专题:电磁感应现象中有关电容器类问题及答案
高考物理第二轮复习电磁感应中的电容课后练习
![高考物理第二轮复习电磁感应中的电容课后练习](https://img.taocdn.com/s3/m/9659e083d5bbfd0a795673da.png)
第19讲 电磁感应中的电容题一:电阻R 、电容C 与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( )A .从a 到b ,上极板带正电B .从a 到b ,下极板带正电C .从b 到a ,上极板带正电D .从b 到a ,下极板带正电题二:如图甲所示,等离子气流由左边连续以v 0射入1P 和2P 两板间的匀强磁场中,ab 直导线与1P 、2P 连接,线圈A 与直导线cd 连接。
线圈A 内有随图乙所示的变化磁场,且磁场B 的正方向规定为向左。
则下列说法正确的是( )A .0~1 s 内ab 、cd 导线互相排斥B .1~2 s 内ab 、cd 导线互相排斥C .2~3 s 内ab 、cd 导线互相排斥D .3~4 s 内ab 、cd 导线互相排斥题三:如图所示,水平面内有两根足够长的平行导轨1L 、2L ,其间距0.5m d =,导轨左端接有电容2000μF C =的电容器。
质量20g m =的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。
整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度2T B =。
现用一沿导轨方向向右的恒力0.22N F =作用于导体棒,使导体棒从静止开始运动,经过一段时间t ,速度达到5m/s v =,则( )A .此时电容器两端电压为10VB .此时电容器所带电荷量为2110C -⨯C .导体棒做匀加速运动,且加速度为220m/sD .时间0.4s t =题四:如图所示,在空间存在着竖直向下的匀强磁场,磁感应强度为B 。
一水平放置的长度为L 的金属杆ab 与圆弧形金属导轨P 、Q 紧密接触,P 、Q 之间接有电容为C 的电容器。
若ab 杆绕a 点以角速度ω沿逆时针方向匀速转动,则下列说法正确的是( )A .电容器与a 相连的极板带正电B .电容器与b 相连的极板带正电C .电容器的带电荷量是22CB LωD .电容器的带电荷量是22CB L ω题五:在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直、长度为L 的金属杆aO ,已知3Lab bc cO ===,a 、c 与磁场中以O 为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好。
高中物理小专题—《电磁感应》中电容器充电、放电问题
![高中物理小专题—《电磁感应》中电容器充电、放电问题](https://img.taocdn.com/s3/m/29c7f43db90d6c85ec3ac6e6.png)
《电磁感应》中电容器充电、放电问题一、电容器充电问题1.如图所示,水平放置的两根平行光滑金属导轨相距40cm ,质量为0.1kg 的金属杆ab 垂直于导轨放于其上,导轨间接入电阻R =20Ω和电容C =500pF ,匀强磁场方向垂直于导轨平面竖直向下,磁感应强度B =1.0T ,现有水平向右的外力使ab 从静止开始以加速度a =5.0m /s 2向右做匀加速运动,不计其他电阻和阻力,求:(1)电容器中的电流; (2)t =2s 时外力的大小.解析:(1)电容器中电流I C =t Q ∆∆ ① △Q =C·△U ②△U =BL △V ③a =tV ∆∆ ④ 由上四式可得:I C =CBLa =1×10-9A(2)当t =2s 时,V =at =10m/s ,电动势E =BLV =4V ,通过R 的电流I =E/R =0.2A ,远大于电容器的充电电流。
所以电容器电流可忽略不计。
由牛顿第二定律:F -BIL =ma 解得:F =0. 58N2.如图所示,两光滑导轨相距为L ,倾斜放置,与水平地面夹角为θ,上端接一电容为C 的电容器。
导轨上有一质量为m ,长为L 的导体棒平行于地面放置,导体棒离地面的高度为h ,磁感应强度为B 的匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电。
将导体棒由静止释放,整个电路电阻不计,则:( )A .导体棒先做加速运动,后作匀速运动B .导体棒一直做匀加速直线运动,加速度为a =22sin L CB m mg +α C .导体棒落地时瞬时速度v=222L CB m mgh + D .导体棒下落中减少的重力势能转化为动能,机械能守恒解析:设Δt 时间内电容器的带电量增加Δq ,则:I=CBLa t v CBL t q =∆∆=∆∆ (1)又因为ma BIL mg =-αsin 得I=BL mamg -αsin (2)由(1)(2)得CBLa BL ma mg =-αsin解得a =22sin L CB m mg +α,所以B 选项正确R C a bF 图3-3-4由22222sin sin 22L CB m mgh h L CB m mg aL v +=∙+==αα,所以C 选项正确。
专题:电磁感应现象中有关电容器类问题 及答案
![专题:电磁感应现象中有关电容器类问题 及答案](https://img.taocdn.com/s3/m/42f43c2348d7c1c708a145d0.png)
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C(开始未充电).另一根质量为m的金属棒ab可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒由静止开始下滑,求它下滑h高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=t Q ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22LCB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
专题68 电磁感应现象中的含容电路和双棒问题(解析版)
![专题68 电磁感应现象中的含容电路和双棒问题(解析版)](https://img.taocdn.com/s3/m/8d7f69dfaff8941ea76e58fafab069dc502247ce.png)
2023届高三物理一轮复习重点热点难点专题特训专题68 电磁感应现象中的含容电路和双棒问题 特训目标特训内容 目标1电磁感应现象中的含容电路(1T —5T ) 目标2等间距双棒问题(6T —10T ) 目标3 不等间距双棒问题(11T —15T )一、电磁感应现象中的含容电路1.如图所示,水平面上固定着两根足够长的光滑金属导轨MN 和PQ ,相距为L ,左端MP 间接有电容为C 的电容器。
