正弦交流RLC谐振
电路谐振
X L XC
1 LC 0
1 L C
1 2 LC
f0
8.6
正弦稳态电路的谐振
(三)串联谐振的特点
I
R
1、X L X C
U R
U L
Z Z min R X L X C
2
2
U
L C
R 最小
U C
2、 当电源电压一定时: U I I 0 I max 最大 R
L1
C
RL2
L2
L2 L3
e1、e2、e3
e1 e2 e3
C
为来自3个不同电台(不同频率)的电动势信号;
L2 - C 组成谐振电路 ,选出所需的电台。
8.6
正弦稳态电路的谐振
问题(一):如果要收听
e1
节目,C 应配多大?
RL2
L2
已知:
L2 250 H、 RL2 20
f1 820 kHz
8.6
正弦稳态电路的谐振
1、 网络的频率特性
概念:网络的频率特性是 研究正弦交流电路 中电压、电流随频 率变化的关系(即 频域分析)。 传递函数:
U T (j ) O U i
U i
网 络
U o
根据网络的频率特性,可将网络分成低通、高通、带通、 带阻、全通网络。
8.6
正弦稳态电路的谐振
正弦稳态电路的谐振
2、串联谐振的阻抗频率特性
Z ,X L , X C
( )
XL R 0 ω0 XC ω
2
0
ω0
ω
2
8.6
正弦稳态电路的谐振
3、电流的频率特性
实验八RLC串联电路的谐振实验
C1L ω=ωfC 21πC1ωLC 21πLC1LC实验八 R 、L 、C 串联电路的谐振实验一、实验目的1、研究交流串联电路发生谐振现象的条件。
2、研究交流串联电路发生谐振时电路的特征。
3、研究串联电路参数对谐振特性的影响。
二、实验原理1、R L C 串联电压谐振在具有电阻、 电感和电容元件的电路中,电路两端的电压与电路中的电流一般是不同相的。
如果我们调节电路中电感和电容元件的参数或改变电源的频率就能够使得电路中的电流和电压出现了同相的情况。
电路的这种情况即电路的这种状态称为谐振。
R 、L 、C 串联谐振又称为电压谐振。
在由线性电阻R 、电感L 、电容c 组成的串联电路中,如图8-1所示。
图8-1 R L C 串联电路图当感抗和容抗相等时,电路的电抗等于零即X L = X C ; ; 2πf L= X = L - = 0 则 = arc tg = 0即电源电压u 与电路中电流i 同相,由于是在串联电路中出现的谐振故称为串联谐振。
谐振频率用f 0表示为f = f 0 =谐振时的角频率用表示为==谐振时的周期用T 0表示为T = T 0 = 2串联电路的谐振角频率ω 0频率f 0,周期T 0,完全是由电路本身的有关参数来决定的,它们是电路本身的固有性质,而且每一个R 、L 、C 串联电路,只有一个对应的谐振频f 0和()2CL2X X R -+RU UU U 周期T 0。
因而,对R 、L 、C 串联电路来说只有将外施电压的频率与电路的谐振频率相等时候,电路才会发生谐振。
在实际应用中,往往采用两种方法使电路发生谐振。
一种是当外施电压频率f 固定时,改变电路电感L 或电容C 参数的方法,使电路满足谐振条件。
另一种是当电路电感L 或电容C 参数固定时,可用改变外施电压频率f 的方法,使电路在其谐振频率下达到谐振。
总之,在R 、L 、C 串联电路中,f 、L 、C 三个量,无论改变哪一个量都可以达到谐振条件,使电路发生谐振。
RLC串联谐振实验
2、RLC串联谐振实验原理 RLC串联谐振实验原理 串联谐振实验
2.1 、RLC串联电路 (如图-1) RLC串联电路 如图RLC串联正弦交流电路中 串联正弦交流电路 在RLC串联正弦交流电路中, 改变激励信号频率( 激励信号频率 改变激励信号频率(或电路参 ),电路中的容抗X 电路中的容抗 数),电路中的容抗XC与感抗 XL随之改变。 随之改变。 当XL=XC,响应电流与激励 响应电流 电流与激励 信号电压同相位, 电压同相位 信号电压同相位,电路的这种 状态称为串联谐振 串联谐振。 状态称为串联谐振。
长江大学 龙从玉
9
Q值 UCO 计算值 实验值
表-1 RLC串联谐振频率及电路品质因数Q值的测量 RLC串联谐振频率及电路品质因数 串联谐振频率及电路品质因数Q 谐振电压v/v 谐振电压v/v URO ULO
2011-12-17
3、实验内容与实验步骤 实验内容与
3.2、以电路的谐振频率fO为中心,提升(下调)信号频率,使 3.2、以电路的谐振频率 谐振频率f 中心,提升(下调)信号频率 频率, UR=0.7URO,测定电路的上限fH(下限fL)频率并计算通频带。 0.7U 测定电路的上限f 下限f 频率并计算通频带。 电路的上限 3.3、分别在RLC串联电路的fL、fO、fH两侧各取测量频率点, 3.3、分别在RLC串联电路 串联电路的 两侧各取测量频率点 频率点, 测量各电压。测量相应的周期T 相应的周期 计算响应电 测量各电压。测量相应的周期T及UR相差时间△t,计算响应电 流的相位差角 并记录在表流的相位差角 ϕ 。并记录在表-2中。 激励电压与相应电流的相位差测量法如下图激励电压与相应电流的相位差测量法如下图-5。
