概率论与数理统计 第六章 样本及抽样分布
概率论与数理统计(06)第6章 统计量及其抽样分布
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计-ch6-样本与抽样分布
概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。
在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。
1、随机样本总体:试验的全部可能的观察值。
=样本空间个体:每⼀个可能观察值。
=样本点容量:总体中所包含的个体的个数。
有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。
所以将不区分总体与相应的随机变量,统称为总体X。
样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。
对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。
则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。
n称为样本的容量。
进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。
2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。
统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。
统计量也是⼀个随机变量。
g(x1,x2,...,xn)是统计量的观测值。
常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。
总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。
第六章 样本及抽样分布1精品PPT课件
二.样本
1.抽样: 从总体中抽取若干个体的过程。
2.样本: 从总体中抽取若干个体, 观察得随机变量的一组试验 数据(观测值), 样本中所含个体的数量称为样本容量。
从总体中抽取样本, 一般假设满足下述条件: (1) 随机性: 使总体中的每一个个体有同等机会被抽取到; (2) 独立性: 每次抽样的结果既不影响其他各次抽样的结果,
1
f
xn
b
1n
0
a xi b 其他
测试题B答案:
一.填空题。
1. 1)满足X1, X2 , … X n独立且同分布
2. 21) 2 n
n
2.
Xi p i1
n
1 p
n Xi
i1
,
E X p,
p 1 p DX
n
3. 5/8
二.计算题。
解: 因为X1, X2 , … X n来自均匀分布总体 N , 2 ,则X1, X2 , …
3. 简单随机样也本不:受由其随他机各的次, 独结立果的的抽影样响方;法得到的样本, 这 种随机的, 独立的抽样方法称为简单随机抽样。
注: 今后凡是提到抽样与样本, 都是简单随机抽样与简单随 机样本。
由于从总体中抽取容量为n的样本, 即是对代表总体的随 机变量X随机的,独立的进行n次试验, 每次试验结果可以看作 一个随机变量, n 次试验结果就是n个随机变量 X1, X2 , … X n , 它们相互独立且与总体X同分布。
则的联合概率密度为 。
二. 计算题。
1. 设X1, X2 , … X n是来自均匀分布总体U (a , b)的样本, 求样本 (X1, X2 , … X n)的联合概率密度。
第六章样本及样本函数的分布
∼ t(n −1). .
Sn
177
概率论与数理统计全程学习指导
∑ = ∑ 【评注】 10
1 统计量 σ 2
n
(X i
−
μ)2
和
i =1
(n −1)S2 σ2
1 σ2
n
(X i
−
X )2
的分布在自由度上是
i =1
∑ ∑ 1
有差别的,这是因为在 σ2
n
(X i
−
X )2
中有一个约束条件
X
i =1
=1 n
x(1) ≤ x(2) ≤
≤x (k)
,并假设
x( i )
出现的频数为
ni
,那么
x( i )
出现的频率为
i = 1, 2, , k, k ≤ n . 函数
fi
=
ni n
,
⎧ 0,
⎪
∑ Fn (x)
=
⎪ ⎨
i
fj,
⎪ j=1
⎪⎩ 1,
x < x(1),
x(i) ≤ x < x(i+1), i = 1, 2, , k −1, x ≥ x(k).
③ χ2 分布的性质
10 若 χ2 ∼ χ2 (n) ,则 E(χ2 ) = n , D(χ2 ) = 2n ;
20
(可加性)若
χ
2
1
∼
χ2 (n1) ,
χ
2
2
∼
χ2 (n2 )
,且
χ
2
1
和
χ
2
2
相互独立,则
χ
2
1
+
χ
2
概率论与数理统计第六章样本及抽样分布}第二节:样讲义本分布函数直方图
其中和式
xi
是对小于或等于
x
x
的一切
x(i)
的频率
fi
求和,
则称 Fn(x)为样本分布函数,经验分布函数。
2. 样本分布函数Fn(x)具有下列性质:
(1) 0 ≤ Fn(x) ≤1 (2) Fn(x)是非减函数
(3 )F n 0 , F n 1
(4) Fn(x)在每个观测值 x(i)处是右连续的, 点 x(i)是 Fn(x)的跳跃间断点, Fn(x)在该点的跃度就等于频率fi
并以各子区间为底, 以 fi /(ti - ti-1)为高作小矩形,
各个小矩形的面积 ∆Si 就等于样本观测值落在该子区间内的频率,
即:
S ititi 1 ti fiti 1fi,l
i1 ,2, ,l.
l
所有小矩形的面积的和: Si fi 1.
