图像增强算法综述
低光照增强文献综述
低光照增强文献综述低光照增强是图像处理领域中的一个重要研究方向,其目的是提高低光照条件下图像的视觉质量,从而获取更多的有用信息。
在自动驾驶、安防等人工智能相关行业中,低光照增强技术具有广泛的应用前景。
近年来,低光照增强技术逐渐成为研究热点,许多学者和研究人员致力于提出新的算法和方法以提高低光照图像的质量。
本文将从低光照增强技术的算法分类、现有算法性能评估和未来发展趋势等方面进行综述。
1. 低光照增强技术算法分类低光照增强技术主要包括传统方法和深度学习方法。
(1)传统低光照增强方法:传统方法主要采用基于偏微分方程、基于Retinex和基于直方图均衡等技术。
① 基于偏微分方程的方法:偏微分方程方法通过求解偏微分方程,实现低光照图像的增强。
这类方法在处理低光照图像时,能够有效地保持图像的边缘和细节。
② 基于Retinex的方法:Retinex理论提出了一种基于物理模型进行图像增强的方法。
Retinex算法通过分离环境光和反射光,实现低光照图像的增强。
③ 基于直方图均衡的方法:直方图均衡方法通过对图像直方图进行均衡化处理,提高低光照图像的对比度和亮度。
(2)基于深度学习的低光照增强方法:深度学习方法在低光照增强领域取得了显著的性能提升。
这类方法主要采用基于神经网络、基于生成对抗网络 (GAN)和基于自编码器等技术。
① 基于神经网络的方法:神经网络方法通过学习大量低光照图像数据,实现低光照图像的增强。
这类方法在提高图像质量的同时,能够有效地保持图像的细节和结构。
② 基于GAN的方法:GAN方法在低光照增强领域取得了显著的性能提升。
通过引入对抗训练,GAN方法能够生成高质量、高亮度的低光照图像。
③ 基于自编码器的方法:自编码器方法通过学习低光照图像的潜在特征,实现低光照图像的增强。
这类方法在提高图像质量的同时,能够有效地保持图像的细节和结构。
2. 现有算法性能评估为了评估低光照增强算法的性能,许多学者和研究人员构建了大量的低光照图像数据集,并采用各种评估指标对算法进行评估。
图像处理技术综述
图像处理技术综述图像处理技术是应用于计算机视觉、计算机图形学、人工智能等领域的一种技术,用于改善或增强图像的质量、可视性、信息含量或拟合特定需求。
在当今信息技术快速发展的时代,图像处理技术已被越来越广泛地应用于医学、军事、安全监控、遥感、交通、广告等领域。
一、图像处理的基本流程1、获取图像首先需要获得图像,其方式很多。
例如,用专业摄像机或手机或扫描仪捕获图像。
另外,从互联网或其他共享资源中获取的图像也可以作为处理对象。
2、预处理图像在采集到图像数据后,需要对图像进行预处理。
这主要是为了去除噪声和畸变,以便更好地处理图像数据。
一些常见的操作包括滤波、均衡化、归一化和旋转等。
3、分割图像将图像分成若干个区域,通过分析这些区域来获取有用的信息。
分割可以基于颜色、亮度、纹理、图像特征、形状等进行。
4、提取特征提取图像中的特征是使用智能算法和其他技术来描述图像中重要的信息。
这些特征可以是纹理、边缘、角点或其他模式,并且可以用来判断图片是否满足特定要求。
5、抽取结构信息对于一些需要对图像进行量化和分析的应用,可以从图像中提取出具有代表性的结构信息。
应用某些算法,通过获取的特征和结构信息来分析图像。
根据分析的结果,可以识别物体、建立模型、人机交互等等。
图像滤波是一种常用的基本方法,它主要用于去除图像中的噪声。
常见的滤波方法有平均滤波、高斯滤波、中值滤波等。
图像增强技术是指通过算法将低质量的图像improved以获得更高质量的图像,例如提高对比度、清晰度、亮度等。
图像压缩是将数字图像压缩到尽可能小的空间,使其更容易存储和传输。
最常用的压缩方式是JPEG和PNG。
图像分割是将图像分割成不同的部分,每个部分对应相应的特征,这些部分组成面向目标识别和跟踪的区域。
常用而有效的算法包括K均值聚类、分水岭算法等。
特征提取是将图像中的信息抽象化作为特定可识别模式。
从图像中提取特征通常需要使用泛函分析和模式识别技术。
6、目标识别目标识别即在图像中找到和辨识特定目标,它应用于许多领域,例如医疗图像识别、移动机器人、军事目标等重要领域。
基于Retinex理论的低照度图像自适应增强算法
基于Retinex理论的低照度图像自适应增强算法目录1. 内容概览 (3)1.1 研究背景 (3)1.2 研究意义 (5)1.3 文献综述 (6)1.4 本文结构 (7)2. Retinex理论概述 (8)2.1 Retinex理论起源 (8)2.2 Retinex理论核心 (9)2.3 Retinex与其他图像增强算法的区别 (10)3. 低照度图像增强问题分析 (12)3.1 低照度图像的特点 (13)3.2 图像增强的目的与挑战 (13)3.3 现有方法存在的问题 (14)4. 基于Retinex的理论低照度图像自适应增强算法 (15)4.1 算法原理 (16)4.1.1 Retinex与自适应增强的理论联系 (18)4.1.2 算法自适应性的实现手段 (19)4.2 算法关键步骤 (20)4.2.1 光照映射的获取 (21)4.2.2 局部对比度的计算 (22)4.2.3 光照校正和对比度增强 (23)4.3 算法实现细节 (24)4.3.1 光照映射的精确计算 (25)4.3.2 对比度增强的策略 (27)4.3.3 自适应参数的确定 (28)4.4 算法有效性验证 (29)4.4.1 算法精度分析 (30)4.4.2 算法性能测试 (31)5. 实验验证与结果分析 (32)5.1 数据集与实验设置 (34)5.2 对比算法与方法 (35)5.3 实验结果与分析 (36)5.3.1 增强效果 (37)5.3.2 对比算法的比较 (39)5.4 算法存在的问题与改进建议 (40)6. 结论与展望 (42)6.1 研究总结 (43)6.2 未来工作方向 (44)1. 内容概览本文档详细介绍了一种基于Retinex理论的低照度图像自适应增强算法。
该算法旨在解决低照度条件下图像对比度低、细节不清晰等问题,通过自适应地增强图像的亮度和对比度,提高图像的视觉效果。
介绍了Retinex理论的基本原理,该理论认为图像是由光照和反射率两个部分组成的,通过分别处理这两个部分可以实现图像的增强。
低光照图像增强算法综述
低光照图像增强算法综述一、本文概述随着计算机视觉技术的快速发展,图像增强技术成为了研究的重要领域之一。
其中,低光照图像增强算法是处理低质量、低亮度图像的关键技术,对于提高图像质量、增强图像细节、提升图像识别精度等方面具有重要的应用价值。
本文旨在对低光照图像增强算法进行全面的综述,介绍其研究背景、发展历程、主要算法及其优缺点,并探讨未来的发展趋势。
本文将对低光照图像增强的研究背景进行介绍,阐述低光照图像增强技术在视频监控、医学影像分析、军事侦察、航空航天等领域的应用需求。
本文将回顾低光照图像增强技术的发展历程,分析不同算法在不同历史阶段的发展特点和主要贡献。
接着,本文将重点介绍当前主流的低光照图像增强算法,包括基于直方图均衡化的算法、基于Retinex理论的算法、基于深度学习的算法等,并详细阐述其原理、实现方法、优缺点等。
本文将展望低光照图像增强技术的未来发展趋势,探讨新技术、新算法在提升图像质量、提高识别精度等方面的潜在应用。
通过本文的综述,读者可以全面了解低光照图像增强算法的研究现状和发展趋势,为相关领域的研究和实践提供有益的参考和借鉴。
二、低光照图像增强的基本原理低光照图像增强算法的核心目标是在保持图像细节和色彩信息的提高图像的亮度和对比度,从而改善图像的视觉效果。
这通常涉及到对图像像素值的调整,以及对图像局部或全局特性的分析和优化。
基本的低光照图像增强算法可以分为两类:直方图均衡化和伽马校正。
直方图均衡化是一种通过拉伸像素强度分布来增强图像对比度的方法。
这种方法假设图像的可用数据跨度大,即图像包含从暗到亮的所有像素值。
然而,对于低光照图像,由于大部分像素值集中在较低的亮度范围内,直方图均衡化可能会过度增强噪声,导致图像质量下降。
伽马校正则是一种更为柔和的增强方法,它通过调整图像的伽马曲线来改变图像的亮度。
伽马曲线描述了输入像素值与输出像素值之间的关系,通过调整这个关系,可以改变图像的亮度分布。
超分辨率图像重建方法综述
超分辨率图像重建方法综述超分辨率图像重建方法综述摘要:随着数字图像技术的迅猛发展,人们对于高质量图像的需求日益增强。
然而,由于各种原因限制,例如硬件设备和网络带宽的限制,很多图像都存在分辨率低、模糊等问题。
超分辨率图像重建技术应运而生,旨在通过图像处理方法将低分辨率图像重建为高分辨率图像,以实现更好的图像质量。
本文将对超分辨率图像重建方法进行综述,包括传统方法、基于插值的方法和深度学习方法,并对各类方法进行比较分析。
一、介绍超分辨率图像重建是一项重要的研究课题,旨在通过一系列的图像处理技术,将低分辨率图像提升至高分辨率图像,以满足人们对于高质量图像的需求。
