(完整版)华师大版八年级下册数学知识点总结

合集下载

华东师大版八年数学下知识点归纳

华东师大版八年数学下知识点归纳

一、数与式1.整数的运算:加法、减法、乘法、除法,能够熟练运用各种整数运算的性质。

2.整数的科学计数法和运算:掌握科学计数法的表示方法,并能进行加、减、乘、除运算。

3.分数的加减乘除:熟练掌握分数的加减乘除法运算,注意化简分数和找到最简分数。

4.百分数的应用:能够将百分数转化为小数和分数,灵活运用百分比解决实际问题。

5.带分数的加减乘除:理解带分数的含义,掌握带分数的加减乘除法运算。

二、函数1.函数的概念:理解函数的定义,能够给出函数的自变量、因变量和函数表达式。

2.函数间的关系:掌握函数之间关系的性质,如一次函数、二次函数、反比例函数等。

3.函数的解析式:能够根据已知函数的性质写出其解析式,如直线的解析式、抛物线的解析式等。

4.函数的图象和性质:能够根据函数的解析式绘制出函数的图象,理解函数图象的特点和性质。

三、图形的研究1.平面图形的展开和计算:熟练计算平面图形的周长和面积,理解面积和周长的概念。

2.直角三角形的研究:熟练使用勾股定理解决实际问题,理解正弦、余弦和正切的概念。

3.平行四边形和梯形的研究:能够计算平行四边形和梯形的周长和面积,理解这些图形的性质。

4.圆的性质和计算:理解圆的直径、半径、圆周和圆心角的概念,能够计算圆的周长和面积。

四、常用图形和统计1.线段和角的相交关系:理解直线和线段的相交性质,掌握平行线和垂直线的性质。

2.平面镜像和旋转:理解平面镜像和旋转的概念,能够根据图形的变换关系进行计算和推理。

3.统计调查和数据处理:能够进行统计调查和数据分析,掌握平均数、中位数和众数的计算方法。

五、概率1.随机事件的概率计算:理解事件的概率和样本空间的概念,能够计算事件的概率。

2.多个随机事件的概率:掌握与事件相应的几种概率的计算方法,如和事件、积事件等。

以上是华东师大版八年级数学下册的主要知识点归纳,包括数与式、函数、图形的研究、常用图形和统计、概率等内容。

希望对你的学习有所帮助。

华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳

华师大版八年级数学知识点归纳天才就是勤奋曾经有人这样说过。

假如这话不完全正确,那至少在很大程度上是正确的。

学习,就算是天才,也是需要不断练习与记忆的。

下面是我给大家整理的一些〔〔八年级〕数学〕的学问点,希望对大家有所关怀。

八年级数学学问点〔总结〕函数及其相关概念1、变量与常量在某一转变过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一转变过程中有两个变量x与y,假如对于x的每一个值,y 都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的〔方法〕叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:依据自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

初二下册数学学问点总结【解一元一次方程】1.等式与等量:用=号连接而成的式子叫等式.留意:等量就能代入!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;留意:方程的解就能代入!5.移项:转变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合1/ 3并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:…………多用于和,差,倍,分问题仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,削减,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于行程问题利用图形分析数学问题是数形结合思想在数学中的表达,仔细读题,根据题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最终利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

初中数学知识点总结(华师大)

初中数学知识点总结(华师大)

七年级上 有理数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2.正数和负数像+ 21,+12,,258等大于0的数(“+”通常不写)叫正数。

像-5,,-43等在正数前面加“—”(读负)的数叫负数。

【注】0既不是正数也不是负数。

3.有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

(2)有理数分类按有理数的定义分类 2)按正负分类正整数正整数整数 0 正有理数有理数 负整数 有理数正分数正分数 0 负整数分数 负有理数负分数负分数【注】有限循环小数叫做分数。