i1
i1
这样作出的所有小矩形就构成了直方图。
写出零件质量的频率分布表并作直方图。
解: 因为样本观测中最小值为 237, 最大值为 265, 所以我们把数据的分布区间确定为: (236.5, 266.5)
并把这个区间等分为 10个子区间:
(236.5, 239.5), (239.5, 242.5), …, (263.5, 266.5)
数理统计
由此得到零件质量的频率分布表:
因为样本容量 n充分大时, 随机变量 X的取值落在 各个子区间 (ti-1 - ti)内的频率近似等于其概率, 即:
f i P t i 1 X t i,i 1 ,2 , ,l
所以直方图大致地描述了总体X的概率分布。
例2: 测量100个某种机械零件的质量, 得到样本观测值如下(单位:g):
第六章-样本及抽样分布 - 福州大学
( xi ) 2 2 2
( 2 ) e
n 2 2
n
( xi )2
x i
上页
下页
返回
一、基本概念
统计推断:
利用样本的信息对总体的分布或性质作出判断。
利用样本推断总体时,往往不能直接利用样本,而需要 对它进行一定的加工,这样才能有效地利用其中的信息,否 则,样本只是呈现为一堆“杂乱无章”的数据。
相互独立且每一个都是与总体ξ有相同的分布的随机变量, 这n个个体称为总体ξ的一个容量为n的简单随机样本或简 称为样本,n称为样本容量(样本的个数)。 简单随机样本:独立同分布
上页
下页
返回
3、样本值(样本观测值)
从总体ξ中随机抽取的样本 1 , 2 ,, n 是n个随机变量。 当它们被抽取出来后就是具体数值,常记为x1 , x 2 , , x n , 称为
1 n i n i 1
1 n S (i )2 n i 1
2
是取自总体ξ的一个样本,
n 1 2 (2) ES n
2
E ,
D , 则有
2 (1) E , D n
证 (2)
1 S (i n ni 1
2
n
n 2 1 2 2 ( i 2 i ) ) n i 1
n n 2 1 2 ( i 2 i ) n i 1 i 1 i 1 n n 2 1 2 ( i 2 i n ) n i 1 i 1 n n 2 2 2 1 1 2 2 [ i 2n n ] [ i n ] n i 1 n i 1
i 1 n
2、离散型 设总体ξ的分布律为 则样本
概率论与数理统计-第六章
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi
i 1, 2,
,n
,n
于是 (
) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2
《概率论与数理统计》第6章 样本及抽样分布
抽到哪5辆是随机的
对总体X在相同的条件下,进行n次重复、独立 观察,其结果依次记为X1,X2,,Xn .
这样得到的随机变量X1, X2 , Xn是来自总体X 的一个简单随机样本,与总体随机变量具有相同的
分布. n称为这个样本的容量.
一旦取定一组样本X1,… ,Xn ,得到n个具体的数
由定义可见,
1 V n2 F U n1
~F(n2,n1)
若F~F(n1,n2), F的概率密度为
( y)
(
(
n1 2
0
n1 n2 2
) (
)
n2 2
)
(
n1 n2
)
n1 2
(
n1
y) 2
f x
1
1
n1 n2
y
n1 n2 2
y
y 0
0
n2 , n1 20
F分布的性质
n2 25
N(0,1), 则称随机变量:
2
X12
X
2 2
Xn2
所服从的分布为自由度为 n 的 2分布.
记为 2 ~ 2(n)
2分布的密度函数为
f
( x; n)
2n
1 2 (n
2)
n 1 x
x2 e 2
0
其中伽玛函数( x)通过积分
(x) ett x1dt, x 0 0
注
x0 x0
来定义.
1 n1
n i 1
(Xi
X )2
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
《概率论与数理统计》第六章
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
概率论与数理统计第6章
以分组区间为底,以
Yj
Wj X j1 X j
Wj 5
为高
作频率直方图
23
从频率直方图可看到:靠近两个极端的数据出现比 较少,而中间附近的数据比较多,即中间大两头小的分 布趋势,——随机变量分布状况的最粗略的信息。
在频率直方图中, 每个矩形面积恰好等于样本值 落在该矩形对应的分组区间内的频率,即
S j
Wj X j1
Xj
X j1 X j
Wj
频率直方图中的小矩形的面积近似地反映了样本数
据落在某个区间内的可能性大小,故它可近似描述X的
分布状况。
24
12
第二.计算样本特征数
1.反映集中趋势的特征数:样本均值、中位数、众数等 样本均值MEAN 中位数MEDIAN 众数
X 90.3
91
91, 94
代表性——即子样( X1, X2 ,
,
X
)的每个分量
n
X
与
i
总体 X 具有相同的概率分布。
独立性——即 X1, X2, , Xn 是相互独立的随机变量。
满足上述两点要求的子样称为简单随机子样.获得简 单随机子样的抽样方法叫简单随机抽样.
从简单随机子样的含义可知,样本 X1, X2 , , Xn 是来自总体 X、与总体 X具有相同分布的随机变量.
2分布 t 分布 数理统计的三大分布(都是连续型). F分布 它们都与正态分布有密切的联系.
在本章中特别要求掌握对正态分布、 2分布、 t分布、F分布的一些结论的熟练运用. 它们
是后面各章的基础.
31
一、 2分布
定义 设总体 X ~ N 0,1 , X1, X2,..., Xn 是 X
概率第6章 样本及抽样分布PPT课件
Xi
i 1, 2,
,n
显然Y1,Y2, ,Yn相互独立,且Yi N 0,1 i 1, 2,
于是
2
n i 1
(
X
i
)2
n
Yi 2
i 1
2
n
(2)
X1
X2
~
N
(0,
2
2
),
(
X1 X
2 2
2
)2
~
2 (1)
2X3
X4
X5
~
N(0, 6
2 ), (2X3
X4
6 2
X 5 )2
~
[说明]:后面提到的样本均指简单随机样本,由概率论知,若总体X 具有概率密度f(x),
则样本(X1,X2,…,Xn)具有联合密度函数:
n
fn x1, x2, xn f xi
i1
3
统计量:样本的不含任何未知参数的函数。
常用统计量:设(X1,X2,…,Xn)为取自总体X的样本
1.