在近年来,超分辨率图像重建技术得到了广泛的研究和应用,不仅能够改善普通图像的质量,还能在医学影像、监控图像等领域起到重要作用。
二、传统方法传统的超分辨率图像重建方法主要包括插值法、边缘推断法和重建模型法。
插值法是最简单直接的方法,通过对低分辨率图像进行像素插值来增加图像的分辨率。
然而,这种方法容易导致图像出现模糊和失真。
边缘推断法通过根据图像边缘信息进行推断来提高图像分辨率,但在实际应用中对边缘信息的准确性要求较高。
重建模型法则是使用一系列的模型和算法来重建图像,例如自回归模型、小波变换等。
这些传统方法在一定程度上可以提高图像的分辨率,但往往在处理复杂纹理和细节等方面效果有限。
三、基于插值的方法随着深度学习技术的发展,基于插值的超分辨率图像重建方法得到了很大的提升。
这类方法通过构建卷积神经网络模型,学习和捕获图像的高频信息,进而对低分辨率图像进行插值和重建。
此类方法比传统方法更加准确和稳定,能够解决复杂纹理和细节方面的问题。
然而,基于插值的方法对于训练样本的要求较高,且计算量较大。
四、深度学习方法深度学习方法是目前超分辨率图像重建领域的热门研究方向。
通过建立深度神经网络模型,利用大量的样本进行训练和学习,可以有效地提高图像的分辨率。
其中,卷积神经网络(CNN)是最常用的深度学习方法之一。
图像去雾增强算法的研究-文献综述
福州大学专业英语文献综述题目:图像去雾增强算法的研究姓名:学号:专业:一、引言由于近年来空气污染加重,我国雾霾天气越来越频繁地出现,例如:2012底到2013年初,几次连续七日以上的雾霾天气笼罩了大半个中国,给海陆空交通,人民生活及生命安全造成了巨大的影响。
因此,除降低空气污染之外,提高雾霾图像、视频的清晰度是亟待解决的重要问题。
图像去雾实质上就是图像增强的一种现实的应用。
一般情况下,在各类图像系统的传送和转换(如显示、复制、成像、扫描以及传输等)总会在某种程度上造成图像质量的下降。
例如摄像时,由于雾天的原因使图像模糊;再如传输过程中,噪声污染图像,使人观察起来不满意;或者是计算机从中提取的信息减少造成错误,因此,必须对降质图像进行改善处理,主要目的是使图像更适合于人的视觉特性或计算机识别系统。
从图像质量评价观点来看,图像增强技术主要目的是提高图像可辨识度。
通过设法有选择地突出便于人或机器分析的某些感兴趣的信息,抑制一些无用信息,以提高图像的使用价值,即图像增强处理只是增强了对某些信息的辨别能力[1].二、背景及意义近几年空气质量退化严重,雾霾等恶劣天气出现频繁,PM2。
5[2]值越来越引起人们的广泛关注。
在有雾天气下拍摄的图像,由于大气中混浊的媒介对光的吸收和散射影响严重,使“透过光"强度衰减,从而使得光学传感器接收到的光强发生了改变,直接导致图像对比度降低,动态范围缩小,模糊不清,清晰度不够,图像细节信息不明显,许多特征被覆盖或模糊,信息的可辨识度大大降低。
同时,色彩保真度下降,出现严重的颜色偏移和失真,达不到满意的视觉效果[3—6]。
上述视觉效果不佳的图像部分信息缺失,给判定目标带来了一定的困难,直接限制和影响了室外目标识别和跟踪、智能导航、公路视觉监视、卫星遥感监测、军事航空侦察等系统效用的发挥,给生产与生活等各方面都造成了极大的影响[7—9].以公路监控为例,由于大雾弥漫,道路的能见度大大降低,司机通过视觉获得的路况信息往往不准确,进一步影响对环境的判读,很容易发生交通事故,此时高速封闭或者公路限行,给人们的出行带来了极大的不便[10]。
结合深度学习的水下图像增强算法研究
结合深度学习的水下图像增强算法研究结合深度学习的水下图像增强算法研究摘要:随着水下影像采集设备的不断进步,水下图像的质量也得到了一定程度的提高。
然而,由于水下光照条件的限制以及水下环境中的散射、吸收等因素,水下图像依然存在很大的模糊、低对比度等问题。
针对这些问题,结合深度学习的水下图像增强算法应运而生。
本文将重点讨论深度学习在水下图像增强领域中的应用,并介绍了一种基于深度学习的水下图像增强算法。
1. 引言水下图像增强是研究者长期以来关注的一个热门研究领域。
由于水下光照条件的限制和水下环境中物质的散射、吸收等因素,水下图像往往具有低对比度、模糊、色彩失真等问题,造成其实际应用受限。
为了解决这些问题,研究者们提出了各种图像增强算法。
然而,传统的水下图像增强算法对于图像细节的保留和重建能力有限。
近年来,深度学习技术的发展为水下图像增强问题带来了新的解决方案。
2. 深度学习在水下图像增强中的应用深度学习在水下图像增强中主要应用于两个方面:图像去噪和图像增强。
对于图像去噪任务,研究者们已经提出了一系列基于深度学习的方法,包括基于卷积神经网络(CNN)的方法,基于生成对抗网络(GAN)的方法等。
这些方法通过学习大量的水下图像数据,能够更好地去除图像中的噪声,提高图像质量。
对于图像增强任务,研究者们通常采用自编码器或者去雾网络等深度学习模型,通过学习图像的特征表示和重建,实现对水下图像的增强。
3. 基于深度学习的水下图像增强算法基于深度学习的水下图像增强算法通常包括以下几个步骤:数据准备、模型构建、模型训练和图像增强。
首先,研究者们收集水下图像数据,并对数据进行预处理,包括图像去噪和颜色校正等。
然后,研究者们构建深度学习模型,通常采用CNN、GAN或者自编码器等网络结构。
接着,利用收集到的水下图像数据对模型进行训练,通过迭代优化模型参数,使其能够更好地学习图像的特征表示和增强规律。
最后,对于新的水下图像,在经过预处理后,利用已经训练好的模型进行图像增强,从而获得更好的图像质量。
空频域图像增强方法研究综述
空频域图像增强方法研究综述郭永坤;朱彦陈;刘莉萍;黄强【期刊名称】《计算机工程与应用》【年(卷),期】2022(58)11【摘要】对于小样本图像数据集往往采用图像增强的方法扩充数据量增加实验的合理性,图像增强算法能够提高图像整体和局部的对比度,突出图像的细节信息,使图像更符合人眼的视觉特性且易于机器识别。
为了深入研究图像增强应用的新思路、新方向,从图像增强算法的基本原理出发,归纳总结了近年来应用比较广泛的空域和频域两大类图像增强算法,包括直方图均衡图像增强算法、灰度变换图像增强算法、空域滤波图像增强算法和频域滤波图像增强算法,分别详细介绍了它们的基本概念和相关定义并简述了其浅层面的优缺点。
另外采用主观和客观的评价方法对这些算法的增强效果进行了对比和分析,并对各算法的优缺点、适用场景和复杂度进行了对比分析,以更深入研究各个图像增强算法的隐含有用信息,以找出鲁棒性、适用性更强的图像增强方法。
实验结果表明,不同的算法都具有各自的特点,针对不同的图像效果不同,增强对比度更适宜采用空域图像增强方法,突出细节更适宜采用频域图像增强方法。
单一的方法无法满足图像处理的需要,优势结合的图像增强算法更有研究意义。
对这些算法的深入研究能够为研究者带来新的契机,拓展新的研究方向,推动整个图像增强技术高水平发展,使图像增强技术在多个学科领域发挥重要作用。
【总页数】10页(P23-32)【作者】郭永坤;朱彦陈;刘莉萍;黄强【作者单位】江西中医药大学计算机学院;江西中医药大学网络中心【正文语种】中文【中图分类】TP391【相关文献】1.基于空域、频域和时间域的复合图像增强方法2.模拟频域滤波重构直方图均衡的图像增强方法3.一种改进的频域非线性外推图像增强方法4.基于频域高通滤波图像增强的改进方法5.基于频域高通滤波图像增强的改进方法因版权原因,仅展示原文概要,查看原文内容请购买。
图像增强算法综述
图像增强算法综述①靳阳阳, 韩现伟, 周书宁, 张世超(河南大学 物理与电子学院, 开封 475001)通讯作者: 韩现伟摘 要: 图像增强算法主要是对成像设备采集的图像进行一系列的加工处理, 增强图像的整体效果或是局部细节,从而提高整体与部分的对比度, 抑制不必要的细节信息, 改善图像的质量, 使其符合人眼的视觉特性. 首先, 本文从图像增强算法的基本原理出发, 归纳了直方图均衡图像增强、小波变换图像增强、偏微分方程图像增强、分数阶微分的图像增强、基于Retinex 理论的图像增强和基于深度学习的图像增强算法, 并讨论了它们的改进算法. 然后,从视觉效果、对比度、信息熵等方面对几种算法进行了定性和定量的对比, 分析了它们的优势和劣势. 最后, 对图像增强算法的未来发展趋势作了简单的展望.关键词: 图像增强; 直方图均衡; 小波变换; 微分方程; Retinex 理论; 深度学习引用格式: 靳阳阳,韩现伟,周书宁,张世超.图像增强算法综述.