(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。

2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

(几何意义)(3)0的相反数是0。

也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

(5)数a 的相反数是—a 。

(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。

如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。

可简写为“奇负偶正”。

6.绝对值(1)在数轴上表示数a 的点离开原点的距离,叫做数a 的绝对值。

华师大版数学八年级下册《小结》说课稿

华师大版数学八年级下册《小结》说课稿

华师大版数学八年级下册《小结》说课稿一. 教材分析华师大版数学八年级下册《小结》是对前几个章节内容的总结和归纳,主要包括函数的性质、方程的解法、图形的变换等方面的知识。

这部分内容是学生进一步学习高中数学的基础,对于学生形成完整的数学知识体系具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了相关章节的基本知识,如函数、方程、图形变换等。

但部分学生在理解上还存在一定的困难,对于一些概念和公式的运用还不够熟练。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。

三. 说教学目标1.知识与技能目标:使学生掌握函数的性质、方程的解法、图形的变换等基本知识,能够运用所学知识解决实际问题。

2.过程与方法目标:通过小组合作、讨论交流等方式,培养学生解决问题的能力和团队合作精神。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用价值。

四. 说教学重难点1.教学重点:函数的性质、方程的解法、图形的变换等基本知识。

2.教学难点:对于一些概念和公式的理解,以及如何运用所学知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动、案例教学、小组合作、讨论交流等教学方法,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、教学卡片、黑板等教学手段,直观展示教学内容,提高学生的学习兴趣。

六. 说教学过程1.导入新课:通过复习相关知识点,引导学生回顾所学内容,为新课的学习做好铺垫。

2.知识讲解:详细讲解函数的性质、方程的解法、图形的变换等方面的知识,结合实例进行分析,让学生深刻理解并掌握。

3.课堂互动:设置一些问题,引导学生进行思考和讨论,巩固所学知识。

4.实践练习:布置一些练习题,让学生运用所学知识解决问题,提高学生的实际操作能力。

5.总结归纳:对本节课的内容进行总结,帮助学生形成知识体系。

七. 说板书设计板书设计要清晰、简洁,能够突出教学重点。

初二数学华师大版知识点

初二数学华师大版知识点

初二数学华师大版知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

八年级下册数学复习资料正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

华师大版八年级下册数学初中数学知识点总结

华师大版八年级下册数学初中数学知识点总结

知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。

华师大版八年级数学下册知识要点

华师大版八年级数学下册知识要点

八年级下数学各章知识要点第17章分式复习要点1、形如AB (A、B都是整式,且B中含有字母,BWO)的式子叫做分式。

整式和分式统称有理式。

2、分母W0时,分式有意义。

分母=0时,分式无意义。

3、分式的值为0,要同时满足两个条件:分子=0,而分母4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。

5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。

6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。

3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是包等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。

3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、歹h解、验、答。

第18章函数及图象的复习要点1、规定了原点、正方向和单位长度的直线叫数轴。

数轴上的点与实数—对应。

数轴上的点A、B的坐标为x1、x2,则AB = 1 。

2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。

坐标平面内的点与有序实数对一一对应。

3、坐标轴上的点不属于任何象限。

x轴上的点纵坐标y = 0; y轴上的点横坐标X= 0 0第一象限内的点x>0,y>0;第二象限内的点x<0,y>0 ;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0; x轴下方的点,纵坐标y<0; y轴左边的点,横坐标x<0; y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。

关于原点对称的点,纵、横坐标都互为相反数。

华师大版八年级下册数学知识点总结知识讲解

华师大版八年级下册数学知识点总结知识讲解

华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使B A =0的条件是:A=0,B ≠0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

