频响指标以及测试方法

合集下载

音频指标简介及测试原理方法

音频指标简介及测试原理方法

音频指标简介及测试原理方法音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。

两者差别越小那末性能越好,而且在普通情况下声音经过某一个通道或者某一系统后,普通都有对原信号的放大和衰减。

信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或者“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷1、信噪比 SNR(Signal to Noise Ratio):(1) 简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。

普通来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。

信噪比普通不应该低于70dB,高保真音箱的信噪比应达到110dB以上。

音频信噪比是指資响设备播放时, 正常声音信号强度与噪声信号强度的比值dB,其计算方法是10LG(PS/PN),其中Ps 和Pn 分别代表信号和噪声的有效功率,也 可以换算成电压幅值的比率关系: 20LG (VS/VN), Vs 和Vn 分别代表信号和噪 声电压的“有效值” O (3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号 的幅度换算出来的,通常的方法是:给 放大器一个标准信号,通常是0. 775Vrms 或者 2Vp-p@lkHz,调整放大器 的放大倍数使其达到最大不失真输出 功率或者幅度(失真的范围由厂家决定, 通常是10%,也有1%),记下此时放 大器的输出幅Vs,然后撤除输入信号, 测量此时浮现在输出端的噪声电压,记(2)计算方法:信噪比的计量单位是 1=31为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了.或者是10LG(PS/PN), 其中Ps和Pn分别代表信号和噪声的有效功率计权:这样的测量方式彻底可以体现设备的性能了。

收音机FM指标测试方法

收音机FM指标测试方法

收音机指标测试方法及仪器一、仪器1:双踪示波器2:失真仪3:双针毫伏表4:电源5:高频信号发生器6:低频信号发生器二、测试方法FM指标测试1:最大灵敏度将高频信号发生器发射90MHz频率,调制度22.5 KHz,调制频率1KHz,被测机也调到90MHz的接收频率,电位器开到最大,调节高频信号发生器的输出电平,使毫伏表的指针指到标准输出,此时高频信号发生器的dB数即是最大灵敏度。

2:-30DB实用灵敏度将高频信号发生器发射90MHz频率,调制度22.5 KHz,调制频率1KHz,被测机也调到90MHz的接收频率,调节高频信号发生器的输出电平(假设20dB),此时调节被测机电位器使毫伏表的指针指到0dB,去调制,调节毫伏表的旋扭倒腿三挡,此时看毫伏表的指针是否指到0dB,若指针未到0dB,则降低高频信号发生器的输出dB数,若指针超过0dB,则提高高频信号发生器的输出dB数再重测,直到毫伏表的指针指到0dB,此时高频信号发生器的输出dB数为-30dB实用灵敏度。

3:-3DB极限灵敏度将高频信号发生器发射98MHz频率,调制度22.5 KHz,调制频率1KHz,调制电平60dB,被测机也调试到98MHZ的接收频率,调节被测机电位器使毫伏表的指针指到0dB,降低高频信号发生器的调制电平,使毫伏表的指针降低3dB,此时高频信号发生器的输出dB数为-3dB极限灵敏度。

4:IF中频频率将高频信号发生器发射90MHz频率,调制度22.5 KHz,调制频率1KHz,被测机也调到90MHz的接收频率。

电位器开到最大,此时将高频信号发生器发射10.7MHz的中频频率,调节高频信号发生器的输出电平,使毫伏表的指针指到标准输出。

再细调高频信号发生器的发射频率,使毫伏表的指针指到最高,此时高频信号发生器的发射频率即为IF中频频率。

5:中频抑制将高频信号发生器发射90MHz频率,调制度22.5 KHz,调制频率1KHz,被测机也调到90MHz的接收频率,电位器开到最大,调节高频信号发生器的输出电平,使毫伏表的指针指到标准输出,(即为最大灵敏度,读取其dB数)。