5、实验报告要求
5.1、绘制出RLC串联谐振实验电路图,标注电路元件参数。 5.1、绘制出RLC串联谐振实验电路图,标注电路元件参数。 串联谐振实验电路图 5.2、阐述实验原理、实验内容与实验步骤,计算RLC串联谐 5.2、阐述实验原理 实验内容与实验步骤 计算RLC串联谐 实验原理、 内容与实验步骤, 振电路的谐振频率 谐振频率f 品质因数Q值及通频带 的理论值, 通频带f 振电路的谐振频率f0、 品质因数Q值及通频带fBW的理论值, 完整记录实验数据表格。 完整记录实验数据表格。 5.3、根据实验数据,在同一坐标系中绘制电容性与电感性两 5.3、根据实验数据,在同一坐标系中绘制电容性 电感性两 电容性与 RLC串联谐振电路的幅频曲线与相频曲线图。 串联谐振电路的幅频曲线 种Q值RLC串联谐振电路的幅频曲线与相频曲线图。 5.4、说明Q值的大小对特性曲线的影响情况。 5.4、说明Q 的大小对特性曲线 影响情况 特性曲线的 情况。
R、L、C串联谐振电路的研究
2、根据通频带的要求,计算Q值,并估算电路中应选 择的电阻大小。试测Bf,确定R的参数 Q= ω0 / (ω2- ω1) = f0 / (f2 - f1) ω0L = 1/ω0C = Q*R 如何测Bf? 在L、C串联的电路中串入一个电阻,在输入电压不变的 情况下,用交流毫伏表测电阻两端的电压,电压最大时 的频率为谐振频率。改变频率时,测电压下降到最大时 的0.707倍时的两个频率f1、f2。 Bf = f2 –f1 对比调试,确定R值。
根据谐振时电路呈阻性及谐振时电路品质因数的计算方法加入一已知电阻r测ulc0ur0uifof2f1则电路总电阻ruiruro电路总电感lf0rf2f10电路总电容c102l电感内含电阻rlulc0rur0电路连接操作过程1选择不同lc组合串入电阻信号发生器输出不同频率的正弦信号电压不变测电阻两端输出电压查看电压最大时的频率谐振与设计频率对比选择最接近的一组lc
可见,当品质因数Q远远大于1时,电容及电感上 的电压就会远远超过输入电压。
实验任务
根据谐振原理设计一个RLC串联电路 要求:使用实验台已有元件 1、中心频率为f0=5KHz ,通频带Bf=1KHz 。 2、根据实际测量结果调整参数。 3、测100Hz—25KHz的曲线,观察LC不同分
配对曲线的影响。
Q UL XLI XL 0L U RI R R
Q为品质因数,它反映的是RLC串联电路 的幅频特性的陡度。
改变角频率或频率时,振幅比随之变化,当振 幅比下降到0.707倍时的两个频率ω1、ω2(或 f1、f2)分别叫做下半功频率点和上半功频 率点。两者的差值称为网络的通频带BW(或 Bf ):
电感内含电阻 RL = ULC0*r /Ur0
电路连接
操作过程
RLC串联谐振特性
Q1: RLC串联电路作用
在无线电接收设备中用来选择接收信号 电路对非谐振频率的信号衰减作用大,广播电台以不同频率的电
磁波向空间发射自己的讯号,调节收音机中谐振电路的可变电容, 可将不同频率的各个电台分别接收。
在电子技术中用来获取高频高压 对于一般实用的串联谐振电路,R很小且常用L的电阻(即电感线圈
并联时,负载电压只有一个,电流回路有两个,电压与电源相同, 电容电流与电感电流的差值等于电源电流。因此这是电流谐振。
Q3:
在串联谐振发生时,电容或电感上的电压约等于外加电压的Q倍。但 是当你将负载并联到电容或电感上时,电路的Q值将大大下降,这时 在电路中计算时就不能用原来的空载Q值,而要用“有载Q值”,有 载Q可能小于1! 在串联谐振电路中,电感和电容的电压数值相等,方向相反。 理论上是无穷大,不过实际中由于二极管的压降,共频和负载等原因会 使其电压大大缩减, 变压器的基本原理是电磁感应原理,在初级线圈上加一交流电压,在 次级线圈两端就会产生感应电动势。当N2>N1 时,其感应电动势要 比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1 时,其感应电动势低于初级电压,这种变压器称为降变压器。初级次 级电压和线圈圈数间具有下列关系。 式中n 称为电压比(圈数比) 。 当n<1 时,则N1>N2 ,V1>V2 ,该变压器为降压变压器。反之则 为升压变压器
(5) 功率
+
P=RI02=U2/R,电阻功率达最大。
•
Q QL QC 0,
U
即QLL与Cω交0换LI能02量, ,Q与C 电源间ω无10C能量I02交换。
_
•
IR
+
_
•
+
RLC串联谐振产生的条件
RLC串联谐振产生的条件汇卓电力是一家专业研发生产串联谐振的厂家,本公司生产的串联谐振设备在行业内都广受好评,以打造最具权威的“串联谐振“高压设备供应商而努力。
在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。
