2018-2019学年山东省聊城市冠县七年级(下)期末数学试卷-学生用卷
2018—2019学年度第二学期期末考试七年级数学试卷
2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。
2018—2019学年度第二学期期末教学质量检测七年级数学试题
试卷类型A2018—2019学年度第二学期期末教学质量检测七年级数学试题第Ⅰ卷 (选择题 共30分)一、选择题(本题共10个小题,每小题3分,共30分.) 1. 3的绝对值是( )A .3B .﹣3C .±3D .3 2. 若m <1,则下列各式中错误的是( ) A .3<2+mB .0<1-mC .2<2mD .0>1+m3. 如图,因为直线AB ⊥l 于点B ,BC ⊥l 于点B ,所以直线AB 和BC 重合,则其中蕴含的数学 原理是( )AB .垂线段最短C .过一点只能作一条垂线D .两点确定一条直线4. 2019年6月济宁市有7万多名初中毕业生参加了中考,为了了解7万多名考生的中考数学成绩,从中抽取7000名考生的数学成绩进行统计分析,以下说法正确的是( ) A .这7000名考生是总体的一个样本 B .这7万多名考生的数学成绩是总体C .每位考生是个体D .抽取的7000名考生是样本容量5. 已知点A (4-2x,x -3)在第一象限,则x 的取值范围在数轴上可表示为( )A ..C.. l6. 在方程组2122x y mx y +=-⎧⎨+=⎩中,未知数x y ,满足0x y >+,则m 的取值范围为( )A.3>mB.3≤mC.3≥mD.3<m 7. 如图,下列命题是假命题的是( )A.如果∠1=∠4,那么AB ∥DEB.如果∠2=∠3,那么AD ∥BEC.如果∠5=∠A ,那么AB ∥DED.如果∠ADE+∠BED=180°,那么AD ∥BE第7题图 第8题图8. 如图,在长为20m,宽为16m 的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则花圃的面积是 ( ) A. 64m2B. 32m2C. 128m 2D. 96m 29. 已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为( )A. 3B. 2C. 1D. 410. 若关于x 的不等式组40651x x x m +⎧>++<⎪⎨⎪⎩的解集为4<x ,则m 的取值范围为( )A .4<mB .-4<mC . 4-≤ mD .4m ≥ 二、填空题(本大题共5个小题;每小题3分,共15分.把答案写在题中横线上) 11. 统计得到一组数据,最大值是136,最小值是52,取组距为10,可以分成_________组. 12. 如图,已知AB ∥CD,NP 平分∠MNB,∠1=20°,则∠2=_______________.13. 又是一年毕业季,某班同学到学校门口拍照留念,已知冲一张底片需0.6元,洗一张照片 需要0.4元,每人都要一张照片,要求每人分担的钱不超过0.5元,那么参加合影的同学至少有 人. 14. 已知方程组2237x ay x y +=⎧⎨+=⎩的解也是二元一次方程1x y -=的一个解,则a = .15. 在平面直角坐标系中,对于平面内任意一点y),(x ,若规定以下两种变换:①y)f(x,=y)2,+(x ; ②y)g(x,=(-x,-y),例如按照以上变换有:f(1,1)=(3,1);g(f(1,1)) =g(3,1)=(-3,-1).则f(g(2,5)) = .三、解答题(本大题共7个小题;共55分) 16.计算:(每小题3分,满分6分) (1)()22-3+ (2)3-58-953+++17.(本小题满分6分)完成证明并写出推理根据(在括号中注明理由)如图,已知AB ∥CD ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE =∠E . 求证:AD ∥BC .证明:∵AE 平分∠BAD (已知),∴∠1= ( ). 又∵AB ∥CD (已知),∴∠1=∠CFE ( ).F∴ = (等量代换). 又∵∠CFE =∠E(已知), ∴∠2=∠E (等量代换).∴AD ∥BC ( ). 18.(本小题满分8分)为了传承中国传统文化,我县教体局在全县范围内组织了一次全体学生的“汉字听写”大赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果作为样本进行整理,绘制成如下的统计图表:组别 正确字数x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息完成下列问题:(1)统计表中的m = ,n = ,并补全条形统计图; (2)扇形统计图中“C 组“所对应的圆心角的度数是 ;(3)已知该校共有600名学生,如果听写正确的字的个数不少于24个定为合格,请你估计该各组别人数分布比例校本次听写比赛合格的学生人数.19.(本小题满分7分)已知关于x y ,的二元一次方程y kx b =+的解有34x y =⎧⎨=⎩和12x y =-⎧⎨=⎩.(1)求k b ,的值;(2)当2x =时,求y 的值; (3)当x 为何值时,3>y ?20.(本小题满分8分) 【阅读材料,获取新知】在平面直角坐标系中,两点)y ,x (P 111,)y ,x (P 222,则这两点间的距离为:21221221)-()-(y y x x P P +=.同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于。
2019-2018学年七年级下册数学期末试卷(含答案)二
43cb a21E DCBA七年级下册数学期末试卷一、 选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是 ( )A 、B 、C 、D 、2、调查下面问题,应该进行抽样调查的是 ( ) A 、调查我省中小学生的视力近视情况 B 、调查某校七(2)班同学的体重情况C 、调查某校七(5)班同学期中考试数学成绩情况D 、调查某中学全体教师家庭的收入情况 3、点3(-P ,)2位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( ) A 、 B 、 C 、 D 、5、下列命题中,是假命题的是( ) A 、同旁内角互补 B 、对顶角相等 C 、直角的补角仍然是直角 D 、两点之间,线段最短6、下列各式是二元一次方程的是 ( )A .03=+-z y x B. 03=+-x y xy C. 03221=-y x D. 012=-+y x7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x ,y 的是( ).A 、⎩⎨⎧x –y = 49y =2(x +1)B 、⎩⎨⎧x +y = 49y =2(x +1)C 、⎩⎨⎧x –y = 49y =2(x –1)D 、⎩⎨⎧x +y = 49y =2(x –1)8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( ) A 、10x-5(20-x)≥120 B 、10x-5(20-x)≤120 C 、10x-5(20-x)> 120 D 、10x-5(20-x)<120二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上.9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ .10、⎩⎨⎧=-=+=962_________y x y ax a 时,方程组 ⎩⎨⎧-==18y x 的解为.11、如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 (填一个即可).12、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200 名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约 有 名学生“不知道”.13、甲地离学校4km ,乙地离学校1km ,记甲乙两地之间的距离为km d ,则d 的取值范围为 .三、解答题(本大题共5小题,每小题7分,共35分)14、解方程组1528y xx y =-⎧⎨+=⎩.15、解不等式1322x x -≥+,并把它的解集在数轴上表示出来.16、将一副直角三角尺如图放置,已知∠EAD =∠E =450 ,∠C =300, AE BC ∥,求AFD ∠的度数.17、已知等腰三角形的周长是14cm .若其中一边长为4cm ,求另外两边长.18、如图,已知∠B =∠C .若AD ∥BC ,则AD 平分∠EAC 吗?请说明理由.0 10.1 09.9 0 9.9 10.1 0 9.9 10.1L =10±0.1AC DF图2图121FEDCBAD图24-2 图24-1 图24-4M四、解答题(本大题共3小题,每小题9分,共27分)19、△ABC 在如图所示的平面直角中, 将其平移后 得△A B C ''', 若B 的对应点B '的坐标是(-2, 2). (1) 在图中画出△A B C ''';(2) 此次平移可看作将△ABC 向_____平移了____个 单位长度, 再向___平移了___个单位长度得△A B C ''';(3) △ABC 的面积为____________.(△ABC 的面积可以看作一个长方形的面积减去一些小三角形的面积)20、如图,在四边形ABCD 中,∠A=104°-∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F . 求证:∠1=∠2.请你完成下面证明过程.证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( ) 所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,( ) 所以 ∠1=∠DBC ,( ) 因为 BD ⊥DC ,EF ⊥DC ,( )所以 ∠BDC=90°,∠EFC=90°,( ) 所以 ∠BDC=∠EFC,所以 BD ∥ ,( ) 所以 ∠2=∠DBC ,( ) 所以 ∠1=∠2 ( ).21、某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.计划在年内拆除旧校舍与建造新校 舍共5000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的70%,而拆除校舍则超过计划 的20%,结果拆、建的总面积恰好为5000平方米. (1)求原计划拆、建的面积各多少平方米?(2)若拆除旧校舍每平米需100元,建造新校舍每平米需500元.求实际拆、建的费用共多少元?五、解答题(本大题共3小题,每小题12分,共36分)22、育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题: (1)图1中“电脑”部分所对应的圆心角为 度; (2)样本容量为 ; (3)在图2中,将“体育”部分的图 形补充完整;(4爱好“书画”.23、为了支援灾区学校灾后重建,我校决定再次向灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆,将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.(1)学校安排甲、乙两种货车可一次性把这些物资运到灾区有哪几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费 最少?最少运费是多少?24、操作与探究 探索:在如图24-1至图24-3中,△ABC 的面积为a . (1)如图24-1, 延长△ABC 的边BC 到点D ,使CD=BC ,连结DA . 若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图24-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连结DE .若△DEC 的面积为S 2,则S 2= (用含a 的代数式表示); (3)在图24-2的基础上延长AB 到点F ,使BF=AB ,连结FD ,FE ,得到△DEF (如图24-3).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示)发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图24-3),此时,我们称△ABC 向外扩展了一次.可以发 现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_____倍.七年级期末质量检查数学参考答案一、选择题1、C2、A3、B4、C5、A6、C7、D8、C 二、填空题9、 (8,6) 10、 1 11、13∠=∠,(或14∠=∠,或12180o ∠+∠=) 12、 30 13、3≤d ≤5三、解答题14、解:把①代入②,得 52(1)8x x +-= 2分 解得 2x = 4分 把2x =代入① , 1y =- 6分 所以方程组的解为21x y =⎧⎨=-⎩ 7分1FDAEDCBA15、解:1322x x -≥+ 164x x -≥+ 2分 55x -≥ 4分 1-≤x 5分 不等式得解集在数轴上表示如下:7分16、解: 因为∠C =300,因为AE ∥BC ,所以∠EAC =∠C =300, (3分) 因为∠E =450.所以∠AFD =∠E +∠EAC =450+300=750.(6分) 所以∠AFD 为750. (7分)17、解:若4cm 长的边为底边,设腰长为xcm ,则4+2x =14,解得 x =5. (3分) 若4cm 长的边为腰,设底边为xcm ,则 2×4+x =14,解得 x =6. (6分) 所以等腰三角形另外两边长分别为5cm 、5cm 或4 cm 、6 cm. (7分) 18、解:AD 平分∠EAC ,理由如下: 1分 ∵AD ∥BC ,(已知)∴∠B =∠EAD ,(两直线平行,同位角相等) 3分 ∠C =∠DAC ,(两直线平行,内错角相等) 5分 ∵∠B =∠C , (已知)∴∠EAD =∠DAC . (等量代换) 6分 ∴AD 平分∠EAC .(角平分线定义) 7分(说明:没注明理由不扣分) 四、解答题19、解:(1)图略. 3分 (2) 右 , 1 , 上 , 1 .( 或 上 , 1 , 右 , 1 . ) 7分 (3)△ABC 的面积为5.5. 9分 20、证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( 已知 )所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,(同旁内角互补,两直线平行) 所以 ∠1=∠DBC ,(两直线平行,内错角相等) 因为 BD ⊥DC ,EF ⊥DC ,(已知)所以 ∠BDC=90°,∠EFC=90°,( 垂直定义 ) 所以 ∠BDC=∠EFC,所以 BD ∥EF ,(同位角相等,两直线平行) 所以 ∠2=∠DBC ,(两直线平行,同位角相等) 所以 ∠1=∠2 (等量代换).21、解:(1)设原计划拆除旧校舍x 平方米,新建校舍y 平方米,由题意得: 1分5000(120%)70%5000x y x y +=⎧⎨++=⎩ 4分 解得30002000x y =⎧⎨=⎩ 6分(2)实际拆除与新建校舍费用共为3000×(1+20%)×100+2000×70%×500 7分 =1060000 8分 答:原计划拆除旧校舍3000平方米,新建校舍2000平方米,实际拆、建的费用共1060000元. 9分五、解答题 22、解:(1)126; (2)80; (3)如图所示; (4)287.(每小题3分,共12分)23.解:(1)设学校租甲种货车x 辆,则租乙种货车(8-x )辆, 1分依题意,得 510(8)602010(8)100x x x x +-≥⎧⎨+-≥⎩ , 3分解不等式组,得24x ≤≤, 5分 ∵ x 为正整数,∴ x 的值为2,3,4. 6分∴学校安排甲、乙两种货车可一次性把这些物资运到灾区有3种方案:方案1:租甲种货车2辆,租乙种货车6辆;方案2:租甲种货车3辆,租乙种货车5辆;方案3:租甲种货车4辆,租乙种货车4辆. 9分(2)因为甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,且甲、乙两种货车共租8辆,所以租甲种货车越少,运输费越少.所以方案1:租甲种货车2辆,租乙种货车6辆运输费最少,此时运输费为1200×2+1000×6=8400(元). 12分=___a_____;24、解:探索:(1)S1= 2a;(2)S2(3)S=___6a____.3发现:扩展一次后得到的△DEF的面积是原来△ABC面积的__7___倍.应用:两次扩展的区域花卉面积共为 480 m2.(前面4空每空2分,最后1空4分,共12分)应用:2009年对中国人民来说是一个具有历史意义的年份.60年前,中华人民共和国的成立揭开了中华民族的新纪元.为庆祝国庆60周年,市园林部门决定利用时代广场原有的10m2的△ABC花卉,把△ABC花卉向外进行两次扩展,第一次由△ABC扩展成△DEF,第二次由△DEF扩展成△MGH(如图24-4)的大型花卉.则这两次扩展的区域(即阴影部分)花卉面积共为 m2.。
人教版2018--2019学年第二学期七年数学下册期末测试题及参考答案