计算机系统应用,2021,30(6):18–27. /1003-3254/7956.htmlReview on Image Enhancement AlgorithmsJIN Yang-Yang, HAN Xian-Wei, ZHOU Shu-Ning, ZHANG Shi-Chao(School of Physics and Electronics, Henan University, Kaifeng 475001, China)Abstract : Image enhancement algorithm mainly process the captured images to enhance the overall effect or local details,increasing the overall and partial contrast while suppressing unwanted details. As a result, the quality of the images is improved, conforming to the visual perception of the human eye. Firstly, according to the basic principles of image enhancement algorithms, this study analyzes those based on histogram equalization, wavelet transform, partial differential equations, fractional-order differential equations, the Retinex theory and deep learning, and their improved algorithms.Then, the qualitative and quantitative comparisons between image enhancement algorithms are carried out with regard to visual effect, contrast, and information entropy to indentify the advantages and disadvantages of them. Finally, the future development trend of image enhancement algorithms is briefly predicted.Key words : image enhancement; histogram equalization; wavelet transform; differential equation; Retinex theory; deep learning在全球信息化大幅发展的时代, 对于这个世界的认识越来越依靠于信息的爆炸性传递. 大部分人认识世界的主要途径还是眼睛的可视性, 人眼所看到的一切都可以化作图像的形式. 图像的获取、生成、压缩、存储、变换过程自然会受到各种状况的影响, 例如获取图像时会因为天气原因, 不同光照条件, 图像亮度也有着细微的变化, 同样由于仪器设备的质量, 参数的设置, 人员的操作都会使图像质量在一定程度上的损伤, 影响图像的质量. 图像增强算法的出现, 无疑是对受损的图像做一个“修补”的工作, 以此来满足各样的需求. 图像增强的目的是为了适应人眼的视觉特性,且易于让机器来进行识别. 近些年来, 图像增强的发展计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: Computer Systems & Applications,2021,30(6):18−27 [doi: 10.15888/ki.csa.007956] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 收稿时间: 2020-10-12; 修改时间: 2020-11-05; 采用时间: 2020-11-17; csa 在线出版时间: 2021-06-01涉及了很多领域, 其中包括了遥感卫星成像领域、医学影像领域、影视摄影等各领域[1].要想真正地实现图像增强的效果, 首先对于整个图像来讲, 要提高图像部分和整体的对比度, 细节也不能忽略; 其次应提高图像的信噪比, 抑制噪声的产生,对“降质”的图像处理; 然后是对于增强过的图像来讲,避免出现局部增强不适, 影响人眼的观看模式.下面我们将列出几类典型的且应用范围比较广的图像增强算法以及改进的算法. 直方图均衡(HE)技术原理是对原图像的灰度直方图从比较集中的某个灰度区间转换为全部灰度区域内的均匀分布[2]; 由此算法进行转化的局部直方图均衡化[3], 符合图像局部特性; Kim 等提出的保持亮度的双直方图均衡算法(BBHE)[4],最大亮度双直方图均衡(MMBEBHE)算法有效地保持图像亮度[5]; 迭代阈值的双直方图均衡算法(IBBHE)[6]用迭代的方法达到增强对比度和亮度保持的效果; 彩色图像直方图均衡算法[7], 运算复杂度很低, 合并图像的视觉效果很好. 基于偏微分方程(PDE)的增强方法是把图像作为水平集或高维空间中的曲面, 再根据曲线和曲面演化逐步来增强图像的对比度[8]; 基于全变分模型插值的图像增强方法[9], 保留原图像的细节, 提高了对比度; 基于HE的偏微分方程增强方法, 在梯度域增强对比度基础上[10]提出新梯度变换函数. 小波变换中增强本质是图像信号分解为不同频段图像分量[11]; 小波变换图像多聚集模糊增强方法[12], 增强后的图像较为清晰; 基于离散余弦变换(DCT)和离散小波变换(DWT)的图像增强方法, 提高图像的质量, 同时减少计算复杂度和内存使用量[13]; 基于小波分析和伪彩色处理的图像增强方法[14], 在降噪增强的同时进一步提高图像分辨率. 基于量子力学偏微分方程的缺陷图像增强的研究[15]. 基于PDE的红外图像增强, 很好改进了传统对比度增强方法的不足[16]; 基于PDE平滑技术是一种新兴的图像增强滤波技术, 实质性、开创性的研究在图像增强滤波中引入的尺度空间理论[17]. 基于LBPV (Local Binary Pattern Variance)的分数阶微分图像增强算法[18],在图像纹理和细节方面处理效果比现有分数阶算法效果更好; 自适应分数阶微分理论指纹图像增强算法改进了传统分数阶微分形式, 提高了计算精度[19]. 基于多尺度Retinex的HSV彩色快速图像增强算法, 在HSV 颜色模型中有与Multi-Scale Retinex (MSR)等同的结果, 处理时间短[20]; 基于多尺度Retinex的数字射线照相增强算法, 改善对比度, 抑制噪声[21]; MSR与颜色恢复(MSRCR)算法增强的图像在复杂的情况下进行识别物体[22]; 基于变分Retinex方法的图像增强, 良好结合了MSRCR和变分方法的优点, 保证图像自然度[23].近年来, 基于深度学习的图像处理算法迎来了一个新的时代[24]. Hu等利用超分辨卷积神经网络(SRCNN)方法提高了风云卫星亮温图像的峰值信噪比, 结果较传统方法更精细[25]; Li等利用深度学习来增强低光图像, 提出利用深度的卷积神经网络进行学习, 提高图像质量[26].1 图像增强算法的介绍1.1 直方图均衡算法直方图均衡化算法, 简言之就是对图像直方图的每个灰度级来进行统计[3]. 实现归一化的处理, 再对每一灰度值求累积分布的结果, 可求得它的灰度映射表,由灰度映射表, 可对原始图像中的对应像素来进行修正, 生成一个修正后的图像.1.1.1 传统标准直方图均衡算法f HE传统直方图均衡算法是通过图像灰度级的映射,在变换函数作用下, 呈现出相对均匀分布的输出图像灰度级, 增强了图像的对比度. 该算法是相对于图1中n=1, 均衡函数为的简化模型[27], 即:f HEX k= {X0,X1,···,X L−1}其中, 函数代表直方图均衡过程, 其大致过程为: 已知输入和输出图像为X和Y, 总灰度级为L, 则存在, 均衡后输出和输入图之间有如下变换关系:c(X k)其中, 展现的累积概率分布表示函数输入图像灰度级.图1 全局均衡算法的模型L=∞如果输入图像看作一个连续随机变量, 即,则输出图像自然是一个随机变量, 输出图像灰度级均衡后的概率分布将趋于均匀, 则输出图像的亮度均值为:2021 年 第 30 卷 第 6 期计算机系统应用得到均衡后图像的均值分布与原图像无关, 由此可知其不能有效保持原始图像的亮度, 由于原图像各灰度级概率密度的差异, 简并现象的产生明显变多.1.1.2 保持亮度的双直方图均衡算法BBHE 实质是利用两个独立的子图像的直方图等价性[4]. 