bl串接在一起,就可避免这种现象的发生,因三个接触器中只要有一个触头没有恢复闭合,电动机就不可能接通电源直接启动。
电机串电阻启动原理及优缺点
这种启动方法的优点是不仅能够减少启动电流,而且能使启动转矩保持较大范围,故在需要重载启动的设备如桥式起重机、卷扬机、龙门吊车等场合被广泛采用。其缺点是所需的启动设备较多,一部分能量消耗在启动电阻,而且启动级数较少。
2.绕线式异步电动机转子串电阻启动控制线路
串接在三相转子回路的启动电阻,一般接成星形。利用时间继电器控制电阻自动切除,即转子回路三段启动电阻的短接是依靠KT1、KT2、KT3三个时间继电器及KM1、KM2、KM3三个接触器的相互配合来实现。
启动时,在绕线式异步电动机的转子回路中串入合适的三相对称电阻,如果正确选取电阻器的电阻值,使转子回路的总电阻值R2=X20,由前面分析可知,此时Sm=1,即最大转矩产生在电动机启动瞬间,从而缩短起动时间,达到减小启动电流增大启动转矩的目的。随着电动机转速的升高,可变电阻逐级减小。启动完毕后,可变电阻减小到零,转子绕组被直接短接,电动机便在额定状态下运行。
线路工作原理分析:
与启动按钮SBl串接的接触器KMl、KM2、和KM3常闭辅助触头的作用是保证电动机在转子绕组中接入全部外加电阻的条件下才能启动。如果接触器KMl、KM2、和KM3中任何—个触头因熔焊或机械故障而没有释放时,启动电阻就没有被全部接入转子绕组中,从而使启动电流超过规定的值。把KMl、KM2和KM3的常闭触头与SBl串接在一起,就可避免这种现象的发生,因三个接触器中只要有一个触头没有恢复闭合,电动机就不可能接通电源直接启动。
电动机启动起来。
串接频敏变阻器启动的不足之处:由于有电感存在,使功率因数较低,启动转矩并不很大。因此当绕线式异步电动机在轻载启动时,采用频敏变阻器法启动优点较明显,如重载启动,一般采用串电阻启动。
停止时按下SB2即可。
二、转子回路串接频敏变阻器启动控制
实验六三相异步电动机的起动、反转与调速
实验六三相异步电动机的起动、反转与调速一、实验目的掌握三相异步电动机起动、反转和调速的方法。
二、实验项目1、三相绕线式异步电动机直接起动2、三相绕线式异步电动机转子绕组串电阻起动3、三相绕线式异步电动机转子绕组串电阻调速4、三相异步电动机转向改变5、星形(Y)——三角形(Δ)换接起动三、实验设备该实验是在DDSZ-1型电机及电气技术实验装置上完成的。
本次实验使用设备包括:1、DD01电源控制屏2、D33挂件3、D32挂件4、D51挂件5、DJ17-3绕线式异步电动机转子专用箱6、DD03测试台和三相绕线式异步电动机本次实验使用DD01电源控制屏上方的交流电源。
D33挂件,共有三个完全相同的多量程指针式交流电压表,本次实验选用其中的一块电压表。
D32挂件,共有三个完全相同的多量程指针式交流电流表,本次实验选用其中的一块电流表。
D51挂件,由波形测试部分和开关S1、S2、S3组成,本次实验只使用开关S1 。
DJ17-3转子专用箱的电阻值是可调的,分0Ω、20Ω、40Ω、60Ω、∞五档,实验中作为异步电动机转子绕组的串接电阻。
DD03测试台包括导轨、测速发电机和指针式转速表三相绕线式异步电动机,定子三相绕组有六个接线端,转子三相绕组有四个接线端。
四、实验内容及方法接线之前:开启电源总开关,按下绿色“启动”按钮,将电源控制屏上方的交流“电压指示切换”开关切换到“三相调压输出”位置,旋转控制屏左侧的三相调压器旋钮,将其输出电压调到220V后,按下红色“停止”按钮。
1、三相绕线式异步电动机起动、调速、改变转向实验三相绕线式异步电动机起动、调速、改变转向实验接线图图6-1 三相绕线式异步电动机起动、调速、改变转向实验接线图三相绕线式异步电动机定子绕组接线:定子绕组按星形接法从“三相调压输出”U端接到交流电流表“2.5A”黄色端,从电流表黑色“*”端接到异步电动机定子绕组A端,分别从“三相调压输出”V、W端接到定子绕组的B端和C端,将电动机定子绕组的另外三个接线端X、Y、Z用导线连接。
三相绕线式异步电动机的工作原理
三相绕线式异步电动机的工作原理三相绕线式异步电动机(以下简称三相异步电动机)是一种常见的交流电动机,广泛应用于工业领域。
它具有结构简单、可靠性高、运行稳定等特点,被广泛使用。
本文将以三相异步电动机的工作原理为主题,逐步解析其工作过程。
一、三相电源供电三相异步电动机由三相供电,即电压和频率均为三相的交流电源。
三相电源提供了电动机运行所需的能量,通过特殊的电路连接方式通过定子线圈输入电流,使电磁场产生旋转。
