八年级数学期末考试题及答案

合集下载

初中八年级数学上册期末考试题(附答案)

初中八年级数学上册期末考试题(附答案)

初中八年级数学上册期末考试题(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)5.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,56.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.若a b a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A.3 B.4 C.5 D.69.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当CEB'△为直角三角形时,BE的长为______。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案

2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案

2023—2024学年度下学期八年级数学学科参考答案及评分标准一、选择题(每小题3分,共计30分)二、填空题(每小题3分,共计30分)三、解答题(其中21题6分,22-24题各8分,25-27题各10分,共计60分)21.(本题6分)解:22231x x x -+=+22410x x -+=......................................................................1分241a b c ==-=,,224(4)b ac D =-=--4×2×1=8>0.....................................................2分方程有两个不等的实数根................................2分即12222222x x +-==,........................................................1分22.(本题8分)解:(1)如图1,正确画图(答案不唯一)...................................................4分(2)如图2,正确画图....................................................................4分12345678910ABBBCDCDAC题号1112131415答案x≠2-18x≥223题号1617181920答案5.8205±12②③(第22题答案图1)(第22题答案图2)23.(本题8分)解:(1)14.5.............................................................................2分+分(2)∠BCD 是直角,理由:连接BD.由勾股定理得,2222420BC =+=,222125CD =+=,2223425BD =+=......................................................................1分∴22220525BC CD BD +=+==.........................................................2分∴∠BCD 是直角...........................................................................1分24.(本题8分)解:(1)设(0)y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩...............................................................2分解得2515k b =⎧⎨=⎩.............................................................................2分2515y x ∴=+............................................................................1分(2)当0.3x m =时,250.31522.5()y m =⨯+=................................................2分∴当这种树的胸径为0.3m 时,其树高为22.5m ................................................1分25.(本题10分)解:(1)450.............................................................................2分6750....................................................................................2分(2)设销售单价定位x 元时,利润为8000元.根据题意,得[](40)50010(50)8000x x ---=.................................................2分解得126080x x ,==......................................................................1分当x=60时,销售量为500-10(60-50)=400(套),成本为400×40=16000>10000...................1分当x=80时,销售量为500-10(80-50)=200(套),成本为200×40=8000<10000....................1分∴x=80答:月销售成本不超过10000元的情况下,该商品的销售单价应定为每套80元可使月销售利润达到8000元......................................................................................1分26.(本题10分)解:(1)①∠DEF 的大小不发生变化,∠DEF=90°............................................1分理由:如图1,作EG⊥AB,EH⊥AD,垂足分别为点G、H.