分类:有理式单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

华师大版数学八年级下册第三章 平行四边形

华师大版数学八年级下册第三章 平行四边形

华师大版数学八年级下册第三章 平行四边形模块一 平行四边形的性质一、定义两组对边分别平行的四边形叫做平行四边形.如图, 四边形ABCD 是平行四边形, 记作“▱ABCD”, 读作“平行四边形ABCD”.二、性质1.平行四边形的对边相等.2. 平行四边形的对角相等.3. 平行四边形的对角线互相平分.三、重要结论1.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2.平行四边形是中心对称图形,对角线的交点就是对称中心.(1)连接平行四边系上任意一点和平行四边孤的对称中心,并延长与另一条边相交于一点,则这两个点关于平行四边形的对称中心对称.即即OE=OF(2) 经过平行四边行对称中心的任意一条直线都把平行四边行分成面积和周长相等的两部分,即FEDC ABEF S S 四边形四边形=;FEDC ABEF C C 四边形四边形=典型例题例1.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是()A.16B.14C.20D.24练习.平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm和6cm的两部分,则平行四边形ABCD的周长为cm.例2.如图,在▱ABCD中,AE⊥CD于点E,∠B=65°,则∠DAE等于.例3.如图,平行四边形ABCD的对角线相交于点O,两条对角线的和为18,AD的长为5,则△OBC的周长为.练习.如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1例4.如图,▱ABCD中,AC.BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为()A.3B.6C.12D.24例5.(1)如图,在▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是()A.2B.3C.4D.5(2)如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20°B.25°C.30°D.35°(3)如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD 于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm(4)如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为.例6.如图,在▱ABCD中,E是CD的中点,AE的延长线与BC的延长线相交于点F.求证:BC=CF.模块二平行四边形的判定平行四边形的判定定理1.两组对边分别平行的四边形是平行四边形.AD//BC,AB//DC,四边形ABCD是平行四边形.2.两组对边分别相等的四边形是平行四边形.AB=DC,AD=BC,∴四边形ABCD是平行四边形.3.一组对边平行且相等的四边形是平行四边形.AD//BC,AD=BC,∴四边形ABCD是平行四边形.4.两组对角分别相等的四边形是平行四边形.∠=∠,∠D=BA∠C∴四边形ABCD是平行四边形.5.对角线互相平分的四边形是平行四边形.OA=OC,OB=OD,∴四边形ABCD是平行四边形.典型例题例7.如图,在四边形ABCD中,若已知AB∥CD,再添加下列条件之一,能使四边形ABCD成为平行四边形的条件是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD练习.下列条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD∥BCC.AB∥CD,AB=CD D.∠A=∠C,∠B=∠D例8.(1)如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是()A.DE=BF B.AE=CF C.∠ADE=∠CBF D.∠AED=∠CFB(2)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带来了两块碎玻璃,其编号应该是。

完整版)华师大版八年级下册数学知识点总结

完整版)华师大版八年级下册数学知识点总结

完整版)华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章分式16.1 分式及基本性质一、分式的概念1.分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子叫做分式。

2.对于分式概念的理解,应把握以下几点:1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;3)分母不能为零。

3.分式有意义、无意义的条件1)分式有意义的条件:分式的分母不等于 0;2)分式无意义的条件:分式的分母等于 0.4.分式的值为 0 的条件:当分式的分子等于 0,而分母不等于 0 时,分式的值为 0.即,使 A=0,B≠0 的条件是。

5.有理式整式和分式统称为有理式。

整式分为单项式和多项式。

分类:有理式单项式整式多项式分式ABAB单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

用式子表示为:A·M/B=A·M/B·M/M=A·M·1/B·M,其中M(M≠0)为整式。

2.通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3.约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

华师大版 八年级数学下册小复习课件(全册篇ppt共322张方便实用)

华师大版 八年级数学下册小复习课件(全册篇ppt共322张方便实用)