人教版2018--2019学年第二学期七年级数学下册期末测试题及参考答案(本试卷满分100分,考试时间100分钟)一、选择题(每题3分,共30分)( )1. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3 C . 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )2. 下列各式是二元一次方程的是:A.y x 21+ B.342=+-y yx C.95-=yx D.02=-y x( )3. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )4. 下列计算正确的是:A.24±=B. 3)3(2-=-C.5)5(2=-D.3)3(2-=-( )5. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A . ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )6. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A.4±B. 2±C. 4D. 2( )7. 若n m >,则下列各式一定成立的是:A.33+<+n mB. 33-<-n mC. 33nm > D. n m 33->-( )8. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个( )9. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A.65≤≤mB. 65<<mC. 65<≤mD. 65≤<m( )10. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种二、填空题:(每小题3分,共18分) 11. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有.............密..............封..............线. .............内..............不..............要.............答.............题..............36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________.12..如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13.课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用)1,2(表示,那么邓祖男的位置可以表示成________.14.把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm. 15. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 16. 已知无理数ba <+<51,并且b a ,是两个连续的整数,则ab 的值为___________.三、解答题:(本大题共8个小题,共52分) 17. (本小题满分6分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2)⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x18. (本小题满分6分) 解下列方程组: (1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x19. (本小题满分5分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示.求图中阴影部分的面积.20. (本小题满分5分)先阅读理解下面的例题,再按要求解答: 例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x 解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.21. (本小题满分6分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 22. (本小题满分5分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.23.(本小题满分9分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元.(1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元? (2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分10分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________. (2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).2018-2019学年度下学期期末测试七年级数学试题参考答案一.选择题二.填空题11. ⎩⎨⎧⨯==+xy y x 2524036 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. 23<a 16. 12三.解答题17. .(1)解:去分母,得6)13(3)12(2≥---x x (1)分去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:所以不等式组的解集:32≤<x …….......................................……6分 18. (1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③②2⨯,得 661210=-y x ④③+④,得 11419=x6=x把6=x 代入①,得(2) 16463=+⨯y(2) ⎪⎩⎪⎨⎧=-++=--+1624)(4)(3yx y x y x y x 解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x52=-y x ④把④代入①,得 1528=+y x ⑤④+⑤,得 1517=x④-⑤,得 1511=y所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x① ②①②24-=y 21-=y所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分) 19. 解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分 20. 解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分解不等式组②,得不等式组②无解………………………..............……………4分故原不等式组的解集为:5132<<-x ……………………........………………5分21. 解:(1)300;....................................………………………2分(2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分22证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC …………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分 答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分(2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24..(1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分 ∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC ∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO即∠GOD+∠ACE=∠OHC…................……..........………….…10分。
人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案
人教版2018—2019学年度第二学期七年级数学(下)期末考试卷及答案(满分:120分答题时间:100分钟)一、选择题(本大题共10小题,每小题2分,共计20分,请将下列各题中A、B、C、D选项中唯一正确的答案代号填到本题前的表格内)1. 下列调查中,适合采用全面调查(普查)方式的是()A.对觅湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查2. 平面直角坐标系中点(-2, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. 下列各数中是无理数的是()A. 3.14B.√16C.23D.√64. 9的算术平方根是()A. ±√9B.3C.-3D.±3 5. 不等式组{6−3x<0x≤1+23x的解集在数轴上表示为()6.新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述()A.折线统计图B.扇形统计图C.条形统计图D.以上都不对7. 已知{x=−1y=2是二元一次方程组{3x+2y=mnx−y=1的解,则m-n的值是()A.1B.2C.3D.48.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“一”方向排列,如: P1 (O,0), P2 (O,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),.. 根据这个规律,点P2017 的坐标为()A. (-504,-504)B.(-505,-504)C. (504, -504 )D.(-504,505 )9. 如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围()A.大于b B.小于a C.大于b且小于a D.无法确定10. 通过估算,估计√19的值应在( ) A. 2〜3之间B. 3〜4之间C. 4〜5之间D. 5〜6之间二、填空题(本题共4小题,每小题3分,共12分)11. 在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M 的“影子点”为M’(yx ,- xy ),点P(-3,2)的“影子点”是点P ’,则点P ’的“影子点”P"的坐标为______;12.如图,在3×3的方格内,填写了一些单项式.已知图中各行、各列及对角线上三个单项式之和都相等,则x 的值应为______;13. 高斯符号[x]首次出现是在数学家高斯(CF.Gauss)的数学著作《算术研究》一书中.对于任意实数x,通常用[x]表示不超过x 的最大整数,如[2.9] =2.给出如下结论:① [-3] =-3,②[-2.9] =-2,③[0.9] =0, ④ [x] + [-x] =0. 以上结论中,你认为正确的有____.(填序号) 14. 计算|√2-√3|+2√2=________;三、本大题共两小题,每小题8分,满分16分)15.已知实数a+9的平方根是±5,2b -a 的立方根是-2,求式子√a -√b 的值。
山东省2018-2019年七年级下册期末数学试卷含答案
山东省2018-2019年七年级下册期末数学试卷含答案1. 9的平方根为()A. 3B. -3C. ±32. 在平面直角坐标系中,点(1,-3)在()A. 第一象限B. 第二象限C. 第三象限3. 下列调查方式,你认为最合适的是()A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B. 旅客上飞机前的安检,采用抽样调查方式C. 了解北京市居民日平均用水量,采用全面调查方式4. 如图,能判定EB∥AC的条件是()A. ∠C=∠ABEB. ∠A=∠ABEC. ∠C=∠ABD5. 课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(,)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A. (5,4)B. (4,5)C. (3,4)6. 若m>n,则下列不等式中成立的是()A. m+a<n+bB. ma<nbC. ma>na7. 在方程组中,如果是它的一个解,那么a,b的值是()A. a=4,b=0B. a=-4,b=0C. a=1,b=28. 如图,数轴上的A、B、C、D四点中,与数-5表示的点最接近的是()A. 点AB. 点BC. 点C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵。
设男生有x人,女生有y人,根据题意,列方程组正确的是()A. 3x+2y=52x+y=20B. 2x+3y=52x+y=20C. 3x+2y=20x+y=52D. 2x+3y=2010. 关于x、y的二元一次方程组2x+y=ax-3y=b的解为(x,y)=(2,-2),则a,b的值分别是()A. a=-2,b=-8B. a=8,b=-2C. a=2,b=-815. 下面是一个按某种规律排列的数阵:1 2 34 5 67 8 n根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n-2个数是3n-6。
(2) 解方程组:$\begin{cases}2x-3y=1 \\3x+4y=717. 解不等式组:$\begin{cases}x+2y<2 \\3x-4y \leq 5根据以上信息,解答下列问题:(1) 问这次被抽检的电动汽车共有几辆?并补全条形统计图;(1) 在图中画出$\triangle A'B'C'$;(2) 写出点$A'$、$B'$的坐标;(1) 求每辆$A$型车和$B$型车的售价各为多少元。
2018-2019学年度人教版七年级下数学期末测评试卷有答案
期末测评( 时间:120分钟满分:120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 )4.下列各数:1.414,,-,0,其中是无理数的为( )A.1.414B.C.-D.05.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x=.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组:19.( 8分 )( 2017·湖南常德中考 )求不等式组-①的整数解.--②20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB∥DF,∠D+∠B=180°, ( 1 )求证:DE∥BC;( 2 )如果∠AMD=75°,求∠AGC的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题:( 1 )a=,b=;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求:( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间:120分钟满分:120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 )4.导学号14154138下列各数:1.414,,-,0,其中是无理数的为( B )A.1.414B.C.-D.05.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A ) A.4种 B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64, ∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组:- ① ②②×2-①×3,得55y=220, 解得y=4.把y=4代入①,得2x-68=24, 解得x=46,原方程组的解为19.( 8分 )( 2017·湖南常德中考 )求不等式组-①-- ②的整数解. ①,得x ≤,解不等式②,得x≥-,∴不等式组的解集为-≤x≤.∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB∥DF,∠D+∠B=180°, ( 1 )求证:DE∥BC;( 2 )如果∠AMD=75°,求∠AGC的度数.( 1 )证明∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°-∠AGB=180°-75°=105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题: ( 1 )a= ,b= ; ( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图30( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示:学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求:( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.点O1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O1的坐标为( 1,1 ),点B1的坐标为( -3,3 );( 1 )三角形AOB的面积为×1×2+×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得-( 2 )-解得答:甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元. ( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元,由题意,得解得答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A类学校a所,则改扩建B类学校( 10-a )所,由题意,得解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
2018-2019学年第二学期期末质量检测七年级数学试题
14.如图,△ABC中,CD是高,CE是角平分线,且 ∠A=60°,∠B=38°,则 ∠DCE的度数是 ▲ . 15.已知 x+y=5,xy=3,则 x2 +y2的值是 ▲ .