两个子图像的直方图等价性是根据输入图像的均值对其进行分解得到, 其约束条件是得到均衡化后的子图像在输入均值附近彼此有界作为基于图像均值进行的分割, 均衡后图像均值偏离原始图像均值的现象不会出现, 达到了亮度保持的目的, 其算法流程如下:G mean 1)计算输入图像均值, 根据均值将原始直方图分为左右两个子直方图.P L (i )P R (i )2)分别计算左右两个子直方图的灰度分布概率直方图和, 即:N L N R 其中, 和分别表示左右两个子直方图的总像素数,L 表示图像总灰度级数.cd f L (i )cd f R (i )3)计算左右两子直方图的累积分布直方图和, 即:tab L (i )tab R (i )4)计算左右两个映射表和, 合并之后得到最终的映射表tab , 其中round 表示四舍五入取整, 即:对于一些低照度和高亮的图像, 均值会处于较低和较高的地方, 若此时基于均值进行分割并分别均衡的话, 很大程度上会导致一个有大量数据的子直方图在小范围内进行均衡的情况出现, 另一个只有少量数据的子直方图却在较宽的范围内均衡.1.2 小波变换图像增强算法19世纪80年代Morlet 提出小波变换的概念, 数学家Merey 在十几年后提出小波基构造思想, 随着Mallat 的加入, 两个人共同建立了小波变换算法. 通过小波逆变换将同态滤波处理的低频分量和经自应阈值噪、改进模糊增强的高频分量得到增强处理后的红外图像[28].1.2.1 标准小波变换图像增强小波理论具有低熵和多分辨率的性质, 处理小波系数对降噪有一定作用, 噪声主要在高通系数中呈现,对高低通子带均需要增强对比度和去噪处理. 标准小波变换图像增强(WT)将图像分解为1个低通子图像和3个具有方向性的高通子图像, 高通子图像包括水平细节图像、垂直细节图像和对角细节图像[29]. 小波变换最大的特点是能较好地用频率表示某些特征的局部特征, 而且小波变换的尺度可以不同[30].1.2.2 改进后的小波变换图像增强算法针对传统方法对图像多聚焦模糊特征进行增强会出现图像不清晰、细节丢失现象, 小波变换图像多聚焦模糊特征增强方法, 利用背景差分法将目标图像的前景区域提取出来, 背景区域亮度会随时间发生变化,进而完成背景区域特征更新; 根据全局像素点熵值和预设阈值校正加强模糊特征, 突出小波变换图像边界局部纹理细节信息, 完成增强变换. 基于小波变换域的医学图像增强方法[31], 是基于Shearlet 变换改进的Gamma 校正, 采用改进的伽玛校正对低频进行处理, 利用模糊对比函数增强图像细节, 增强图像的对比度.二进小波变换简单的对信号尺度参数实现了离散化, 不过仍具备和连续小波变换同样的平移不变特性.利用二进小波变换将指纹图像分解[32], 步骤如下:1)首先将获取的指纹图像进行尺度的分解, 这样得到的频率分量为一低三高;2)对低频分量进行直方图均衡;3)对3个高频分量先进行高斯拉普拉斯掩膜锐化, 得到锐化后的图像;4)直方图均衡后的低频分量和处理后的3个高频分量进行二进小波逆变换重构, 得到增强后的图像.1.3 偏微分方程图像增强算法u (x 1,x 2,···,x n )关于未知函数的偏微分方程是形如式(11)的等式:计算机系统应用2021 年 第 30 卷 第 6 期x =(x 1,x 2,···,x n )Du =u x 1,u x 2,···,u x n 其中, , , F 是关于x 和未知函数u 加上u 的有限多个偏导数的基础函数. 偏微分方程(Partial Differential Equation, PDE)是微分方程的一种, 如果一个微分方程出现多元函数的偏导数, 这种方程就是偏微分方程[33].1.3.1 标准偏微分方程图像增强V l o (p )V l (p )l o V l o (p )V l (p )l o l o l o 假设和分别为两幅图像和l 的对比度场, 若与在每一点上具有相同的梯度方向,但前者大小均大于后者, 则图像应该比l 具有更高的对比度, 可以将看作l 的增强图像. 实际上, 从图像l 到图像的过程就是标准PDE 图像增强实现的过程,可以由以下式子来描述它们的关系:V l o (p )式中, 为增强后图像的对比度场; k 为增强因子,一般情况下k >1, 过大的话会增大噪声. 对于式(12),图像l 是已知的, 其解为:φl o (p )式中, 是一个与坐标无关的常数. 可看到两幅图像之间的动态范围存在k 倍的差距. 对于可在计算机屏幕上显示的数字图像, 其动态范围为0 ~ 255. 我们要做到先要对的对比度场进行约束, 之后开始按照步骤运算, 最后才能得到比较准确的数据.1.3.2 改进的偏微分方程增强方法∇u max ∥∇u ∥min为避免增强图像梯度场同时造成噪声的危害加剧,寻找一种比较适合的增强方法. 定义原图像的数值梯度函数为, 梯度模的最大值为, 最小值为, 增强之后的图像梯度为S [10]:∥∇u ∥[min ∥∇u ∥,max ∥∇u ∥][0,max ∥∇u ∥]式中, 表示梯度场的方向信息. 经过改进的梯度函数梯度场从的区域内映射到内. 原本纹理突显出来的同时保留梯度值较大的边缘.基于量子力学偏微分方程的缺陷图像增强研究方法[15]. 航空材料缺陷的图像增强对缺陷的定性和定量性能起着至关重要的作用, 由于复合材料分布不均匀,将导致缺陷成像对比度不高, 会让识别和量化的难度加大. 算法主要分为两个步骤: 首先是根据量子力学理论, 计算图像边缘的量子概率; 在此基础上, 建立融合各向异性量子概率的偏微分方程来增强航空材料缺陷图像. 此算法可以在有效抑制噪声和减少成像不均匀性的同时, 更好保留缺陷的特征, 增强图像的对比度.1.4 分数阶微分方程增强算法近些年, 分数阶微积分在多领域都有了突破性进展[34]. 分数阶微分不仅可以提升图像中的高频分量, 还可以以一种非线性形式保留图像中低频分量所带有的性能. 常用的分数阶微分定义有G-L 、R-L 、Caputo 三种定义, 其中最常用的是采用非整型分数阶微积分的G-L 定义[35].1.4.1 图像增强的分数阶微分算子构造m ×n 让图像像素邻域中任一像素与对应系数进行乘法运算, 得到的结果再进行和运算, 得到像素点所在位置的回复, 当邻域的大小为, 要求的系数会很多. 这些系数被排列成一个矩阵, 称为滤波器、模板或者掩模[36].f (x ,y )在整数阶微分方程的增强算子中, 有一类是拉普拉斯算子, 对任一二元连续函数来讲, 其拉氏变换可表示为:f (x ,y )f (x ,y )f (x ,y )x ∈[x 1,x 2]y∈[y 1,y 2]n x =[x 2−x 1]n y =[y 2−y 1]由于在图像中, 两个相邻像素点之间灰度产生差异的距离最小, 因此图像在它的x 和y 方向上灰度值的变化只能以像素之间的最小距离为单位来进行数值度量和分析, 所以的最小等分间隔只能设为: h =1, 如果图像中x 和y 方向的持续区间分别为和, 则最大等分份数分别为和.将上式拉普拉斯变换写成离散的表示形式, 对x 方向和y 方向重新定义, 得到它的二阶微分表示:根据以上定义, 可以得到:拉氏算子还要对处理前后的图像完成进一步的叠加, 其方式如下:2021 年 第 30 卷 第 6 期计算机系统应用在雾天图像中应用算子增强图像, 边缘轮廓还有纹理部分的效果会很容易看到, 不过若是图像像素中某一范围灰度变化不明显, 细节可能受到损失. 因此,构建图像增强的分数阶微分算子, 将整数阶微分扩展到分数阶微分上并且应用于图像增强中[37].1.4.2 改进的分数阶微分算子增强图像相比传统的分数阶微分算法的不足, 提出新的改进算法, 在极端条件处理拍摄的交通图像时, 具有良好效果. 上文提到的指纹图像增强算法, 对传统形式加以改造, 在计算精度上有所提升, 进而构造了更加高精度的分数阶微分掩模. 通过对像素周围的纹理对比从而逐点选择微分阶, 明确的选择了具有二阶精度的分数阶微分形式来构造IRH 算子, 并对算子结构进行相应的改进, 之后利用图像的梯度信息和局部统计信息, 结合中心像素对相邻像素的影响, 建立自适应分数阶微分的自适应函数, 此法保留了指纹纹线和图像纹理细节, 对于降噪起到很好的作用.1.5 Retinex 图像增强算法S (x ,y )L (x ,y )R (x ,y )S (x ,y )L (x ,y )Retinex 是retina(视网膜)和cortexv(大脑皮层)组成的, Retinex 算法由美国物理学家提出[38]. Retinex 理论的基础是人类视觉系统的色彩恒常性, 人类视觉感知系统的色知觉存在“先入为主”的特性, 即光源条件发生改变, 视网膜接收到的彩色信息也会被人们的大脑驳回. Retinex 理论的依据就是是原始图像可以分解为照射图像和反射图像, 最重要的就是让摆脱的影响, 以便得到图像的反射属性.1.5.1 经典的Retinex 图像增强对数域进行操作可以把乘法运算变成简单的加法运算, 进而出现了多种Retinex 算法. 经典的有: 单尺度Retinex 算法(SSR)、多尺度Retinex 算法(MSR)和带色彩恢复的多尺度Retinex 算法(MSMCR)等[39].针对运算速度缓慢的问题, 在1986年, Jobson 等[40]将高斯低通滤波与Retinex 结合, 改进了Land 提出的中心环绕Retinex 算法(Center/Surround Retinex), 提出了单尺度Retinex(SSR)算法. 