当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。
阻抗条件,谐振后虚部相等符号相反。
串联阻抗等于0,并联阻抗等于无穷大。
就是在谐振的时候,串联电路谐振电流无穷大;并联电路谐振电压无穷大(理论值)。
在电阻、、电感串联电路中,出现电源、电压、电流同相位现象,叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于0,阻抗Z等于电阻R,此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。
在电阻、电容和电感串联的电路中,感抗Xl和Xc的作用是直接相减的。
如果满足一定条件,恰好使Xl=Xc,则电路的电抗等于零,电路中的电流和电压相位相同,没有无功功率在电阻与电感、电容间交换。
电路的这种状态称为串联谐振。
电路谐振条件是Xc=Xl,即ωL=1/ωC,由此可得电路固有谐振条件为f0=1/(2π√LC)。
<BR>阻抗条件:谐振后虚部相等符号相反。
串联阻抗等于0,并联阻抗等于无穷大。
就是在谐振的时候,串联电路谐振电流无穷大;并联电路谐振电压无穷大(理论值)。
或者说:串联电路中:总的输入阻抗的虚部等于零(谐振就是输出的电压和电流同相)在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流位相一般是不同的。
如果我们调节电路元件(L或C)的参数或电源频率,可以使它们位相相同,整个电路呈现为纯电阻性。
电路达到这种状态称之为谐振。
根据谐振原理,我们知道当前电抗器L的感抗值X1与回路中的容抗值Xc相等时,回路达到谐振状态,此时回路中仅回路电阻R消耗有功功率,而无功功率则在电抗器与试品电容之间来回振荡,从而在试品上产生高压。
实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告
实验报告R、L、C串联谐振电路的研究并联谐振电路实验报告实验报告祝金华PB15050984 实验题目:R、L、C串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R、L、C串联电路的幅频特性曲线。
2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q值)的物理意义及其测定方法。
实验原理 1. 在图1所示的R、L、C串联电路中,当正弦交流信号源Ui的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流也随f而变。
取电阻R上的电压UO作为响应,当输入电压Ui的幅值维持不变时,在不同频率的信号激励下,测出UO之值,然后以f为横坐标,以UO为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。
L图 1 图22. 在f=fo=12πLC处,即幅频特性曲线尖峰所在的频率点称为谐振频率。
此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。
在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui 同相位。
从理论上讲,此时Ui=UR=UO,UL=Uc=QUi,式中的Q 称为电路的品质因数。
3. 电路品质因数Q值的两种测量方法一是根据公式Q=UC测定,Uc为谐振时电容器C上的电压(电感上的电压无法测量,故Uo不考虑Q=UL测定)。
另一方法是通过测量谐振曲线的通频带宽度△f=f2-f1,再根据QUo=fO求出Q值。
式中fo为谐振频率,f2和f1是失谐时,亦即输出电压的幅度下降到f2-f1最大值的1/2 (=0.707)倍时的上、下频率点。
Q值越大,曲线越尖锐,通频带越窄,电路的选择性越好。
在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。
预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。
L=30mH fo=2. 改变电路的哪些参数可以使电路发生谐振,电路中R的数值是否影响谐振频率值?改变频率f,电感L,电容C可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。
正弦交流电路的分析—RLC并联电路的分析
分析依据:补偿前后 P、U 不变(已知)。
IC
UC
U
P
cos1
sin 1
U
p
cos
sin
P U
(tan 1
tan )
U
C
P
U
2
(tan 1
tan )
1
I1
I
IC
功率因素的提高
✓ 课堂练习
例:已知一台单相电机接在220V、50Hz的交流电上,吸收1.4kW 的功率,功率因数为0.7,需并联多大的电容,才能将功率因数提高至 0.9?