16.如图,在 △ABC中,AB=AC=6,AD是高,M,N分别是 AD,AC上的动点,△ABC的面积是 15,
则 MN+MC的最小值是 ▲ .
(第 12题图)
(第 14题图)
七年级数学期末试题第 2页(共 6页)
(第 16题图)
三、解答题(共 86分) 17.(每小题 6分,共 12分)
⑴ 计算:(3mn2)2·(-2m)3 ÷(-4mn)
⑵ 计算:(x-5)(2x+3)-(x-2)2
18.(本题满分 8分) 先化简,再求值:(2x+y)(2x-y)-2x(2x-3y),其中 x= 34,y=-2.
24.(本题满分 14分) 如图,在 △ABC中,AB =AC,∠BAC =60°.在 △ABC的外侧作直线 AP,点 C关于直线 AP的对 称点为 D,连接 AD,BD. ⑴ 依据题意补全图形;(2分) ⑵ 当 ∠PAC等于多少度时,AD∥ BC?请说明理由;(3分) ⑶ 若 BD交直线 AP于点 E,连接 CE,求 ∠CED的度数;(4分) ⑷ 探索:线段 CE,AE和 BE之间的数量关系,并说明理由.(5分)
七年级数学期末试题第 6页(共 6页)
2018-2019学年度第二学期期末质量监测
七年级数学
(满分:150分;考试时间:120分钟)
温馨提示:1.考生姓名、考号及所有答案均填写在答题卡上; 2.答题要求见答题卡上的“注意事项”。
一、选择题(每小题 4分,共 40分)
1.下列图形中,不是轴对称图形的为(▲ ).
2018-2019学年度初一年级第二学期数学期末复习试卷含参考答案
第15题2018-2019学年度初一年级第二学期数学期末复习试卷一.选择题 (每题2分,共16分)1.某球形流感病毒的直径约为0.000 000 085 m ,用科学记数法表示该数据为( )A. 8.5-8B. 85 × 10-9C. 0.85 ×10-7D. 8.5 ×10-8 2.下列各式中,不能用平方差公式计算的是( )A .(2x ﹣y )(2x + y )B .(x ﹣y )(﹣y ﹣x )C .(b ﹣a )(b + a )D .(﹣x + y )(x ﹣y ) 3.下列从左到右的变形,属于分解因式的是( )A .(a + 3)(a ﹣3)=a 2﹣9B .x 2 + x ﹣5= x (x ﹣1)﹣5C .a 2 + a =a (a + 1)D .x 3 y =x ·x 2·y 4.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列 不等式成立的是( )A .ac>bcB .ab>cbC .a + c>b + cD .a + b>c + b5.当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是( )A .7B .3C .1D .﹣76.在ABC ∆中,23A B C ∠=∠=∠,则ABC ∆是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能 7.一个多边形的内角和大于1100°,小于1400°这个多边形的边数是( )A .6B .7C .8D .98.若关于x 的不等式组{0521x a x -≤-<.的整数解只有1个,则a 的取值范围是( )A .2<a <3B .3≤a <4C .2<a ≤3D .3<a ≤4 二.填空题 (每题2分,共16分)9. x 5÷x 3= . 10.分解因式:2x-4y = . 11.已知m + n =5,m n =3,则m 2 n + m n 2= .12.二元一次方程x -y =l 中,若x 的值大于0,则y 的取值范围是 . 13.写出命题“对顶角相等”的逆命题: 14.若x —2y —3=0,则2x ÷4y = .15. 如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则 ∠DGB 的度数为 .B 、C 分别是线段1A B A 1B 1C 1的面积是a ,那么△ABC 的16.如图,A 、面积是 .(用a 的代数式表示)B 1三.解答题17. 计算(每题3分,共6分)(1) (π-1)0-112-⎛⎫ ⎪⎝⎭-22 (2) (-3a )2﹒a 4 +(-2a 2)318.将下列各式分解因式:(每题3分,共9分)(1) 224x xy - (2) 3244y y y -+ (3) 222(1)(1)x y y -+-19. 解下列方程组或不等式(组)(每题3分,共9分)(1){23431y x x y =--= (2)22523x x x +--≤ (3)253(2),1.23x x x x +≤+⎧⎪-⎨<⎪⎩, 并写出其整数解20.(6分)先化简,再求值:(2a + b )(2a ﹣b )+3(2a ﹣b )2+(﹣3a )(4a ﹣3b ),其中a =-1, b =-221.(6分)如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =27°,求∠BED 的度数.22.(8分)己知方程组5214x y ax y a+=+⎧⎨-=-⎩的解x 、y 的值的符号相反. 求a 的取值范围;23.(8分)如图1,△ABC 中,∠C=900,BC=3,AC=4,AB=5,将△ABC 绕着点B 旋转一定的角度,得到 △DEB(1)、若点F 为AB 边上中点,连接EF ,则线段EF 的范围为(2)、如图2当△DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程24.(8分)小明同学有关租车问题的对话:45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到苏州博物馆参观,一天的租G金共计5100元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满.”根据以上对话,解答下列问题:(1)参加此次活动的七年级师生共有________人;(2)客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车最省钱?25.(8分)已知如图1梯形ADEB中,AD⊥MN,BE⊥MN,垂足分别为点D、点E,点C在MN上,CD=BE,∠ACB=90°.(1)求证:∠ACD=∠CBE(2)若DE=8,求梯形ADEB的面积(3)如图2,设梯形ADEB的周长为....,沿着O→A→D→E...m.,AB边中点O处有两个动点P、Q同时出发→B→O的方向移动,点P的速度是点Q的3.倍.,当点Q第一次到达....移动......B.点.时,两点同时停止①两点同时停止时,点P移动的路程与点Q移动的路程之差2m(填“<”,“>”或“=”)②移动过程中,点P能否和点Q相遇?如果能,则用直线错误!未找到引用源。
2018-2019(下)期末七年级数学考试试卷(含参考答案)
2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
2018-2019学年度七年级下期末数学试卷及答案
12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。
2018-2019学年七年级下期末考试数学试卷及答案
228.如果 (x 1)2 2 ,那么代数式 x 2 2x 7的值是 A . 8B . 92018--2019 学年第二学期期末考试初一数学试卷考 生 须 知 1.本试卷共 6 页,共三道大题, 27道小题。
满分 100分。
考试时间 90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、做图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共 30 分,每小题 3分)第 1-10 题均有四个选项,符合题意的选项只有..一个.1.根据北京小客车指标办的通报,截至 2017年 6月 8日 24时,个人普通小客车指标的基准中签几率继续创新低,约为 0.001 22,相当于 817 人抢一个指标,小客车指标中签难 度继续加大 .将 0.001 22 用科学记数法表示应为A .1.22 ×10-5B .122 ×10-3C . 1.22 ×10-3D .1.22 ×10-2 2. a 3 a 2 的计算结果是A . a 9B .a 6C . a 5D . a3.不等式 x 1 0 的解集在数轴上表示正确的是4. 如果-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 35.6.7.A .3如图, A .a 21,是关于 x 和 y 的二元一次方程 ax2y 1 的解,那么 a 的值是B .1C .-1D .-32×3 的网格是由边长为32B . aa 的小正方形组成,那么图中阴影部分的面积是C . 2a 2D . 3a 2如图,点 O 为直线 AB 上一点, OC ⊥OD. 如果∠ 1=35°, 那么∠ 2 的度数是 A . 35° B . 45° C . 55°D . 65°某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示知道香草口味冰淇淋一天售出 200 份,那么芒果口味冰淇淋 的份数是A . 80B . 40C .20D . 10,b14.右图中的四边形均为长方形 . 根据图形的面积关系,写出一个正 确的等式: ______________________ .15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基 本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程 术是《九章算术》最高的数学成就. 《九章算术》中记载: “今有共买 鸡,人出八,盈三;人出七,不足四 . 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出 8 钱,多余 3 钱,每人出 钱,还缺 4 钱.问人数和鸡的价钱各是多少?”设人数有 x 人,鸡的价钱是 y 钱,可列方程组为 ____________ .16.同学们准备借助一副三角板画平行线 . 先画一条直线 MN ,再按如图所示的 样子放置三角板 . 小颖认为 AC ∥DF ;小静认为 BC ∥EF.C .10D . 119.一名射箭运动员统计了 45 次射箭的成绩,并绘制了如图所示的折线统计图 . 则在射箭成绩的这组数据中,众数和中位数分别是A .18,18B . 8,8C .8, 9D . 18,810.如图,点 A ,B 为定点,直线 l ∥AB ,P 是 直线l 上一动点 . 对于下列各值: ①线段 AB 的长②△PAB 的周长 ③△PAB 的面积④∠APB 的度数其中不.会.随点 P 的移动而变化的是A .① ③B .① ④C .② ③D .② ④二、填空题(本题共 18 分,每小题 3 分)311.因式分解: 2m 3 8m . 12.如图,一把长方形直尺沿直线断开并错位,点 E ,D ,B , F 在同一条直线上.如果∠ ADE =126 °,13.关于 x 的不等式 ax b 的解集是 xb b. 写出一组满足条件的 a ,b 的值:aBD你认为的判断是正确的,依据是.三、解答题(本题共52分,第17- 21小题,每小题4分,第22- 26小题,每小题 5 分,第27 小题7 分)2017 0 1 17.计算:( 1)2017(3 )02 1.2 1 218.计算:6ab(2a2b - ab2).35x 17 8(x 1),19.解不等式组:x 10x 6 ,2并写出它的所有正整.数.解...20.解方程组:2x 3y 1,x 2y4.21.因式分解:- 3a3b- 27ab318a2b2 .22.已知m -1,求代数式(2m43)(2m 1) -(2m 1)2(m 1)(m 1)的值EF⊥BC,垂足为F,过点D作DG∥AB交AC于点G.(1)依题意补全图形;( 2)请你判断∠ BEF 与∠ ADG 的数量关系,并加以证明.24.《中共中央国务院关于深化教育改革全面推进素质教育的决定》中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现. ”王老师所在的学校为23.