汽车音响FM电气指标测试与方法

汽车音响FM电气指标测试与方法

汽车音响FM电气指标测试与方法汽车音响的FM电气指标测试是对音响系统中的FM收音机部分进行性能评估的过程。

主要包括以下几个方面的测试指标:1.接收灵敏度:指FM收音机在接收弱信号时的表现能力。

测试方法是在周围环境噪声较低的条件下,逐渐减小输入信号的强度,观察收音机能否正常接收并播放出声音。

2.频率响应:指FM收音机在不同频率下的输出信号幅度与输入信号幅度之间的关系。

测试方法是输入一系列不同频率的信号,记录输出信号的幅度,并与输入信号进行比较。

通过这样测试可以获知收音机在不同频率下的音质表现。

3.信噪比:指FM收音机输出信号中有效音频信号与噪声信号之间的比值。

测试方法是将输入信号中的音频部分与噪声部分分离开来,分别测量二者的功率,计算二者之间的比值。

4.谐波失真:指FM收音机输出信号中出现的与原始信号频率成整数倍关系的失真信号。

测试方法是输入一个纯净的正弦信号,然后观察输出信号中是否存在频率为原始信号频率整数倍的分量。

共振频率:指FM收音机的输入输出电路在一些特定频率上的共振现象。

测试方法是输入一个频率可变的信号,观察在哪个频率上输出信号幅度最大。

通过这样测试可以了解收音机设计中的共振点,并调整元件参数以改变共振频率。

除了以上几个主要的FM电气指标测试外,还可以对FM收音机进行其他一些性能测试,如调谐稳定性、立体声分离度、声道平衡等。

测试方法可以根据实际情况选择合适的方法和仪器设备进行。

值得注意的是,测试要求在合适的实验环境中进行,避免外界干扰对测试结果的影响。

同时,测试时要保证输入信号的稳定性和准确性,以获得可靠的测试数据。

最后,根据测试结果进行评估,提出改进方案,以进一步提高汽车音响FM电气性能。

频响曲线测试指导书

频响曲线测试指导书

文件编号FJ-WI-GC-13-33
版 本A/1
生效日期2013.8.1
工具:酒精、布
频响曲线测试作业指导书
批准: 审核: 编制:适用范围:耳机、喇叭听筒、咪头频响曲线测试
注意事项
1、每日开始测试之前要点检
2、培训合格后方可操作
3、灵敏度:110±3dB
4、阻抗:32±15%
操作步骤:
1、打开主机电源开关,自动进入测试系统
2、通过功能菜单选择测试项目:
喇叭测试:测试喇叭听筒灵敏度和频1、频2点声级、1KHZ交流阻抗,以及喇叭听筒频率特性曲线
参数设定:在器件参数中设定:电阻32Ω,测试低频100,测试高频10000,SPL下限107,
SPL上限113,其他参数通过设定电阻由系统自动调整;在系统参数中设定:稳定时间15S 阻抗测试:阻抗测试也就是为的F0测试,测试喇叭听筒谐振点频率(F0),谐振点阻抗,1KHZ阻抗参数设定:在器件参数中设定:电阻32Ω,测试低频200,测试高频2500,SPL下限107,
SPL上限113,其他参数通过设定电阻由系统自动调整;在系统参数中设定:稳定时间15
3、设置完成后开始测试
技术参数:
1、F10按键:退出并储存Esc:退出不储存
测试选择端口测试话筒显示屏
测试方法。

音频通用指标及测试方法

音频通用指标及测试方法
生产部音频通用测试方法
测试项目
1、外观及安装工艺 2、噪音 3、功率 ห้องสมุดไป่ตู้、最小源 5、短路/过载 6、频响 7、高低音增益 8、稳定性
标记、外观及安装工艺
标记应清可见 。 丝印颜色、位置、大小正确、清晰度高,不
应漏印、错印、多印等现象。 旋钮对应标识,旋转时不应偏心、磨擦; 附
件安装正确牢固 。 按键响声清脆,标识正确,手感良好。 机器内元件整齐,扎线美观,无脏物,黑胶
稳定性
功放处于满功率衰减10dB状态。 去掉负载,在输出并上容性负载(分别是:
102PF,103 PF,104PF,224 PF,474 PF,1uF)在100HZ 1KHZ 10KHZ三点均要 测试。 输出不应有自激(输出突然增大)现象。
按规定打好,高压纸、地线纸按规定贴好。
噪音
输出接标准负载(30W:333Ω 60W:166Ω 120W:83Ω 240W:41Ω )。
音调电位器开到中间,其他电位器开最大。 无信号输入时,功放的输出即是噪音。
功率
输出接标准负载。 音调电位器开到中间,其他电位器开最大。 输入接1kHZ信号,调整功放音量电位 器,
使失真达到1%的输出值。 通过公式:P=U*U/R计算功率 。
最小源
功放处于满功率状态。 信号发生器输出电平就是功放的最小源电动
势。
短路/过载
功放处于满功率状态。 减小1/3负载,功放无保护现象。 减小2/3负载,功放进入保护状态。 输出端直接断接,功放进入保护状态。
频响范围
功放处于满功率衰减10dB状态。 逐步向高和向低改变频率,直到功放的输出
比1kHz相差3 dB的频率,为功率的频响。

变压器绕组频响曲线的测试

变压器绕组频响曲线的测试

变压器绕组频响曲线的测试
变压器绕组频响曲线测试是用来评估变压器绕组的频率响应特性的一种测试方法。

这项测试可以帮助工程师了解变压器在不同频率下的电气性能,以便进行合适的设计和应用。

在进行变压器绕组频响曲线测试时,通常会采用以下步骤和方法:
1. 准备工作,在进行测试之前,需要准备好测试仪器和设备,包括频率响应分析仪、信号发生器、电压和电流传感器等。