∵四边形ABCD 是正方形∴∠DAB=90°,∠BAC=∠DAC=12∠DAB=45°,AC⊥BD ∴EG=EH又∵EF=DE∴Rt△EFG≌Rt△EDH.............................................1分∴AG=AH,∠FEG=∠DEH 在四边形AGEH 中,∠GEH=360°-90°-90°-90°=90°∴∠DEF=∠DEH+∠FEH=∠FEG+∠FEH=∠GEH=90°..............................................1分∴∠DEF 的大小不发生变化,∠DEF=90°②AF=2OE..............................................................................1分理由:如图1,令AG=m,OE=2n ,则AH=m.在Rt△AEH 中∵∠AEH=90°-∠EAH=90°-45°=45°=∠EAH∴EH=AH=m∴22222AE AH EH m m m =+=+=.....................................................1分∴OA=AE+OE=222()m n m n +=+同理:在Rt△OAD 中,22()2()AD m n m n =⨯+=+∴DH=AD-AH=2(m+n)-m=m+2n=FG ∴AF=FG-AG=m+2n-m=2n∴AF=2OE......................1分(2)AF=CE理由:如图2,作EM⊥AB,EN⊥AD,垂足分别为点M、N.令AM=a,OE=b.∵四边形ABCD 是菱形∴AB=BC=AD ,∠BAC=∠DAC,AC⊥BD,AC=2OA......................1分∴EM=EN 又∵EF=DE∴Rt△EFM≌Rt△EDN.............................................1分∴FM=DN∵AB=BC,∠ABC=60°∴△ABC 为等边三角形∴∠DAC=∠BAC=60°,AC=AB∵∠EAM=∠EAN,∠EMA=∠ENA=90°,AE=AE ∴△AEM≌Rt△AEN∴AN=AM=a在Rt△AEN 中∵∠AEN=90°-∠EAN=90°-60°=30°∴AE=2AN=2a...........................1分∴OA=AE+OE=2a+b ∴AC=2OA=4a+2b=AD∴CE=AC-AE=4a+2b-2a=2a+2b∵FM=DN=AD-AN=4a+2b-a=3a+2b ∴AF=FM-AM=3a+2b-a=2a+2b=CE.............................1分27.(本题10分)解:(1)y=3x+3当x=0时,y=3×0+3=3∴C(0,3)当y=0时,0=3x+3∴x=-1∴B(-1,0)..........................................1分∴OB=1∴OA=3×1=3∴A(3,0)设直线AC 解析式为y=kx+b∴303bk b=⎧⎨=+⎩解得13k b =-⎧⎨=⎩(第26题答案图1)(第26题答案图2)∴直线AC 的解析式为y=-x+3...............................................................1分(2)如图1,∵点D 是线段AC 上一个动点,且横坐标为t∴D(t,-t+3)过点D 作DK⊥x 轴于K,则DK=-t+3..........................................................1分∵A(3,0),B(-1,0)∴AB=3-(-1)=4∴12ABC ABD S S S △△=-=×AB×OC-12×AB×DK=12×4×3-12×4×(-t+3)=2t.....................2分(3)过点D 作DR⊥x 轴于R,过点G 作GP⊥AE 于P,过点G 作直线l∥x 轴交y 轴于T,过点A 作AN⊥l于N,过点E 作EM⊥l 于M,交x 轴于L.∵AE∥BD,BF//AC ∴四边形ADBF 是平行四边形,∠DAR=∠FBO ∴AD=BF又∵∠ARD=∠BOF=90°∴△ADR≌△BFO∴AR=OB=1,OF=DR∴t=OR=OA-AR=3-1=2∴OF=DR=-t+3=1,S=2t=4∴F(0,-1).................................................1分设直线AF 的解析式为y=mx+n∴103n m n -=⎧⎨=+⎩解得131m n ⎧=⎪⎨⎪=-⎩∴直线AF 的解析式为113y x =-由33113y x y x =+⎧⎪⎨=-⎪⎩解得3232x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴E(32-,32-)∵MN∥AL ∴∠ALE+∠M=180°∴∠ALE=180°-90°=90°=∠M=∠N ∴四边形ALMN 为矩形∴AN=ML,MN=AL=3+32=92在Rt△AEL 中,2222333()(3)10222AE EL AL =+=++=∵454545432328AEG S S ==´=△∴12×3102×GP=458∴GP=3104...................1分∵GE=GA,GP⊥AE∴AP=EP=12AE=3104=GP ∴∠PEG=∠PGE,∠PAG=∠PGA,2222333(10)(10)5442EG EP GP =+=+=又∵∠PEG+∠PGE=90°,∠PAG+∠PGA=90°∴∠PGE=∠PGA=45°∴∠EGA=90°(第27题答案图1)(第27题答案图2)∴∠AGN+∠EGM=90°又∵∠GEM+∠EGM=90°∴∠AGN=∠GEM 又∵∠N=∠M=90°,AG=EG∴△AGN≌△GEM∴GN=EM,AN=MG 令EM=c,则GN=c,MG=AN=ML=c+32∵MG+GN=MN ∴c+32+c=92∴c=32∴MG=3=AN=ML ∴GT=MG-MT=3-32=32∵∠OLM=∠M=∠LOT=90°∴四边形OLMT 为矩形∴OT=ML=3∴G(32,-3)..............1分当点G,E,H 在同一条直线时,GH EH EG-=当点G,E,H 不在同一条直线时,在△EGH 中,GH EH EG -<综上所述:GH EH EG -£=,GH EH -...........................1分此时点H 是直线EG 与x 轴的交点设直线EG 的解析式为y=ex+f∴3322332e f e f ⎧-=-+⎪⎪⎨⎪-=+⎪⎩解得1294e f ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EG 的解析式为1924y x =--当y=0时,19024x =--∴x=92-∴H(92-,0)....................................1分(以上各解答题如有不同解法并且正确,请按相应步骤给分)。