已知:如图,在ABC中,过点A作AD⊥BC,垂足为D,E 为AB 上一点,过点E作加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:1)王老师是第次购买足球和篮球时,遇到商场打折销售的;2)求足球和篮球的标价;3)如果现在商场均以标价的 6 折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60 个,且总费用不能超过2500 元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车” )的现状,北京市统计局采用拦截式问卷调查的方式对全市16 个区,16-65 周岁的1000 名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用 1 次,32.5%的人2-3 天使用1 次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT 业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8% 、93.1% 和92.3%.∴∠ A+∠ B+∠ ACB =180°.使用过共享单车的被访者中, 满意度(包括满意、 比较满意和基本满意) 达到 97.4% , 其中“满意”和“比较满意”的比例分别占 41.1% 和 40.1% ,“基本满意”占 16.2%. 从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9% ;对“付费 /押金”和“找车 /开锁 /还车流程”的满意度分别为 96.2% 和 91.9% ; 对“管理维护”的满意度较低,为 72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:1)现在北京市 16-65 周岁的常住人口约为 1700 万,请你估计每天共享单车骑行人数至少约为 万;2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来; 3)请你写出现在北京市共享单车使用情况的特点(至少一条) .26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180 °”的结论 . 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过 证明来确认它的正确性.请你参考小明解决问题的思路与方法,写出通过实验方法 2 证明该结论的过程受到实验方法 1的启发,小明形成了证明该结论的想法: 实验 1 的拼接方法直观上看, 是把∠1 和∠2 移动到∠ 3 的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象 为几何图形,那么利用平行线的性质就可以解决问题了 小明的证明过程如下:已知:如图, ABC .求证:∠ A+∠B+∠C =180°. 证明:延长 BC ,过点 C 作 CM ∥BA.∴∠ A=∠ 1(两直线平行,内错角相等), ∠ B=∠ 2(两直线平行,同位角∵∠ 1+∠2+∠ACB =180 °(平角定义),27.对x,y定义一种新运算T,规定:T(x,y)(mx ny)(x 2y)(其中m,n 均为非零常数).例如:T (1,1) 3m 3n.(1)已知T(1,1) 0,T (0,2) 8.① 求m,n 的值;T(2p,2 p) 4,② 若关于p的不等式组恰好有 3 个整数解,求a的取值范围;T(4p,3 2p) a(2)当x2y2时,T(x,y) T(y,x)对任意有理数x,y都成立,请直接写出m,n 满足的关系式.∴正整数解为 1,2.17.解:原式=1 2分34分18.解:原式=3212a 3b 223 2a 2b 3.19.解: 5x 17 8(x 1),①x 10. ② 2由①,x 3. 1分 由②,x 2. 2分 2.3分解得 y 1. 把 y1代入③,∴原方程组的解是21.解:原式= 3ab (a 222.解:原式= 4m 22m 2分3ab(a 6m 32. 2, 1.9b23b)2.(4m 23分 4分6ab) ⋯2 分4分4m 1) m 2 12=m 4m 1.3分20.解: 2x 由②, 3y 1,①2y 4.②得x 4 2y .③ 1分当m12 4 1时,原式 =( )44 1165分2018-2019学年度第二学期期末练习 初一数学评分标准及参考答案 、选择题(本题共 30 分,每小题 3分)二、填空题(本题共 18分,每小题 3分)把③代入①,得 8 4y 3y 1.三、23.(1)如图. ⋯⋯1分(2)判断:∠ BEF=∠ADG. ⋯⋯2 分证明:∵ AD⊥BC,EF ⊥BC,∴∠ ADF =∠EFB=90∴ AD∥ EF (同位角相等,两直线平行).∴∠ BEF=∠BAD(两直线平行,同位角相等).⋯⋯3分∵DG∥ AB ,∴∠BAD = ∠ADG (两直线平行,内错角相等).⋯⋯4分∴∠ BEF =∠ ADG. ⋯⋯5 分24.解:(1)三;(2)设足球的标价为x 元,篮球的标价为y 元.⋯⋯1分根据题意,得6x 5y700,3x 7y710.解得:x 50,y 80.答:足球的标价为50 元,篮球的标价为80元;⋯⋯ 4 分(3)最多可以买38 个篮球.⋯⋯5分25.解:(1)略.1分项目骑行付费/ 押金找车/ 开锁/还车流程管理维护满意度97.9%96.2%91.9%72.2% 2)使用共享单车分项满意度统计表3)略.26.已知:如图,ABC .求证:∠ A+∠B+∠C =180 °.证明:过点A作MN ∥BC. ⋯⋯1 分∴∠ MAB=∠ B,∠NAC=∠C(两直线平行,内错角相等).⋯3 分∵∠ MAB +∠ BAC+∠NAC=180°(平角定义),∴∠ B +∠BAC+∠C =180°.5分m 1, ⋯⋯2分 n1.(2p 2 p)(2p 4 2p) 4①, (4p 3 2p)(4 p 6 4p) a ②.∵恰好有 3 个整数解,42 a 54.2) m 2n27.解:①由题意,得 (m n) 0,8n 8. ②由题意,得解不等式①,得 p 解不等式②,得 p1. a 18123分1pa 18 12 4分a 18 123.6分 7分。
2018-2019学年七年级下期末考试数学试卷(含答案)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018-2019学年七年级下期末考试数学试卷(含答案)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试
绝密★启用前鲁教版(五四制)2018--2019学年度第二学期七年级期末考试数学试卷注意事项:1.做卷时间100分钟,满分120分 2.做题要仔细,不要漏做 一、单选题(计30分)1.(本题3分)1∠和2∠是两条直线1l , 2l 被第三条直线3l 所截的同旁内角,如果12//l l ,那么必有( )A .∠1=∠2B .∠1+∠2=90°C .11129022∠+∠=︒ D .∠1是钝角,∠2是锐角2.(本题3分)等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为( ) A .65° B .65°或115° C .50° D .50°或115° 3.(本题3分)下列各式中,属于一元一次不等式的是( ) A .3x -2>0 B .2>-5 C .3x -2>y +1 D .3y +5<1y4.(本题3分)若不等式组的解集为0<x <1,则a 、b 的值分别为( )A .a=2,b=1B .a=2,b=3C .a=﹣2,b=3D .a=﹣2,b=1 5.(本题3分)等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形的底角度数是A .70°B .55°C .35°D .55°或35° 6.(本题3分)如果不等式组恰有3个整数解,则a 的取值范围是( )A .a≤﹣1B .a <﹣1C .﹣2≤a <﹣1D .﹣2<a≤﹣1 7.(本题3分)如图,能判定的条件是( )A .B .C .D .8.(本题3分)下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面9.(本题3分)一个三角形的两个内角和小于第三个内角,这个三角形是( )三角形.A .锐角B .钝角C .直角D .等腰10.(本题3分)一个口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸到白球的概率是( )A .B .C .D . 二、填空题(计32分)11.(本题4分)如果方程3x 3m -2n -2y m +n+16=0是关于x ,y 的二元一次方程,那么m -n =____12.(本题4分)不等式的正整数解是________________.13.(本题4分)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,若AB =10,CD =3,则S △ABD =______.14.(本题4分)已知|2x+y+1|+(x+2y ﹣7)2=0,则(x+y )2=________.15.(本题4分)如图,中,DE 是AC 的垂直平分线,,的周长为16cm ,则的周长为______.16.(本题4分)如图,一艘船在A 处遇险后向相距50海里位于B 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置___________.17.(本题4分)用直尺和圆规作一个角等于已知角的示意图如下,则利用三角形全等能说明∠A ′O′B′=∠AOB 的依据是_________.18.(本题4分)抽屉里有尺码相同的2双黑袜子和1双白袜子,混放在一起,•在夜晚不开灯的情况下,随意拿出2只,它们恰好是颜色相同的1双的概率是_________. 三、解答题(计58分)19.(本题7分)解方程组:(1); (2).20.(本题7分)如图,在△ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,AB=3cm ,BC=2.5cm ,△ABD 的面积为 2cm 2,求△ABC 的面积.21.(本题7分)如图,已知AF 分别与BD 、CE 交于点G 、H ,∠1=50°,∠2=130°. (1)BD 与CE 平行吗?为什么?(2)若∠A=∠F ,探索∠C 与∠D 的数量关系,并说明理由.22.(本题7分)有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个,如果每只猴子分5个,有一只猴子分得的桃子不足5个.你能求出有几只猴子,几个桃子吗?23.(本题7分)如图:E是的平分线上一点,,,垂足为C,求证:;≌.24.(本题7分)如图,AB∥DE,∠B=70°,∠D=135°.求∠C的度数.25.(本题8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.26.(本题8分)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.为了节约资金,小明应选择哪一种购买方案?请说明理由.参考答案1.C【解析】∵12//l l ,∴∠1+∠2=180°(两直线平行,同旁内角互补), ∴11129022∠+∠=︒, 故选C. 2.B【解析】如图①所示,当等腰三角形一腰上的高在三角形外部时,已知∠DBA =25°∵AD 是三角形ABC 的高,∴∠BDA =90°. ∵∠BAC =∠DBA +∠BDA ∠DBA =25°∠BDA =90°,∴∠BAC =115° 当等腰三角形一腰上的高在三角形内部时,如图②所示,则有∠BDC =90°,∠ABD =25°∵∠BDC =∠BAC +∠ABD ∠BDC =90° ∠ABD =25°,∴∠BAC =65° 所以顶角的度数为65°或者115°,故答案选B. 3.A【解析】根据一元一次不等式的概念,由含有一个未知数的,且未知数的次数为1的整式构成的不等式,因此可知A是一元一次不等式,B没有未知数,C含有两个未知数,D含有分式.故选:A点睛:此题主要考查了一元一次不等式的概念,解题时,明确概念内容:一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,然后据此判断即可. 4.A【解析】解①得,x>2-a;解②得,12bx+ <;∵不等式组的解集为0<x<1,∴20{112ab-=+=,解之得,2{1ab==;故选A.5.D【解析】试题解析:①如图1,∵AB=AC,∠ABD=20°,BD⊥AC,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°.