确保所有设备都经过校准,并且符合测试要求。

2. 测试连接,将测试仪器正确地连接到变压器的绕组上,确保信号的准确传递和采集。

3. 频率扫描,通过信号发生器逐步改变输入频率,从低频到高频,记录下每个频率点上的输入电压和输出电压。

4. 数据采集,使用频率响应分析仪采集并记录输入电压和输出电压的数据,以便后续分析和处理。

5. 数据分析,根据采集到的数据绘制频响曲线图,分析变压器
在不同频率下的电压增益和相位响应特性。

通过变压器绕组频响曲线测试,工程师可以评估变压器在不同频率下的响应特性,包括频率响应的平坦度、相位延迟、共振频率等参数,从而为变压器的设计和应用提供重要参考。

这项测试对于确保变压器在实际工作中具有良好的稳定性和性能至关重要。

频响测试方法

频响测试方法

频响测试方法
1. 嘿,你知道吗?频响测试方法里有一种超简单的,就像你找东西,一下子就能发现目标一样!比如说,给音箱做频响测试,就把那个测试信号放进去,然后看看它出来的声音咋样,是不是很直观?这样就能知道音箱在各个频率上表现如何啦,难道不有趣吗?
2. 哇塞!频响测试方法还有个厉害的呢!可以类比成给声音拍个全身照,各个部位都能看得清清楚楚!像用专业仪器去检测耳机的频响,就能清楚知道它在高音低音上的发挥,是不是很神奇?你不想试试吗?
3. 嘿呀!有个频响测试方法简直绝了!就好像是个音乐侦探,一点点找出声音的秘密!比如测试房间的声学特性,通过这种方法,能清楚了解声音在房间里的传播和反射情况,这多有意思呀!
4. 告诉你哦,频响测试方法里有个类似寻找宝藏的方法呢!好比在声音的海洋里捞珍珠!像检测麦克风的频响,就能准确知道它捕捉声音的能力啦,这多让人兴奋啊!
5. 哎呀妈呀!频响测试还有这样一种特别的方法,就跟给声音量尺寸似的!举例说,在汽车音响系统上用这个方法,就能知道音响在车内各个位置的表现差异,是不是很新奇呀?
6. 哇哦!还有一种频响测试方法特别厉害,像是给声音做个全面体检!用在音频设备上,能快速了解它的健康状况呢!比如看到底有没有失真啥的,这可太重要了啦,你能不被吸引吗?
我觉得频响测试方法真的很神奇很重要,能让我们更好地了解声音相关的各种设备和环境,大家一定要好好去了解和运用呀!。

FM指标测试与方法

FM指标测试与方法
A SSG之频率于98MHZ,接收机与之同调于98MHZ,音量于标准输出。
B降低SSG上输出信号强度,使毫伏表下降3dB。
C此时SSG上的输出电平为所求,以dB表示。
六、信噪比(S/N RATIO)[重点测试项目]
1、定义:表示信号输出与杂音之比。
2、条件:VOL标准输出,信号强度60dB,频偏22.5KHZ,调制频率:1KHZ或400KHZ。
3、方法:
A SSG之频率于98MHZ,接收机与之同调于98MHZ,MO/ST开关置于ST状态。
B调节SSG上的输出电平,使接收机的ST灯能刚好点亮为止。
C SSG上的输出电平为所求,以dB表示。
二十一、信噪比(S/N RATIO)[重点测试项目]
1、定义:表示接收机在解码状态下的信号与噪声之比。
3、方法:
A固定SSG之频率于98MHZ,接收机与之同调于98MHZ。
B从SSG上输出60dB信号到接收机内
C调整VOL,使失真仪上的失真度为10%
D此时,看毫伏表上的电压值换算成功率,以W表示。功率换算公式:P=U²/R
P表示功率,U表示电压,R表示电阻。
十六、最大输出功率(MAX OUTPUT POWER)[重点测试项目]
B调谐SSG频率,使接收机输出最大(电平可用60dB)。
C降低SSG之电平数,使刚刚看得出波形,再细调SSG之频率微调,使输出最大为止。
D然后再将PVC转到最高端。
E用B、C之同样方法使输出达到最大。
F记录此时最高频率和最低频率之差为所求。
二、中频频率(INTERMEDIATE FREQUENCY)[重点测试项目]
3、方法:
A固定SSG之频率于98MHZ,接收机与之同调于98MHZ。

汽车音响指标测试方法

汽车音响指标测试方法

汽车音响指标测试方法1、电源电压无特殊要求以12伏(V)为准,上下极限为10.5V-16V。

2、喇叭阻抗为4欧。

3、输出功率以1W为标准输出(即2V)。

4、测试BASS、TRE、LOUD、EQ模式要全部处于初始状态下进行。

5、天线输入阻抗必须与指标相符。

FM指标测试方法(1测试khz22.5%DEV)一:30dB实用灵敏度(USABLESENSITIVITY)《S/N:30dB》。

1、定义:以获得信号对杂音比为30dB的标准输出,需要输入的信号强度。

2、条件:频率-FM波段频偏-22.5KHZ调制频率-1KHz或400Hz电平强度-不定位VOL-标准输出。

3、方法:先将机器收正为90Mhz(98Mhz、106Mhz),电平(LEVEL)打在正常dB(40左右),音量收细至0dB处,然后去掉信号(即打下ON/OFF钮)再扭毫伏表三下,(即30dB,每扭一下为10Db),然后调信号发生器的电平(LEVEL),使没信号时指针与有信号的指针重复(若没重复也不能超过1个dBM),最后电平(LEVEL)显示的dB数就是此机的30dB实用灵敏度。

二、3%失真敏度(I.F.HSENSITITV《75khzDEV30%T.H.D》1、定义:表示接收机失真度为3%时的灵敏度。

2、条件:频率-90.1/98.1/106.1MHZ频偏-75KHZ调制频率-1KHz或400Hz电平强度-不定位VOL-不定位。

3、方法:先将机器收正为90Mhz(98Mhz、106Mhz),调制度打在78%,将失真仪打在DIST、10%(-20Db)档,然后分别调整音量电位器和发生器的电平(LEVEL)dB数,使失真仪指针指在3%失真灵敏度(例如:电平(LEVEL)dB数为11,那么3%失真灵敏度就是11)。