2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

监利市2023-2024学年度上学期期末考试八年级数学试题本卷满分120分,考试时间120分钟,共三大题,24个小题. 一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.数学中有许多精美的曲线,以下是“笛卡尔叶形线”“阿基米德螺线”“三叶玫瑰线”和“星形线”.其中一定不.是.轴对称图形的是() A . B . C . D .2.在下列运算中,正确的是() A .236a a a ⋅=B .22(3)6a a =C .()325aa =D .32a a a ÷=3.如图,DAC BAC ∠=∠,再添加下列条件,仍不能判定ABC ADC △≌△的是()A .DC BC =B .AB AD =C .D B ∠=∠D .DCA BCA ∠=∠4.下列各式与aa b−相等的是() A .22()a a b −B .22()a ab a b −−C .33aa b− D .aa b−+ 5.一个三角形的两边长为3和8,且第三边长为奇数,则第三边长为() A .7B .9C .5或7D .7或96.将下列多项式分解因式,结果中不含因式1x −的是() A .21x −B .(2)(2)x x x −+−C .221x x −+D .221x x ++7.边长分别为a 和2a 的两个正方形按如下图的样式摆放并连线,则图中阴影部分的面积为()A .23aB .274a C .22aD .232a 8.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为km/h x ,那么可列方程为()A .12012011.5x x −= B .12012011.5x x −=+ C .12012011.5x x −= D .12012011.5x x−=+9.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC △的面积为()A .40B .46C .48D .5010.如图,在ABC △中,9AB =,13AC =,点M 是BC 的中点,AD 是BAC ∠的平分线,//MF AD ,则CF 的长为()A .12B .11C .10D .9二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分)11.分式11x x +−的值为0,则x 的值为______.12.一个多边形的内角和是外角和的2倍,这个多边形的边数为______. 13.若3m n +=,则222426m mn n ++−的值为______.14.如图,在ABC △中,74B ∠=︒,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,若AB BD BC +=,则BAC ∠的度数为______.15.若27193m n =,则23n m −的值是______.16.如图,在ABC △中,AB AC =.点D 为ABC △外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为______.三、解一解,试试谁更棒(本大题共8小题,满分72分) 17.(本题满分8分)计算:(1)()()21a a −+ (2)()()22224ab a b −÷−18.(本题满分8分)分解因式:(1)329a ab −(2)2(2)8x y xy +−19.(本题满分6分)如图AE BD =,AC DF =,BC EF =,求证:A D ∠=∠.20.(本题满分10分)(1)先化简,再求值:524223m m m m −⎛⎫+−⨯⎪−−⎝⎭,其中4m =. (2)若分式方程15102x mx x−=−−无解,求m 的值. 21.(本题满分8分)如图是68⨯的小正方形构成的网格,每个小正方形的边长为1,ABC △的三个顶点A ,B ,C 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S ,使得BSC CAB ≌△△(S 不与A 重合);. (2)在图2中AB 上取一点K ,使CK 是ABC △的高; (3)在图3中AC 上取一点G ,使得AGB ABC ∠=∠.22.(本题满分10分)如图1,ABC △中,AB AC =,点D 在AB 上,且AD CD BC ==.(1)求A ∠的大小;(2)如图2,DE AC ⊥于E ,DF BC ⊥于F ,连接EF 交CD 于点H . ①求证:CD 垂直平分EF ;②请求出线段AE ,DB ,BF 之间存在的数量关系并说明理由.23.(本题满分10分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元. (1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优恵销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?24.(本题满分12分)平面直角坐标系中,点B 在x 轴正半轴,点C 在y 轴正半轴,ABC △是等腰直角三角形,CA CB =,90ACB ∠=︒,AB 交y 轴负半轴于点D .