I
R I2 U I1 jXL jXC
•
I2
••
=0 I U
1
•
•
I1
I2
并联谐振电路
✓ 并联谐振的条件
U IZ
I
R
1
jL
jC
U
R
2
R
L2
j
R2
L
L2
C U
实部
虚部
I
R I2 U I1 jXL jXC
•
I2
••
=0 I U
1
•
•
I1
I2
并联谐振电路
✓ 并联谐振的条件
I
R2
R
解: (已知P=1.4kW,U=220V,cos1=0.7,cos=0.9)
由题意可知: f=50Hz,=2f=100 rad/s
tan1=1,tan=0.5
C
P
U
2
(tan 1
tan )=46 F
功率因素的提高
✓ 小结
功率因数是衡量电气设备效率的参数; 提高功率因数的方法:并联合适电容器。 用并联电容器法提高功率因数时,若原电路的功率因数为cos1 ,补 偿后为cos ,补偿前后负载的P、U不变,则电容C为:
RLC交流电路的分析(电路的串并联谐振)
在电力系统中,串联谐振可以用于无功补偿和滤波,提高电力系统的 稳定性和可靠性。
03
RLC交流电路的并联谐振
并联谐振的定义
• 并联谐振是指RLC交流电路在特定频率下,电路的阻抗呈现 最小值,即达到最小电阻状态。此时,电流在电路中最大, 电压则呈现最小值。
并联谐振的条件
• 并联谐振的条件是:XL=XC,其中XL是电感L的感抗,XC是 电容C的容抗。当感抗等于容抗时,电路发生并联谐振。
RLC电路的工作原理
01
02
03
当交流电源施加到RLC电 路时,电流和电压的相 位关系会发生变化,产
生不同的响应特性。
在串联谐振状态下,RLC 电路的总阻抗最小,电 流最大;在并联谐振状 态下,RLC电路的总导纳
最大,电流最小。
通过分析RLC电路在不同 频率下的响应特性,可 以了解其工作原理和特
性。
串并联谐振在实际电路中的应用
滤波器设计
利用串联或并联谐振电路的频率选择性,可以设计出不同频段的 滤波器,用于信号的筛选和处理。
信号放大
利用串联或并联谐振电路的增益特性,可以对特定频率的信号进行 放大,用于信号的增强和处理。
测量技术
利用串联或并联谐振电路的测量技术,可以测量电感、电容等元件 的参数,以及电路的频率特性等。
04
05
1. 搭建RLC交流 电路
2. 设定电源和信 号源
3. 测量并记录数 4. 观察和调整 据
5. 分析数据
根据实验箱提供的组件, 搭建RLC交流电路,包括电 阻、电感和电容。
将电源供应器设定为适当 的电压和频率,使用信号 发生器产生正弦波信号输 入到RLC交流电路中。
使用测量工具测量RLC交流 电路的电流、电压等参数 ,记录数据。
RLC串联交流谐振电路实验报告
RLC串联交流谐振电路实验报告RLC串联交流谐振电路实验报告引言:RLC串联交流谐振电路是电路中常见的一种形式,通过对其进行实验研究,可以更好地理解电路中的谐振现象和相关理论。
本文将介绍我们进行的RLC串联交流谐振电路实验,并对实验结果进行分析和讨论。
实验目的:本次实验的主要目的是研究RLC串联交流谐振电路的特性,包括共振频率、电压相位差、电流幅值等。
通过实验,我们将探索电路中的谐振现象,加深对谐振电路的理解。
实验原理:RLC串联交流谐振电路由电感L、电阻R和电容C组成。
在交流电源的作用下,电路中的电感、电阻和电容会发生相互作用,从而导致电路中的电流和电压发生变化。
当电路达到谐振状态时,电路中的电流幅值最大,电压相位差为零。
实验步骤:1. 首先,我们将电感L、电阻R和电容C按照串联的方式连接起来,形成RLC串联交流谐振电路。
2. 然后,我们将交流电源连接到电路上,并通过示波器观察电路中的电流和电压波形。
3. 调节交流电源的频率,观察电路中的电流和电压的变化情况。
4. 记录不同频率下电流和电压的数值,并计算电压相位差和电流幅值。
5. 根据实验数据,绘制电流和电压随频率变化的图表。
实验结果:通过实验观察和数据记录,我们得到了RLC串联交流谐振电路的一些特性。
首先,我们发现在特定的频率下,电路中的电流幅值最大。
这个频率被称为共振频率,用f0表示。
同时,我们还观察到在共振频率下,电压和电流的相位差为零,即电压和电流完全同相。
除此之外,在共振频率附近,电压和电流的相位差会发生变化,并且电流幅值也会随着频率的变化而变化。
讨论与分析:通过对实验结果的分析,我们可以得出一些结论和认识。
首先,RLC串联交流谐振电路的共振频率与电感、电阻和电容的数值有关。
当电感、电阻和电容的数值发生变化时,共振频率也会相应地发生变化。
其次,电压和电流的相位差为零说明电压和电流在时间上是完全同步的,这是因为在共振频率下,电路中的电感、电阻和电容之间的相互作用达到了平衡状态。
rlc串联电路谐振时,电路中的电流与信号源电压相位一致
RLC串联电路谐振时,电路中的电流与信号源电压相位一致1. 引言RLC串联电路的谐振特性在电子和通信领域中具有广泛的应用。
当电路发生谐振时,电路中的电流与信号源电压之间存在一定的相位关系。