数学·新课标(HS)
第17章复习 ┃ 知识归纳
4. 分式的运算
运算名称 法则 分式乘分式,用分子的积作为 积的分子 , 分 母 的 积 作 为 ________ ________ 积的分母 分式除以分式,把除式的分子、分 相乘 母颠倒顺序 ________后,与被除式________ 同分母的分式相加减,分母 不变 ,把分子 ________ 相加减 ________ 异分母的分式相加减,先 同分母的分式,然 通分 ________ ,变为 ____________ 加减 后再 ________ 式子表示
第17章 复习 第18章 复习(一) 阶段综合测试一针对训练卷(月考) 第18章 复习(二) 第18章 复习(三) 第19章 复习(一) 阶段综合测试二针对训练卷(期中) 第19章 复习(二) 第20章 复习(一) 阶段综合测试三针对训练卷(月考) 第20章 复习(二) 第21章 复习 阶段综合测试四针对训练卷(期末一) 阶段综合测试五针对训练卷(期末二)
数学·新课标(HS)
第17章复习 ┃ 知识归纳
续表 定义 操作方法 备注 把几个异分母 各分式的分 的分式分别化成 子、分母分别乘 (3) 分式 约分 和通 通 _______________ 与原来的分式 以一个适当的非 分 的 依 据 分 _____________ 的 相等的同分母 分式的基本性质 零整式,使分母 _______________ 分式, 叫做分式的 变的相同 通分 [点拨] (1)通过对比来掌握知识是一种好方法. (2)无论是分 式的约分还是通分,当分子、分母能分解因式时首先要将其分 解,以便于找出公因式或最简公分母.
数学·新课标(HS)
第17章复习 ┃ 知识归纳
2. 分式的基本性质 分式的分子与分母同乘以或除以同一个 不等于零的 ____________ 整 不变 式,分式的值 ________. A A× M A÷ M 用式子表示为 = = (其中 M 是 __________ 不等于零 的整 B B× M B÷ M 式 ). [点拨 ] 分式的分子、分母和分式本身的符号改变其中任何 ________ 两 个,分式的值不变.