样本均值
定理6.4:t n分布的概率密度为:f t, n
n1 2
n
n 2
1
t2 n
n1 2
,
t
对给定的 ,
0
1, 称满足条件
t n
f
t, n dt
的点t
n
为t n分布的上分位数。t分布的上分位数可查t分布表
f (x)
n 10
f x
t1 (n) t (n)
n4
n 1
3 2 1 0 1 2 3
Y1 g1 X1, , X n1 ,Y2 g2 X n11, , X n2 , ,Yk gk X , n1 nk11 , X n
6样本及抽样分布
1 n 2 样本方差 S 2 (Xi X ) n 1 i 1 n 2 1 2 X i nX n 1 i 1
1 样本标准差 S S n 1 i 1
2
它反映了总体方差 n ( X 的信息2 X)
i
西华大学数学与计算机学院
西华大学数学与计算机学院
14
它们的观察值分别为:
1 n x xi n i 1
样本均值
概 率 论 与 数 理 统 计 课 件
样本方差
n 1 n 1 2 2 2 s ( xi x ) [ x i nx 2 ] n 1 i 1 n 1 i 1
s
1 n ( xi x )2 n 1 i 1
注:统计量是随机变量。
x1,x2,„, xn是相应于样本X1,X2,„, Xn的样本值, 则称g(x1,x2,„, xn)是g(X1,X2,„, Xn)的观察值。
西华大学数学与计算机学院
11
思考?Biblioteka 概 率 论 与 数 理 统 计 课 件
设 X 1 , X n 为来自总体 X ~ N ( , 2 ) 的一个样本, 其中未知 , 2已知, 问下列随机变量中那些是统计量
数理统计不同于一般的资料统计,它更侧重 于应用随机现象本身的规律性进行资料的收集、 整理和分析. 由于大量随机现象必然呈现出它的规律性,
因而从理论上讲,只要对随机现象进行足够多
次观察,被研究的随机现象的规律性一定能清
楚地呈现出来.
西华大学数学与计算机学院
5
现实世界中存在着形形色色的数据, 分析这些 数据需要多种多样的方法.
P
依概率收敛的序列性质知道 g为连续函数
概率论与数理统计答案第六章
第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解: 8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P =2628.0)]25(1[2=Φ-(2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15}=.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10}=.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i i X P解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i ii ii iX P XP χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλnX D ===[六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
概率论与数理统计习题册.doc
第六章样本及抽样分布一、选择题1.设X1 , X 2 ,L , X n是来自总体X的简单随机样本, 则X1, X2,L , X n必然满足 ( )A. 独立但分布不同 ;B. 分布相同但不相互独立 ; C 独立同分布 ; D. 不能确定2.下列关于“统计量”的描述中,不正确的是().A.统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3 下列关于统计学“四大分布”的判断中,错误的是() .1~ F (n2 ,n1)A.若 F ~ F ( n1 , n2 ), 则FB.若 T ~ t( n),则 T 2 ~ F (1,n)C .若X ~ N ( 0,1),则X2~ x2(1)n) 2( X iD .在正态总体下i 1 2(n 1)2 ~ x4.设X i , S i2表示来自总体N ( i , i2 ) 的容量为 n i的样本均值和样本方差(i 1,2) ,且两总体相互独立,则下列不正确的是() .A. 22S12~ F (n1 1,n2 1) B.( X 1 X2) (1 2)2 2 2 2 ~ N (0,1) 1S2 1 2n1 n2C. X 1 1~ t(n1 ) D.(n 1)S2 2(n2 1) S1 / n1 2 2 2~ x21nX )25.设X1, X 2,L , X n是来自总体的样本, 则1 i ( X i 是( ).n 1A. 样本矩B. 二阶原点矩C. 二阶中心矩D. 统计量6 X1,X2,L , X n是来自正态总体N (0,1) 的样本, X , S2分别为样本均值与样本方差, 则( ).n X~ t( nA. X ~ N (0,1)B. nX ~ N (0,1)C. X i2 ~ x2 (n)D. 1)i 1 S9 9X i2 285, 则样本方差 S27. 给定一组样本观测值X1, X 2,L , X9且得X i 45,i 1 i 1的观测值为 ( ).A. 7.5B.60C. 20D.65 3 28 设X服从t (n)分布 , P{|X| } a ,则 P{ X } 为( ).A. 1a B. 2a C. 1 a D. 1 1 a2 2 29 设x1, x2,L , x n是来自正态总体N (0, 22 ) 的简单随机样本,若Y a( X 1 2X 2 ) 2 b( X 3 X 4 X 5)2 c( X 6 X 7 X 8 X 9 )2服从 x 2分布,则a, b, c 的值分别为() .A. 1,1,1B.8 12 161,1,1 C. 1,1,1 D. 1,1,120 12 16 3 3 3 2 3 410 设随机变量X和Y相互独立 , 且都服从正态分布N(0,32),设 X1,X2, , X9和9X iY1,Y2, ,Y9分别是来自两总体的简单随机样本,则统计量U i 1 服从分布是92Y ii 1( ).A. t(9)B. t (8)C. N (0,81)D. N (0,9)二、填空题1.