导轨处于方向竖直向下、磁感应强度大小为B 0的匀强磁场中,质量为m 的金属棒ab 横放在导轨上且与导轨接触良好。
现给金属棒一个平行导轨向右的瞬时冲量I ,关于此后的过程,下列说法正确的是( )A .金属棒做匀变速运动,最后匀速运动B .金属棒做匀加速运动,最后停止运动C .金属棒最终的速度大小为0220B LCI m B L C + D .整个过程中金属棒克服安培力做的功为22I m -22222C mI m B L +() 【答案】D【详解】AB.根据动量定理可知金属棒获得的初速度v0=Im对金属棒受力分析可知,金属棒在运动过程中受到的合外力等于安培力。
金属棒切割磁感线产生感应电动势,给电容器充电,金属棒做减速运动,金属棒的速度减小,安培力减小,做变减速运动,最终当金属棒两端电压和电容器两端电压相等时,金属棒做匀速运动,AB错误;C.对金属棒,设其做匀速运动时的速度为v,根据动量定理有-B0I电Lt=m(v-v0)又I电t=q且q=CU,U=B0Lv解得v=220CIm B L+,C错误;D.对金属棒应用动能定理有-W A=12mv2-12m2v解得W A=22Im-()22222CmIm B L+,D正确。
故选D。
2.如图甲、乙、丙中,除导体棒ab可动外,其余部分均固定不动,甲图中的电容器C原来不带电。
设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向里的匀强磁场中,导轨足够长。
电磁感应与电容器的结合
![电磁感应与电容器的结合](https://img.taocdn.com/s3/m/4be5c13f1eb91a37f1115cfe.png)
电磁感应与电容器的结合1.如图所示,两光滑导轨相距为L ,倾斜放置,与水平地面夹角为θ,上端接一电容为C 的电容器。
导轨上有一质量为m 长为L 的导体棒平行地面放置,导体棒离地面的高度为h ,磁感强度为B 的匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电。
将导体棒由静止释放,整个电路电阻不计,则( BC )A .导体棒先做加速运动,后作匀速运动B .导体棒一直做匀加速直线运动,加速度为a =22sin L CB m mg +αC .导体棒落地时瞬时速度v=222L CB m mgh + D .导体棒下落中减少的重力势能转化为动能,机械能守恒分析:设Δt 时间内电容器的带电量增加Δq则有I=CBLa tv CBL t q =∆∆=∆∆…………………(1) 又因为ma BIL mg =-αsin 得I=BLma mg -αsin ………(2) 由(1)(2)得CBLa BLma mg =-αsin 解得a =22sin L CB m mg +α所以B 正确 由22222sin sin 22L CB m mgh h L CB m mg aL v +=•+==αα 所以C 选项2.如图所示,光滑平行金属导轨固定在绝缘水平面上,轨道间距为0. 2 m ,金属杆ab 的质量为0. 1 kg ,电容器电容为0.5F ,耐压足够大,A 为理想电流表,导轨与金属杆接触良好.各自的电阻忽略不计.整个装置处于磁感应强度大小为0. 5T ,方向垂直导轨平面向下的匀强磁场中,现用水平外力F 拉ab 向右运动,使电流表示数恒为0.5A ,求:(1)t=2s 时电容器的带电荷量;(2)说明金属杆做什么运动?(3)t=2s 时外力做功的功率.答案:(1)q=It=1C(2)I=CBLa t v CBL t q =∆∆=∆∆ a=CBLI =10m/s 2所以杆做a=10m/s 2的匀加速直线运动(3)F-BIL=ma F=BIL+ma=1.05NV=at=20m/sP=Fv=1.05×20=21W如有侵权请联系告知删除,感谢你们的配合!。
2025高考物理总复习电磁感应中的含电容器问题模型
![2025高考物理总复习电磁感应中的含电容器问题模型](https://img.taocdn.com/s3/m/d839ea610a4c2e3f5727a5e9856a561252d3212c.png)
此时电容器的电荷量q=CU=1×10-2 C。
(2)导体棒在 F1 作用下运动,根据牛顿第二定律可得 F1-mgsin α-BId=ma1
又有
Δ
I=
Δ
=
Δ
Δ
,a=
Δ
Δ
联立解得
1 - sin
a1=
=20
+ 2 2 2
由功能关系 W=E-E0 及 W=qU,结合 Q-U 关系图线,可知电容器所储存的电能
与其极板间的电压及电容间的关系式为
1
1
1
E= QU= CU·
U= CU2。
2
2
2
(2)当导体棒获得向右的初速度v0时,切割磁感线产生动生电动势给电容器
充电,设充电电流为I,则导体棒所受安培力大小为
FA=BIL,方向水平向左
恒力F1=0.54 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B
处,速度v=5 m/s。此时,突然将拉力方向变为沿导轨向下,大小变为F2,又经
2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。求:
(1)导体棒运动到B处时,电容器C上的电荷量;
(2)t的大小;
(3)F的大小。
答案 (1)1×10-2 C (2)0.25 s (3)0.45 N
以恒定的加速度匀加速运动。
,所以杆
安=ma,a=
+ 2 2
典题1 如图所示,间距为L的平行光滑金属导轨水平固定,导轨平面处在竖
直向下、磁感应强度大小为B的匀强磁场中。导轨左端连接有电容为C的
平行板电容器,质量为m、电阻不可忽略的导体棒垂直导轨放置在导轨上,
电磁感应和电容测试题(第二次月考)
![电磁感应和电容测试题(第二次月考)](https://img.taocdn.com/s3/m/68e06a40fe4733687f21aa0a.png)
电磁感应和电容器测试题(第二次月考)时间:60分钟满分:150分班级:姓名:分数:答题卡(请将正确的答案填写在相应的题号下)一、选择题(每小题3分, 40个小题,共120分)二、选择题:(每题2分,共30分)试题一、选择题(每小题3分, 40个小题,共120分)1.条形磁铁磁场最强的地方是()。
(容易)A.磁铁两极B.磁铁中心点C.磁感线中间位置D.无法确定2.关于磁场和磁力线的描述,正确的说法是()。
(中等难度)A.磁极之间存在着相互作用力,同名磁极互相吸引,异名磁极互相排斥B.磁力线可以形象地表示磁场的强弱与方向C.磁力线总是从磁极的北极出发,终止于南极D.磁力线的疏密反映磁场的强弱,磁力线越密表示磁场越弱,磁力线越疏表示磁场越强3.关于磁感线下列说法正确的是()(容易)A.磁感线是客观存在的有方向的曲线。