三、-3dB极限灵敏度(-3dBLIMITINGSENSITIVITY)1、定义:表示输出信号强度值,使输出从完全限制条件下降低3DB。

汽车音响指标测试方法

汽车音响指标测试方法

汽车音响指标测试方法汽车音响是车辆中非常重要的组成部分,对于驾驶者和乘客来说,音乐的品质和声音效果会直接影响驾驶乐趣和旅途舒适度。

因此,在购买汽车音响时,我们需要测试一些指标以评估其音质和效果。

下面将介绍几种常见的汽车音响指标测试方法。

1.频率响应测试:频率响应是指汽车音响在各个频率范围内的声音输出能力。

测试方法可以通过使用频率发生器和音频分析仪来进行。

首先,通过频率发生器产生不同频率的测试信号,然后将测试信号输入到汽车音响中,通过音频分析仪来测量输出的声音强度。

通过测试不同频率下的声音输出能力,可以评估汽车音响的频率响应范围和均衡性。

2.失真测试:失真是指汽车音响在音频放大过程中所引入的额外音频成分。

测试方法可以通过使用失真分析仪来进行。

首先,通过播放一个标准音频信号,将其输入到汽车音响中,然后使用失真分析仪来测量输出音频信号的失真程度。

常见的失真包括谐波失真和交调失真。

通过测试失真水平,可以评估汽车音响的音质优劣。

3.功率输出测试:功率输出是指汽车音响的输出功率大小。

测试方法可以通过使用功率测试仪来进行。

首先,将功率测试仪连接到汽车音响的输出端,然后通过播放不同音频信号,测量输出音频信号的功率水平。

通过测试功率输出水平,可以评估汽车音响的音量大小和推动力。

4.信噪比测试:信噪比是指汽车音响在音频放大过程中的信号和背景噪声的比例。

测试方法可以通过使用信噪比测试仪来进行。

首先,将信噪比测试仪连接到汽车音响的输出端,然后通过播放一个静音的音频信号,测量背景噪声水平,再通过播放一个标准音频信号,测量信号强度。

通过测试信噪比,可以评估汽车音响的音质和抗干扰能力。

5.声场定位测试:声场定位是指汽车音响在播放音频时,声音在车内的定位效果。

测试方法可以通过使用声场定位测试软件和麦克风来进行。

首先,将麦克风放置在汽车车内不同位置,然后播放音频信号,在麦克风上接收反射信号,通过声场定位测试软件对反射信号进行分析,测量声音的定位效果。

汽车音响测试标准

汽车音响测试标准

汽车⾳响测试标准汽车⾳响测试标准(FM部分)1,覆盖频率测试被测机处于待测状态,波段调制FM状态,把台钮旋转⾄最低端,数字信号发⽣器频率设置在87.5MHZ,频偏22.5KHZ。

调制频率1KHZ,输⼊电平暂设20DB,把信号发⽣器天线插⼊被测机天线插孔,被测机⾳量开最⼤,调均衡器打到适当位置,旋转发⽣器频率微调⾄被测机输出最⼤,此时发⽣器的频率为被测机低端频率。

把台钮旋转⾄最⾼端,数字信号发⽣器频率设置在108.5MHZ,频偏调制不变,输⼊电平20DB,旋转发⽣器频率微调⾄被测机输出最⼤,此时发⽣器的频率为被测机⾼端频率,此时低端与⾼端为被测机FM覆盖频率。

2,最⼤灵敏度(10 10)被测机处于待测状态,数字信号发器频率设置与90MHZ,频偏22.5KHZ,调制频率1KHZ,输⼊电平暂设20DB,旋转台钮⾄90MHZ,输出标准参考电压2V,输出⾼于2V时,降低信号发⽣器发⽣器输⼊电平⾄输出为2V⽌,此时信号发⽣器的输⼊电平即为被测机低端最⼤灵敏度。

98MHZ,106MHZ测试⽅法⼀样。

让VOL升到最⼤,再降低发⽣器的电平DB,让毫伏表为2V,此时所显⽰的电平DB为最⼤灵敏度。

3,实⽤灵敏度(30DB S/N)被测机处于待测状态,数字信号发器频率设置与90MHZ,频偏22.5KHZ,调制频率1KHZ,输⼊电平暂设20DB,旋转台钮⾄90MHZ,调节⾳量电位器⾄输出电压制2V,然后关去发⽣器调制,调毫伏表DB档调⼩30DB(三个档位),看此时毫伏表指⽰是否为2v,如⼤于2V,侧应加⼤输⼊电平,再调回调制输⼊及调回毫伏表DB档,看毫伏表指⽰是否为2v,⼤于2v,再调⾳量电压器⾄2v为⽌,然后再去调制及毫伏表DB档30DB,输出是否回到原2V处,如低于2v,侧降低输出电平DB数到2V,如此调校多次⾄调准为⽌,调准后数字信号发⽣器输⼊电平即为被测机的低端实⽤灵敏度,98MHZ,106Mhz测发⼀样。

4,信噪⽐被测机处于待测状态,先测试好最⼤灵敏度,然后把输⼊电平增到60DB,调⾳量电位器⾄输出2v,去信号发⽣器调制,调节毫伏表DB档,此时档位DB加表针所读DB数即为被测机的信噪⽐。

频率响应测量的方法

频率响应测量的方法

频率响应测量的方法频率响应测量的方法很多,一般同使用的测试信号有关。

可分为:i. 点测法:完全按定义设计的测量方法,逐个频率输入振幅恒定的正弦信号,逐个点测量相应频率扬声器输出声压级,在频率响应坐标纸上绘出相应的点,把这些不连续的点的平滑连线即为频率响应曲线。