②如图2,∵AB=AC,∠ABD=20°,BD⊥AC,∴∠BAC=20°+90°=110°∴∠ABC=∠C=(180°-110°)÷2=35°.故选D.6.C【解析】【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【详解】由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选C.【点睛】本题主要考查了解不等式组,关键是正确理解求解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.D【解析】试题分析:同位角相等、内错角相等、同旁内角互补都可以判定两条直线平行A和B中的角不是三线八角中的角;C中的角在同一个三角形中,故不能判定两直线平行.D中内错角∠A=∠ABE,则EB∥AC.故选D.考点:平行线的判定8.B【解析】选项A,抛掷一次硬币,都有2种情况,即正、反,所以每次掷出硬币时出现正面朝上的概率为0.5,选项A错误;选项B,“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业,选项B正确;选项C,一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后不一定可以取到红球(每次取后放回,并搅匀),选项C 错误;选项D ,抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,不一定一次出现正面,一次出现反面,选项D 错误.故选B. 9.B【解析】解:三角形的三角内角和等于180度,如果其中两个内角之和小于第三个内角,说明第三个内角大于90度,因此这个三角形是钝角三角形;故选B . 10.C 【解析】 试题解析:根据题意,摸到白球的概率是故选C . 11.15【解析】试题解析:有题意可得:321{1,m n m n -=+=解得: 35{ 2.5m n ==1.5m n ∴-=故答案为: 1.512.1,2,3【解析】分析:先把这个不等式的解集求出,再把这个范围内的正整数写出即可.详解:∵∴不等式的正整数解是1,2,3.点睛:解一元一次不等式的依据是不等式的性质,所以熟练掌握不等式的性质是解题的关键. 13.15【解析】【分析】根据角平分线上的点到角的两边距离相等求出点D到AB的距离,然后根据三角形的面积公式列式计算即可得解.【详解】作DE⊥AB于E,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,DC⊥AC,DE⊥A,∴DE=CD,∵AB=10,CD=3,∴S△ABD=.故答案为:15.【点睛】本题考查角平分线的性质.14.4【解析】∵|2x+y+1|+(x+2y﹣7)2=0,∴,∴3x+3y=6,即x+y=2,∴(x+y)2=22=4.点睛:(1)一个代数式的绝对值和平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.15.24cm【解析】【分析】由线段垂直平分线的性质可得,,结合条件可求得,代入可求得答案.【详解】解:是AC的垂直平分线,,,的周长为16cm,,,即的周长为24cm,故答案为:24cm.【点睛】考查线段垂直平分线的性质,利用线段垂直平分线上的点到线段两端点的距离相等把的周长转化成的周长与2AE的和是解题的关键.16.南偏西15°,50海里【解析】如下图,内错角相等,所以A位于B,南偏西15°,50海里.17.SSS【解析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',则∠COD≌∠C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故答案为:SSS.点睛:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.18.【解析】可以画树状图或列举出所有情况,看从盒子里拿出的2只袜子恰好是1双的比例,即可求出答案.19.(1);(2).【解析】【分析】根据加减消元法,可得方程组的解.【详解】(1)②-①,得x=3,解得x=.将x=代入①得-=6,解得y=-9.所以原方程组的解为(2)②×6,得3(x+y)-(x-y)=6,③①-③,得-3(x-y)=0,即x=y.将x=y代入③,得3(x+x)-0=6,即x=1.所以y=1. 所以原方程组的解为【点睛】掌握解答方程组的方法是解答本题的关键.20..【解析】【分析】根据角平分线性质作出辅助线,求出高长,即可求解. 【详解】在△ABD 中,∵△ =⋅,AB=3cm,S△ABD=2cm2,∴ =过D 作DF⊥BC 于F.∵BD 平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∴ =在△BCD 中,BC=2.5cm, =∴△ =⋅ =()2∵S△ABC=S△ABD+S△BCD,∴△ = 2 +=()2【点睛】本题考查了角平分线的性质,利于角平分线的性质正确地作出辅助线是解题的关键.21.(1)BD∥CE;(2)∠C=∠D【解析】【分析】(1)根据对顶角相等得出∠DGH的度数,再由平行线的判定定理即可得出结论;(2)先根据BD∥CE得出∠D=∠CEF,再由∠A=∠F得出AC∥DF,据此可得出结论.【详解】(1)解:BD∥CE,∵∠1=∠DGF=50°,∠2=130°,∴∠2+∠DGF=130°+50°=180°,∴BD∥CE;(2)解:∠C=∠D,理由是:∵∠A=∠F,∴AC∥DF,∴∠D+∠DBC=180°.又∵BD∥CE,∴∠C+∠DBC=180°,∴∠C=∠D.【点睛】本题考查的是平行线的判定与性质,熟知平行线的判定定理与性质是解答此题的关键.22.30只猴,149个桃;31只猴,152个桃【解析】试题分析:设有x只猴子,则有(3x+59)个桃子,由题意即可列出不等式组:,解此不等式组并求出其正整数解即可求得本题要求的答案.试题解析:设有x只猴子,则有(3x+59)个桃子,由题意得:,解得:,∵只能取整数,∴或31,当时,;当时,;答:猴子的只数为30或31,对应的桃子的数量为149或152个.23.(1)见解析;(2)见解析.【解析】【分析】首先根据角平分线的性质可得,,然后证明≌可得;根据全等三角形的判定方法,证明≌即可.【详解】证明:是的平分线上一点,,,,,在和中,,≌,;≌,,,在与中,≌【点睛】此题主要考查了角平分线的性质,以及全等三角形的判定与性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.24.∠BCD=25°.【解析】【分析】根据两直线平行,同旁内角互补,内错角相等,即可解答.【详解】过点C向右作CH∥DE.∵CH∥DE,∴∠DCH+∠D=180°.∵∠D=135°,∴∠DCH=180°-∠D=180°-135°=45°.又∵AB∥DE,CH∥DE,∴AB∥CH,∴∠B=∠BCH.∵∠B=70°,∴∠BCH=70°,∴∠BCD=∠BCH-∠DCH=70°-45°=25°.【点睛】本题考查了平行线的性质.解题的关键是正确作出辅助线.25.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.【详解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.26.购买1本大笔记本和4本小笔记本;理由见详解.【解析】【分析】设买大笔记x本,根据共花钱不超过28元,且购买的笔记本的总页数不低于340页,列不等式组;解不等式组,根据x取正整数即可得到满足题意的x值,进而可得不同的方案,再结合表格中的单价进行计算,得到不同方案所对应的花费,然后比较即可求出节约资金的一种方案.【详解】解:设小明购买大笔记本x本,则购买小笔记本(5-x)本.根据题意,得解不等式组,得1≤x≤3,故整数解有1,2,3,∴小明的购买方案共有三种:第一种:大笔本1本,小笔记本4本,需花费资金1×6+4×5=26(元);第二种:大笔记本2本,小笔记本3本,需花费资金2×6+3×5=27(元); 第三种:大笔记本3本,小笔记本2本,需花费资金3×6+2×5=28(元). ∵26<27<28,∴小明应选择第一种购买方案,即购买1本大笔记本和4本小笔记本. 故答案为:购买1本大笔记本和4本小笔记本;理由见详解.【点睛】本题考查一元一次不等式组的应用.。
2018-2019学年人教版七年级第二学期期末数学试卷及答案详解
2018-2019学年人教版七年级第二学期期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在下列各组数中2,π-,17-,25,0.131131113⋯(相邻两个3之间多一个1),无理数有()A.2个B.3个C.4个D.52.(3分)如图,下列说法中,正确的是()A.因为180A D∠+∠=︒,所以//AD BC B.因为180C D∠+∠=︒,所以//AB CD C.因为180A D∠+∠=︒,所以//AB CD D.因为180A C∠+∠=︒,所以//AB CD 3.(3分)下列各组数中互为相反数的是()A.3-与13B.(2)--与|2|--C.5与25-D.2-与38-4.(3分)同一个平面内,若a b⊥,c b⊥,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对5.(3分)81的算术平方根是()A.9±B.3±C.9D.36.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知58EFG∠=︒,则BEG∠等于()A.58︒B.116︒C.64︒D.74︒7.(3分)如图,直线//a b,射线DC与直线a相交于点C,过点D作DE b⊥于点E,已知125∠=︒,则2∠的度数为()A .115︒B .125︒C .155︒D .165︒8.(3分)下列方程组中是二元一次方程组的是( )A .22102x y y x +=⎧⎨=⎩B .150x y x y ⎧+=⎪⎨⎪+=⎩ C .00x y y z +=⎧⎨+=⎩ D .31x y =⎧⎨=⎩9.(3分)已知实数a 在数轴上的位置如图,则化简2|1|a a -+的结果为()A .1B .1-C .12a -D .21a -10.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若四边形ABED 的面积等于8,则平移距离等于( )A .2B .4C .8D .1611.(3分)已知坐标平面内的点(2,4)A -,如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A 的坐标是( )A .(1,6)B .(5,6)-C .(5,2)-D .(1,2)12.(3分)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是()A .9B .3C .3D .3± 二、填空题(本题8小题,每小题3分,共24分)13.(3分)若方程||1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为 .14.(3分)比较大小:3718- 13-. 15.(3分)已知一个数的平方根为3a +与215a -,则这个数是 .16.(3分)若点(24,33)P m m ++在x 轴上,则点P 的坐标为 .17.(3分)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为 .18.(3分)已知5的小数部分是a ,7的整数部分是b ,则a b += .19.(3分)已知第二象限内的点A 到x 轴的距离为6,到y 轴的距离为3,则点A 的坐标 .20.(3分)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),⋯,按这样的运动规律,经过第2018次运动后,动点P 的坐标是 .三、解答题(共60分)21.(10分)如图,ABC ∆在直角坐标系中,(1)请写出ABC ∆各点的坐标;(2)若把ABC ∆向上平移2个单位,再向左平移1个单位得到△A B C ''',在图中画出三角形ABC 变化后的位置,写出A '、B '、C '的坐标;(3)求出ABC ∆的面积.22.(12分)计算:(1)2(1)(23)|32|---+-(2)22312()2564|2|2-⨯++-÷- 23.(8分)已知21a b =⎧⎨=⎩是方程组2(1)21a mb na b +-=⎧⎨+=⎩的解,求2018()m n +的平方根. 24.