本文将详细探讨RLC串联电路谐振时,电路中的电流与信号源电压相位一致的现象、原理、实验验证、实际应用和展望。
2. RLC串联电路基础RLC串联电路由电阻(R)、电感(L)和电容(C)三个元件串联而成。
在正弦交流电源的作用下,电路中会产生一定的电流。
电流与元件参数及电源频率有关,其行为受到KVL(基尔霍夫电压定律)的支配。
3. 谐振现象及其产生条件当RLC串联电路中的电阻、电感和电容满足一定条件时,电路发生谐振。
此时,电路的阻抗最小,电流最大。
谐振的产生条件由品质因数Q决定,即Q=ωL/R=1/ωC=√(L/C)/R,其中ω是角频率。
4. 电流与信号源电压相位一致的原理在RLC串联电路谐振时,由于电路的阻抗最小,因此电流的幅度最大。
此外,由于电感和电容的相位相反,导致电流与信号源电压的相位一致。
这一现象可以通过复数阻抗和相量图进行解释。
在相量图上,电感和电容的相量在复平面上的角度相反,因此在某一特定频率下,它们的相量之和为零,导致整个电路的阻抗最小。
此时,电流与信号源电压的相位一致。
5. 实验验证与结论为了验证RLC串联电路谐振时电流与信号源电压相位一致的现象,我们可以通过搭建实验电路并使用示波器和信号源进行测量。
首先,我们需要选择适当的电阻、电感和电容元件值,以满足谐振条件。
然后,通过信号源向RLC串联电路施加适当频率的正弦信号,观察并记录示波器上电流与信号源电压的波形及相位关系。
实验结果将验证在谐振条件下,电流与信号源电压相位一致的现象。
6. 实际应用与展望RLC串联电路谐振时电流与信号源电压相位一致的现象在通信、电子和微波等领域中有着广泛的应用。
例如,在通信系统中,利用这一现象可以实现频率选择和信号过滤功能。
RLC串联谐振频率及其计算公式
RLC串联谐振频率及其计算公式RLC串联谐振是指在一个串联RLC电路中,当电路的电感L、电容C 和电阻R满足一定条件时,电路会以特定的频率呈现出最大的振幅,此时电路达到了谐振状态。
在RLC串联谐振中,电路的谐振频率可以通过以下公式来计算:f=1/(2π√(LC))其中,f表示电路的谐振频率,L表示电感的值,C表示电容的值。
这个公式是由RLC串联谐振电路的特性方程推导而来。
首先,我们需要明确RLC串联谐振电路的特性方程:(LC)d²i(t)/dt² + RCdi(t)/dt + i(t) = Vmcos(ωt + φ)其中,i(t)表示电路中的电流,V表示电源的电压,ω表示电路中的角频率,φ表示相角。
在RLC串联谐振电路中,电流的振幅与频率有关,我们希望找到电路的谐振频率,即在特定的频率下电流的振幅最大。
为了求解这个特性方程,我们可以假设电流的解为:i(t) = Imcos(ωt + φ)将这个解代入特性方程中,可以得到:(ω²LC - ωRC + 1)Imcos(ωt + φ) = Vmcos(ωt + φ)通过对应项的比较,可以得到:ω²LC-ωRC+1=0这个方程即为RLC串联谐振电路的特性方程。
我们可以将这个方程变形为:ω²LC-ωRC=-1再进一步将ω表示为2πf,可以得到:(2πf)²LC-(2πf)RC=-1进一步变形得到:(2πf)²LC=(2πf)RC-1将LC分别乘到RC和-1上,并移项,可以得到:(2πf)²LC-(2πf)RC+1=0这个方程就是RLC串联谐振电路的特性方程。
为了求解谐振频率,我们需要将特性方程转化为标准的二次方程形式。
通过整理可以得到:(2πf)²LC-(2πf)RC+1=0(4π²f²LC-2πfRC+1)=0这个形式是一个一元二次方程,我们可以使用求根公式来求解。
正弦交流电路的分析—RLC串联电路的分析
I
a
I[R j( X L X C )] IZ
UR R
式中:
U
UL jXL
Z R j(XL XC )
UC -jXC
Z称为阻抗,表示RLC串联电路中电阻、电感、电
b
容对电流的阻碍作用,单位:欧姆(Ω)。
RLC串联电路的分析
✓ 电压与电流关系
在正弦交流电路中,物理量用相量表示,元件参数用复数阻抗表示,则电
Z
jXL
Z U I
u i
结论:Z的模为电路总电压和总电流有效值之比,而Z -jXC 的幅角则为总电压和总电流的相位差。
RLC串联电路的分析
✓ 阻抗
阻抗三角形 I
a
UR
U
UL
UC b
Z R j( X L X C ) Z
R
U Z
U L UC
jXL
X XL XC
R
-jXC
U R
RLC串联电路的电压、阻抗三角形
RLC串联电路的分析
✓ 课堂练习
例1:正误判断
在 R-L-C 串联电路中,假设 I I0
U
U
2 R
U
2 L
U
2 C
U I R2 X L X C 2
U IR jX L XC
RLC串联电路的分析
✓ 课堂练习
例2:在 R-L-C 串联电路中,电压u=100sin(100t+600)V,R=20 , L=0.1H,C=200 F,求:电流I和各元件电压UR、UL、UC.