(1)如图1,点C 的坐标是(0,4),点B 的坐标是(8,0),求点A 的坐标;(2)如图2,AE AB ⊥交x 轴的负半轴于点E ,连接CE ,CF CE ⊥交AB 于F . ①求证:CE CF =; ②求证:点D 是AF 的中点; ③求证:1=2ACD BCE S S △△.2023-2024学年度上学期八年级数学期末考试参考答案一、选一选,比比谁细心11.=-1x 12. 6 13. 1214.69° 15. 1 16. 5三、解一解,试试谁更棒17.(1)22a a −−(2)-3b18.(1)(3)(3)a a b a b +−(2)2(2)x y − 19.证明:∵AE =BD ,∴AE +BE =DB +BE ,即AB =DE , 在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A =∠D . 20.(1)原式化简得:2(m +3) 当m =4时,原式=2×(4+3)=14 (2)m =-821.解:(1)如图1中,点S 即为所求;(2)如图2中,线段CK 即为所求; (3)如图,点G 即为所求.22.(1)解:设∠A =x , ∵AD =CD ,∴∠ACD =∠A =x ,∵CD =BC ,∴∠CBD =∠CDB =∠ACD +∠A =2x ; ∵AC =AB ,∴∠ACB =∠B =2x ,则∠DCB =x , ∵x +2x +2x =180°, ∴x =36°,即∠A =36°;(2)①证明:由(1)得:∠ACD =∠A =x ,∠DCB =x , ∴∠ACD =∠DCB ,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵CD=CD,∴△DEC≌△DFC(AAS),∴DE=DF,CE=CF,∴CD垂直平分EF;②解:三条线段AE,DB,BF之间的数量关系为:AE=DB+BF,理由如下:在CA上截取CG=CB,连接DG,如图2所示:由①已得:DE=DF,CE=CF,且CG=CB,∴CG﹣CE=CB﹣CF,即GE=BF,∵DE⊥AC,DF⊥BC,∴∠DEG=∠DFB=90°,∴△DEG≌△DFB(SAS),∴DG=DB,∠DGE=∠B,由(1)得:∠B=2x,∠A=x,∴∠DGE=2∠A,∵∠DGE=∠A+∠GDA,∴∠A=∠GDA,∴AG=DG,∴AE=AG+GE=DG+BF=DB+BF.23.解:(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得x=100.经检验,x=100是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则(100+100×2﹣20)•y+20×0.5 y≥1000+2400+950,解得y≥15.答:每千克这种水果的标价至少是15元.24.(1)解:如图1中,过点A作AH⊥y轴于点H.∵点C的坐标是(0,4),点B的坐标是(8,0),∴OC=4,OB=8,∵∠AHC=∠COB=∠ACB=90°,∴∠ACH+∠BCO=90°,∠BCO+∠CBO=90°,∴∠ACH=∠CBO,在△AHC 和△COB 中,AHC COB ACH CBO CA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHC ≌△COB (AAS ), ∴AH =OC =4,CH =OB =8, ∴OH =CH ﹣CO =8﹣4=4, ∴A (﹣4,﹣4);(2)证明:①如图2中,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBF =45°, ∵AE ⊥AB ,∴∠EAC =∠CAB =∠CBF =45°,∴CE ⊥CF ,∴∠ECF =∠ACB =90°,∴∠ECA =∠FCB , 在△ECA 和△FCB 中,ECA FCB CA BCEAC FBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ECA ≌△FCB (ASA ),∴CE =CF ;②如图2中,过点F 作FN ⊥CD 于点N ,过点A 作AM ⊥CD 于点M . ∵∠ECF =∠EOC =∠CNF =90°,∴∠ECO +∠FCN =90°,∠FCN +∠CFN =90°, ∴∠ECO =∠CFN , 在△EOC 和△CNF 中,EOC CNF ECO CFN CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△CNF (AAS ), ∴OC =FN ,同法可证,△BOC ≌△CMA (AAS ),∴OC =AM , 在△FND 和△AMD 中,90FDN ADM FND AMD FN AM ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△FND ≌△AMD ,∴DF =AD ;③设OE =a ,OB =b ,OC =c , ∵△EOC ≌△CNF ,△BOC ≌△CMA , ∴CN =OE =a ,CM =OB =b ,OC =AM =c , ∴MN =b ﹣a ,∵△FND ≌△AMD ,∴DN =DM =12(b ﹣a ), ∴CD =DN +CN =12(a +b ), ∵S △ACD=12•CD •AM =12•=12(a +b )•AM =14(a +b )•c ,S △BCE=12•EB •CO =12(a +b )•OC =12(a +b )•c ,∴S △ACD=12S △ECB .。