B.磁感线总是始于N极而终于S极。
C.磁感线上的箭头表示磁场方向。
D.磁感线上某处小磁针静止时,N极所指方向应与该处曲线的切线方向一致。
4.空心线圈被插入铁芯后()(中等难度)A.磁性将大大增强。
B.磁性将减弱。
C.磁性基本不变。
D.不能确定。
5.关于磁力线的说法下列正确的是()(容易)A.磁力线是磁场中客观存在的有方向曲线B.磁力线始于磁铁北极而终于磁铁南极C.磁力线上的箭头表示磁场方向D.磁力线上某点处于小磁针静止时北极所指的方向于该点曲线方向一定一致.6.如图所示,通电的导体在磁场中受电磁力作用,正确的是()(容易)7.如图所示,通电导体受力方向为()(容易)A.垂直向上B.垂直向下C.水平向左D.水平向右8.右手螺旋定则是判断()方向(容易)A.电流产生的磁场B.电压C. 载流导体在磁场中受力D.以上都对9.如图所示,在电磁铁的左侧放置了一根条形磁铁,当合上开关S 以后,电磁铁与条形磁铁之间()。
(较难)A.互相排斥B.互相吸引C.静止不动D.无法判断10.判定通电线圈产生磁场的方向用()(中等难度)A.右手定则B.右手螺旋定则C.左手定则D.楞次定律11.通电直导体在磁场中受力方向可用()判断。
专题训练:电磁感应——电容器问题
![专题训练:电磁感应——电容器问题](https://img.taocdn.com/s3/m/3210f78d19e8b8f67c1cb9f9.png)
专题训练:电磁感应——电容器问题1.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。
电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。
现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BL vC.电容器所带电荷量为CBL vD.为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R2. (多选) (2017·唐山摸底)如图甲所示,水平放置的平行金属导轨连接一个平行板电容器C 和电阻R ,导体棒MN 放在导轨上且接触良好,整个装置放于垂直导轨平面的磁场中,磁感应强度B 的变化情况如图乙所示(图示磁感应强度方向为正),MN 始终保持静止,则0~t 2时间内( )A.电容器C 的电荷量大小始终不变B.电容器C 的a 板先带正电后带负电C.MN 所受安培力的大小始终不变D.MN 所受安培力的方向先向右后向左3.(多选)如图所示,两光滑导轨相距为L ,倾斜放置,与水平地面夹角为α,上端接一电容为C 的电容器.导轨上有一质量为m 长为L 的导体棒平行地面放置,导体棒离地面的高度为h ,磁感应强度为B 的匀强磁场与两导轨所决定的平面垂直,开始时电容器不带电.将导体棒由静止释放,整个电路电阻不计,则( )A . 导体棒先做加速运动,后做匀速运动B . 导体棒一直做匀加速直线运动,加速度为a =C . 导体棒落地时瞬时速度v =D . 导体棒下落中减少的重力势能转化为动能,机械能守恒4.平行水平长直导轨间的距离为L ,左端接一耐高压的电容器C 。
轻质导体杆cd 与导轨接触良好,如图所示,在水平力作用下以加速度a 从静止到匀加速运动,匀强磁场B 竖直向下,不计摩擦与电阻,求:(1)所加水平外力F 与时间t 的关系;(2)在时间t 内有多少能量转化为电场能?5.如图所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。
专题:电磁感应现象中有关电容器类问题 及答案
![专题:电磁感应现象中有关电容器类问题 及答案](https://img.taocdn.com/s3/m/42f43c2348d7c1c708a145d0.png)
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C(开始未充电).另一根质量为m的金属棒ab可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒由静止开始下滑,求它下滑h高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=t Q ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22LCB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
高考物理一轮复习学案电磁感应现象中的含容电路
![高考物理一轮复习学案电磁感应现象中的含容电路](https://img.taocdn.com/s3/m/e1e8426e182e453610661ed9ad51f01dc381574a.png)
电磁感应现象中的含容电路三种情况1. 导体棒有初速度2. 电容器有电量3. 导体棒有恒定外力 一.导体棒有初速度1.(导体棒有初速度)光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
2.(电容器有电量)如图所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r 。
初始时开关S 断开,电容器两极板间的电压为U 。
闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好,下列说法正确的是( )A .闭合开关S 的瞬间,金属棒立刻开始向左运动B .闭合开关S 的瞬间,金属棒的加速度大小为BULmRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为22BCULm B L C+3.(导体棒有恒定外力)如图所示,含电容 C 的金属导轨宽为 L,垂直放在磁感应强度为 B 的匀强磁场中,质量 为 m 的金属棒跨在导轨上,证明:在恒力 F 的作用下,做匀加速直线运动,且加速度CL B m F22a +=4.(多选)如图所示,宽为L 的水平光滑金属轨道上放置一根质量为m 的导体棒MN ,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R 的电阻连接,匀强磁场的方向与轨道平面垂直,磁感应强度大小为B ,电容器的电容为C ,金属轨道和导体棒的电阻不计.现将开关拨向“1”,导体棒MN 在水平向右的恒力F 作用下由静止开始运动,经时间t 0后,将开关S 拨向“2”,再经时间t ,导体棒MN 恰好开始匀速向右运动.下列说法正确的是( ) A .开关拨向“1”时,金属棒做加速度逐渐减小的加速运动 B .t 0时刻电容器所带的电荷量为CBLFt 0m +CB 2L 2C .开关拨向“2”后,导体棒匀速运动的速率为FR B 2L 2D .开关拨向“2”后t 时间内,导体棒通过的位移为FR B 2L 2(t +mt 0m +CB 2L 2-mR B 2L2) 5(多选).如图甲所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