测量耗时、测量有限的非连续频率点,过渡点是推测的。

ii. 扫频自动记录法:使用机械传动的方法改变振荡电路中的电容,使信号的频率连续改变,输出电压恒定,这叫扫频信号,记录仪上记录纸的频率刻度与信号源同步,记录扬声器的输出声压级随频率的变化,即为频率响应曲线,这方法叫扫频自动记录法。

后来,机械扫频信号改成电压控制频率的压控振荡器,改进了机械传动的麻烦。

这是60~80年代丹麦B&K 公司为代表的测量技术。

扫频自动测量原理大约已有40年的历史,其测量原理没有变化,改变的只是使用的技术,譬如扫频信号的产生方法,测量传声器测得的数据的采集、处理、运算和输出数据和曲线都可以由计算机完成。

其中需要特别一提的是:对扫频信号的理解和生成技术,连续扫频信号过去理解为点频信号随时间变化,但点频信号是一个连续周期信号,从示波器看到的是一个按周期重复的正弦波形,而扫频信号没有一个频率是经历时间周期的,随扫频时间变化的是它的瞬时频率。

瞬时频率数学上是相位对时间的微分。

可以这样理解:譬如f=100Hz正弦信号的周期是T=0.01秒,其走过的相位φ= 2π弧度(360°),而f=200Hz时,T=0.005秒,其走过的相位仍然是φ= 2π弧度,这样,一个微小时间内的相位变化(等效于相位对时间的微分)同周期成反比,相当于稳态频率。