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。

答案:97. 4的立方是_________。

答案:648. 5的平方根是_________。

答案:±√59. 6的立方根是_________。

答案:∛610. 7的平方根是_________。

答案:±√7三、解答题11. 解方程:2x + 3 = 9。

答案:x = 312. 解方程:3x 2 = 8。

答案:x = 313. 解方程:4x + 5 = 17。

答案:x = 314. 解方程:5x 6 = 19。

答案:x = 515. 解方程:6x + 7 = 23。

答案:x = 216. 解方程:7x 8 = 21。

答案:x = 517. 解方程:8x + 9 = 35。

答案:x = 418. 解方程:9x 10 = 29。

答案:x = 519. 解方程:10x + 11 = 41。

答案:x = 320. 解方程:11x 12 = 39。

答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。

2024—2025学年最新人教新版八年级下学期数学期末考试试卷(精品试卷含有参考答案)

2024—2025学年最新人教新版八年级下学期数学期末考试试卷(精品试卷含有参考答案)

2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C.cm D.5cm或cm 3、为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数B.中位数C.众数D.方差4、以下列各组数为边长,能构成直角三角形的是()A.1、2、3B.3、4、5C.4、5、6D.、、5、P1(x1,y1),P2(x2,y2)是一次函数y=2x﹣3图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y26、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 7、已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD8、勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a,b(a>b)表示直角三角形的两直角边,则下列结论不正确的是()A.a2+b2=25B.a+b=5C.a﹣b=1D.ab=129、如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.10、已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.46二、填空题(每小题3分,满分18分)11、二次根式中,字母x的取值范围是.12、某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.13、直线y=kx+b经过点(3,﹣2),当﹣1≤x≤5时,y的最大值为6,则k的值为.14、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为.15、一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4<2x的解集是.16、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合).且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个说法:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.其中正确的是.第14题图第15题图第16题图2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19、已知y+1与x﹣2成正比例,且当x=1时,y=﹣3.(1)求y关于x的函数关系式;(2)当m≤x≤m+3时,y的最大值为7,求m的值.20、在某次体育节中,实验中学学生会开展“爱心义卖”活动,准备笔记本和便利贴两种文创产品共100本.若售出3本笔记本和2本便利贴收入65元,售出4本笔记本和3个便利贴收入90元.(1)求笔记本和便利贴的售价各是多少元;(2)已知笔记本数量不超过便利贴的3倍,则准备笔记本和便利贴各多少本的时候总收入最多,并求出总收入的最大值?21、为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a=;(2)本次抽样调查中,中位数是,扇形统计图中课外阅读6本的扇形的圆心角大小为度;(3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.22、已知:矩形ABCD,AC、BD交于点O,过点O作EF⊥BD分别交AB、CD于E、F.(1)求证:四边形BEDF是菱形..(2)若BC=3,CD=5,求S菱形BEDF23、直线y=﹣2x+4与x轴,y轴分别交于点A、B,过点A作AC⊥AB于点A,且AC=AB,点C在第一象限内.(1)求点A、B、C的坐标;(2)在第一象限内有一点P(3,t),使S△P AB =S△ABC,求t的值.24、如图,直线与x轴,y轴分别交于点A,B,直线y=kx﹣1与线段AB交于点C,与y轴交于点P,与x轴交于点D.(1)直接写出点A,B,P的坐标;(2)连接BD,若BD=AD,求S△PBC的值;(3)若∠PCB=45°,求点C的坐标.25、如图,直线y=kx﹣4k(k≠0)与坐标轴分别交于点A,B,过点A、B作直线AB,以OA为边在y轴的右侧作四边形AOBC,S=8.△AOB(1)求点A,B的坐标;(2)如图,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE;①如图1,问点E是否在定直线上,若是,求该直线的解析式;若不是,请说明理由;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请直接写出点H的坐标.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、x≥2且x≠3 12、513、﹣2或4 14、16 15、x>1.516、①③④三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、018、证明略19、(1)y=2x﹣5 (2)m的值为320、(1)笔记本的售价是15元,便利贴的售价是10元(2)总收入的最大值为1375元21、(1)图略20 (2)6,129.6(3)52822、(1)证明(2)10.223、(1)C(6,2)(2)t的值为824、(1)P(0,﹣1)(2)(3)C(,)25、(1)A(0,4),B(4,0)(2)①点E在定直线y=x﹣4上②点H坐标为(12,8)或(6,2)。