在数理统计中,称为样本.2.我们通常所说的样本称为简单随机样本,它具有的两个特点是.3.设随机变量 X1,X2, , X n相互独立且服从相同的分布, EX , DX 2 ,令X 1 nX i ,则 EX ; DX . ni 14. (X1,X2, , X10) 是来自总体X ~ N(0,0.32) 的一个样本,则102P X i 1.44 .i 15.已知样本 X 1 , X 2 , , X 16 取自正态分布总体 N ( 2,1) ,X 为样本均值, 已知 P{ X} 0.5,则.10. 6 设总体 X ~ N(,2) , X 是样本均值, S n 2是样本方差, n 为样本容量,则常用的随2机变量 (n1)S n 服从分布 .2第七章 参数估计一、选择题1.设总体 X~N(, 2), X 1,, X n 为抽取样本,则 1 n ( X iX ) 2 是().n i 1( A) 的无偏估计 ( B)2的无偏估计(C )的矩估计(D )2的矩估计2 设 X 在 [0 , a] 上服从均匀分布, a 0 是未知参数,对于容量为 n 的样本 X 1 , , X n , a的最大似然估计为( )(A ) max{X 1,X 2,, X n }1n(B )X in i 1(C ) max{X 1,X 2, , X n } min{ X 1 , X 2 ,, X n }(D ) 11 n X i ;n i 13 设总体分布为 N ( , 2) ,,2为未知参数,则2的最大似然估计量为( ) .(A ) 1n( X i X ) 2( B ) 1n( X i X )2n i 1n 1 i 1(C ) 1n( X i) 2( D ) 11 i n( X i)2n i 1n 14 设总体分布为 N ( , 2) ,已知,则2的最大似然估计量为() .(A ) S2( B )n 1S 2n(C ) 1n( X i) 2( D ) 11 i n( X i)2n i 1n 15 X 1, X 2, X 3 设为来自总体 X 的样本,下列关于 E( X ) 的无偏估计中, 最有效的为().(A )1(X 1 X 2 )(B ) 1(X 1X 2 X 3 )23(C ) 1(X 1X 2 X 3 )(D ) 2X 12X 2 1 X 3)43336 设 X 1,X 2,, X n (n 2)是正态分布 N( ,2)的一个样本,若统计量n1K( X i 1 X i ) 2 为2的无偏估计,则K 的值应该为()i 1(A )1( B )11( C )1 2 (D )12n2n2nn 17. 设 为总体 X 的未知参数, 1 , 2 是统计量,1,2为 的置信度为 1 a(0a 1) 的置信区间,则下式中不能恒成的是() .A. P{ 12}1 aB.P{2}P{1}aC. P{2}1aD.P{2}P{1}a28设X~N( , 2)且2未知,若样本容量为 n ,且分位数均指定为“上侧分位数”时,则的 95%的置信区间为( )A. ( Xu0.025)B. ( XS t 0 .05(n1))nnC. ( XSD.( X St 0 .025 ( n1))t 0.025 (n))nn9 设 X ~ N ( ,2), ,2均未知,当样本容量为n 时,2的 95%)的置信区间为(A.(( n 1)S 2, (n 1)S 2B. ( (n 1)S 2 ( n 1)S 221) 2)2 (n , 2(n )x 0.975 ( n x 0.025 (n 1)x 0.025 1) x 0.975 1)(( n 1)S 2( n 1)S 2( XSt 0. 025 (n1)) C. 2, 2) D.nt 0. 025 (n 1) t 0.975 ( n 1)二、填空题1. 点估计常用的两种方法是:和.2. 若 X 是离散型随机变量,分布律是 P{ X x} P(x; ) ,( 是待估计参数) ,则似然函数是,X 是连续型随机变量,概率密度是f (x; ) ,则似然函数是.3. 设总体 X 的概率分布列为:X 012 3P p 2 2 p(1 -p ) p2 1- 2p 其中 p (0 p 1/ 2)是未知参数. 利用总体 X 的如下样本值:1 ,3,0,2,3,3,1,3则 p 的矩估计值为__ ___ ,极大似然估计值为.4. 设总体 X 的一个样本如下:,,,,则该样本的数学期望E(X ) 和方差 D(X ) 的矩估计值分别_ ___.5. 设总体 X 的密度函数为: f ( x) ( 1)x 0 x 10 其他,设 X 1 , , X n是X的样本,则的矩估计量为,最大似然估计量为.6. 假设总体 X ~ N( , 2),且 X 1 n X i , X1,X2, , X n 为总体 X 的一个样本,n i 1则 X 是的无偏估计 .7 设总体 X~N( , 2) , X1, X2, , X n为总体X的一个样本,则常数k=, 使nk X i X 为的无偏估计量 .i 18 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为S 40 .设电子管寿命分布未知,以置信度为0.95 ,则整批电子管平均寿命的置信区间为(给定 Z0. 05 1.645 , Z0.025 1.96 ).9设总体X~N( , 2), , 2 为未知参数,则的置信度为 1-的置信区间为.10某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为20.04 ,从某天生产的产品中随机抽取9 个,测得直径平均值为15 毫米,给定0.05则滚珠的平均直径的区间估计为. ( Z0.05 1.645 , Z 0.025 1.96)11.某车间生产滚珠,从某天生产的产品中抽取6 个,测得直径为:已知原来直径服从N ( ,0.06) ,则该天生产的滚珠直径的置信区间为,(0.05,Z0.05 1.645 , Z0.025 1.96).12.