同稳态信号不同的是它引入扫频速率(S:Hz/s)的概念,瞬时频率fi =S t +f0;t为扫频时间;f0为扫频初始频率。

t和f0确定扫频频率范围。

稳态单频信号的公式是u(t)=Acos(2πft);f为稳态单频信号的频率。

而扫频信号的公式是u(t)=ACos(πSt2),B&K公司的2012音频分析仪的TSR(时选响应)技术中使用的测试信号,就是采用该数学模型生成的信号。

汽车音响产品电性能指标及测量方法

汽车音响产品电性能指标及测量方法

汽车音响产品电性能指标及测量方法汽车音响是指装在汽车中,用于播放音乐或其他声音的设备。

其电性能指标是指衡量汽车音响性能的一系列参数,包括频率响应、失真、信噪比、输出功率等等。

下面将详细介绍汽车音响产品的电性能指标及测量方法。

1.频率响应:频率响应是衡量音响系统对不同频率声音的响应能力,通常以Hz为单位表示。

频率响应曲线显示音响系统对不同频率声音的放大或衰减程度。

在测量频率响应时,使用专业的频谱仪来播放一系列的频率信号,并测量其放大或衰减的程度。

2.失真:失真是指音响系统在放大声音时,输出的声音与输入声音在幅度、相位、谐波含量等方面出现非线性畸变。

常见的失真类型有谐波失真、交调失真等。

测量失真时,可以通过连接音频信号发生器和示波器,将音频信号输入音响系统,然后通过示波器观察输出信号的变形程度。

3.信噪比:信噪比是指音响系统输出信号与噪声信号之间的比值,通常以分贝为单位表示。

信噪比越高,意味着音响系统输出的声音相对于背景噪声更清晰。

测量信噪比时,可以通过连接音频信号发生器和示波器,观察输出信号和噪声信号的幅度比值,并将结果转换为分贝。

4.输出功率:输出功率是指音响系统能够输出的最大功率,通常以瓦特为单位表示。

在测量输出功率时,通常使用电阻负载,通过输入不同频率和幅度的信号,测量输出信号的幅度,并通过功率计计算出输出功率。

除了以上几个主要的电性能指标外,还有一些次要的指标也值得注意,如困扰音指数、扭曲等。

困扰音指数是指汽车内部环境噪声对音响系统输出声音清晰度的影响。

扭曲是指音响系统输出声音时声音形状变形的程度,通常使用全音柱测试法进行测量。

总之,汽车音响产品的电性能指标及测量方法是评估其性能的重要依据。

通过合理的测量方法,可以准确地评估汽车音响产品的声音质量。

汽车音响制造商可以根据这些指标来改进产品设计,以提供更好的音响体验。

耳机的频响线性度评估

耳机的频响线性度评估

耳机的频响线性度评估耳机是人们日常生活中常见的音频设备,而耳机的频响线性度评估是衡量耳机音质好坏的重要指标之一。

频响线性度评估指的是在不同频率下耳机的音频响应是不是能够保持均衡和真实。

本文将介绍耳机频响线性度评估的原理、常用测试方法以及对测试结果的解读。

一、原理概述频响线性度评估是通过测试耳机在全频段内的音频响应,从而判断耳机对不同频率的声音是否能够准确还原。

频响线性度评估的目标是使得耳机在各个频率下声压级保持一致,即不出现频率响应的明显变化。

这样能够使用户在听音过程中得到更真实、更准确、更平衡的声音体验。

二、测试方法1. 静态频响测试:静态频响测试是最常用的评估耳机频响线性度的方法之一。

测试时,将耳机连接到特定的频率发生器上,逐渐改变频率并测量相应频率下的声压级。

通过绘制频率-声压级曲线,可以直观地观察耳机在不同频率下的响应情况。

2. 反应音频测试:反应音频测试是一种模拟实际音频播放的测试方法。

测试时,将预先录制好的特定频率范围内的音频通过耳机播放,并采集耳机输出的音频信号。

通过比对输入和输出信号的频率响应曲线,可以评估耳机在真实音频播放时的频响线性度。

3. 脉冲响应测试:脉冲响应测试是一种测试耳机动态频响的方法。

测试时,通过向耳机输入短暂的音频脉冲信号,记录下耳机输出的时间域波形。

通过分析脉冲响应的形状和特性,可以得出耳机的动态频响情况。

三、测试结果解读测试结果一般以频率-声压级曲线的形式呈现。

在理想状态下,曲线应该是平直的,每个频率点上的声压级应该保持一致。

然而,在实际测试中,根据耳机的设计和音频特性,频率-声压级曲线可能会有一定的变化和波动。

通过对测试结果的观察和分析,可得出以下结论:1. 频率响应平坦度:频率响应平坦度是评估耳机频响线性度的重要指标之一。

一般来说,频率响应曲线越平坦,耳机在不同频率下的声音表现越均衡。

若频率响应曲线存在剧烈的波动或提升,可能会导致一些频段的声音明显变化,影响音质的准确还原。

收音机(FMAM)的基本原理及相关重要指标定义、标准及具体测试方法.

收音机(FMAM)的基本原理及相关重要指标定义、标准及具体测试方法.

收音机(FM/AM)的基本原理及相关重要指标定义、标准及具体测试方法第一节A M BAND (调幅式收音机)基本原理广播电台将声音信号加到高频电波上即“调制”,意思即用音频信号去调制高频电信号,使高频信号的幅度、频率或相位随音频信号的变化而变化。

“连载”音频信号的高频信号即“载波”。

所谓“调幅”是使高频载波的幅度随音频信号的变化而变化。

但载波的频率不变,经调幅后产生的信号为“调幅波”。

收音机调试位说明1.中频位(IF位)1、中频位有AM中频和FM中频,统称IF位,IF位主要是用来调较中频频率和增益的,按规定AM中频一般为450KHZ/455KHZ/465KHZ 、FM为10.7MHZ。

2、IF位需用仪器:AM中频信号仪、FM中频信号仪、高频示波器、信号衰减器。

3、按图接好仪器与机架接FF.MA.MF.RA.R信号仪上的信号点信号(M)经开关W1转换后,输入到高频示波器背后信号点输入端,为示波器提供频率标点;信号仪上的水平信号(S)经开关W2转换后,输入到高频示波器背后的水平输入端,为示波器提供较机水平线。

AM IF信号(ARF)经衰减器调节后从天线(AM COIL)次级输入;FM IF信号(FRF)经衰减器调节后接到机板的FM 19圈半输入(或者接到天线输入端)。

AM、FM的振荡用104电容短路接地,输出检波/鉴频信号经104 电容耦合接高频示波器INPUT端。

4、将样机放入机架上(样机调试方法后面介绍)调节衰减器、示波器,使AM/FM波形适中且信号不能过强,否则看不出低机,样机波形用标记贴于示波器上,方便较机员鉴别好坏机。

5、IF位波形AM中频要求455时,把455调FM中频要求10.7时,把10.7调到峰点即可,波形如下:到中点即可,波形如下:6、调较方法:将机板放入机架,功能制打到收音位置,波段制打到FM位置,信号仪转换开关打到FM位置,调节FM中频周,如蓝周、橙周等,使波形增益、频率达到样机以上要求,然后再将波段制/信号仪转换开关打到AM位置,调节AM中频周,如(黄周、白周等),使AM波形增益、频率达到样板机要求,波形不应失真。

汽车音响产品电性能指标及测量方法

汽车音响产品电性能指标及测量方法

汽车音响产品电性能指标及测量方法
1.功率:
测量方法:常用的方法是通过在特定负载下测量音响的输出功率。

测试时,音响会连续播放一段特定的音频,然后通过电流和电压的测量来计算输出功率。

2.总谐波失真:
总谐波失真是音响输出信号中所有谐波的总和与输入信号的比值。

谐波是指信号频率的整数倍的频率成分。

测量方法:在特定的测试条件下,通过测量输出信号中各个谐波的幅度来计算总谐波失真。

常用的测试方法是使用谐波分析仪,该仪器可以分析信号的频谱成分。

3.信噪比:
信噪比是指音响输出信号与背景噪声之间的比值。

信噪比越高,表示音响产生的信号越清晰,背景噪声越小。

测量方法:通常采用麦克风测量法来测量信噪比。

在没有输入信号的情况下,测量背景噪声的强度,然后在特定的测试条件下测量输出信号的强度。

两者之间的比值即为信噪比。

4.频率响应:
频率响应是指音响在不同频率下输出信号的幅度变化。

频率响应越平坦,表示音响在所有频率下都能够均衡地输出信号。

测量方法:使用频谱分析仪来测量音响在不同频率下的输出信号强度。

通常,会播放一段包含不同频率的准标准音频,然后通过测量不同频率下
输出信号的幅度来计算频率响应。

除了上述电性能指标外,还有一些其他的指标也可以用来评估汽车音
响产品的性能,如固有噪音、声场宽度和失真率等。

这些指标也可以通过
相应的测量方法进行评估。

频响指标以及测试方法

频响指标以及测试方法

频响频率响应简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。

同失真一样,这也是一个非常重要的参数指标。

一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。

显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。

这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。

实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。

于是,就有了“频响”这个指标。

(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。

)放大器有两种失真:线性失真和非线性失真。

我们通常把后者叫做“失真”,而把前者用其它方式表达出来。

非线性失真我们已经知道了是一种什么情况了。

而线性失真就是指频率和相位方面的“误差”,即频率失真和相位失真。

频率失真及其产生原因频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍然是“相似形”,它不会使放大器对要处理的信号产生“形变”。