在SSR 算法中, Jobson 等创新的使用高斯函数与图像进行卷积的方式来近似实现了入射分量的表达. 它的数学表达式如式(20)表示:I i (x ,y )i ∈(R ,G ,B )G (x ,y ,c )∗L i (x ,y )其中, 表示原始图像的第i 个通道分量的像素值,颜色通道中的一个, 表示中心环绕函数, 是一种卷积操作表示, 入射分量的表达可以借用Jobson 等的成果, 则可以看做入射图像的第i 个通道分量. SSR 的实现过程如式(21)至式(23)所示:由于SSR 算法处理要对图像细节对比度和色彩的保留做到很好的发展, 而尺度c 又相对难做到极好的运用, MSR 算法的出现, 在很大程度上解决了这一问题, 起到了平衡图像色彩和细节的良好效果.1.5.2 改进的Retinex 图像增强Retinex 算法对于图像增强的效果需要经过精确且复杂的计算, 最后的结果精确度越高, 增强效果将会更好. 文献[20]中基于多尺度Retinex 的HSV 彩色快速图像增强算法. 在HSV 模型中用多尺度Retinex 进行图像增强, 由于颜色转换的非线性, 计算起来非常复杂. 使用亮度校正的MSR 算法基于HSV 颜色模型和修正的V 频道输出图像的RGB 分量的线性形式减少30–75%的平均处理时间, MSR 算法在Haar 小波变换低频区域应用亮度校正的处理速度有很明显优势, 平均加速度接近3倍. 文献[22,23]中介绍了MSRCR 算法. 由于传统均值移位算法有不少的不足, 改进后, 对要增强的图像可以在情况复杂下进行识别物体, 增强对比度的同时, 光晕现象的产生被消灭, 噪声得到抑制,保证图像自然度. 基于Retinex 提出一种自适应的图像增强方法, 其中包括如下4个步骤: (1)用引导滤波器估计其照度分量; (2)提取图像的反射分量; (3)对反射分量进行颜色恢复校正; (4)后处理. 由于雾霾和照度较低, 自然生成的图像质量比较差, 而此法不管是在定量还是定性上都突出了更好的优势. 此算法最终的结果图像具有清晰的对比度和生动自然的颜色[41].1.6 基于深度学习的图像增强算法在当今社会经济科技奋进之时, 深度学习的发展可谓是如日中天, 特别是在图像增强方面.1.6.1 卷积神经网络图像增强算法神经网络(neural networks)最基本的组成结构是计算机系统应用2021 年 第 30 卷 第 6 期神经元(neuron), 神经元概念源于生物神经网络[42]. 卷积神经网络(Convolutional Neural Network, CNN)在传统神经网络基础上, 引入了卷积(convolution)和池化(pooling), CNN 的建筑灵感来自于视觉感知[43]. CNN 是深度学习领域最重要的网络之一, CNN 在计算机视觉和自然语言处理等诸领域都有很大成就. 卷积神经网络的特性比较突出, 除了可以实现权值共享外, 可调的参数相对来说不多, 对二维图像这类的, 它的平移、倾斜、缩放包括其他形变都拥有着极高的不变性.CNN 相比于一般的神经网络, 具有很大优势[44]: (1)局部连接. 每个神经元只与少数神经元相连, 有效地减少了参数, 加快了收敛速度; (2)重量共享. 一组连接可做到同时分享相同的权值, 进一步降低了所需的参数;(3)降采样降维. 池化层利用图像部分相关的依据对图像进行降采样, 降低运算数据量, 留存有效的信息值.卷积神经网络大致包含4部分, 卷积层、池化层、全连接层以及反卷积层, 各自具有不同作用, 承担独自的工作. 深度越深, 网络性能越好; 随着深度增加, 网络性能逐渐饱和.1.6.2 基于深度学习图像增强的改进算法f o=F (g )F (g )Hu 等基于深度学习方法增强MMSI 亮温图像, 设计卷积神经网络重建风云四号卫星MMSI 的亮温图像和风云三号卫星微波成像仪亮温图像[25]. 在根据SRCNN进行实现映射函数, 式中, g 为监测的天线温度的图像, 可用于复原, 使其尽可能接近地面真实高分辨率亮温图像f . 映射函数F 的完成可以依据学习思想, 构建一种卷积神经网络, 为了让观测图像数据重新构建为理想的高分辨数据, 需要对卷积神经网络进行一系列特征变换, 此过程即达成卷积核的卷积操作.相比古老的插值方法而言, SRCNN 方法除了提高图像的峰值信噪比之外, 在提高图像细节较古老的方法也有很大的提高.2 图像增强算法的评价和对比2.1 各种算法增强效果的分析通过对论文文献研究比对, 以及对于其中的经典算法以及改进的算法, 对应用广泛的上述6大类图像增强算法进行较概括的研究分析.图2是几种不同算法得到的增强图像. 从增强图像的效果来看, HE 增强效果是对图像的动态范围进行拉大实现的, 增强效果随动态范围增加而变差. BBHE算法均衡后的图像在增强对比度的同时很好保持原图像的平均亮度. IBBHE 根据各子图像的直方图分别进行独立的均衡化处理, IBBHE 增强效果更好. WT 算法增强图像细节信息, 但是增加了噪声. 小波变换图像多聚集模糊增强方法, 对图像增强后, 图像较为清晰, 细节没有丢失, 效果较好. PDE 和TVPDE 算法放大了图像对比度场, 增强后图像都有较高对比度[45]. 自适应分数阶微分可以很好降噪. SSR 和MSR 算法去除了图像中照度分量影响, 还原景物本身的亮度信息, MSRCR 处理后的图像比原图像细节增加了, 亮度有所提高, 颜色有一定矫正, 对颜色的恢复存在失真现象. 基于深度学习的图像增强算法通过复杂的神经网络, 进行大量的训练, 得到的模型同时减少了训练时间, 取得了更好的精度.2.2 算法增强效果的对比对一幅图像的增强效果来讲, 需要对图像对比度和信息熵来进行评价和比较, 可以对图像有很好认识.图像对比度的计算公式:I i ,j 其中, 为中心像素点的灰度值, N 为图像局部块内像素点的个数. 为了计算一幅完整图像的对比度, 需要对图像中所有部分块对比度总体的平均值来表示.图像的信息熵公式如下:p (k )式中, 为灰度级k 的概率密度, M 为最大的灰度级.表1中为第一幅图通过不同算法得到的图像质量的客观结果评价, 评价指标为对比度和信息熵. 通过对文献中算法的研究以及本文中对增强算法的分析对比, 我们得到表2中对不同算法优缺点的总结.3 增强算法发展趋势及有意义的研究方向根据上文所介绍的不同图像增强算法及实验分析对比结果, 可预见未来的图像增强算法发展将有以下特点: 超分辨率、多维化、智能化和超高速.1)超分辨率, 对获得的低分辨率图像进行增强从而得到超高分辨率的图像, 重点是对采集分辨率以及显示分辨率做进一步的提升, 突破技术壁垒限制, 向时空感知超分辨率迈进.2021 年 第 30 卷 第 6 期计算机系统应用。
low light image enhancement 综述
low light image enhancement 综述进入低光照条件下的图像增强技术。
低光图像增强是一项用于改善在光线较暗的环境下拍摄的图像质量的技术。
这个话题是由中括号内的主题"low light image enhancement"确定的。
在本文中,我们将详细介绍低光图像增强的基本概念、应用、算法和评估指标。
我们将一步一步地回答以下问题:1. 什么是低光图像增强?2. 为什么需要低光图像增强?3. 低光图像增强的基本原理是什么?4. 常见的低光图像增强算法有哪些?5. 如何评估低光图像增强算法的性能?6. 低光图像增强的应用领域有哪些?7. 未来低光图像增强技术的发展方向是什么?一、什么是低光图像增强?低光图像增强是指改善在光线较暗的条件下拍摄的图像质量的过程。
在低光条件下,图像会受到噪声、模糊和细节丧失等问题的影响,使得图像质量下降。
因此,低光图像增强的目标是通过算法和技术,提高图像的亮度、对比度和清晰度,以便更好地展示图像细节。
二、为什么需要低光图像增强?低光环境下拍摄的图像常常受到光线条件的限制。
例如,夜晚拍摄、室内拍摄或者阴天拍摄等情况都可能导致图像质量下降。
低光图像增强的目的是在有限的光线条件下,使图像变得更清晰、更明亮,使得观察者能够更好地看清图像细节。
低光图像增强不仅可以改善普通摄影的图像质量,还对安防监控、医学图像、军事侦察等领域的图像质量有重要意义。
三、低光图像增强的基本原理是什么?低光图像增强的基本原理是通过增加图像亮度、对比度和细节来改善图像质量。
常见的低光图像增强算法基于以下几种原理:1. 直方图均衡化:重新分配图像像素的灰度级,使得图像的直方图均匀分布,从而增加图像对比度。
2. 双线性插值:通过插值算法,将图像中过暗的像素与周围的较亮像素加权平均,以提高图像亮度。
3. 傅里叶变换:将图像从空间域转换到频域,利用频域滤波技术去除图像中的噪声和模糊。
图像处理中的图像增强算法综述与比较
图像处理中的图像增强算法综述与比较概述:图像增强是数字图像处理领域的一个重要研究方向,目的是通过改善图像的视觉效果或提取出对应的有效信息。