2023届高考物理二轮专题复习:电磁感应+电容+试题
![2023届高考物理二轮专题复习:电磁感应+电容+试题](https://img.taocdn.com/s3/m/1838f851cbaedd3383c4bb4cf7ec4afe04a1b1a3.png)
电磁感应之电容模型模型1无外力充电式(电容器+单棒)例1 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。
电容器的电容为C ,击穿电压足够大,开始时电容器不带电。
棒ab 长为L ,质量为m ,电阻为R , 初速度为v 0,金属棒运动时,金属棒与导轨始终垂直且接触良好。
(1) 请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。
(2) 若电容器储存的电能满足 212E CU ,忽略电磁辐射损失,求导体棒ab 在整个过程中产生的焦耳热。
模型2.放电式(电容器+单棒)例2 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。
棒ab 长为L ,质量为m ,电阻为R ,静止在导轨上。
电容器的电容为C ,先给电容器充电,带电量为Q ,再接通电容器与导体棒。
金属棒运动时,金属棒与导轨始终垂直且接触良好。
请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。
模型3.有恒力的充电式电容器例3. 水平金属导轨光滑,电阻不计,匀强磁场与导轨垂直,磁感应强度为B 。
棒ab 长为L ,质量为m ,电阻为R ,初速度为零,在恒力F 作用下向右运动。
电容器的电容为C ,击穿电压足够大,开始时电容器不带电。
请分析导体棒的运动情况。
4.模型迁移:(分析方法完全相同,尝试分析吧!)(1)导轨不光滑(2)恒力的提供方式不同,如导轨变成竖直放置或倾斜放置等(3) 电路结构变化1. ( 2017年天津卷12题)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。
两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。
炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S 接1,使电容器完全充电。
专题电磁感应现象中有关电容器类问题及答案 (2)
![专题电磁感应现象中有关电容器类问题及答案 (2)](https://img.taocdn.com/s3/m/ff6941f7be23482fb5da4c5b.png)
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动.当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨.问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度vm的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN 离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器C (开始未充电)。
另一根质量为m 的金属棒ab 可沿导轨下滑,导轨宽度为L,在讨论的空间范围内有磁感应强度为B 、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab 棒由静止开始下滑,求它下滑h 高度时的速度v 。
解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt,其速度的增加量为Δv=a i·Δt .棒中产生的感应电动势的增加量为:ΔE=BL Δv=B La i ·Δt电容器的极板间电势差的增加量为:ΔU i=ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU =CBLa i ·Δt电路中的充电电流为:I=tQ ∆∆=CB La i ab 棒所受的安培力为:F=BL I=CB 2L2ai由牛顿第二定律得:mg —F =ma i ,即mg —CB 2L 2ai =m ai ,所以,a i =22L CB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=。
(完整版)电磁感应中的各种题型(习题,答案)
![(完整版)电磁感应中的各种题型(习题,答案)](https://img.taocdn.com/s3/m/19a370784afe04a1b171de81.png)
电磁感应中的各种题型一.电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等1.“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
2.“双杆”同向运动,但一杆加速另一杆减速:当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。
若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?3. “双杆”中两杆都做同方向上的加速运动。
:“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
[例3](2003年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离l=0.20m。
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析
![高考物理专题电磁学知识点之电磁感应经典测试题附答案解析](https://img.taocdn.com/s3/m/c05a8c5379563c1ec4da713f.png)