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12 个子样算得S 0.2 ,则的置信区间为(, 2 (11) 19.68 ,2 (11) 4.57 ).0.1 12 2第八章假设检验一、选择题1.关于检验的拒绝域W,置信水平, 及所谓的“小概率事件” , 下列叙述错误的是().A.的值即是对究竟多大概率才算“小”概率的量化描述B .事件 {( X1 , X 2 , , X n ) W |H0为真} 即为一个小概率事件C.设 W是样本空间的某个子集,指的是事件{( X1 , X 2 ,L , X n ) | H 0为真 }D.确定恰当的W是任何检验的本质问题2. 设总体 X~N( , 2 ), 2未知 , 通过样本X1, X2, , X n检验假设 H 0 : 0,要采用检验估计量 ( ).X 0B. X 0C.XD.XA.n S / n/ S/ n / n 3. 样本 X1, X 2, , X n来自总体 N ( ,122) ,检验 H 0 : 100 ,采用统计量( ).A. XB.X 100C.X 100D.X12 / n 12 / n S / n 1 S / n4设总体X ~ N( , 2 ), 2 未知 ,通过样本X1,X2, , X n检验假设 H 0 : 0,此问题拒绝域形式为.A. { X100 C} B. {X100 C } C. {X100 C} D. { X C}S / 10 S / n S / 105.设X1, X2, , X n为来自总体N ( ,32 ) 的样本,对于H 0 : 100 检验的拒绝域可以形如() .. { X C} { X 100 C} X 100C} { X 100 C}A B. C. {n D.S /6 、样本来自正态总体N( , 2 ) , 未知 ,要检验H0: 2 100 , 则采用统计量为( ).A. (n 1)S2B.(n 1) S2C.Xn D.nS 22 100 100 1007、设总体分布为N ( , 2),若已知,则要检验H0: 2 100 ,应采用统计量 ( ).n 2 n 2A. XB. (n 1)S2C. i 1 ( X i )D.i 1( Xi X ) S / n 2 100 100二、填空题1.为了校正试用的普通天平 , 把在该天平上称量为 100 克的 10 个试样在计量标准天平上进行称量 , 得如下结果 :, , , 101,2,,假设在天平上称量的结果服从正态分布, 为检验普通天平与标准天平有无显著差异, H0 为.2.设样本X1, X2, , X25来自总体 N( ,9), 未知.对于检验 H 0 : 0,H1: 0,取拒绝域形如X 0 k ,若取a 0.05,则 k 值为.第六章样本及抽样分布答案一、选择题1. ( C )2. ( C ) 注:统计量是指不含有任何未知参数的样本的函数3. ( D )对于答案 D, 由于 X i~ N (0,1), 1,2, , n ,且相互独立,根据 2 分布的定义有i Ln ) 2( X i2i 1(n)2~ x4.(C)注:X 11~ t (n 1 1) 才是正确的 .S 1 / n 15.(D)6C) 注: X ~ N(0,1),X ~ t(n 1)才是正确的 nS nP X 12 1 2PX 12 1 12PX1225 12512(5)1299222X i XX 9 Xi 2859 257.(A)S 2 i 11i 19 17.5 988.(A) 9.(B)解:由题意可知X 1 2X 2 ~ N(0,20) , X 3X 4 X 5 ~ N (0,12) ,X 6 X 7 X 8X 9 ~ N (0,16) ,且相互独立,因此222X 1 2X 2X 3 X 4 X 5X 6 X 7X 8 X 9 ~ 23,201216即 a1, b1, c120121610(A)999解:X i ~ N (0,9 2 )X i 9 ~ N 0,1 , Y i 2 9 ~29i 1i 1i 19X i 9由 t 分布的定义有i 1~t 992Y i 81i 1二、填空题1.与总体同分布,且相互独立的一组随机变量 2. 代表性和独立性 23.,n4. 0.16.2( n 1)第七章 参数估计一、选择题1. 答案: D.222?21 n2?1 n[ 解 ] 因为E(X )A 2X i,E (X) ,E(X )X i ,E( X ) A 1n i 1n i 1所以, ? 2?2?2( X )1n2.E( X) E( X i X )n i 12. 答案: A.[ 解 ] 因为似然函数 11 ,当 amax X i 时, L(a) 最大,L(a)(max X i ) n a nii所以, a 的最大似然估计为max{ X 1 , X 2 , , X n } .3答案A.n[ 解] 似然函数 L( ,2)i 11 exp 12 ( xi) 2 ,22由ln L 0, 2 ln L 0 ,得2A 2 .4. 答案 C.[ 解]在上面第 5题中用取代 X 即可.5答案 B.6. 答案 C. 7 答案 D. 8. 答案 D.9. 答案 B.二、填空题:1. 矩估计和最大似然估计;2.p(x i ; ) ,f ( x i ; );i i.31 , ; 4816/82,令 E(X)[ 解 ] ( 1) p 的矩估计值 X X i 3 4 pX ,i 1得 p的矩估计为p (3 X ) / 4 1/ 4 .?( 2)似然函数为8x i ) P( X 0)[ P( X 1)] 2P( X 2)[ P( X 3)] 4L( p)P( Xi 14 p(1 p) 2 (1 2 p)4ln L( p) ln 46ln p 2 ln(1 p) 4 ln(1 2 p)令 [ ln L ( p)]6 1 2 1 8 0 ,12 p 2 14 p 3 0pp2 pp (7 13) /12 . 由 0 p1/ 2 ,故 p (713) /12 舍去所以 p的极大似然估计值为 p (713) /120.2828 .?4、 ,;?? 