新华师大版八年级下学期数学平面直角坐标系知识点总结与例题讲解

新华师大版八年级下学期数学平面直角坐标系知识点总结与例题讲解

平面直角坐标系资料编号:202203251050 【自学指导】借助于数学课本,弄清楚以下几个问题:1. 如何建立平面直角坐标系?2. 如何在平面直角坐标系中表示给定点的坐标?3. 给出一个点的坐标,如何在平面直角坐标系中描出这个点?4. 象限的划分.5. 象限内点的坐标特征.6. 会根据点所在的位置求字母的值或取值范围.【重要知识点总结】平面直角坐标系在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴,这就建立了平面直角坐标系.把水平的数轴叫做x轴或横轴,取向右的方向为正方向;铅直的数轴叫做y轴或纵轴,取向上的方向为正方向.两条数轴的交点O叫做坐标原点.如下图(1)所示.轴横轴或x 轴图(1)平面直角坐标系点的坐标在平面直角坐标系中,任何一点都可以用一对有序实数对来表示,叫做点的坐标.点与有序实数对是一一对应的.如下页图(2)所示,点P的坐标是这样确定的:通过点P向x轴作垂线,垂足在x轴上对应的数就是点P 的横坐标;通过点P 向y 轴作垂线,垂足在y 轴上对应的数就是点P 的纵坐标.规定:横坐标在前,纵坐标在后(横前纵后),所以点P 的坐标为()3,2-,其横坐标为2-,纵坐标为3.图(2)注意:(1)在求点的坐标时,x 轴上对应的数是横坐标,y 轴上对应的数是纵坐标.(2)求点的坐标时,横坐标要写在前面,纵坐标写在后面,中间用逗号隔开,再把它们用小括号括起来.(3)如果点在x 轴(横轴)上,其纵坐标为0;如果点在y 轴(纵轴)上,其横坐标为0;如果点在原点,其横坐标、纵坐标均为0,坐标为()0,0.(4)知道一个点的坐标,可以在平面直角坐标系中描出点(即确定点的位置);知道一个点在平面直角坐标系中的位置,可以求出点的坐标. 点在坐标轴上的坐标特征已知点P 的坐标为()n m ,,若点P 在x 轴上,则0=n ;若点P 在y 轴上,则0=m ;若点P 在原点,则0,0==n m . 象限在平面直角坐标系中,两条坐标轴把平面分成如图(3)所示的Ⅰ, Ⅱ , Ⅲ , Ⅳ四个区域,分别称为第一、二、三、四象限. 注意:(1)象限以坐标轴为界,坐标轴上的点不属于任何一个象限.(2)不同的象限内,点的坐标符合不同.(3)象限内点的坐标符号的确定方法:看点所在象限是以两条坐标轴的哪两条半轴为分界线的,正半轴所对应的坐标符号为正,负半轴所对应的坐标符号为负.如,第一象限是以x 轴的正半轴和y 轴的正半轴为分界线的,所以在第一象限内,点的横坐标、纵坐标均为正.第二象限:横坐标为_________,纵坐标为_________; 第三象限:横坐标为_________,纵坐标为_________; 第四象限:横坐标为_________,纵坐标为_________.图(3)图(4)四个象限内点的坐标符号(4)点在坐标轴上,则点不属于任何一个象限:点在x 轴的正半轴上,坐标符号为)0,(+,点在x 轴的负半轴上,坐标符号为)0,(-; 点在y 轴的正半轴上,坐标符号为),0(+,点在y 轴的负半轴上,坐标符号为),0(-.(5)根据点的坐标,我们可以确定点所在的象限;而根据点所在的象限,我们可以确定字母的取值范围. 【例题讲解】例1. 如图所示,在平面直角坐标系中: 点A 的坐标是__________; 点B 的坐标是__________; 点C 的坐标是__________; 点D 的坐标是__________; 点E 的坐标是__________.解:点A 的坐标是()2,2; 点B 的坐标是()3,3-; 点C 的坐标是()2,2--; 点D 的坐标是()2,3-; 点E 的坐标是()0,3.例2. 平面直角坐标系中,点()3,2-A 在第_________象限. 分析 本题考查根据点的坐标判断点所在的象限.点A 的横坐标为正,对应x 轴的正半轴,纵坐标为负,对应y 轴的负半轴,故点A 位于第四象限. 解: 四例3. 若点()1,3++m m A 在x 轴上,则点A 的坐标是__________. 分析 点在坐标轴上,点不属于任何象限.当点在x 轴上时,其纵坐标为0;当点在y 轴上时,其横坐标为0. 解:由题意可知:01=+m 解之得:1-=m ∴()0,2A .例4. 若点()12,1+-m m P 在第二象限,则m 的取值范围是__________. 分析 本题考查根据点所在的象限,求参数的取值范围.在第二象限,对应x 轴的负半轴,y 轴的正半轴,故第二象限的点,其横坐标为负,纵坐标为正.解:由题意可得:⎩⎨⎧>+<-01201m m解之得:121<<-m . 例5. 如果点()n m A -3,2在第二象限,那么点()4,1--n m B 在第_________象限. 分析 要先根据点A 所在的象限求出n m ,的取值范围,然后再确定点B 所在的象限. 解:由题意可得:03,02>-<n m ∴3,0<<n m ∴04,01<-<-n m ∴点B 在第三象限.【作业】1. 点()2,1-P 在第_________象限.2. 若点()3,2+-x x P 在第一象限,则x 的取值范围是__________.3. 已知点()m A ,0在y 轴的负半轴上,则点()1,+--m m B 在第_________象限.4. 若第三象限内的点()n m P ,满足9,52==n m ,则点P 的坐标为__________.5. 点⎪⎭⎫ ⎝⎛1,b a A 在第一象限,则点()ab a B ,2-在第_________象限.6. 如图所示,在平面直角坐标系中: (1)点A 的坐标是_________;点B 的坐标是_________; 点C 的坐标是_________; 点D 的坐标是_________. (2)在图中分别作出点A , B , C , D 关 于x 轴对称的点',',','D C B A ; (3)点'A 的坐标是_________;点'B 的坐标是_________;点'C 的坐标是_________; 点'D 的坐标是_________.(4)观察这些对称点的坐标之间的关系,你能得出什么结论?(从横坐标、纵坐标两个角度观察)在图中再找一对对称点验证一下你得出的结论.【作业答案】1. 点()2,1-P 在第_________象限. 解: 二2. 若点()3,2+-x x P 在第一象限,则x 的取值范围是__________.解:由题意可得:⎩⎨⎧>+>-0302x x解之得:2>x .3. 已知点()m A ,0在y 轴的负半轴上,则点()1,+--m m B 在第_________象限. 解:由题意可得:0<m ∴01,0>+->-m m∴点()1,+--m m B 在第一象限.4. 若第三象限内的点()n m P ,满足9,52==n m ,则点P 的坐标为__________. 解:∵9,52==n m ∴3,5±=±=n m ∵点P 在第三象限 ∴0,0<<n m ∴3,5-=-=n m ∴点P 的坐标为()3,5--.5. 点⎪⎭⎫ ⎝⎛1,b a A 在第一象限,则点()ab a B ,2-在第_________象限.解:∵点⎪⎭⎫⎝⎛1,b a A 在第一象限∴0≠a ,且b a ,同号 ∴0,02><-ab a∴点()ab a B ,2-在第二象限.6. 如图所示,在平面直角坐标系中: (1)点A 的坐标是_________;点B 的坐标是_________; 点C 的坐标是_________; 点D 的坐标是_________. (2)在图中分别作出点A , B , C , D 关 于x 轴对称的点',',','D C B A ; (3)点'A 的坐标是_________;点'B 的坐标是_________; 点'C 的坐标是_________; 点'D 的坐标是_________.(4)观察这些对称点的坐标之间的关系,你能得出什么结论?(从横坐标、纵坐标两个角度观察)在图中再找一对对称点验证一下你得出的结论.解:(1)点A 的坐标是()3,2; 点B 的坐标是()4,3-; 点C 的坐标是()2,2--; 点D 的坐标是()1,3-. (2)如图所示;(3)点'A 的坐标是()3,2-; 点'B 的坐标是()4,3--; 点'C 的坐标是()2,2-; 点'D 的坐标是()1,3.(4)发现的结论: 两个点关于x 轴对称,它们的横坐标相等,纵坐标互为相反数.。