01
正弦交流电的三要素
02
正弦交流电的表示
03 单一参数正弦交流电路的分析
04
简单正弦交流电路的分析
R—L—C,元件的阻抗特性和谐振电路实验报告
R—L—C,元件的阻抗特性和谐振电路实验报告实验报告课程名称:电工电子技术试验实验六:R—L—C 元件的阻抗特性和谐振电路班级:02(周四)学生姓名:学号:20XX年***-***** 专业:电子信息工程指导教师:学期:20XX年-20XX年学年春季学期**大学信息学院实验六R—L—C元件的阻抗特性和谐振电路一.实验目的1.通过实验进一步理解R,L,C的阻抗特性,并且练习使用信号发生器和示波器2.了解谐振现象,加深对谐振电路特性的认识3.研究电路参数对串联谐振电路特性的影响4.理解谐振电路的选频特性及应用5.掌握测试通用谐振曲线的方法二.实验原理与说明1.正弦交流电路中,电感的感抗XL=ωL=2πfL,空心电感线圈的电感在一定频率范围内可认为是线性电感,当其电阻值r较小,有rXL时,可以忽略其电阻的影响。
电容器的容抗Xc= 1 /ωC = 1 /2πfC。
当电源频率变化时,感抗XL和容抗Xc都是频率f的函数,称之为频率特性(或阻抗特性)。
典型的电感元件和电容元件的阻抗特性如图6-1。
f f XL XC0 0 (a) 电感的阻抗特性(b) 电容的阻抗特性图6-1信号发生器+ UC R0 1Ω C −信号发生器R0 −+ U L L1ΩU0 U0 (a) 测量电感阻抗特性的电路(b) 测量电容阻抗特性的电路图6-2 2.为了测量电感的感抗和电容的容抗,可以测量电感和电容两端的电压有效值及流过它们的电流有效值。
则感抗XL=UL/IL,容抗Xc=Uc/Ic。
当电源频率较高时,用普通的交流电流表测量电流会产生很大的误差,为此可以用电子毫伏表进行间接测量得出电流值。
在图6-2的电感和电容电路中串入一个阻值较准确的取样电阻R0,先用毫伏表测量取样电阻两端的电压值,再换算成电流值。
如果取样电阻取为1Ω,则毫伏表的读数即为电流的值,这样小的电阻在本次实验中对电路的影响是可以忽略的。
IC 3.在图6-3所示的RLC 串联电路中,当外加角频率为ω的正弦U 电压U时,电路中的电流为L rI= ?UwC R'+ j(wL -1) R式中,R'=R+r,r为线圈电阻。
RLC电路谐振特性的研究 实验报告
课程名称:大学物理实验(二)
实验名称:RLC电路谐振特性的研究
图2.2 电流和电源的频率的关系曲线
有一极大值,此时的圆频率称为谐振圆频率
ω0=1
(2.3)
√LC
相等,且相位相反
图3.1 DH4503型RLC电路实验仪实物图
图4.1 RLC串联谐振曲线测量电路图4.2串联谐振电路的带宽测定共振频率和共振时的UR、 UC和UL
注意:需要将R和C(L)的位置互换以保证共地
图4.3 串联谐振特性测量电路
将电感、电容调到合适的值,参考值为:L=100mH ,C=4.4×10−8
从电源负极连线接到电阻,电阻连接到电容,电容连接到电感,电感连接回电源正极。
RLC谐振电路特性分析
实验2 LRC 电路谐振特性的研究【实验简介】在力学实验中介绍过弹簧的简谐振动、阻尼振动和强迫振动,阐述过共振现象的一些实际应用。
同样,在电学实验中,由正弦电源与电感、电容和电阻组成的串联电路,也会产生简谐振动、阻尼振动和强迫振动。
当正弦波电源输出频率达到某一频率时,电路的电流达到最大值,即产生谐振现象。
谐振现象有许多应用,如电子技术中电磁波接收器常常用串联谐振电路作为调谐电路,接收某一频率的电磁波信号,收音机就是其中一例。
利用谐振原理制成的传感器,可用于测量液体密度及飞机油箱内液位高度等。
当然在配电网络中,也要避免因电路谐振现象引起电容器或电感器的击穿。
本实验将一个纯电容、一个空心线圈和一个电阻串联接于一个正弦交流电源中,测量电路的谐振曲线,了解电路品质因素Q 的物理意义,掌握串联谐振电路的特性及测量方法。
同时,对收音机输入回路中的RLC 串联电路特性进行测量和研究,深入了解RLC 串联回路特性及应用。
【实验目的】1.研究和测量LRC 串,并联电路的幅频特性;2.掌握幅频特性的测量方法;3.进一步理解回路Q 值的物理意义。