2iX i 222[ 解 ]由矩估计有:),又因为 D(X) E( X ) [E(X)],E(X ) X,E(Xn?X 1.7 1.75 1.71.65 1.75 1.71所以 E(X)5?1n2( X iX )0.00138 .且D(X)n i 1n2X 1, n ln X i5、?? i 1 ;1 X n ln Xii 1[ 解 ] ( 1)的矩估计为:11 2 11E(X ) x ( 1) x d x x2 0 2样本的一阶原点矩为:1 nx i Xn i 1所以有:1 X ? 2X 12 1 X( 2)的最大似然估计为:n nL ( X 1 , , X n; ) ( 1) X i ( 1) n ( X i )i 1 i 1nln L n ln( 1) ln X ii 1d ln L n nln X i 0d 1 i 1n得:? n ln X ii 1.nln X ii 16、;[ 解] E(X) 1 nE( X i ) n .nn i 17、;2n(n1)[ 解] 注意到X1, X2, , X n的相互独立性,X i1X1 X2 (n 1) X i X n Xnn 1E( X i X ) 0, D ( X i 2X )n所以, X i X ~ N (0, n1 2),nz21n 1 22E(| X i X |) | z | e n dzn 12nz21 n 12 2 n 12 z e 2 dzn0 n 1 22nn nkn 2n 1因为: E k | X i X | k E | X i X |i 1 i 1 2 n所以, k2n( n 1).8、. [ , ] ;[ 解 ] 这是分布未知,样本容量较大,均值的区间估计,所以有:X 1000, S 40, 0.05 , Z 0.025 1.96 的 95%的置信区间是:[ X SZ0.025 , X S Z0.025 ] [ 992.16,1007.84] . n n9、(X St (n 1), XSt (n 1)) ;n 2 n 2[ 解 ] 这是 2 为未知的情形,所以X ~ t(n 1) .S / n10、 [ , ] ;[ 解 ] 这是方差已知均值的区间估计,所以区间为:[ x Z , xn Z ]n 2 2 由题意得: x 15 2 0.04 0.05 n 9 ,代入计算可得:[15 0.2 1.96,15 0.2 1.96] ,化间得:[14.869,15.131] .9 911、 [ ,];[ 解 ]这是方差已知,均值的区间估计,所以有:置信区间为: [ Xn Z , XnZ ]2 2由题得: X 1 (14.6 15.1 14.9 14.8 15.2 15.1) 14.95 60.05 Z0.025 1.96 n 6代入即得: [14.95 0.06 1.96,14.95 0.06 1.96]6 6所以为: [14.754,15.146]12、.[,];[ 解 ] 由2(n 1)S 2 2 得:1 22 22 (n 1) S2, 2(n 1)S22 2212所以的置信区间为: [ (n 1) S2,(n 1)S22 (11) 2] ,(11)212将 n 12 , S 0.2 代入得[ 0.15 , 0.31 ]. 第八章假设检验一、选择题、、、、、、、二、填空题1.1002.。
概率论与数理统计总结之第六章
第六章 样本及抽样分布 总体与个体:我们将试验的全部可能的观察值称为总体,这些值不一定都不相同,数目上也不一定是有限的,每一个可能观察值称为个体 总体中所包含的个体的个数称为总体的容量 容量为有限的称为有限总体 容量为无限的称为无限总体设X 是具有分布函数F 的随机变量,若,,21X X …n X ,是具有同一分布函数F 的、相互独立的随机变量,则称,,21X X …n X ,为从分布函数F (或总体F 、或总体X )得到的容量为n 的简单随机样本,简称样本,它们的观察值,,21x x …n x ,称为样本值,又称为X 的n 个独立的观察值由定义得:若,,21X X …n X ,为F 的一个样本,则,,21X X …n X ,相互独立,且它们的分布函数都是F ,所以(,,21X X …n X ,)的分布函数为,,(21*x x F …)(),1∏==ni i n x F x又若X 具有概率密度f ,则(,,21X X …n X ,)的概率密度为,,(21*x x f …).(),1∏==ni i n x f x设,,21X X …n X ,是来自总体X 的一个样本,g(,,21X X …n X ,)是,,21X X …n X ,的函数,若g 中不含未知参数,则称g(,,21X X …n X ,)是一统计量设,,21X X …n X ,是来自总体X 的一个样本,n x x x ,^,,21是这一样本的观察值,定义:样本平均值∑==ni i X n X 11样本方差⎪⎭⎫ ⎝⎛--=--=∑∑==n i i n i i X n X n X X n S 12221211)(11样本标准差∑=--==ni i X X n S S 122)(11 样本k 阶(原点)矩,2,1,11==∑=k X n A n i ki k …样本k 阶中心矩,3,2,)(11=-=∑=k X X n B k ni i k …经验分布函数设,,21X X …n X ,是总体F 的一个样本,用∞<<-∞x x S ),(表示,,21X X …n X ,中不大于x 的随机变量的个数。
第六章样本及抽样分布例题
Xi
)2
+
16 (∑ i=13
Xi
)2
,问 c 取何值时,cY 服从 χ2 分布.
).
A. N (0, 1)B. Biblioteka (µ,C. χ2 (19)
D. χ2 (20)
n 1∑ 5. 设 总 体 X ∼ N (µ, σ 2 ), X1 , X2 , · · · , Xn 为 其 样 本,记 X = Xi , S 2 = n i=1 √ n 1 ∑ n(X − µ) 2 (Xi − X ) ,则 Y = 服从的分布是 ( ). n − 1 i=1 S
).