高考物理专题电磁学知识点之电磁感应经典测试题附答案解析一、选择题1.在图中,EF 、GH 为平行的金属导轨,其电阻不计,R 为电阻,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆.有匀强磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB( )A .匀速滑动时,I 1=0,I 2=0B .匀速滑动时,I 1≠0,I 2≠0C .加速滑动时,I 1=0,I 2=0D .加速滑动时,I 1≠0,I 2≠02.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止,则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是A .磁感应强度B 竖直向上且正增强,tφ∆=dmg nq B .磁感应强度B 竖直向下且正增强,tφ∆=dmg nq C .磁感应强度B 竖直向上且正减弱,tφ∆=()dmg R r nqR + D .磁感应强度B 竖直向下且正减弱,tφ∆=()dmgr R r nqR + 3.如图所示,用粗细均匀的铜导线制成半径为r 、电阻为4R 的圆环,PQ 为圆环的直径,在PQ 的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B ,但方向相反,一根长为2r 、电阻为R 的金属棒MN 绕着圆心O 以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。
下列说法正确的是( )A .金属棒MN 两端的电压大小为2B r ωB .金属棒MN 中的电流大小为22B r Rω C .图示位置金属棒中电流方向为从N 到MD .金属棒MN 转动一周的过程中,其电流方向不变4.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。
半径A B 2R R =,内有以B 线圈作为理想边界的匀强磁场。
若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =5.如图所示的电路中,电源的电动势为E ,内阻为r ,电感L 的电阻不计,电阻R 的阻值大于灯泡D 的阻值,在0t =时刻闭合开关S ,经过一段时间后,在1t t =时刻断开S ,下列表示灯D 中的电流(规定电流方向A B →为正)随时间t 变化的图像中,正确的是( )A .B .C .D .6.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。
电磁感应电路中的电容问题
![电磁感应电路中的电容问题](https://img.taocdn.com/s3/m/07ab93c63086bceb19e8b8f67c1cfad6195fe92f.png)
电磁感应电路中的电容问题1.两相互平行且足够长的水平金属导轨MN、PQ放在竖直平面内,相距0.4m,左端接有平行板电容器,板间距离为0.2m,右端接滑动变阻器R。
水平匀强磁场磁感应强度为10T,垂直于导轨所在平面,整个装置均处于上述匀强磁场中,导体棒CD与金属导轨垂直且接触良好,棒的电阻为1Ω,其他电阻及摩擦不计。
现在用与2金属导轨平行,大小为2N的恒力F使棒从静止开始运动。
已知R的最大阻值为2Ω,g=10m/。
则:⑴滑动变阻器阻值取不同值时,导体棒处于稳定状态时拉力的功C率不一样,求导体棒处于稳定状态时拉力的最大功率。
MN⑵当滑动触头在滑动变阻器中点且导体棒处于稳定状态时,一个带电小球从平行板电容器左侧,以某一速度沿两板的正中间且平行R于两极板射入后,在两极板间恰好做匀速直线运动;当滑动触头位F于最下端且导体棒处于稳定状态时,该带电小球以同样的方式和速度射入,小球在两极板间恰好做匀速圆周运动,则小球的速度为多PQD 大。
解:(1)当棒达到匀速运动时,棒受到的安培力F1与外力F相平衡,即F=F1=BIL①(1分)此时棒产生的电动势E=BLv,则电路中的电流。
EBLvI==②(1分)R+rR+rF(R+r)由①②式得此时棒的速度V=③(1分)B2L2F2(R+r)拉力功率P=FV=④(1分)B2L2由④式知回路的总电阻越大时,拉力功率越大,当R=2Ω时,拉力功率最大,Pm=0.75(W)(1分)(2)当触头滑到中点即R=1Ω时,由③式知棒匀速运动的速度F(R+r)v1==0.25(m/)(1分)B2L2导体棒产生的感应电动势E1=BLv1=10某0.4某0.25=1(V)(1分)E1R电容器两极板间电压U1==0.5(V)(1分)R+r由于棒在平行板间做匀速直线运动,则小球必带正电,此时小球受力情况如图所示,设小球的入射速度为v0,由平衡条件知:F+f=GU1即q+qv0B=mg⑤(2分)d当滑头滑至下端即R=2Ω时,棒的速度F(R+r)3V2=22=(m/)(1分)BL8导体棒产生的感应电动势E2=BLV2=1.5伏(1分)E2R电容器两极板间的电压U2==1伏(1分)R+r由于小球在平行板间做匀速圆周运动,电场力与重力平衡,于是:U2q=mg⑥(2分)dU2—U1联立⑤⑥并代入数值解得v0==0.25(m/)(1分)Bd2小球作圆周运动时洛仑兹力提供向心力,有v02qv0B=m⑦(2分)r联立⑥⑦解得小球作圆周运动的半径为r=0.0125m(2分)2、如图所示,光滑的平行导轨P、Q相距l=1m,处在同一水平面中,导轨的左端接有如图所示的电路,其中水平放置的电容器两极板相距d=10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨的电阻不计,磁感强度B=0.4T的匀强磁场竖直向下穿过导轨面,当金属棒ab沿导轨向右匀速运动(开关S断开)时,电容器两极之间质量m=1某10-14kg,带电量q=-1某10-15C的微粒恰好静止不动;当S闭合时,微粒的加速度a=7m/2向下做匀加速运动,取g=10m/2,求:(1)金属棒所运动的速度多大?电阻多大?(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大?解答:(1)带电微粒在电容器两极间静止时,受向上的电场力和向下的重力而平衡,根据平衡条件有mgqU1,dmgd1014100.1解得电容器两极间电压为:U11Vq1015由于微粒带负电,可知上板电势较高,由于S断开,R3上无电流,R1、R2上电压等于U1,可知电路中的感应电流,即通过R1、R2的电流强度为:I1U10.1AR1R2根据闭合电路欧姆定律,可知ab切割磁感线运动产生的感应电动势为:EU1I1r(1)S闭合时,带电微粒向下做匀加速运动,根据牛顿第二定律有:mgq 可以求得S闭合时电容器两板间的电压为:U2U2madm(ga)d0.3V q这是电路中的电流为:I2=U20.15AR2R1R3R2r)(2)R1R3根据闭合电路欧姆定律有:EI2(将已知量代入(1)(2)式,可求得:E1.2V,r2由E=BLv得:vE3m/BL(2)S闭合时,通过ab电流I2=0.15A,ab所受磁场力为FBBI2L0.06N,ab的速度v=3m/做匀速运动,所受外力与磁场力FB大小相等,方向相反,即F=0.06N,方向向右,则外力功率为P=Fv=0.06某3w=0.18w3.