在现实应用中,图像增强算法被广泛应用于医学图像处理、安防监控、遥感图像分析、电视视频处理等多个领域。
本文将综述与比较目前常用的图像增强算法,包括直方图均衡化、滤波器、Retinex 与算法、小波变换以及深度学习方法。
直方图均衡化:直方图均衡化是一种基本且被广泛使用的图像增强方法。
它通过对图像像素的灰度值分布进行调整,使得图像的像素灰度值能够均匀分布在整个灰度级范围内,从而改善图像的对比度和亮度。
传统的直方图均衡化算法可以有效地增强图像的整体对比度,但往往过度增强细节,导致图像出现失真。
滤波器:滤波器分为线性滤波器和非线性滤波器两种类型。
线性滤波器通常通过卷积运算来修改图像的空间频率特征,常用的线性滤波器包括均值滤波器、高斯滤波器和中值滤波器等。
非线性滤波器如边缘增强滤波器可以通过检测图像的边缘信息来增强图像的细节。
滤波器方法简单直观,但在处理图像噪声、复杂纹理、低对比度等问题时,效果有一定限制。
Retinex 算法:Retinex 算法是一种模拟人眼感知机制的图像增强方法,它主要专注于提高图像的亮度、对比度和颜色鲜艳度。
该算法基于假设,认为图像的亮度和颜色信息可以被分离开来,并通过增强亮度的同时保持颜色信息的稳定性。
Retinex 算法具有较好的图像局部细节增强效果,但对于整体对比度改善不够显著,且在对比度较低的图像上效果不佳。
小波变换:小波变换是一种基于时间-频率分析的图像增强方法,它将图像分解为多个不同频率的子带图像,然后对每个子带图像进行增强处理,并通过逆变换得到最终增强后的图像。
小波变换方法可以有效地增强图像的对比度和细节,能够提取出不同尺度的细节信息,并具有很好的图像重构能力。
但小波变换方法需要选择合适的小波基和阈值参数,且对图像处理时间较长。
深度学习方法:深度学习方法在图像增强领域取得了显著的成果。
(图像增强技术)第四章超分辨率技术综述
超分辨率重建模型
01
02
03
重建目标
从低分辨率图像中恢复出 高分辨率图像,提高图像 的清晰度和细节表现力。
重建模型
描述超分辨率重建过程的 数学模型,通常包括图像 先验知识、正则化项和优 化算法等。
重建模型的作用
为超分辨率重建提供算法 框架和实现方法,有助于 实现高效、稳定和准确的 超分辨率重建。
重建算法分类与比较
主观评价
通过观察超分辨率重建后的图像质量,如边缘清晰度、纹理细节丰富度、色彩鲜 艳度等方面进行评估。这种方法依赖于观察者的主观感受和经验,具有一定的主 观性和不确定性。
客观评价
采用峰值信噪比(PSNR)、结构相似性(SSIM)等客观指标对超分辨率重建后的 图像质量进行定量评估。这些指标可以衡量重建图像与原始高分辨率图像在像素级 别上的相似度,以及结构信息的保持程度,具有客观性和可重复性。
重建算法性能评估
峰值信噪比(PSNR)
一种客观评价指标,用于衡量重建图像与原始高分辨率图像之间的像素级差异。PSNR值越高,说明重建图像的质量 越好。
结构相似性(SSIM)
一种综合考虑亮度、对比度和结构信息的图像质量评价指标。SSIM值越接近1,说明重建图像与原始高分辨率图像在结构 上越相似。
主观评价
基于学习的方法
利用机器学习或深度学习技术,通过学习低分辨率到高分 辨率的映射关系,实现图像的超分辨率重建,如稀疏编码 、卷积神经网络等方法。
基于重建的方法
通过引入先验知识或正则化项,优化重建过程,如最大后 验概率法、迭代反投影法等,能够较好地保持边缘和纹理 信息。
最新研究进展
近年来,随着深度学习技术的快速发展,基于深度学习的 超分辨率方法取得了显著成果,如残差网络、生成对抗网 络等模型的应用。
医学图像处理技术综述
医学图像处理技术综述一、背景介绍医学图像处理技术是指将医学图像数据进行数字化,并通过计算机技术对其进行处理、分析和展示的一种技术。
自20世纪60年代开始,医学图像处理技术就已经开始应用于医学领域,如今已成为医学领域研究和临床诊断中不可或缺的重要技术之一。
二、医学图像处理技术的分类医学图像处理技术主要可分为预处理、分割、配准、重建、识别与分析等几个方面。
下面将一一进行介绍。
1. 预处理预处理是医学图像处理技术中非常重要的一个环节。
预处理主要是针对图像进行预处理,以提高图像的质量和精度。
常见的预处理方法包括滤波、增强、去噪等。
滤波是对图像进行平滑处理,以去除图像中的噪声。
滤波方法较多,如均值滤波、高斯滤波、中值滤波等。
而图像增强则是对图像进行亮度、对比度、色彩等方面进行调整,以增强图像的信息内容。
常见的增强方法包括直方图均衡化、Wiener滤波等。
2. 分割分割是指对医学图像中代表不同组织和器官的像素进行区分,以便对不同的组织或器官进行分析和诊断。
常见的分割方法包括阈值分割、区域生长方法等。
阈值分割是指在图像中设定阈值,将像素根据其灰度值的高低分为不同的区域。
而区域生长方法则是根据像素之间的相似性,将图像分为多个区域。
3. 配准配准是指将不同的医学图像进行对齐,以实现不同图像之间的比较和分析。
常见的配准方法包括刚体变换、非刚体变换、弹性变形等。
刚体变换是指通过旋转、平移、缩放等变换方式,将不同图像进行对齐。
而非刚体变换和弹性变形则更适合对不同形状、尺寸差异较大的图像进行对齐。
4. 重建重建是指将2D的医学图像转化为3D的模型,以更好地进行分析和诊断。
常见的重建方法包括层次重建、投影重建等。
层次重建是通过对2D图像进行横向和纵向的重叠拼接,将其重建为3D模型。
而投影重建则是通过CT等技术,将多个2D图像进行堆叠并投影,最终重建为3D模型。
5. 识别和分析医学图像处理技术的最终目的是对不同的组织和器官进行诊断和分析。
医学影像学习算法的研究综述
医学影像学习算法的研究综述医学影像学作为现代医学领域中重要的一部分,其在疾病诊断、治疗及评估等方面发挥着不可替代的作用。
随着计算机科学、数学和物理学等学科的发展,医学影像学的算法得到了不断的改进和研究。
本文将对医学影像学中常用的学习算法进行综述和探讨。
一. 传统医学影像学算法传统医学影像学算法主要是基于数学和物理学原理的数学模型,用于处理成像数据进行医学应用。
主要的算法包括:1.信号处理算法:主要用于预处理、噪音去除和图像增强。
2.分割算法:用于将图像中的感兴趣区域从背景中分开。
3.配准算法:用于将两幅或以上影像进行对齐,以提高医学影像信息的量和质量。
4.分类算法:用于将数据按照某种特征属性分成类别。
这些传统算法对于一些特定的医学影像应用具有一定的优势,但是往往需要人为干预和较为复杂的操作,因此需要借助机器学习等算法来更加准确地进行影像分析和处理。
二. 机器学习在医学影像学中的应用机器学习是指计算机程序通过学习数据样本来提高自身性能的过程。
在医学影像学中,机器学习算法可以识别并提取图像中的特征,然后将这些特征用于影像分类、配准、分割和增强等任务。
与传统算法相比,机器学习算法具有更高的自动化和效率,同时能够有效提高诊断的准确性和效率。
目前在医学影像学中主要应用的机器学习算法为:1.监督学习算法监督学习算法是指通过已知的标记数据样本,来训练指定分类器,并最终对未知的数据进行分类。
在医学影像分类、疾病检测和分割等任务中,监督学习算法已经成为主流的算法之一。
目前应用最为广泛的监督学习算法为卷积神经网络(CNN)和支持向量机(SVM)等。
2.无监督学习算法无监督学习算法是指通过未标记的数据样本,来学习数据样本中的结构、特征或者其他的信息。
在医学影像配准、分割和聚类等任务中,无监督学习算法具有广泛的应用。
目前应用最常见的无监督学习算法为聚类算法和自编码器算法等。
三. 机器学习在医学影像学中的应用案例1.基于卷积神经网络的影像分类2012年,Alex Krizhevsky等人提出的深度卷积神经网络(Deep CNN)在国际图像识别挑战中取得了极高的成绩,引起了学术界和工业界广泛的关注。
图像增强基本理论综述
摘 要 : 增强是数 字 图像 处理 的最基 本的方 法之 一, 图像 本文 总结 了图像 增强 的基本 理论 , 并对 新的 图像增 强的 方法作 了 简单 介绍 。
Ab ta t I g e h n e nt s f n a ntl n i otn tc n lg i i g p o e sn fed S f n a ntl h oy n sme e sr c : ma e n a c me i a u d me a a d mp ra t e h oo y n ma e rc s ig il . o u d me a te r a d o n w
…【 f f a
,
=
3 图像 增 强 的基 本 理 论 图 像 增 强 技 术 主 要 包 括 : 度 变换 , 方 图修 正 , 灰 直 图像 平 滑 , 图