初中数学知识点总结(华师大)

初中数学知识点总结(华师大)

七年级上 有理数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。

2.正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。

像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。

【注】0既不是正数也不是负数。

3.有理数(1)整数:正整数、零和负整数统称为整数。

分数:正分数和负分数统称为分数。

有理数:整数和分数统称为有理数。

(2)有理数分类按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数 有理数 负整数 有理数 正分数 正分数 0 负整数 分数 负有理数 负分数 负分数 【注】有限循环小数叫做分数。

(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。

所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。

4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。

【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。

2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数. (2)在数轴上比较有理数的大小 1)在数轴上表示的两个数,右边的数总比左边的数大。

2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。

(几何意义) (3)0的相反数是0。

也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

(5)数a 的相反数是—a 。

(6)多重符号化简 多重符号化简的结果是由“-”号的个数决定的。

如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。

【强烈推荐】华师大版八年级下册数学知识点总结

【强烈推荐】华师大版八年级下册数学知识点总结

华师大版八年级下册数学知识点总结第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使BA =0的条件是:A=0,B ≠0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

分类:有理式 单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式的整式,分式的值不变。

用式子表示为:A B = A·M B·M = A÷M B÷M ,其中M (M ≠0)为整式。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级华师大版数学(下)第16章分式§ 16.1分式及基本性质一、分式的概念1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子-B 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使-=0的条B件是:A=0, B M 0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

整式单项式分类:有理式整式多项项分式 -单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变用式子表示为:B = B -M = A ^M ,其中M ( M 工0)为整式2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变 分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通 分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同 字母的最高次幕、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先 把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同 因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变 分式的值,这样的分式变形叫做分式的约分。