如图所示,在水平方向与纸面垂直的足够大的匀强磁场中,有一足够长的U形金属框架abcd以v1=2m/的速度向右做切割磁感线运动,在框架abcd上下两板内产生一个匀强电场.有一个带电油滴以水平速度v2从P 点(ap=L/2)向左射入框架内做匀速圆周运动(g=10m/2).求:23(1)油滴必须带什么性质的电荷,油滴做匀速圆周运动的周期是多少(2)为使油滴不跟框架壁相碰,油滴速度v2与框架宽度L的比值v2/L 应满足什么条件(3)为使油滴不离开电场,并且能够在框架内完整地运动一周,速度v2要满足什么条件解:油滴应带负电.由于框架左边作切割磁感线运动,使上下两板间产生电压U=BLvbV1LU两板间电场强度E=L=Bv1由油滴做匀速圆周运动的条件得mg=qE=qBv1cmg2m2v12qvqBg5∴B=1油滴运动的周期T=2mv2mv2qv1v1v2v2qBv2mqmggRRBq(2)∵g2v1v2Lv24v油滴不跟框架壁相碰应满足条件2R<L/2即g<2∴L<1=1.25-1(3)油滴顺时针做圆周运动,若v2的水平速度大小等于v1时未脱离电场,则以后不再会脱离.设当油滴转至其线速度方向与竖直方向的夹角为θ时油滴速度v2的水平分量大小等于v1,油滴刚好运动至框架右边缘,(如图所示)则V2inθ=v133R22V2t=v1t>RcoθV1V1θV231v13vin122vv2v221>v2coθ即2>∴v14、如图所示,在虚线框内有一磁感应强度为B的匀强磁场,在磁场中的PQ和MN是两条光滑的平行金属导轨,其电阻不计,两导轨间距离为L,它们都与水平面成α角.已知匀强磁场的方向与导轨所在平面垂直,放置在导轨上的金属棒ab与导轨垂直,其质量为m,电阻为r.在导轨的一端接着阻值为R的电阻器C、D为竖直放置的,间距为d的平行板电容器,两板间的JK是与水平面成θ角的一条绝缘光滑直导轨。
高考物理第二轮复习电磁感应中的电容课后练习
![高考物理第二轮复习电磁感应中的电容课后练习](https://img.taocdn.com/s3/m/d5d0c3b4a1c7aa00b42acb2e.png)
第19讲 电磁感应中的电容题一:电阻R 、电容C 与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( )A .从a 到b ,上极板带正电B .从a 到b ,下极板带正电C .从b 到a ,上极板带正电D .从b 到a ,下极板带正电题二:如图甲所示,等离子气流由左边连续以v 0射入1P 和2P 两板间的匀强磁场中,ab 直导线与1P 、2P 连接,线圈A 与直导线cd 连接。
线圈A 内有随图乙所示的变化磁场,且磁场B 的正方向规定为向左。
则下列说法正确的是( )A .0~1 s 内ab 、cd 导线互相排斥B .1~2 s 内ab 、cd 导线互相排斥C .2~3 s 内ab 、cd 导线互相排斥D .3~4 s 内ab 、cd 导线互相排斥题三:如图所示,水平面内有两根足够长的平行导轨1L 、2L ,其间距0.5m d =,导轨左端接有电容2000μF C =的电容器。
质量20g m =的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。
整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度2T B =。
现用一沿导轨方向向右的恒力0.22N F =作用于导体棒,使导体棒从静止开始运动,经过一段时间t ,速度达到5m/s v =,则( )A .此时电容器两端电压为10VB .此时电容器所带电荷量为2110C -⨯C .导体棒做匀加速运动,且加速度为220m/sD .时间0.4s t =题四:如图所示,在空间存在着竖直向下的匀强磁场,磁感应强度为B 。
一水平放置的长度为L 的金属杆ab 与圆弧形金属导轨P 、Q 紧密接触,P 、Q 之间接有电容为C 的电容器。
若ab 杆绕a 点以角速度ω沿逆时针方向匀速转动,则下列说法正确的是( )A .电容器与a 相连的极板带正电B .电容器与b 相连的极板带正电C .电容器的带电荷量是22CB LωD .电容器的带电荷量是22CB L ω题五:在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直、长度为L 的金属杆aO ,已知3Lab bc cO ===,a 、c 与磁场中以O 为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好。
江苏专高考物理第二轮复习第19讲电磁感应中的电容课后练习336-
![江苏专高考物理第二轮复习第19讲电磁感应中的电容课后练习336-](https://img.taocdn.com/s3/m/14f32a30f7ec4afe04a1dfb1.png)
第19讲 电磁感应中的电容题一:电阻R 、电容C 与一线圈连成闭合电路,条形磁铁静止于线圈的正上方,N 极朝下,如图所示。
现使磁铁开始自由下落,在N 极接近线圈上端的过程中,流过R 的电流方向和电容器极板的带电情况是( )A .从a 到b ,上极板带正电B .从a 到b ,下极板带正电C .从b 到a ,上极板带正电D .从b 到a ,下极板带正电题二:如图甲所示,等离子气流由左边连续以v 0射入1P 和2P 两板间的匀强磁场中,ab 直导线与1P 、2P 连接,线圈A 与直导线cd 连接。
线圈A 内有随图乙所示的变化磁场,且磁场B 的正方向规定为向左。
则下列说法正确的是( )A .0~1 s 内ab 、cd 导线互相排斥B .1~2 s 内ab 、cd 导线互相排斥C .2~3 s 内ab 、cd 导线互相排斥D .3~4 s 内ab 、cd 导线互相排斥题三:如图所示,水平面内有两根足够长的平行导轨1L 、2L ,其间距0.5m d =,导轨左端接有电容2000μF C =的电容器。
质量20g m =的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。
整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度2T B =。
现用一沿导轨方向向右的恒力0.22N F =作用于导体棒,使导体棒从静止开始运动,经过一段时间t ,速度达到5m/s v =,则( )A .此时电容器两端电压为10VB .此时电容器所带电荷量为2110C -⨯C .导体棒做匀加速运动,且加速度为220m/sD .时间0.4s t =题四:如图所示,在空间存在着竖直向下的匀强磁场,磁感应强度为B 。