像 锐 化 及彩 色增 强 等 。从 图像 增 强 的作 用域 出发 可 分 为 两 类 : 空 ① 除梯度算子 以外 ,还可采用 R br 、rwt和 Sb l o e sPe i t t o e 算子计算 域 处理 法 ; 频域 处 理 法 。 ② 梯度 , 未增 强边 缘 。 31空 间域 图像 增 强 技 术 空 间域 指 的是 平 面 本 身 ,空 间 域 图 . ②高通滤波法。 高通滤波法就是用高通滤波算子和图像卷积来 像 增 强 方法 是 对 图像 的像 素 进行 处理 。 可 以定 义 为 f 0 —1 0 1 f 一1 —1 —1 1 gxY)TfxY】 (, : 【 ,) ( () 1 增强边缘。常用的算子有:Il15— I H=— H:一 1 211 9— l 1 其 中 , xY 是输 入 图 像 ,(, ) 处理 后 的 图像 , f ,) ( gx Y是 T是 对 f 一 的 0— 0j 1 【1— 1 一 1— J 种 操作 。 空 间域 图 像增 强技 术 又 可 分 为点 处 理 和 邻域 处理 。 32频 域 图 像 增 强技 术 频 域 ( - 变换 域 ) 像 增 强 操 作 的 基 本原 图
图像增强文献综述(可编辑修改word版)
文献综述题目图像增强与处理技术学生姓名李洋专业班级网络工程 08-2 班学号 200813080223院(系)计算机与通信工程学院指导教师(职称)吴雪丽完成时间2012 年 5 月 20 日综述题目图像增强与处理技术专业班级:网络工程08-2 班姓名:李洋学号:200813080223图像增强与处理技术综述内容摘要数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。
图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。
本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过 Matlab 实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。
关键词:图像增强对比度增强平滑锐化梯度变换拉普拉斯变换AbstractDigital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm.The application of occasions, and its image enhancement method of performance evaluation.Keywords: Image Enhancement histogram enhancement contrast enhancement smoothing sharpening1 图像增强概述1.1图像增强背景及意义在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。
图像处理技术综述
图像处理技术综述图像处理技术是指利用计算机对图像进行处理的一种技术。
图像处理技术广泛应用于电视、摄影、图像识别、医学影像分析等领域。
本文将对图像处理技术进行综述,包括基本概念、常见方法及应用领域。
图像处理技术主要包括图像获取、图像增强、图像恢复、图像编码、图像分割和图像识别等几个方面。
图像获取是指从物理世界中获取图像的过程。
常见的图像获取设备包括摄像机和扫描仪。
摄像机通过感光器将光信号转换为电信号,并经过采样和量化等过程得到数字图像。
扫描仪则通过扫描物体获得图像。
图像获取的质量直接影响后续图像处理结果的准确性。
图像增强是指通过一系列处理方法增强图像的视觉效果。
常见的图像增强方法有直方图均衡化、滤波和锐化等。
直方图均衡化通过调整图像的像素灰度分布来增强图像的对比度。
滤波方法通过去除噪声和平滑图像来增强细节。
锐化方法通过增强图像的边缘和细节来使图像更加清晰。
图像恢复是指通过一系列处理方法恢复损坏或失真的图像。
常见的图像恢复方法有去模糊和去噪声等。
去模糊方法通过估计图像模糊模型来恢复被模糊的图像。
去噪声的方法通过滤波等处理来去除图像中的噪声,从而使图像更加清晰。
图像编码是指将图像数据通过编码压缩算法转换为更小的数据量。
常见的图像编码方法有无损编码和有损编码等。
无损编码方法通过保留所有图像信息来实现压缩,如Huffman和LZW编码。
有损编码方法通过牺牲一定的图像信息来实现更高的压缩率,如JPEG和MPEG编码。
图像分割是指将图像分割为多个子区域的过程。
图像分割可以将图像中的目标物体从背景中分离出来,为后续的图像分析和处理提供基础。
常见的图像分割方法有阈值分割、边缘检测和区域生长等。
图像识别是指根据图像的特征对图像进行分类和识别的过程。
图像识别常用于物体识别、人脸识别和文字识别等领域。
图像识别主要依靠特征提取和分类器来实现。
常见的特征提取方法有SIFT、SURF和HOG等。
常见的分类器有SVM、KNN和神经网络等。
基于深度学习的低照度图像增强技术研究综述
第1期2021年1月No.1January,20210 引言生活中,光线暗,照度低、曝光不足会导致图片整体亮度偏低,噪声大,边缘细节信息丢失严重,影响图像视觉效果,因此对低照度图像进行处理是极有必要的。
早年间,主要采用直方图均衡化、伽马变换、Retinex 理论[1]等方法对低照度图像进行增强。
虽然这些方法在一些程度上可以提高图像的亮度,增强图像的可读性,但同样存在一些棘手的问题无法解决,如:增强后的图像色彩不均,颜色失真,图像有大量光晕出现。
后来,随着深度学习在不同领域的应用取得不错成果后,大量学者开始将目光投向于用深度学习的方法增强低照度图像。
目前,经过大量实验证明,基于深度学习的方法在低照度图像增强上具有可行性。
增强后图像无论从主观的视觉体验还是客观的图像质量评价方面的表现都十分出色。
1 传统的低照度图像增强算法目前,应用比较广泛的传统的低照度图像增强算法主要分为4类,分别是基于色调映射算法、基于背景融合算法、基于直方图均衡化算法和基于模型算法[2]。
1.1 基于色调映射算法色调映射技术产生于20世纪90年代,主要通过扩展低照度图像的动态范围,提高图像的亮度,改善图像的光照不均匀性。
色调映射方法可以大致分为两类:全局方法与局部方法。
全局方法对图像的动态范围变换中的每个像素应用相同的变换曲线,选择不同的曲线可以达到不同的视觉效果。
这种算法计算简单,实现容易。
但是由于对图像中所有像素的变换相同,得到的图像在色度、亮度和细节方面都有一定的损失。
局部色调映射算法的实质是图像中每个像素的映射曲线都是同邻域像素信息相关的,其优势在于通过对图像局部特征进行处理,弥补了全局算法不能保留局部特征的缺点。
1.2 基于背景融合算法背景融合类算法是将白天的亮度信息融合到夜间的图像中,利用白天背景的亮度来增强夜间图像的像素,从而达到增强人眼视觉的效果。
侯雷等[3]曾采用平均K 帧的方法获取白天背景,再利用Retinex 理论提取了白天背景和夜间视频帧的亮度,采用帧差法提取了夜间视频帧的移动物,将相同场景的白天背景亮度融合夜间帧的视频以达到图像增强的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像增强算法研究综述刘璐璐宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100)E-mail:****************摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。
关键词:图像增强直方图均衡化直方图规定化平滑处理近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。
它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。
对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。
在图像处理过程中,图像增强是十分重要的一个环节。
1.图像增强概念及现实应用1.1 图像增强技术图像增强是数字图像处理的基本内容之一。
图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。
这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。
11.2图像增强技术的现实应用目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。
其中最典型的应用主要体现以下方面。
1.2.1通讯领域包括图像传输、电视电话、电视会议等,主要是进行图像压缩甚至理解基础上的压缩是把文字、图表、照片等图像通过光电扫描的方式变成电信号加以传送。
1.2.2遥感航空遥感和卫星遥感图像需要用数字技术加工处理,并提取有用的信息。