二、定子线圈和旋转磁场三相异步电动机的定子上绕有三组线圈,分别称为A相、B相和C相。
当三相电源通电时,从A相开始,电流沿着定子线圈流动,产生一个旋转的磁场。
接着,B相和C相的电流也开始流动,产生相同频率但相位差120度的旋转磁场。
三、感应电动势和转子磁场由于电动机是一个互感器,旋转的磁场是由定子线圈产生的。
这个旋转磁场也会感应转子中的电动势。
根据法拉第电磁感应定律,当转子中的导体被感应电动势激励后,感应电流就会在转子中产生。
四、感应电流和转矩产生转子中产生的感应电流会产生另一个磁场,这个磁场会与定子旋转磁场相互作用。
由于磁场之间的相互作用,会产生一个转矩,使得转子跟随旋转磁场进行旋转。
这个转矩是由电动机与负载之间的相互作用所产生的。
五、异步工作和励磁电流三相异步电动机之所以称为“异步”,是因为转子的实际速度永远落后于旋转磁场的速度。
这是由于两个磁场之间的相互作用导致的。
异步电动机工作时,定子磁场旋转速度一定,而转子的转速会根据负载情况而变化。
励磁电流通过调整定子磁场的强弱来控制电机的转速。
六、滑差和转子转速滑差是指转子转速与旋转磁场速度之间的差异。
滑差直接影响到电动机的效率和性能。
当负载增加时,滑差会增大,电动机的转速会下降。
相反,当负载减少时,滑差会减小,电动机的转速会上升。
滑差通过检测转子电流和电压之间的相位差来测量。
七、电动机的启动和运行为了使电动机从静止状态转为运行状态,需要通过启动装置来提供较高的起动转矩。
三相异步电动机简述及起动方式调速方法
三相异步电动机简述及起动方式调速方法概述:自从1887年发明了三相异步电机后,三相异步电动机在全世界得到广泛的应用。
三相异步电机结构简单,无需电刷和换向器,可长期高速运行,只需对轴承进行维护。
相对其他类型电动机而言故障率较低。
我厂500多台电动机基本均为三相异步电动机。
工作原理简述:在三相交流电动机定子上布置有结构完全相同在空间位置各相差120电角度的三相绕组,分别通入三相交流电,则在定子与转子的空气隙间所产生的合成磁场是沿定子内圆旋转的,故称旋转磁场。
转速的大小由电动机极数和电源频率而定。
转子在磁场中相对定子有相对运动,切割磁杨,形成感应电动势。
转子铜条(铝条)是短路的,有感应电流产生而产磁场。
在磁场中受到力的作用。
转子就会旋转起来。
电机转动要有三个条件:第一要有旋转磁场,第二转子转动方向与旋转磁场方向相同,第三转子转速必须小于同步转速,否则导体不会切割磁场,无感应电流产生,电机就速度减慢产生转速差,所以只要有旋转磁场存在,转子总是落后同步转速在转动。
起动方式:三相异步电机起动方式有:1、直接起动,电机直接接额定电压起动。
2、降压起动: (1)定子串电抗降压起动; (2)星形三角形启动器起动; (3)软起动器起动; (4)用自耦变压器起动。
(5)转子绕线式电机采用转子绕组接电阻分段起动(或碱液水电阻起动),转子绕组接频敏变阻器起动两种方式。
3、变频起动及分段变频起动。
直接起动:直接起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为全压起动。
全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。
为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。
所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。
有人误认为降压起动比全压起动好,将负荷较重的电机也采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。
三相异步电动机的6种启动方法选择与比较
三相异步电动机的6种启动方法选择与比较1、直接启动直接启动的优点是所需设备少,启动方式简单,成本低。
电动机直接启动的电流理论上来说,只要向电动机提供电源的线路和变压器容是正常运行的 5 倍左右,量年夜于电动机容量的 5 倍以上的,都可以直接启动。
这一要求关于小容量的电动机容易实现,所以小容量的电机绝大部分都是直接启动的,不需要降压启动。
关于年夜容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强年夜的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以年夜容量的电动机和不能直接启动的电动机都要采用降压启动。