在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、 分母的公因式,即约去分子、分母系数的最大公约数,相同字母的最低次幕;(2) 如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再 约分;(3)约分一定要把公因式约完。

三、分式的符号法则:§ 16.2分式的运算一、分式的乘除法1、法则:(1)乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积 的分母。

(意思就是,分式相乘,分子与分子相乘,分母与分母相乘)。

a c ac—?— --用式子表示:b d bd(1) a a -b = — b ; -a b ; (3) -a -b(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,再与被 除式相乘。

a c a d ad用式子表示:b d b?c 忑2、应用法则时要注意:(1)分式中的符号法则与有理数乘除法中的符号法则相同,即“同号得正,异号得负,多个负号出现看个数,奇负偶正”;(2)当 分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。

二、分式的乘方1、法则:根据乘方的意义和分式乘法法则,分式的乘方就是把将分子、分 母分别乘方,然后再相除。

2、注意事项:(1)乘方时,一定要把分式加上括号;(2)在一个算式中同 时含有乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先因式分解, 再约分;(3)最后结果要化到最简三、分式的加减法(一)同分母分式的加减法1、法则:同分母分式相加减,分母不变,把分子相加减用式子表示: b bC 即b b b2、注意事项:(1) “分子相加减”是所有的“分子的整体”相加减,各个分 子都应有括号;当分子是单项式时括号可以省略,但分母是多项式时,括号不能 省略;(2)分式加减运算的结果必须化成最简分式或整式。

(二)异分母分式的加减法1、法则:异分母分式相加减,先通分,转化为同分母分式后,再加减。

用a c ad be ad be式子表示:b d bd bd bd 。

2、注意事项:(1)在异分母分式加减法中,要先通分,这是关键,把异分 母分式的加减法变成同分母分式的加减法。

(2)若分式加减运算中含有整式,应 视其分母为1,然后进用式子表示:b n (其中n 为正整数,a z 0)行通分。

(3)当分子的次数高于或等于分母的次数时,应将其分离为整式与真分式之和的形式参与运算,可使运算简便。

四、分式的混合运算1、运算规则:分式的加、减、乘、除、乘方混合运算,先乘方,再乘除,最后算加减。

遇到括号时,要先算括号里面的。

2、注意事项:(1)分式的混合运算关键是弄清运算顺序;(2)有理数的运算顺序和运算规律对分式运算同样适用,要灵活运用交换律、结合律和分配律;(3)分式运算结果必须化到最简,能约分的要约分,保证运算结果是最简分式或整式。

§ 16.3可化为一元一次方程的分式方程—、分式方程基本概念1、定义:方程中含有分式,并且分母中含有未知数的方程叫做分式方程。

2、理解分式方程要明确两点:(1)方程中含有分式;(2)分式的分母含有未知数。

分式方程与整式方程最大区别就在于分母中是否含有未知数。

二、分式方程的解法1、解分式方程的基本思想:化分式方程为整式方程。

途径:“去分母”。

分式方程去分母转分整式方程方法是:方程两边都乘以各分式的最简公分母,约去分母,化为整式方程求解。

2、解分式方程的一般步骤:(1)去分母。

即在方程两边都乘以各分式的最简公分母,约去分母,把原分式方程化为整式方程;(2)解这个整式方程;(3)验根。

验根方法:把整式方程的根代入最简公分母,使最简公分母不等于0的根是原分式方程的根,使最简公分母为0的根是原分式方程的增根,必须舍去。

这种验根方法不能检查解方程过程中出现的计算错误,还可以采用另一种验根方法,即把求得的未知数的值代入原方程进行检验,这种方法可以发现解方程过程中有无计算错误。

3、分式方程的增根。

意义是:把分式方程化为整式方程后,解出的整式方程的根有时只是这个整式的方程的根而不是原分式方程的根,这种根就是增根,因此,解分式方程必须验根。

三、分式方程的应用1、意义:分式方程的应用就是列分式方程解应用题,它和列一元一次方程解应用题的方法、步骤、解题思路基本相同,不同的是,因为有了分式概念,所列代数式的关系不再受整式的限制,列出的方程含有分式,且分母含有未知数,解出方程的解后还要进行检验。