主要用于地形地质,矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测预报,环境污染监测,气象卫星云图处理以及地面军事目标的识别。
1.2.3生物医学领域图像处理在医学界的应用非常广泛,无论是在临床诊断还是病理研究都大量采用图像处理技术。
它的直观、无创伤、安全方便的忧点受到普遍的欢迎与接受。
其主要应用如X射线照片的分析,血球计数与染色体分类等。
目前广泛应用于临床诊断和治疗的各种成像技术,如超声波诊断等都用到图像处理技术。
有人认为计算机图像处理在医学上应用最成功的例子就是X射线CT(X-ray Computed Tomography)。
1.2.4军事、公安等方面的应用军事目标的侦察、制导和警戒系统、自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等。
1.2.5工业生产中的应用在生产线中对产品及部件进行无损检测是图像处理技术的重要应用领域。
该领域的应用从70年代起取得了迅速的发展,主要有产品质量检测、生产过程的自动控制、CAD/CAM 等。
在产品质量检测方面,如食品、水果质量检查,无损探伤,焊缝质量或表面缺陷。
又如,金属材料的成分和结构分析,纺织品质量检查,光测弹性力学中应力条纹的分析等。
在电子工业中,可以用来检验印刷电路板的质量、监测零件部件的装配等。
在工业自动控制中,23 主要使用机器视觉系统对生产过程进行监视和控制,如港口的监测调度、交通管理、流水生产线的自动控制等。
总之,图像处理技术应用领域相当广泛,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。
2. 图像增强算法图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。
本文重点介绍空间域的图像加强算法,空间域方法直接对图像像素的灰度进行处理。
频率域方法在图像的某个频率域中对变换系数进行处理, 然后通过逆变换获得增强图像。
在空间域内对图像进行点运算, 它是一种既简单又重要的图像处理技术, 它能让用户改变图像上像素点的灰度值, 这样通过点运算处理将产生一幅新图像2.1灰度变换灰度变换可调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。
它是将原图中的灰度f(x,y) 经过一个变换函数g=T[f] 转化成一个新的灰度g(x,y) 即g(x,y)=T[f(x,y)] (2-1)灰度变换可使灰度动态范围加大,根据变换函数的形式,灰度变换分为线性变换,分段性变换和非线性变换。
2.1.1线性变换在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。
这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。
采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。
令图像f(i ,j)的灰度范围为[a,b],线性变换后图像g(i,j )的范围为[a´,b´],如图1-1所示,g(i,j)与f(i,j)之间的关系式为:4这种线性变换使灰度小于a 和灰度大于b 的像素灰度强度强行变换成a 和b ,增强了图像中绝大多数像素的灰度层次感。
2.1.2分段线性变换为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。
设原图像f(x,y )在[0,Mf ],感兴趣目标的灰度范围在[a,b ],欲使其灰度范围拉伸到[c,d ],则对应的分段线性变换表达式为:⎪⎩⎪⎨⎧≤≤+---<≤+---<≤=f f g M y x f b d b y x f b M d M by x f a c a y x f a b c d a y x f y x f a c y x g ),(]),()][/()[(),(]),()][/()[(),(0),()/(),((2-4) 图2-4 分段线性变换示意图g(x,y) f(x,y)d c O a b Mg Mf (b )变换结果 (a )原始图像 图2-3 灰度线性变换增强图像对比5对原图像 将其灰度分布区间[a,b ]划分为图中的三个子区间,对每个子区间采取不同的线性变换,通过变换参数的选择实现不同灰度区间的灰度扩张或压缩,因此分段线性变换的使用也是非常的灵活。
增加灰度区间的分割的段数,以及仔细调各个区间的分割点和变换直线的斜率,可对任一灰度区间进行扩展和压缩。
2.1.3非线性灰度变换 当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。
⑴对数变换对数变换的一般表达式为这里a,b,c 是为了调整曲线的位置和形状而引入的参数。
当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。
(2)指数变换指数变换的一般表达式为这里参数a,b,c 用来调整曲线的位置和形状。
这种变换能对图像的高灰度区给予较大的(b )变换效果 []1),(),(-=-a j i f c b j i g (a )原始图像 图2-5 分段线性变换增强图像对比 (2-7)[]c b j i f a j i g ln 1),(ln ),(⋅++=(2-6)6拉伸。
2.2直方图灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图像的概貌。
通过修改直方图的方法增强图像是一种实用而有效的处理技术。
直方图修正法包括直方图均衡化及直方图规定化两类。
2.2.1直方图原理对一幅数字图像,若对应于每-灰度值,统计出具有该灰度值的象素数,并据此绘出象素数-灰度值图形,则该图形称该图像的灰度直方图,简称直方图。
直方图是以灰度值作横坐标,象素数作纵坐标。
有时直方图亦采用某一灰度值的象素数占全图总象素数的百分比(即某一灰度值出现的频数)作为纵坐标。
设变量r 代表图像中像素灰度级,在图像中,像素的灰度级可作归一化处理,这样r 的值将限定在下述范围之内(0≤r≤1)在灰度级中,r=0代表黑,r=1代表白。
对于一幅给定的图像来说,每一个像素取得[0,1]区间内的灰度级是随机的,也就是说,是一个随机变量。
在离散的形式下,用rk 代表离散灰度级,用P(rk)代表概率密度函数,并且有下式成立:式中Nk 为图像中出现rk 这种灰度的像素数,n 是图像中像素总数,Nk/n 就是概率论中的频数,n 是灰度级的总数目。
在直角坐标系中作出rk 与Pr(r)的关系图形,就得到直方图。
2.2.2直方图性质(1)直方图是一幅图像中各像素灰度出现频次的统计结果,它只反映图像中不同灰度值出现的次数,而不反映某一灰度所在的位置。
也就是说,它只包含了该图像的某一灰度像 素出现的概率,而忽略了其所在的位置信息。
(2)任意一幅图像,都有唯一确定的一幅的直方图与之对应。
但不同的图像可能有相同的直方图,即图像与直方图之间是多对一的映射关系。
(3)由于直方图是对具有相同灰度值的像素统计得到的,因此,一幅图像各子区的直方图之和等于该图像全图的直方图。
在实际应用中,有时并不需要考虑图像的整体均匀分布直方图,而只是希望有针对性 的增强某个灰度级分布范围内的图像,因此可人为地改变直方图,使之成为某个特定的形状,即实施图像的直方图均衡化,以满足特定的增强效果1210 )(-=≤≤=l ,,,k 1r 0nn r P k k k r72.3直方图均衡化直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。
直方图均衡化算法是图像增强空域法中的最常用、最重要的算法之一。
它以概率理论作基础, 运用灰度点运算来实现直方图的变换, 从而达到图像增强的目的。
这些方法是不以图像保真为原则的, 它们是通过增强处理设法有选择地突出某些对人或机器分析感兴趣地信息, 抑制一些无用信息, 以提高图像地使有价值。
在实际应用中, 应针对不同的图像应采用不同的图像增强方法,或同时采用几种适当的增强算法进行实验, 从中选出视觉效果较好的、计算不复杂的、又合乎应用要求的一种算法。
2.3.1直方图均衡化原理为了改善图像质量,可以对灰度分布进行变换改变,其中一种方法称为直方图均衡化处理。
直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。
假定变换函数为图2-9 图像及其灰度直方图⎰==r r d P r T s 0)()(ωω(2-10)8式中ω是积分变量,而T(r)就是r 的累积分布函数。
这里,累积分布函数是r 的函数,并且单调地从0增加到1,所以这个变换函数满足T(r)在0≤r≤1内单值单调增加。
可以证明,用r 的累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。
其结果扩展了像素取值的动态范围。