(8分)阅读下列解答过程,在横线上填入恰当内容.解方程:2(1)4x -=解:2(1)4x -=Q (1)12x ∴-=,(2) 3x ∴=.(3) 上述过程中有没有错误?若有,错在步骤 (填序号)原因是请写出正确的解答过程.25.(10分)已知:如图,在ABC ∆中,BD AC ⊥于点D ,E 为BC 上一点,过E 点作EF AC ⊥,垂足为F ,过点D 作//DH BC 交AB 于点H .(1)请你补全图形.(2)求证:BDH CEF ∠=∠.26.(12分)如图,已知//AB CD ,//EF MN ,1115∠=︒.(1)求2∠和4∠的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6 ,求这两个角的大小.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在下列各组数中2,π-,17-,25,0.131131113⋯(相邻两个3之间多一个1),无理数有( )A .2个B .3个C .4个D .5【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有2,π-,0.131131113⋯(相邻两个3之间多一个1),共3个, 故选:B .【点评】本题考查了无理数的定义,能理解无理数的定义的内容是解此题的关键,注意:无理数包括三方面的数:①开方开不尽的根式,②含π的,③一些有规律的根式.2.(3分)如图,下列说法中,正确的是( )A .因为180A D ∠+∠=︒,所以//AD BCB .因为180CD ∠+∠=︒,所以//AB CDC .因为180AD ∠+∠=︒,所以//AB CD D .因为180A C ∠+∠=︒,所以//AB CD【分析】A 、B 、C 、根据同旁内角互补,判定两直线平行;D 、A ∠与C ∠不能构成三线八角,因而无法判定两直线平行.【解答】解:A 、C 、因为180A D ∠+∠=︒,由同旁内角互补,两直线平行,所以//AB CD ,故A 错误,C 正确;B 、因为180CD ∠+∠=︒,由同旁内角互补,两直线平行,所以//AD BC ,故B 错误; D 、A ∠与C ∠不能构成三线八角,无法判定两直线平行,故D 错误.故选:C .【点评】平行线的判定:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.3.(3分)下列各组数中互为相反数的是( )A .3-与13B .(2)--与|2|--C .5D .2-【分析】首先根据绝对值的定义化简,然后根据相反数的定义即可解答.【解答】解:A 、3-与13不符合相反数的定义,故选项错误; B 、(2)2--=,|2|2--=-只有符号相反,故是相反数,故选项正确.C 无意义,故选项错误;D 、22-=-2=-相等,不符合相反数的定义,故选项错误.故选:B .【点评】此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.4.(3分)同一个平面内,若a b ⊥,c b ⊥,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对【分析】由已知a b ⊥,c b ⊥进而得出a 与c 的关系.【解答】解:a b ⊥Q ,c b ⊥,//a c ∴.故选:A .【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(3( )A .9±B .3±C .9D .3【解答】解:Q9=,又2(3)9±=Q ,9∴的平方根是3±,9∴的算术平方根是3.3.故选:D .【点评】此题主要考查了算术平方根的定义,解题的关键是知道81实际上这个题是求9的算术平方根是3.注意这里的双重概念.6.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知58∠等于()EFG∠=︒,则BEGA.58︒B.116︒C.64︒D.74︒【分析】根据平行线的:两直线平行,内错角相等.可知58∠=∠=︒,再根据EFAFE FEC 是折痕可知58∠=︒利用平角的性质就可求得所求的角.FEG【解答】解://Q,AD BC58∴∠=∠=︒.AFE FEC而EF是折痕,∴∠=∠.FEG FEC又58Q,∠=︒EFG∴∠=︒-∠=︒-⨯︒=︒.180218025864BEG FEC故选:C.【点评】本题考查平行线的性质、翻折变换、矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(3分)如图,直线//⊥于点E,已a b,射线DC与直线a相交于点C,过点D作DE b知125∠的度数为()∠=︒,则2A.115︒B.125︒C.155︒D.165︒【分析】如图,过点D作//c a.由平行线的性质进行解题.【解答】解:如图,过点D作//c a.则125CDB ∠=∠=︒.又//a b ,DE b ⊥,//b c ∴,DE c ⊥,290115CDB ∴∠=∠+︒=︒.故选:A .【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.8.(3分)下列方程组中是二元一次方程组的是( )A .22102x y y x+=⎧⎨=⎩ B .150x y x y ⎧+=⎪⎨⎪+=⎩ C .00x y y z +=⎧⎨+=⎩ D .31x y =⎧⎨=⎩【分析】直接利用二元一次方程组的定义进而分析得出答案.【解答】解:A 、22102x y y x +=⎧⎨=⎩,是二元二次方程组,故此选项错误; B 、150x y x y ⎧+=⎪⎨⎪+=⎩,含有分式方程,故此选项错误; C 、00x y y z +=⎧⎨+=⎩,是三元一次方程组,故此选项错误; D 、31x y =⎧⎨=⎩,是二元一次方程组,故此选项正确. 故选:D .【点评】此题主要考查了二元一次方程组的定义,正确把握定义是解题关键.9.(3分)已知实数a 在数轴上的位置如图,则化简2|1|a a -+( )A .1B .1-C .12a -D .21a -【分析】直接利用二次根式的性质化简得出答案.【解答】解:由数轴可得:10a -<<, 则2|1|112a a a a a -+=--=-.故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.10.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若四边形ABED 的面积等于8,则平移距离等于( )A .2B .4C .8D .16【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:Q 将ABC ∆沿CB 向右平移得到DEF ∆,四边形ABED 的面积等于8,4AC =, ∴平移距离842=÷=.故选:A .【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(3分)已知坐标平面内的点(2,4)A -,如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A 的坐标是( )A .(1,6)B .(5,6)-C .(5,2)-D .(1,2)【分析】根据题意,将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,依据坐标的变化规律即可求解.【解答】解:Q 坐标平面内点(2,4)A -,将坐标系先向左平移3个单位长度,再向上平移2个单位长度,∴点A 的横坐标增大3,纵坐标减小2,∴点A 变化后的坐标为(1,2).故选:D .【点评】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.将坐标系向右、向上平移,相当于将原来坐标系中的点向左、向下平移.12.(3分)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是()A .9B .3C 3D .3±【分析】根据开方运算,可得算术平方根. 81993=,3y =故选:C .【点评】本题考查了算术平方根,求算术平方根,依据程序进行计算是解题的关键.二、填空题(本题8小题,每小题3分,共24分)13.(3分)若方程||1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为 2- .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【解答】解:根据题意得:1120a a ⎧-=⎨-≠⎩, 解得:2a =-.故答案是:2-.【点评】要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.14.(33718- 13-.【分析】利用立方根定义,以及两个负数比较大小方法判断即可.12-, 11||||23->-Q , 1123∴-<-, 故答案为:<【点评】此题考查了实数大小比较,熟练掌握运算法则是解本题的关键.15.(3分)已知一个数的平方根为3a +与215a -,则这个数是 49 .【分析】根据两个平方根互为相反数,即可列方程得到a 的值,然后根据平方根的定义求得这个数.【解答】解:根据题意得:3(215)0a a ++-=,解得:4a =,则这个数是22(3)(43)49a +=+=.故答案是:49.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,正确求得a 的值是关键.16.(3分)若点(24,33)P m m ++在x 轴上,则点P 的坐标为 (2,0) .【分析】根据x 轴上点的坐标的特点0y =,计算出m 的值,从而得出点P 坐标.【解答】解:Q 点(24,33)P m m ++在x 轴上,330m ∴+=,1m ∴=-,242m ∴+=,∴点P 的坐标为(2,0),故答案为(2,0).【点评】本题主要考查了在x 轴上的点的坐标的特点0y =,难度适中.17.(3分)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为 如果两个角是同旁内角.那么这两个角是互补 .【分析】任何一个命题都可以写成“如果⋯那么⋯”的形式,如果是条件,那么是结论.分清题目的条件与结论,即可解答.【解答】解:把命题“同旁内角互补”改写为“如果⋯那么⋯”的形式是:如果两个角是同旁内角.那么这两个角是互补;故答案为:如果两个角是同旁内角.那么这两个角是互补.【点评】本题考查了命题与定理,命题由题设和结论两部分组成,命题可写成“如果⋯那么⋯”的形式,其中如果后面的部分是题设,那么后面的部分是结论,难度适中.18.(3的小数部分是a b,则a b++计算即可.a、b的值,再代入a b【解答】解:23<<,Q,23∴=,2a2b=,+=+a b22.键.19.(3分)已知第二象限内的点A到x轴的距离为6,到y轴的距离为3,则点A的坐标-.(3,6)【分析】根据坐标的表示方法由点A到x轴的距离为6,到y轴的距离为3,且它在第二象限内即可得到点A的坐标为(3,6)-.【解答】解:Q点A到x轴的距离为6,到y轴的距离为3,且它在第二象限内,-.∴点A的坐标为(3,6)故答案为(3,6)-.【点评】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.20.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),⋯,按这样的运动规律,经过第2018次运动后,动点P的坐标是(2018,0).【分析】利用点的坐标变换得到点的横坐标与运动的次数相同,纵坐标为1,0,2,0循环,则利用201845042=⨯+可确定第2018次运动后的纵坐标,问题得解.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则201850442=⨯+,所以,前504次循环运动点P共向右运动50442016⨯=个单位,剩余两次运动向右走2个单位,且在x轴上.故点P坐标为(2018,0)故答案为:(2018,0).【点评】本题考查了规律型:点的坐标:解答此题的关键是确定运动的点的横、纵坐标的循环变换规律.三、解答题(共60分)21.