2、列分式方程解应用题的一般步骤如下:(1)审题。

理解题意,弄清已知条件和未知量;(2)设未知数。

合理的设未知数表示某一个未知量,有直接设法和间接设法两种;(3)找出题目中的等量关系,写出等式;(4)用含已知量和未知数的代数式来表示等式两边的语句,列出方程;(5)解方程。

求出未知数的值;(6)检验。

不仅要检验所求未知数的值是否为原方程的根,还要检验未知数的值是否符合题目的实际意。

“双重验根”。

§ 16.4零指数幕与负整数指数幕一、零指数幕1、定义:任何不等于零的实数的零次幕都等于1,即a0=1 (a z 0)。

2、特别注意:零的零次幕无意义。

即00无意义。

若问当x= ______________ 时,(x-2)°有意义。

答案是:x工2。

(2)按照定义分为:二、负整数指数幕1、定义:任何不等于的数的-n (n为正整数)次幕,都等于这个数的n次幕的倒数,即a-n二丄(a z 0, n为正整数)a2、注意事项:(1 )负整数指数幕成立的条件是底数不为0;(2)正整数指数幕的所有运算法则均适用于负整式指数幕,即指数幕的运算可以扩大到整数指数幕范围;(3)要避免像5-2=-2X5=-10的错误,正确算法是:。

52 4 丄5225三、用科学计数法表示绝对值小于1的数1、规则:绝对值小于1的数,利用10的负整式指数幕,把它表示成a x 10-n (n为正整数),其中1w|a|v 10。

2、注意事项:(1)n为该数左边第一个非零数字前所有0的个数(包括小数点前的那个零)。

如-0.00021=-2.1X 10-4(2)注意数的符号的变化,在数前面有负号的,其结果也要写符号。

(3)写科学记数法的关键的是确定10n的指数n的值。

第17章函数及其图象§ 17.1变量与函数一、变量与常量1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。

常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。

2、注意事项:(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。

如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。

二、函数概念1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与其对应,那么,我们就说y是x的函数, 其中x叫做自变量,y叫做因变量。

2、对函数概念的理解,主要抓住三点:(1)有两个变量;(2)一个变量的数值随另一个变量的数值的变化而变化;(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。

三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。

四、求函数自变量的取值范围1.实际问题中的自变量取值范围按照实际问题是否有意义的要求来求。

2.用数学式子表示的函数的自变量取值范围例1.求下列函数中自变量x的取值范围(1)解析式为整式的,x取全体实数;(2)解析式为分式的,分母必须不等于0式子才有意义;(3)解析式的是二次根式的被开方数必须是非负数式子才有意义;(4)解析式是三次方根的,自变量的取值范围是全体实数。

3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。

§ 17.2函数的图象、平面直角坐标系1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角 坐标系。

其中水平的数轴叫做横轴(或 x 轴),取向右为正方向;竖直的数轴叫 做纵轴(y 轴),取向上为正方向;两轴的交点 0叫做原点。

在平面内,原点的 右边为正,左边为负,原点的上边为正,下边为负。

2、坐标平面内被x 轴、y 轴分割成四个部分,按照“逆时针方向”分别为第 一象限、第二象限、第三象限、第四象限注意:x 轴、y 轴原点不属于任何象限。

3、平面直角坐标系中的点分别向x 轴、y 轴作垂线段, 在x 轴上垂足所显示的数称为该点的横坐标, 在y 轴上垂足 所显示的数称为该点的纵坐标。

点的坐标反映的是一个点在 平面内的位置。

写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括 号括起来。

如P (3,2)横坐标为3,纵坐标为2。

特别注意坐标的顺序不同,表示的就是不同位置的点。

相关文档
最新文档