直接启动可掖棵胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可掖棵限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。
2、用自偶变压器降压启动采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。
如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。
自耦变压器降压启动的优点是可以直接人工操作控制,也可掖棵交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。
缺陷是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。
3、Y-△降压启动定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。
启动电流小,启动转矩小。
Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺陷是只能用于△连接的电动机,x大型异步电机不能重载启动。
第十一章 三相异步电动机的起动及起动设备的计算
图 频敏变阻器的结构与等效电路
第11章 三相异步电动机的起动及起动设备的计算
带感应圈的频 敏变阻器结构
第11章 三相异步电动机的起动及起动设备的计算
11-2改善起动性能的三相异步电动机
• 一、深槽异步电动机
深槽式异步电动机的转子采用深而窄的槽形,如图所示。 基本思想: 利用集肤效应,使得起动时转子感应 电流的频率较高(f 2 = f),电流主要集 1 中在槽口处,导致转子电阻加大,从而 限制了起动电流,并且增大了起动转矩 的目的。而正常运行时,由于转子频率 较低(f 2 = (1 ~ 3) Hz),集肤效应基本 消失,则转子电阻恢复,从而确保了正 常运行时异步电动机的效率。 深槽式鼠笼异步电动机的转子导条 及电流分布
运 行 起 动
N (2)起 转 降 为 st = 2 Tst 动 矩 低 T′ N1 (3) 耦 压 可 成 个抽 , 供 自 变 器 做 多 头 可 不 负 起 。 同 载 动 (4)缺 : 积 , 量 , 格 ,需 护 点 体 大 质 大 价 高 维 。 (5)适 于 量 大 电 电 机 应 广 用 容 较 的 压 动 , 用 。
• 一、三相笼型异步电动机的起动方法
• (一)直接起动 直接起动即全压起动。 全压起动条件:1)异步电动机功率低于7.5KW 2)若功率大于7.5KW : I 1 电 总 量 kV⋅ A) 源 容 ( KI = 1st ≤ 3+ 直接起动时的影响: I1N 4 起 电 机 量 kV⋅ A) 动 动 容 ( ⋅A) (1)起动电流较大,可达额定电流的4~7 倍,甚至达到8~12倍。 (2)过大的起动电流造成电机过热,影响电动机的寿命。 (3)过大的起动电流使电动机受到电动力的冲击,绕组变形可能造成 短路而烧毁电动机。 (4)过大的起动电流会使电网线路电压降增大,对同一线路中的其他 电器设备造成影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绕线式三相异步电动机启动方式
1、转子回路串接电阻起动:绕线式三相异步电动机可以在转子回路中串入电阻进行起动,这样就减小了起动电流。
一般采用起动变阻器起动,起动时全部电阻串入转子电路中,随着电动机转速逐渐加快,利用控制器逐级切除起动电阻,最后将全部起动电阻从转子电路中切除。
适用于中小功率低压电动机。
2、转子回路串接频敏变阻器起动:频敏变阻器的电阻(电抗)随线圈中所通过的电流频率而变。
刚起动时,电机转差率最大,转子电流(即频敏电阻线圈通过的电流)频率最高,等于电源频率。
因此,频敏变阻器的电阻最大,这就相当于起动时在转子回路中串接一个较大电阻,从而使起动电流减小。
随着电动机转速的加快,转差率逐渐减小,转子电流频率逐渐降低,频敏变阻器电阻也逐渐减小,最后把电动机的转子绕组短接,频敏变阻器从转子电路中切除。
适用于中小功率低压电动机。
3、转子回路串液体变阻器启动:液体变阻器俗称水电阻,顾名思义,在特制的水箱内装有电阻值的液体,液体一般用纯净水加入适量的电解粉按一定比例配制,在水箱的底部有一组静极板,水箱顶部有一组动极板,动极板在驱动装置的驱动下,在一定时间内下降到与静极板接触,接触后由外部接触器将水电阻切除,从而实现平滑启动。
适用于大功率高压电动机。
串电阻启动降压启动变频启动直接启动共四种。