2. 设 随 机 变 量 X 和 Y 独 立 且 都 服 从 正 态 分 布 N (0, 32 ),而 X1 , X2 , · · · , X9 和 X1 + X2 + · · · + X9 Y1 , Y2 , · · · , Y9 分别来自总体 X 和 Y 的样本,则统计量 U = √ 2 Y1 + Y22 + · · · + Y92 服从 分布,参数为 . 三、解答题 1. 设 X1 , X2 , · · · , X16 是来自正态总体 N (0, 1) 的样本,记 Y =
学院
专业
班级
姓名
学号
概率论与数理统计练习题
2014 -2015学年第二学期
第六章 样本及抽样分布
一、选择题 1. X1 , X2 , X3 是取自总体 X 的样本,a 是一未知参数,则统计量是 ( ). 3 1∑ (Xi − a)2 A. X1 + aX2 B. X1 X3 C. aX1 X2 X3 D. 3 i=1 2. X1 , X2 , · · · , Xn 是取自总体 X 的样本,则 A. 样本矩 B. 二阶原点矩
概率论第六章样本及其抽样分布
24
例 设 X1, X 2 , , X n 是来自总体 N ( , 2 )
的随机样本,其中 已知, 未知,
则( )不是统计量
n
[1]
1 n
Xi
i1
n
n
[2]
1 n
(Xi )2
[3]
1 n
(Xi X)2
为了讨论正态总体下的抽样分布,先引入由正态 分布导出的统计中的三个重要分布,即
2分布,t 分布,F分布。
掌握三大分布的4点:
1、构成形式; 2、密度函数的大致图像;
本节大家要理解的基本概念主要有:
1. 总体
4.简单随机样本
2. 总体分布 3. 样本
5. 样本的二重性 6. 样本的分布
9
1. 总体与个体
(population and individual)
在统计学中,将研究问题所涉及的对象全 体称为总体,而把总体中的每个成员称为个体.
例如: 我们想要研究一家工厂某种产品的次品率.
i1
i1
n
[4]
1 n
(
X
i μ σ
)
2
[5] X12 X22 σ2
i1
[6] 2X1X2...Xn
25
数理统计中最常用的统计量及其观测值有:
1 样本均值 观测值记为 2 样本方差
X
1 n
n i 1
Xi
(1)
x
1 n
n i 1
xi
(2)
S 2 1 n n 1 i1
Xi X
2
1 n 1
Xi X
概率论与数理统计6.第六章:样本及抽样分布
),
,
,
,
是来
Z=
(
-
证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
《概率论与数理统计》第六章样本及抽样分析
身高总体
178.4 161.5 174.9 182.7 171.0 165.3 172.8 182.1 180.2 176.8 181.7 175.7 177.3 180.0 179.4 177.0 181.3 176.5 176.0 175.7 168.1 184.6 169.1 177.8 175.1 161.8 174.3 176.0 163.7 176.8 177.3 175.3 180.2 176.8 181.9 178.4 181.5 177.6 179.9 178.2 174.7 176.0 175.7 180.3 166.2 177.2 171.9 182.9 176.8 179.5 167.0 174.8 182.7 174.9 178.1 179.9 175.4 184.4 175.1 179.4 173.2 176.1 177.6 180.5 164.3 170.5 177.5 168.3 173.0 176.8 173.9 180.7 166.5 180.0 165.6 179.4 182.2 176.3 177.4 183.4 167.9 176.1 177.4 183.4 176.9 168.0 179.0 178.8 173.1 173.2 162.2 179.9 178.2 183.0 174.0 180.8 173.1 173.2 176.8 171.1 169.0 178.3 171.6 181.2 167.6 161.1 166.0 190.2 180.3 166.2 174.9 175.8 176.5 164.2 173.0 176.8 170.5 180.5 177.3 175.3 163.7 176.8 171.1 168.5 171.2 170.2 177.1 169.4 175.7 177.3 183.2 168.6 175.1 179.4 169.1 169.9 168.5 180.2 174.9 171.0 171.0 168.8 177.7 168.6 176.6 175.9 176.8 179.5 174.3 176.0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n
X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )
F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]
z
(1)标准正态分布分位点
(x)
( x)dx 1 ( x)dx
z
z1
( x)
Pr[ X z ]
z1
z
性质: z1 z
为自由度为(n1, n2)的F-分布: F ~ F ( n1 , n 2 )
18
F-分布的密度函数
n n2 11 n1n2 ( n1 ) 2 n1 n1 n1 2 n1 n2 ( n2 )(n2 x) 1 n2 x 2 x 0 f (x; n1, n2 ) ( 2 ) ( 2 ) 0 x 0
(1) 2 分布
设 X 1 ,......, X n 是来自总体N(0,1)[标准正态 分布]的样本,则统计量
2 X 12 ...... X n2
是服从自由度为n的 2 -分布,记为: 2 ~ 2 (n)
14
2 -的密度函数
n / 2 1 x / 2 1 x e 2n / 2 ( n / 2) f ( x) 0
总体分布函数F(x)相应的统计量 ---经验分布函数 设 X 1 , ........, X n 为总体F的一个样本,定义:
S ( x ) | {i | X i x} | x ( , )
1 n
并定义经验分布函数为: F n ( x )
S (x)
例:总体F具有一个样本值:1, 2,3,则经验分布函数 为: x 1 0 1 1 x 2 3 F3 2 3 2 x 3 12 x3 1
16
t(n)-分布的密度函数及良好性质
h( x )
[( n 1) / 2]
n ( n / 2)
(1 )
x 2 ( n 1) / 2 n
, x
函数性质: (1) 关于x 0对称. (2) lim n h( x)
1 2
e
x2 / 2
.