八年级数学(上册)期末试卷及答案(真题)

八年级数学(上册)期末试卷及答案(真题)

八年级数学(上册)期末试卷及答案(真题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .305.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)+=__________.1.已知a、b为两个连续的整数,且11a b<<,则a b2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、13k <<.4、72°5、706、20三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-33a +,;12-.3、(1)102b -≤≤;(2)24、(1)略;(2).5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

八年级数学上册期末考试卷(附答案)

八年级数学上册期末考试卷(附答案)

八年级数学上册期末考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知226a b ab +=,且a>b>0,则a b a b +-的值为( ) A .2 B .±2 C .2 D .±22.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( )A .1、3B .3、5C .6、8D .7、96.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.下列图形具有稳定性的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.函数132y xx=--+中自变量x的取值范围是__________.3.若m+1m=3,则m2+21m=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD 上.若5DE =,则GE 的长为__________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:2211(1)m m m m+--÷,其中m=3+1.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、A5、D6、B7、B8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、23x -<≤3、74、()()2a b a b ++.5、49136、8三、解答题(本大题共6小题,共72分)1、x=-1或x=32、333、3p =,1q =.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。

八年级上册数学期末考试卷及答案【含答案】

八年级上册数学期末考试卷及答案【含答案】

八年级上册数学期末考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在一个比例尺为1:1000的地图上,甲乙两地的实际距离为20km,那么在地图上甲乙两地的距离是多少cm?A. 200cmB. 2000cmC. 20000cmD. 200000cm4. 若一个等差数列的首项为2,公差为3,那么第10项是多少?A. 29B. 30C. 31D. 325. 下列图形中,哪一个图形的面积是12cm²?A. 一个边长为4cm的正方形B. 一个半径为2cm的圆C. 一个长为6cm,宽为2cm的长方形D. 一个底边为4cm,高为3cm的三角形二、判断题(每题1分,共5分)6. 两条平行线的同位角相等。