【实验原理及设计】一.LRC 串联谐振电路1.回路中的电流与频率的关系(幅频特性)RLC 串联谐振电路是在无线电接收设备中用来选择接收信号和在电子技术中用来获取高频高压的一种常用电路。
本实验通过测试RLC 串联电路的谐振曲线,从实践中认识RLC 串联电路的谐振特性。
对于一个如图1所示的RLC 串联电路,当外加交流电压(又称激励电压)U的角频率为ω时,各元件上的复阻抗分别为,R Z R = ,L j Z Lω= Cj c Z ω1= 则整个串联电路的总阻抗为:1(R L CZ Z Z Z R j L Z Cωϕω=++=+-=∠(1)图1 RLC 串联电路图2 串联谐振回路中阻抗随频率变化的曲线上式中,Z 为电路阻抗,22)1(cL R Z ωω-+=。
f曲线f 图3I-ϕ为总电压超前电流的相位差角,RC L arctgωωϕ1-=于是串联电路中的复电流I 为:ϕωωj Ie CL j R U Z U I =-+==1( (2)上式中I 为复电流的幅值22)1(CL R U ZU I ωω-+==(3)ϕ为复电流的相角。
RLC串联谐振电路与答案解析
RLC 串联谐振电路 一、知识要求:理解RLC 串联电路谐振的含义;理解谐振的条件、谐振角频率、频率;理解谐振电路的特点,会画矢量图。
二、知识提要:在RLC 串联电路中,当总电压与总电流同相位时,电路呈阻性的状态称为串联谐振。
(1)、串联谐振的条件:C L C L X X U U ==即(2)、谐振角频率与频率:由LCf LC:C L πωωω21110===谐振频率得(3)、谐振时的相量图:(4)、串联谐振电路的特点: ①.电路阻抗最小:Z=R ②、电路中电流电大:I 0=U/R③、总电压与总电流同相位,电路呈阻性④、电阻两端电压等于总电压,电感与电容两端电压相等,相位相反,且为总电压的Q 倍,。
即:U L =U C =I 0X L =I 0X C =L X RU=U R X L =QU式中:Q 叫做电路的品质因数,其值为:UcCRf R L f R X R X Q C L 00212ππ====>>1(由于一般串联谐振电路中的R 很小,所以Q 值总大于1,其数值约为几十,有的可达几百。
所以串联谐振时,电感和电容元件两端可能会产生比总电压高出Q 倍的高电压,又因为U L =U C ,所以串联谐振又叫电压谐振。
) (5)、串联谐振电路的应用:适用于信号源内阻较低的交流电路。
常被用来做选频电路。
三、例题解析:1、在RLC 串联回路中,电源电压为5mV ,试求回路谐振时的频率、谐振时元件L 和C 上的电压以及回路的品质因数。
解:RLC 串联回路的谐振频率为 LCf π210=谐振回路的品质因数为 RLf Q 02π=谐振时元件L 和C 上的电压为mV 5mV 5C L CLR Q U U === 2、 在RLC 串联电路中,已知L =100mH ,R =3.4Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数。
解:电容C 的电容量为 F 58.14.6310141)2(120μπ≈==Lf C 回路的品质因数为 744.31.040028.620≈⨯⨯==R L f Q π3、已知某收音机输入回路的电感L=260μH,当电容调到100PF 时发生串联谐振,求电路的谐振频率,若要收听频率为640KHz 的电台广播,电容C 应为多大。
RLC电路谐振
8
6
R=100 Ω R=200 Ω
4
2
f(Hz) 0 1500 2000 2500 3000
图1 RLC串联谐振曲线
思考题
1、为什么串联谐振称为电压谐振?为什么并 联谐振称为电流谐振? 2、求Q值时选取的两个频率f1、f2是否对称 于f0?在什么条件下接近于对称?应用公式 (5-73)时是否要求对称?
大学物理实验
RLC谐振(串联) 实验
深圳大学物理实验中心
一、实验目的
力学实验中,有简谐振动,同样,在电学实验中,由正 弦波电源与电感、电容和电阻组成的串联电路,也会产生 类似现象。当正弦波电源输出频率达到某一频率时,电路 的电流达到最大值,即产生谐振现象。 研究交流电路的谐振现象,认识RLC电路的谐振特性; 学习测绘RLC电路串联谐振曲线的方法.