h(x)
26
f(y)
2
2
0
y
F (m , n) 1 2
F ( m , n ) 2
27
习题: P174-175 1,2,3,4
28
概率论与数理统计
主讲教师:许道云
贵州大学计算机科学与信息学院
Pr[ X x ] p
1
总体、样本、统计量
总体 样本 统计量
X1 X2
X
X3 X4 Xn
Y=g(X1 , X2 ,…… ,Xn)
5 7
2
10
随机样本决定的联合分布函数
X的密度函数和分布函数:
f (x) F (x)
随机样本的密度函数和分布函数:
f
*
( x 1 , ........,
xn )
n
n
f (xi)
i1
F
*
( x 1 , ........,
xn )
F (xi)
i1
思考题: 为什么要这样定义?
11
U / n1 F ( n1 , n2 ) V / n2
4
§3 正态总体样本均值与方差分布
已知: 设总体X的均值为 ,方差为 2 , X 1 , X 2 , ....... , X n 为X的一个样本,则无论 X服从什么样的分布,总有:
E ( X ) , D( X ) 2 / n
] ].
1 ] 1 Pr[ F
1 F1 ( n1 , n2 )
1 F1 ( n1 , n2 )
] .
1 由于 F ~ F (n2 , n1 ), Pr[ F (n2 , n1 ) F (n2 , n1 )] .. 1 故 Pr[ F F (n2 , n1 )] .
以标准正态分布为起点,研究三种特殊组合构 成的统计量的分布 1. (标准)正态分布: X ~ N ( 0 , 1 ) 2. 3. 4.
2 ( n ) 分布:
具有可加性
具有可加性
2 Y X 12 ...... X n , X i ~ N (0,1)
t ( n ) 分布: X ~ N (0,1), Y ~ 2 ( n )
i1
n
n X
2
]
样本k阶(原点)矩: A k 样本k阶(中心)矩:B k
1 n
n
X
i 1
k i
, k 1 , 2 , 3 ,........
i 1
( X i X ) k , k 2, 3, ........
3
四大分布的联系
1. (标准)正态分布: X~N(0,1) 具有可加性 2.
[ X
i1
n
n X
2
]
样本k阶(原点)矩: A k 样本k阶(中心)矩:B k
1 n
n
X
i 1
k i
, k 1 , 2 , 3 ,........
i 1
( X i X ) k , k 2, 3, ........
9
已知总体分布,如何求一个统计量满足一定条件的概率 例:在总体N(100,25)中, 随机抽取一个容量为49的样 本,求样本均值 X 落在98到102之间的概率。 解:总体服从N(100,25), 有: E[X 所求概率为: p Pr[98 X 102]
23
(4) F-分布的分位点
Pr[ F F (n1 , n2 )] 性质: F1 (n1 , n2 )
1 F ( n2 , n1 )
(反对称性)
F (n1 , n2 )
24
F-分布的密度函数及反对称性质
1 函数性质: 如果F ~ F (n1 , n2 ), 则 ~ F (n2 , n1 ). F
P r[ X z ]
2 ( n )
22
(3) t(n)-分布的分位点
Pr[t t (n)] 性质: (1) t1 (n) t (n). (由对称性) (2) 当n 45时, t (n) z (标准正态分布分位点).
h(x)
t ( n )
于是, F1 (1 ( n2 , n1 ), F 1 ( n1 , n2 ) n1 , n2 ) F 例 : F0.95 (12,9)
1 F0.05 (9,12) 1 2.80 0.357.
1 F ( n2 , n1 )
(查表 : F (n, m) (n m))
概率论与数理统计
主讲教师:许道云
贵州大学计算机科学与信息学院
Pr[ X x ] p
1
第六章 样本及抽样分布
§1
随机样本 §2 抽样分布(来自标准正态总体) §3 正态总体样本均值与方差分布
2
数理统计研究方法流程图:
采集数据 抽样
总体X
样本
进行加工
统计量
对统计量 分析
对总体X作 出推断
7
统计量与观察值: (抽样:试验:观察)
随机样本X1 , X2 ,…… ,Xn 的实际测试值是 一组具体实数:x1 ,x2 ,……,xn 。 称为对X1 ,X2 ,……,Xn的观察值(或试验结 果、或样值)。 统计量:g ( X 1 , X 2 , ....... , X n )
2 2 2 g ( X , X , ....... , X ) X X ....... X 如: 1 2 n 1 2 n
n1n2 ( ) n1 n1 n1 n1 n2 ( n2 )(n2 x) 1 n2 x 2 x 0 f (x; n1, n2 ) ( 2 ) ( 2 ) 0 x 0 n1n2 2
n 11 2
25
反对称性证明及换算:
1 1 Pr[ F F1 (n1 , n2 )] Pr[ F 1 1 Pr[ F 1 所以, Pr[ F 1 F1 ( n1 , n2 ) 1 F1 ( n1 , n2 )
观察值:
g(x1, x2 , ......., xn )