一水平放置的长度为L 的金属杆ab 与圆弧形金属导轨P 、Q 紧密接触,P 、Q 之间接有电容为C 的电容器。
若ab 杆绕a 点以角速度ω沿逆时针方向匀速转动,则下列说法正确的是( )A .电容器与a 相连的极板带正电B .电容器与b 相连的极板带正电C .电容器的带电荷量是22CB LωD .电容器的带电荷量是22CB L ω题五:在磁感应强度为B 的匀强磁场中,有一与磁场方向垂直、长度为L 的金属杆aO ,已知3Lab bc cO ===,a 、c 与磁场中以O 为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制 新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为 E,电容器 的电容为 C。两根固定于水平面内的光滑平行金属导轨间距为 L,电阻不计。炮 弹可视为一质量为 m、电阻为 R 的金属棒 MN,垂直放在两导轨间处于静止状态, 并与导轨良好接触。首先开关 S 接 1,使电容器完全充电。然后将 S 接至 2,导 轨间存在垂直于导轨平面、 磁感应强度大小为 B 的匀强磁场 (图中未画出),MN 开始向右加速运动。 当 MN 上的感应电动势与电容器两极板间的电压相等时, 回 路中电流为零, MN 达到最大速度,之后离开导 轨。问: ( 1)磁场的方向; ( 2) MN 刚开始运动时加速度 a 的大小; ( 3) MN 离开导轨后的最大速度 vm 的大小。
由式及题设可知,金属棒做初速度为零的匀加速运动. t 时刻金属棒的速度大小
为 6、在光滑水平地面上,两根彼此平行的光滑导轨 PQ、MN 相距为 L=1m,在它 们的末端垂直 PQ、MN 跨放一金属杆 ab, ab 的质量为 m=0.005kg,在导轨的另 一端连接一个已经充电的电容器,电容器的电容 C=200F,有一匀强磁场,方向 垂直导轨 PQ、 MN 所在平面向下,如图所示,磁感强度为 B=.(除导轨 PQ、 MN 和金属杆 ab 外其余部分都是绝缘的 )当闭合电键 K 时, ab 杆将从导轨上冲出, 并沿光滑斜面升到高为 0.2m 处,这过程电容器两端电压减小了一半,求: (1)磁场对金属杆 ab 冲量的大小. (2)电容器原来充电电压是多少.
所以: u= q,电压与电量成正比,所以画出 u-q 的图线如图:
充电的过程中克服电场力做的功: W=qU 所以图线与横坐标围成的面积即为电容器储存的能量.有: E0= EQ 联立得: E0= CE2
( 3)根据平抛运动的规律可得
由动量定理
,
It=q,
q= EC
联立解得 由能 量关系可知, 此过程中 R 上产 生的焦耳热:
4、如图所示,有一间距为 L 且与水平方向成 θ角的光滑平行轨道,轨道上端接 有电容器和定值电阻, S 为单刀双掷开关,空间存在垂直轨道平面向上的匀强 0 磁场,磁感应强度为 B。将单刀双掷开关接到 a 点,一根电阻不计、质量为 m 的 导体棒在轨道底端获得初速度 v0 后沿着轨道向上运动,到达最高点时,单刀双 掷开关接 b 点,经过一段时间导体棒又回到轨道底端, 已知定值电阻的阻值为 R, 电容器的电容为 C,重力加速度为 g,轨道足够长,轨道电阻不计,求: ( 1)导体棒上滑过程中加速度的大小; ( 2)若已知导体棒到达轨道底端的速度为 v,求导体棒 下滑过程中定值电阻产生的热量和导体棒运动的时间。
即
两边求和可得
,即
;
(3) 设 A 棒与 B 棒碰前的速度为 v0,碰撞过程动量守恒,则有:
mv0=mv+2mv,可得
A 棒在安培力作用下加速,则有:
即
两边求和得:
得
代入前面的数据可知,电容器所剩电量为
。
连接,另一端跨过定滑轮挂一质量为 m 的重物.现从静止释放重物并通过轻绳
水平拖动金属棒运动 (金属棒始终与导轨垂直并保持良求:
( 1)若某时刻金属棒速度为 v,则电容器两端的电压
多大?
( 2)求证:金属棒的运动是匀加速直线运动;
( 3)当重物从静止开始下落一定高度时, 电容器带电
i.金属棒受
⑥
ΔQ 也是平行板电容器极板在时间间隔 (t ,t+ Δt)内增加的电荷量.由④式得 ΔQ=CBLΔv⑦ 式中, Δv 为金属棒的速度变化量.按定义有 ⑧ 金属棒所受到的摩擦力方向斜向上,大小为 Ff= μFN⑨ 式中, FN 是金属棒对于导轨的正压力的大小,有 FN= mgcos θ⑩ 金属棒在时刻 t 的加速度方向沿斜面向下,设其大小为 a,根据牛顿第二定律有 mgsin θ-F- Ff=ma 联立⑤至式得
电路中的充电电流为:
I=
Q =CBLai
t
ab 棒所受的安培力为: F=BLI=CB2L2ai
由牛顿第二定律得: mg-F=mai,即 mg-CB2L2ai=mai,所以,ai= m
mg CB 2 L2
,可见,
棒的加速度与时间无关,是一个常量,即棒 ab 向下做匀加速直线运动 .所以要求
的速度为 v= 2ah
(1)当开关与 1 连接时,电容器电量是多少下极板带什么电 (2)金属棒 A 与 B 相碰后 A 棒的速度 v 是多少 (3)电容器所剩电量 Q′是多少
【解析】 (1)
将开关拨向 2 时 A 棒会弹出说明所受安培力向右,电流向上,故电容器下板带 正电; (2) A、B 棒相碰地方发生时没有构成回路,没有感应电流, A、B 棒均作匀速直 线运动直至 A 棒到达 OO′处, 设碰后 A 棒速度为 v ,由于 B 棒的位移是 A 棒 的两倍,故 B 棒速度是 2v。 A 棒过 OO′ 后在安培力作用下减速。 由动量定理可知:
解:( 1)导体棒上滑的过程中,根据牛顿第二定律得:
又
,有:
联立解得: ( 2)导体棒上滑过程中,有 导体棒下滑的过程中,由动量定理得:
而
联立解得:
导体棒下滑的过程中,由能量守恒定律得:
解得: 5、如图,两条平行导轨所在平面与水平地面的夹角为 θ,间距为 L.导轨上端接 有一平行板电容器,电容为 C.导轨处于匀强磁场中,磁感应强度大小为 B,方向 垂直于导轨平面.在导轨上放置一质量为 m 的金属棒,棒可沿导轨下滑,且在 下滑过程中保持与导轨垂直并良好接触. 已知金属棒与导轨之间的动摩擦因数为 μ,重力加速度大小为 g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑, 求:
2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器 C(开始未充电) .另一根质量为 m 的金属棒 ab 可沿导轨下滑, 导轨宽度为 L,在讨论的空间范围内有磁感应强度为 B、方向垂 直整个导轨平面的匀强磁场,整个系统的电阻可以忽略, ab 棒 由静止开始下滑,求它下滑 h 高度时的速度 v.