(10分)如图,ABC∆在直角坐标系中,(1)请写出ABC∆各点的坐标;(2)若把ABC∆向上平移2个单位,再向左平移1个单位得到△A B C''',在图中画出三角形ABC变化后的位置,写出A'、B'、C'的坐标;(3)求出ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A'、B'、C'的位置,然后顺次连接即可,再根据平面直角坐标系写出点A'、B'、C'的坐标;(3)利用ABC∆所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【解答】解:(1)(2,2)A --,B (3,1),(0,2)C ;(2)△A B C '''如图所示,(3,0)A '-、(2,3)B ',(1,4)C '-;(3)ABC ∆的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯, 2047.5 1.5=---,2013=-,7=.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(12分)计算:(12(1)(23)32|-+(2)22312()2564|2|2-⨯-- 【分析】(1)先计算算术平方根、去括号、去绝对值符号,再计算加减可得;(2)先计算乘方、算术平方根、立方根、取绝对值符号,再计算乘法和加减可得.【解答】解:(1)原式123231=-;(2)原式145424=-⨯+-÷ 152=-+-2=.【点评】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则及绝对值的性质.23.(8分)已知21a b =⎧⎨=⎩是方程组2(1)21a mb na b +-=⎧⎨+=⎩的解,求2018()m n +的平方根. 【分析】将a 与b 代入值代入方程组计算求出m 与n 的值即可.【解答】解:将21a b =⎧⎨=⎩代入方程组2(1)21a mb na b +-=⎧⎨+=⎩, 可得:412211m n +-=⎧⎨+=⎩, 解得:1m =-,0n =,所以2018()1m n +=,所以2018()m n +的平方根是1±.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)阅读下列解答过程,在横线上填入恰当内容.解方程:2(1)4x -=解:2(1)4x -=Q (1)12x ∴-=,(2) 3x ∴=.(3) 上述过程中有没有错误?若有,错在步骤 (2) (填序号)原因是请写出正确的解答过程.【分析】本题考查了解一元二次方程,能选择适当的方程解一元二次方程是解此题的关键.【解答】解:上述过程中有没有错误?若有,错在步骤(2),原因是正数的平方根有两个,它们互为相反数,正确的解答过程为:2(1)4x -=,12x -=±,13x =,21x =-,故答案为:(2),正数的平方根有两个,它们互为相反数.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.25.(10分)已知:如图,在ABC⊥,∆中,BD AC⊥于点D,E为BC上一点,过E点作EF AC 垂足为F,过点D作//DH BC交AB于点H.(1)请你补全图形.(2)求证:BDH CEF∠=∠.【分析】(1)根据题意,完成几何图形;(2)根据垂直的定义和平行线的判定得到//DH BC得∠=∠,再由//BD EF,则CEF CBD到BDH CBD∠=∠.∠=∠,于是有BDH CEF【解答】解:(1)如图,(2)证明:BD AC⊥,⊥Q,EF AC∴,//BD EF∴∠=∠,CEF CBDDH BCQ,//∴∠=∠,BDH CBD∴∠=∠.BDH CEF【点评】本题考查了平行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.也考查了垂线.26.(12分)如图,已知//∠=︒.AB CD,//EF MN,1115(1)求2∠的度数;∠和4(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6︒,求这两个角的大小.【分析】(1)由平行线的性质可求得2∠,再求得4∠;(2)由(1)的结果可得到这两个角相等或互补;(3)根据(2)的规律可知这两个角互补,利用方程可求得这两个角.【解答】解:(1)//AB CD Q ,21115∴∠=∠=︒,//EF MN Q ,42180∴∠+∠=︒,4180265∴∠=︒-∠=︒;(2)由(1)可知:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故答案为:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)由(2)可知这两个角互补,设一个角为x ︒,则另一个角为26x ︒+︒,根据两个角互补可得,26180x x ++=,解得58x =,∴这两个角分别为58︒和122︒.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,解题时注意:①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.。
2018—2019学年度第二学期期末七年级数学试卷
2018—2019学年度第二学期期末教学质量检测试卷七年级 数学(总分:100分 作答时间:100分钟)一、单项选择题.(本大题共10小题,每小题3分,共30分) 1.1的算术平方根是( ) A .0B .1C . 1D .±12.下列是二元一次方程的是( )A .x +8y =0B .2x 2=y C .y +=2 D .3x =10 3.下列各式中,正确的是( ) A .=±4 B .C .D .4.如图,不能推出a ∥b 的条件是( )A .∠1=∠3B .∠2=∠4C .∠2=∠3D .∠2+∠3=180° 5.以下问题,适合用全面调查的是( )A .调查某一电视节目的收视率B .调查一批冷饮的质量是否合格C .调查你们班同学是否喜欢科普类书籍D .调查我国中学生的节水意识 6.如图,要把小河里的水引到田地A 处,则作AB ⊥l ,垂足为点B ,沿AB 挖水沟,水沟最短,理由是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .过一点可以作无数条直线 7.下列不等式变形中,错误的是( ) A .若 a<b ,则 a +c<b +c B .若 a +c<b +c ,则 a<b C .若 a<b ,则 ac 2<bc 2D .若 ac 2<bc 2,则 a<b8.不等式3x ﹣1>5的解集在数轴上表示正确的是( ) A . B . C .D .9.在平面直角坐标中,点M (﹣2,3)到y 轴的距离为( ) A .3B .2C .﹣3D .﹣210.如图,把图中以点A 为圆心的圆经过平移得到以点O 为圆心的圆,如果左图中圆A 上一点P 的坐标为(m ,n ),那么平移后在右图中的对应点P ′的坐标为( ) A .(m +2,n +1) B .(m ﹣2,n ﹣1) C .(m ﹣2,n +1) D .(m +2,n ﹣1)二、填空题(每小题3分,共24分)11.如图,△ABC 平移得到△A ′B ′C ′,已知∠B =45°, ∠C ′=70°,∠A = . 12.若,则a +b = .13.已知点M 在第四象限,其坐标是(x ,y ),且x +y =0.试写出2个满足这些条件的点: . 14.若a <<b ,且a 、b 是两个连续的整数,则a b= .15.将某班女生的身高分成三组,情况如表所示,则表中a 的值是 .16.《九章算术》第八卷方程第十问题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,果甲得到乙所有钱的一半,那么甲共有钱50文.如果乙得到甲所有钱的三分之二,那么乙也共有钱50文.甲、乙各带了多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组为.17.若关于x 的一元一次不等式组有解,则a 的取值范围是 .18.如图,将一块含45°的直角三角板的直角顶点放在直尺的一边上,当∠1=35°时,则∠2的度数是 .三、解答题(本题共7小题,共46分;解答时应写出必要的解题过程或演算步骤)19.(本题满分6分)(1)计算+﹣.(2)解方程组.20.(本题满分6分)解不等式组并写出它的整数解.21.(本题满分6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么AC与DF平行吗?说明你的理由.22.(本题满分6分)已知点A(﹣3,0),点C(0,3)且点B的坐标为(﹣1,4),计算△ABC的面积.23.(本题满分7分)某村为了尽早摆脱贫穷落后的现状,积极响应国家号召,15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公顷需要人数和投入资金如表:在现有条件下,这15位村民全部参与种植,问:应承包多少公顷土地使资金正好够用?24.(本题满分7分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解“,“C.了解一些”三个等级,并根据调查结果绘制了如下两幅不完整的统计图:(1)这次调查的市民人数为人,m=,n=.(2)请根据以上信息直接在答题卡中补全条形统计图;(3)若该市共有20万人,请估算该市对“社会主义核心价值观”知晓程度为“A.非常了解”的有多少万人。
山东省聊城市冠县2018-2019学年七年级第二学期期末学业水平测试数学试题
2018—2019学年第二学期期末学业水平检测七年级数学试题一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列说法中,能确定物体位置的是( )A.天空中的一只小鸟B.电影院中18座C.东经120°,北纬30°D.北偏西35°方向 2.下列命题正确的是( )A.同位角相等B.在同一平面内,如果a b ⊥,b c ⊥,则a c ⊥C.相等的角是对顶角D.在同一平面内,如果a b P ,b c P ,则a c P 3.如图1,在边长为a 的正方形中剪去一个边长为b 的小正形()a b >,把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是( )A.22()()a b a b a b +=+-B.22()()a b a b a b -=+- C.222()2a b a ab b +=++ D.222()2a b a ab b -=-+ 4.若方程组32423x y a x y a+=+⎧⎨+=⎩的解x 与y 的和为2,则a 的值为( )A.7B.3C.0D.3-5.如图,下列结论中不正确的是( )A.若AD BC P ,则1B ∠=∠B.若12∠=∠,则AD BC PC.若2C ∠=∠,则AE CD PD.若AE CD P ,则13180∠+∠=︒ 6.已知22(3)16x m x --+是一个完全平方式,则m 的值是( )A.7-B.1C.7-或1D.7或1-7.如图,宽为60cm 的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为( )A.60cmB.120cmC.312cmD.576cm8.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,若要用A 、B 、C 三类卡片拼一个长为(3)a b +,宽为()a b +的长方形,则需要C 类卡片( )A.2张B.3张C.4张D.5张9.如图所示,小华从A 点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°.…,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )A.140米B.150米C.160米D.240米10.边长为a ,b 的长方形周长为12,面积为10,则22a b ab +的值为( )A.120B.60C.80D.4011.如图,点E 、F 分别在AB 、CD 上,30B ∠=︒,50C ∠=︒,则12∠+∠等于( )A.70°B.80°C.90°D.100°12.如图,动点P 从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A.(1,4)B.(5,0)C.(7,4)D.(8,3)二、填空题(本题共6个小题,每小题3分,共18分,只要求写出最后结果)13.如果等腰三角形的两边长分别为3和7,那么它的周长为________.14.如图,AB CD P ,78B ∠=︒,32D ∠=︒,求F ∠=________.15.