一个单纯的频率失真可以看成放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频率失真了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频响频率响应简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。

同失真一样,这也是一个非常重要的参数指标。

一个“完美”的交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大率,并且对于相应的负载具有同等的驱动能力。

显然这在目前技术水平下是完全不可能的,那么针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围内的频率的信号。

这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz,也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。

实际上,根据研究表明,高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放大器甚至会达到0.1~数百KHz。

但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们连这样的要求也不可能达到。

于是,就有了“频响”这个指标。

(附言:指标本身就代表着“不完美”,如果一切都“完美”了,指标也就没有存在的理由了。

)放大器有两种失真:线性失真和非线性失真。

我们通常把后者叫做“失真”,而把前者用其它方式表达出来。

非线性失真我们已经知道了是一种什么情况了。

而线性失真就是指频率和相位方面的“误差”,即频率失真和相位失真。

频率失真及其产生原因频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍然是“相似形”,它不会使放大器对要处理的信号产生“形变”。

一个单纯的频率失真可以看成放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频率失真了。

在电声学上,我们把这种现象称为“频响曲线的不平直”,这里面的“曲线”我们稍后再讲。

对于一台放大器来说,产生频率失真的原因非常多。

和多放大器的内在特性都会影响到这个参数,甚至失真也会插进来一脚(这是测量方法所导致的,后谈)。

总的来说,有如下一些情况会导致频率失真:1、元器件的固有频率特性决定,这是最根本的原因,后面的一些原因实际上都源于这里。

2、采用负反馈技术放大器的开环特性以及负反馈电路本身的频响特性决定。

3、放大器的非线性失真对于测量方法引入的“测量误差”4、放大器的电路设计导致传输特性的非理想化5、安装和制造工艺不完善,引入的外界交流干扰信号导致频响的不平直。

谈到这里,我们会发现,这里有很多原因似乎和“测量方法”有关,所以有必要提一下频响是如何测量和定标的。

频率失真(频响)的测试方法与标注任何可以倍写上说明书的“指标”都是必须借助仪器来测量的,这些指标必须有一个共同的特点,就是“可重复性”,也就是说,只要你用同样的设备,就可以重复得到相同货相近的测量结果。

我们把这一类指标称为“客观指标”,频响当然是属于此类。

频响的测量方法很简单,在放大器的输入端接入一个标准信号发生器,这个信号发生器可以产生标准的正弦波信号,并且可以通过调节使得这个发生器的输出信号的频率发生变化,而幅度不变。

在放大器的输出端接一个标准的纯阻性负载,并且接一个交流电平表,通过读取电平表的数据,就可以测量该放大器的频响特性了。

测量时,为了保证测试结果的可靠和准确,要尽量多地在测试频率范围内选取不同的频率,通常采用的是“对数采样法”,即从一个标准频率(例如1KHz)开始,按照2倍关系向上和向下取点,例如2K、4K、8K……,500、250、125、62.5……,如果嫌这个间隔太大,可以缩小倍数,例如√2,√2/2等等。

将这些对应的频率的输出电平(单位是dB)记录下来,并经过统计计算就可以了。

这里,我们可能会忽视一个问题,就是这个放大器的放大倍数是否可以调整?放大器的输出功率应该使多少呢?不是我要卖关子,而是这里的“玄机”非常大。

由于放大器的特性的不完美,所以会导致放大器在不同的工作状态下的频响特性发生变化。

这叫“测试条件”。

我们时常发现,两个质量完全不同的放大器在频响指标上“好像没什么差别”,是那个质量差的放大器在“说谎”吗?非也,是测试条件根本不同。

放大器在不同的输出功率下,其频响是不同的,通常输出功率越大,其频响指标就越差。

而一个比较负责任的指标标注,应该指“在该放大器的最大不失真功率下测量的指标”,而一些厂家为了回避大功率输出下放大器特性的劣化,使得该指标“看起来好看”,往往采用的是“标准测试方式”,也就是说,在给定放大器放大倍数(增益)的条件下进行测试,而这个放大倍数通常是1。

显然,多数放大器是用来“放大”的,所以这个测试方法实际上并不全面,但是“出于商业目的和测试标准的允许”,这个测试仍然倍认为是“正确”的。

这样,我们就应该注意了,看指标的时候不能只关心那些数值,而应该和测试条件联系起来看。

没有测试条件的指标是毫无意义的。

标准的频响标注方法是XHz~YHz±ZdB,这里的X是指低端频率,Y指高端频率,也就是测试频率的范围,Z表示的是在这个频率范围内,放大器放大倍数的差异。

很遗憾的是,单单看资额嘎指标还是不能完全了解这个放大器的频响特性,于是厂家又给出了另一种表示形式-频响曲线。

频响曲线的两个重要特征频响曲线是在上述的测试电路中,使信号发生器的输出信号频率发生连续变化(即通常说的“扫频”)并保持幅度不变,在输出端通过示波器或者其它一些记录仪将放大器对于这种连续变化相应的输出电平记录下来,就可以在一个座标上描绘出一个电平对应频率的曲线。