7、如图所示,水平桌面上放置一 U 形金属导轨,两导轨平行,间距为 L,导轨 距水平地面高 h。导轨左端连接有一个电源、一个单刀双掷开关、一个电容器。 电源电动势为 E,内电阻为 r ,电容器电容为 C。一根质量为 m 不计电阻的裸导 线放在导轨上, 方向与导轨垂直, 导轨所在平面有一个方向向下的匀强磁场, 磁 感应强度为 B。先将单刀双掷开关拨到 a;待电路稳定后将单刀双掷开关拨到 b。 开关拨到 b 后,导线在安培力作用下向右运动离开导轨, 然后做平抛运动直至落 到水平地面上。
1 连接时,圆形线圈中磁场随时间均匀变化,变化率为
;稳定后将开关
拨向 2,金属棒 A 被弹出,与金属棒 B 相碰,并在 B 棒刚出磁场时 A 棒刚好运动 到 OO′处,最终 A 棒恰在 PP′处停住。已知两根金属棒的质量均为 0.02kg、接入 电路中的电阻均为 Ω金,属棒与金属导轨接触良好,其余电阻均不计,一切摩擦 不计。问:
2 mgh m CB 2L2 .
3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距
L,
导轨平面与水平面重合, 左端用导线连接电容为 C 的电容器(能承受的电压足够
大).已知匀强磁场的磁感应强度大小为 B、方向竖直向上.一质量为 m、电阻
不计的直金属棒垂直放在两导轨上, 一根绝缘的、 足够长的轻绳一端与棒的中点
点睛:本题是电磁感应与电路、 力学知识的综合, 解答的关键是由电路的串联关
系先求出电容器两端的电压,再根据动量定理及电量表达式求出导体棒最大速 度.同时要搞清能量转化关系 .
8、某同学设计了一个电磁击发装置,其结构如图所示。间距为 L=10cm 的平行 长直导轨置于水平桌面上,导轨中 NO 和 N′O段′用绝缘材料制成,其余部分均为 导电金属材料, 两种材料导轨平滑连接。 导轨左侧与匝数为 100 匝、半径为 5cm 的圆形线圈相连,线圈内存在垂直线圈平面的匀强磁场。电容为 1F 的电容器通 过单刀双掷开关与导轨相连。 在轨道间 MPP′M′矩形区域内存在垂直桌面向上的 匀强磁场,磁感强度为 2T。磁场右侧边界 PP′与 OO′间距离为 a =4cm。初始时金 属棒 A 处于 NN′左侧某处,金属棒 B 处于 OO'左侧距 OO'距离为 a 处。当开关与
试题分析:( 1)根据通过 MN 电流的方向,结合左手定则得出磁场的方向. (2) 根据欧姆定律得出 MN 刚开始运动时的电流, 结合安培力公式, 根据牛顿第二定 律得出 MN 刚开始运动时加速度 a 的大小.( 3)开关 S 接 2 后, MN 开始向右加 速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出 MN 离开导轨后最大速度 . 解:(1)电容器上端带正电,通过 MN 的电流方向向下,由于 MN 向右运动,根 据左手定则知,磁场方向垂直于导轨平面向下.
量为 Q,则这个高度 h 多大
解:( 1)电容器两端的电压 U 等于导体棒上的电动势 E,有: U=E=BLv ( 2)金属棒速度从 v 增大到 v+△ v 的过程中,用时△ t (△ t→ 0),加速度为 a, 有: 电容器两端的电压为: U=BLv 电容器所带电量为:
式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动. ( 3)由于金属棒做匀加速直线运动,且电路中电流恒定
(1)电容器极板上积累的电荷量与金属棒速度大小的关 系; (2)金属棒的速度大小随时间变化的关系.
解: (1)设金属棒下滑的速度大小为 v,则感应电动势为 E=BLv① 平行板电容器两极板之间的电势差为 U=E② 设此时电容器极板上积累的电荷量为 Q,按定义有
C=QU③ 联立①②③式得 Q=CBLv④ (2)设金属棒的速度大小为 v 时经历的时间为 t,通过金属棒的电流为 到的磁场的作用力方向沿导轨向上,大小为 F=BLi⑤ 设在时间间隔 (t,t +Δt)内流经金属棒的电荷量为 ΔQ,按定义有