如图,若在象棋盘上建立平面直角坐标系xOy ,使“帥”的坐标为(1,2)--,“馬”的坐标为(2,2)-,则“兵”的坐标为________.16.将正三角形、正四边形、正五边形按如图所示的位置摆放,如果332∠=︒,那么12∠+∠=________度.17.若()()1221235m n n m a b a b a b ++-⋅-=-,则m n +的值为________.18.如图,DB 是ABC ∆的高,AB 是角平分线,26BAE ∠=︒,则BFE ∠=________.三、解答题(本大题共7个小题,共66分.解答要写出必要的文字说明、推理过程或演算步骤)19.分解因式(1)22288m mn n -+-(2)22(1)(1)a x b x -+-(3)()222224m n m n +-.20.计算(1)()()22343x y x xy -⋅-(2)(3)(3)y x x y ---(3)22(23)(23)x x +-.21.解方程组 (1)344412x y x y -=⎧⎨+=-⎩(2)12434(3)2315315x y x y ⎧⎛⎫--= ⎪⎪⎪⎝⎭⎨++⎪-=⎪⎩. 22.如图,ABC ∆在正方形网格中,若(0,3)A ,按要求回答下列问题(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出B 和C 的坐标;(3)计算ABC ∆的面积.23.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC P 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.24.小李购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知客厅面积是卫生间面积的8倍,且卫生间、卧室、厨房面积的和比客厅还少3平方米,如果铺1平方米地砖的平均费用为100元,那么小李铺地砖的总费用为多少元?25.(1)探究:如图1,试说明:BOC A B C ∠=∠+∠+∠.(2)应用:如图2,100ABC ∠=︒,130DEF ∠=︒,求A C D F ∠+∠+∠+∠的度数.。
聊城市七年级下册数学期末试卷-百度文库
聊城市七年级下册数学期末试卷-百度文库一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=2.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 3.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能 4.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=05.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10116.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD 7.若正方形边长增加1,得到的新正方形面积比原正方形面积增加6,则原正方形的边长是( )A .2B .52C .3D .728.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( ) A .5036241440x y x y +=⎧⎨+=⎩ B .5024361440x y x y +=⎧⎨+=⎩ C .144036241440x y x y +=⎧⎨+=⎩ D .144024361440x y x y +=⎧⎨+=⎩9.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8± 10.七边形的内角和是( )A .360°B .540°C .720°D .900° 二、填空题11.若x +3y -4=0,则2x •8y =_________.12.若(2x +3)x +2020=1,则x =_____.13.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .14.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.15.已知2x +3y -5=0,则9x •27y 的值为______.16.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.17.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.18.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____. 19.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.20.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.三、解答题21.因式分解:(1)a 3﹣a ;(2)4ab 2﹣4a 2b ﹣b 3;(3)a 2(x ﹣y )﹣9b 2(x ﹣y );(4)(y 2﹣1)2+6 (1﹣y 2)+9.22.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;②研究①拼图发现,可以分解因式2a2+5ab+2b2=.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.W 万元,求领带及丝巾的制作成本是多少?(1)若24(2)若用W元钱全部用于制作领带,总共可以制作几条?(3)若用W元钱恰好能制作300份其他的礼品,可以选择a条领带和b条丝巾作为一份礼品(两种都要有),请求出所有可能的a、b的值.24.如果a c=b,那么我们规定(a,b)=c.例如;因为23=8,所以(2,8)=3.(1)根据上述规定填空:(3,27)=,(4,1)=,(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.25.如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC =40°,求∠APB 与∠ADP 度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).26.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .27.阅读材料:求1+2+22+23+24+…+22020的值.解:设S =1+2+22+23+24+…+22020,将等式两边同时乘以2得,2S =2+22+23+24+25+ (22021)将下式减去上式,得2S ﹣S =22021﹣1,即S =22021﹣1.即1+2+22+23+24+…+22020=22021﹣1仿照此法计算:(1)1+3+32+33+ (320)(2)2310011111 (2222)+++++. 28.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确;C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年山东省聊城市冠县七年级(下)期末数学
试卷
副标题
题号一二三四总分
得分
一、选择题(本大题共12小题,共36.0分)
1.下列说法中,能确定物体位置的是()
A. 天空中的一只小鸟
B. 电影院中18座
C. 东经118°,北纬40°
D. 北偏西35°方向
2.下列说法正确的是()
A. 同位角相等
B. 在同一平面内,如果a⊥b,b⊥c,则a⊥c
C. 相等的角是对顶角
D. 在同一平面内,如果a∥b,b∥c,则a∥c
3.如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分
拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()
A. a2+b2=(a+b)(a-b)
B. a2-b2=(a+b)(a-b)
C. (a+b)2=a2+2ab+b2
D. (a-b)2=a2-2ab+b2
4.若方程组的解x与y的和为2,则a的值为()
A. 7
B. 3
C. 0
D. -3
5.如图,下列结论中不正确的是()
A. 若AD∥BC,则∠1=∠B
B. 若∠1=∠2,则AD∥BC
C. 若∠2=∠C,则AE∥CD
D. 若AE∥CD,则∠1+∠3=180°
6.已知x2-2(m-3)x+16是一个完全平方式,则m的值是()
A. -7
B. 1
C. -7或1
D. 7或-1
7.如图,宽为60cm的长方形图案由10个完全一样的小长方形拼成,则其中一个小长
方形的周长为()
A. 60cm
B. 120cm
C. 312cm
D. 576cm
8.如图,正方形卡片A类,B类和长方形卡片C类若干张,若要用A、B、C三类卡
片拼一个长为(a+3b),宽为(a+b)的长方形,则需要C类卡片()
A. 2张
B. 3张
C. 4张
D. 5张
9.如图所示,小华从A点出发,沿直线前进10米后左转
24°,再沿直线前进10米,又向左转24°,…,照这样
走下去,他第一次回到出发地A点时,一共走的路程是
()
A. 140米
B. 150米
C. 160米
D. 240米
10.边长为a,b的长方形周长为12,面积为10,则a2b+ab2的值为()
A. 120
B. 60
C. 80
D. 40
11.如图,点E、F分别在AB、CD上,∠B=30°,∠C=50°,
则∠1+∠2等于()
A. 70°
B. 80°
C. 90°
D. 100°
12.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,
反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()
A. (1,4)
B. (5,0)
C. (7,4)
D. (8,3)
二、填空题(本大题共6小题,共18.0分)
13.如果等腰三角形的两边长分别为3和7,那么它的周长为______.
14.如图,AB∥CD,∠B=78°,∠D=32°,求∠F=______.
15.如图,若在象棋盘上建立平面直角坐标系xOy,使
“帥”的坐标为(-1,-2),“馬”的坐标为(2,-2),
则“兵”的坐标为______.
16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如
果∠3=32°,那么∠1+∠2=______度.
17.若(a m+1b n+2)•(-a2n-1b2m)=-a3b5,则m+n的值为______.
18.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,则∠BFE=______.
三、计算题(本大题共1小题,共9.0分)
19.计算
(1)(-3x2y)•(4x-3xy2)
(2)(3y-x)(-x-3y)
(3)(2x+3)2(2x-3)2
四、解答题(本大题共6小题,共57.0分)
20.分解因式:
(1)-2m2+8mn-8n2
(2)a2(x-1)+b2(1-x)
(3)(m2+n2)2-4m2n2.
21.解方程组
(1)
(2)
22.如图,△ABC在正方形网格中,若A(0,3),按要求回答下列问题
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,写出B和C的坐标;
(3)计算△ABC的面积.
23.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.
(1)试说明DG∥BC的理由;
(2)如果∠B=54°,且∠ACD=35°,求的∠3度数.
24.小李购买了一套一居室,他准备将房子的地面铺上地砖,
地面结构如图所示,根据图中所给的数据(单位:米),
解答下列问题:
(1)用含m,n的代数式表示地面的总面积S;
(2)已知客厅面积是卫生间面积的8倍,且卫生间、卧室、
厨房面积的和比客厅还少3平方米,如果铺1平方米地砖
的平均费用为100元,那么小李铺地砖的总费用为多少元?
25.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.
(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.。