这个座标的纵坐标是电平,横坐标是频率。

纵坐标的单位是dB,横座标的单位是Hz(或KHz)。

为了记录方便,横坐标的标尺为对数型的,纵坐标则是线性的。

我们可以看看各个厂家提供的不同器材的频响曲线,我们会发现,即使两个看起来频响指标完全相同的器材,其频响曲线也是非常不同的。

这里我们暂且不讨论频响曲线不同对音质产生的影响,只看频响曲线有那些重要特征需要注意。

这里要着重注意两个特征:平和直。

平是指放大器在工作频率范围内频响的最大差距。

这里我们需要注意的是“工作频率”,对于音频设备来说,我们应该关心的是20~20KHz这一段的情况,如果要求很高,可以将范围扩大到5~40KHz,这已经是足够了。

我们可以看看下图:图中有5条曲线,其中第一条是“理想”的放大器的频响曲线,这是完全不可能的,只能作为一个理论上的东西,同样,2、3也是不可能的,没有一个放大器的频响特性会是一条完美的直线,不管是平的还是斜的都不可能。

因此我们需要放宽一下要求,对于平直的概念需要做一些退让。

我们看到的绝大多数音响器材的频响曲线都应该和4、5图相似。

在这些曲线中,我们会看到一些“峰”和“谷”,也就是放大器在这些峰谷所对应的频率下其放大能力的差异变化。

看频响曲线的时候,不要被曲线的“平滑”或者“崎岖”所迷惑,首先要看看座标的标尺,改变标尺的单位会使曲线看起来差别很大。

比如图4,如果把标尺加大10倍,你大概看到的差不多是一条完美的直线了。

“直”是频响曲线另一个非常重要的特征,它指的就是频响曲线的起伏特征。

某种意义上说,我们对于“直”应该比平要多重视一些,这并不是说直真的比平对音质的影响大,而是因为频响曲线的不直往往暗示了这个器材的其它某些特性有问题,例如高频频响起伏过多,往往说明放大器的开环特性不良,并且负反馈深度不适当,通常伴随着比较严重的瞬态失真。

通常我们认为,放大器的频响特性越平越直就越好,这样放大器对于信号的影响就越少。

通过观察曲线,我们会认为4比5要好。

这里,我们还要注意的是,我们虽然要重点考察5~40KHz这个频段,但是对于不同的器材,我们考核的频段实际上并不完全一样。

例如对于音箱和耳机,这个频段已经足够了,但是对于一些“有源器材”(例如CD唱机、放大器),我们可能需要考核更宽的频段。

这是因为对于这些器材来说,虽然这些频段的声音我们不可能听到,但是这些频段的表现可以揭示这个器材的一些内在素质。

例如,对于一个放大器,如果其频响指标可以高达300KHz,并且负反馈的深度适当,可以说明这台放大器的开环性能极佳,在听感上必然有所体现。

从这个意义上说,这些频段的表现好坏“我们是可以听到的”。

频率失真对声音的影响频率失真对于音质的影响是非常巨大的,很多时候它会完全左右一个人对音质的评价结果。

由于频响对于主观音质评价的影响因素太多,在这里不可能一一举尽,我直挑选一些我认为影响最大的方面来说。

1、对于乐器音色表现的影响从广义的范围来说,音色也是音质的一个组成部分。

我们知道,不同的乐器具有不同的声音特点,基音、泛音、共振相互作用组成了一件乐器的音色特点,音色就是这些基音、泛音、共振的频率以及比例关系。

如果一套系统在频响上不够平直,那么就可能造成音色中各个组成部分的比例发生变化,有些泛音可能被增强了,而另一些泛音可能被削弱甚至难以被听到,这就改变了乐器的音色特征。

由于我们很多时候没有机会对比原来那把乐器的声音,所以这个改变并非极端重要,但是,由于乐器“好听”与否几乎就是音色的代名词,因此,过度破坏音色特点的结果可能会造成这个乐器的声音变得难听,因此对于高要求的人来说,最好不要改变音色特征。

由于频响会对音色产生影响,因此一些器材设计师会巧妙利用这个现象来弥补录音的不足。

对于录音师来说,这种调整也是“家常便饭”,因为他们不可能每张唱片都能“请”到那些“名琴”。

2、对于声场和定位的影响声场是个非常复杂的电声现象,其中频响特性也会在某种程度上影响到声场表现。

由于频响的影响,某些和声场表现有关的声音细节会被弱化或者加强,这就会导致所谓的声场“畸变”。

这是一个非常微妙的影响,实在无法在这有限篇幅文字中完全说明,以后再说。

对于定位来说,情况也是非常复杂,尤其是那些频率范围很宽的乐器,影响就更大。

这一点比较容易理解,距离感和声音的大小有密切的关系,如果频响不平直,乐器在发出某种频率的声音的时候会感觉比发出其它声音要远些或者近些,这样,我们就会感到这个乐器被纵向拉长了,形体发生了变化。

当频响的不平直度严重的时候,我们会感到乐器在前后晃动。

3、对于整体音色的影响这个话题可以非常古老了,这里就不再多说了。

器材的冷、暖,声音的密度、强度都是主要来源于此(当然还有其它因素的影响,进阶篇会有探讨)。

正确认识器材的频响指标对于厂家的频响指标,我们应该给予足够的重视。

但是我们还要记住,这个指标并非“标注”的越高越好,由于我们的耳朵具有一些自身的特性,因此我们需要对频响有个清醒的理解。

相关文档
最新文档