(或 f0
2 LC
)
1
f0称为RLC电路的固有谐振频率,它只与电路的参数有 关,与信号源无关。由此得到使电路发生谐振的方法有: ①调整信号源的频率,使之等于电路的固有频率; ②信号源的频率不变时,可以改变电路中L或C的大小, 使电路的固有频率等于信号源的频率。
二、实验原理
RLC串联谐振有如下特征: ①谐振时,回路总阻抗为一纯电阻,且取极小值; ②在保持信号源输出电压恒定的条件下,谐振时,电 流有极大值.
二、实验原理
(一)串联谐振
C
L U
R
~ RLC串联电路如图一所示,设信号源输出电压的频 率为 ,则回路中的电流有效值I和信号源的电压有效 值之间的关系为: U U I Z 1 2 (1) 2
(R r ) (L ) L C
I
rL 式中Z为总阻抗, 为电感上直流电阻。电压与电 1 流的位相差为: L (2 ) C ) tg 1 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案(31 )
【导入新课】
电阻、电感和电容的串联电路,包含了三种不同的参数,是在实际工作中经常遇到的典型电路。
【教学过程】
5.8谐振串联电路
一、RLC串联电路电压间的关系
作出与i、uR、uL和uC相对应的旋转式量图,如图4所示。
(应用平行四边形法则求解总电压的旋转式量U。
)
分析RLC串联电路应把握的基本原则:
1、串联电路中电流处处相等,选择正弦电流为参考正弦量。
2、电容元件两端电压uC相位滞后其电流iC相位π/2。
3、电感元件两端电压uL相位超前其电流iL相位π/2。
与RL、RC串联电路的讨论方法相同,设通过RLC串联谐振电路的电流为tIim sin
则电阻两端电压为
tUuRmR sin
电容器两端的电压为电感线圈两端的电压为
电路的总电压u为
二、RLC串联电路的阻抗
由得:
其中,X=XL-XC,叫做电抗,它是电感和电容共同作用的结果。
电抗的单位是欧[姆]。
RLC串联电路中,电抗、电阻、感抗和容抗间的关系为
2222)(XRXXR ZCL
显然,阻抗|Z|、电阻R和电抗X组成一个直角三角形,叫做阻抗三角形,如图5所示。
阻抗角为:
阻抗角的大小决定于电路参数R、L和C,以及电源频率f,电抗X的值决定电路的性质。
下面分三种情况讨论:
(1)当XL>XC时,X>0,,即总电压u超前电流i,电路呈感性;
(2)当XL<XC时,X<0,,即总电压u滞后电流i,电路呈容性;(3)当XL=XC时,X=0,,即总电压u与电流i同相,电路呈电阻性,电路的这种状态称作谐振。
三、RLC串联电路的功率
RLC串联电路中,存在着有功功率P、无功功率QC和QL,它们分别为
视在功率S、有功功率P和无功功率Q组成直角三角形——功率三角形
例题1:在电阻、电感和电容串联电路中,电流大小为6A,
UR=80V,UL=240V,UC=180V,电源频率为50Hz。
试求:(1)电源电压有效值;(2)电路参数R、L和C;(3)电流与电压的相位差;(4)电路的视在功率S、有功功率P和无功功率Q。
解:(1)由电压三角形可求电压为:
U=〔U2
R+(UL-UC)2
〕1/2
=〔802
+(240-180)2
〕1/2
=100V (2)电路的电阻为:R=UR/I=80/6≈13.3Ω电路的感抗为:
XL=UL/I=240/6=40Ω
线圈的电感为:L=XL/2πf=40/(2×3.14×50)≈0.13H 电路的容抗为:
XC=UC/I=180/6=30Ω
电容器的容量为:C=1/2πf XC=1/(2×3.14×50×30)≈106μF (3)电流与电压的相位差为:
φ=arctan〔(XL-XC)/R〕=arctan〔(40-30)/13.3〕=36.90
电路的感抗大于容抗,电路呈感性,电压超前电流36.90。
(4)视在功率为:S=UI=100×6=600V.A 有功功率为:P=URI=80×6=480W 无功功率为:Q=(UL-UC)I=(240-180)×6=360var
【作业与练习】P100-1.2.3
【板书设计】:
【补充资料】
烧炭人与漂布人
烧炭人在一所房子里经营,看见有一个漂布人搬迁到他的旁边来住时,满怀高兴地走上去劝他与自己同住,并解释说这样彼此更亲密,更方便,还更省钱。
漂布人却回答说:“也许你说的是真话,但完全不可能办到,因为凡我所漂白的,都将被你弄黑。
”
这故事说明,不同类的人难相处。
【课后记】
1、RLC串联电路总电压与分电压之间的关系为:2
2)(CLRUUUU 。
2、RLC串联电路的阻抗:2222)(XRXXRZCL 。
阻抗角为:
(1)当XL>XC时,X>0,,即总电压u超前电流i,电路呈感性;
(2)当XL<XC时,X<0,,即总电压u滞后电流i,电路呈容性;
(3)当XL=XC时,X=0,,即总电压u与电流i同相,电路呈电阻性,电路的这种状态称作谐振。