()7. 一个等边三角形的周长是它的任意一边长的三倍。

()8. 任何两个奇数相加的结果都是偶数。

()9. 一个正方形的对角线长度等于它的边长的根号2倍。

()10. 两个负数相乘的结果是正数。

()三、填空题(每题1分,共5分)11. 一个正方形的边长为5cm,那么它的面积是____cm²。

12. 若一个等差数列的第3项为7,第6项为16,那么这个等差数列的公差是____。

13. 两个互质的数的最小公倍数是它们的____。

14. 在直角坐标系中,点(3, 4)到原点的距离是____。

15. 一个圆锥的底面半径为4cm,高为3cm,那么它的体积是____cm³。

16. 请简要解释等差数列和等比数列的定义。

17. 请简要解释勾股定理及其应用。

18. 请简要解释平行线的性质及其应用。

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1.已知三条线段的长分别是3,8,a,若它们能构成三角形,则整数a的最大值是( )A.11 B.10C.9 D.72.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°3.下列图形:其中轴对称图形的个数是( )A.1 B.2C.3 D.44.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS5.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A .8B .6C .5D .46.如图,在△ABC 中,AC >BC ,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧交于点D ,E ,经过点D ,E 作直线分别交AB ,AC 于点M ,N ,连接BN ,下列结论正确的是( )A .AN =NCB .AN =BNC .MN =12BCD .BN 平分∠ABC7.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .2+xx−y B .2xx−y C .2+xxyD .x 2x+y8.分式x 2−x x−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或19.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除10.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50xD .75x=50x+511.如图,在等边三角形ABC 中,D ,E 分别是BC ,AC 的中点,P 是线段AD 上的一个动点,当△PCE 的周长最小时,点P 的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

2022—2023年部编版八年级数学下册期末考试及答案【完美版】

2022—2023年部编版八年级数学下册期末考试及答案【完美版】

2022—2023年部编版八年级数学下册期末考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123-=________.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.33x x -=-,则x 的取值范围是________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

2022年八年级数学上册期末考试卷及参考答案

2022年八年级数学上册期末考试卷及参考答案

2022年八年级数学上册期末考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.如果在y轴上, 那么点P的坐标是A. B. C. D.2.某市6月份某周气温(单位: ℃)为23.25.28、25.28、31.28, 则这组数据的众数和中位数分别是()A. 25.25B. 28、28C. 25.28D. 28、313. 成人每天维生素D的摄入量约为0.0000046克. 数据“0.0000046”用科学记数法表示为()A. B. C. D.4.甲、乙二人做某种机械零件, 已知每小时甲比乙少做8个, 甲做120个所用的时间与乙做150个所用的时间相等, 设甲每小时做x个零件, 下列方程正确的是()A. B. C. D.5. 下列各组数中, 能构成直角三角形的是()A. 4, 5, 6B. 1, 1,C. 6, 8, 11D. 5, 12, 23 6.已知点在轴上, 则点的坐标是()A. B. C. D.7.下面是一位同学做的四道题: ①;②;③;④, 其中做对的一道题的序号是()A. ①B. ②C. ③D. ④8.如图, 在△ABC中, CD平分∠ACB交AB于点D, 过点D作DE∥BC交AC于点E,若∠A=54°, ∠B=48°, 则∠CDE的大小为()A. 44°B. 40°C. 39°D. 38°9.如图, 将△ABC放在正方形网格图中(图中每个小正方形的边长均为1), 点A, B, C恰好在网格图中的格点上, 那么△ABC中BC边上的高是()A. B. C. D.10.如图, 点P是边长为1的菱形ABCD对角线AC上的一个动点, 点M, N分别是AB, BC边上的中点, 则MP+PN的最小值是()A. B. 1 C. D. 2二、填空题(本大题共6小题, 每小题3分, 共18分)1. 关于的分式方程的解为正数, 则的取值范围是_____.2.已知= + , 则实数A=__________.3. 4的平方根是 .4. 如图, 在△ABC中, BO、CO分别平分∠ABC.∠ACB. 若∠BOC=110°, 则∠A=________.5.如图, Rt△ABC中, ∠ACB=90°, AB=6, D是AB的中点, 则CD=_____.6. 如图, ABCD的对角线相交于点O, 且AD CD, 过点O作OM AC, 交AD于点M. 如果CDM的周长为8, 那么ABCD的周长是_____.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 先化简, 再求值: , 其中.3. 已知关于的一元二次方程有两个不相等的实数根(1)求k的取值范围;(2)若为正整数, 且该方程的根都是整数, 求的值.4. (1)如图(1), 已知: 在△ABC中, ∠BAC=90°, AB=AC, 直线m经过点A, BD⊥直线m, CE⊥直线m,垂足分别为点D.E.证明:DE=BD+CE.(2)如图(2), 将(1)中的条件改为: 在△ABC中, AB=AC, D.A.E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC= ,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3), D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形, 连接BD、CE,若∠BDA=∠AEC=∠BAC, 试判断△DEF的形状.5. 如图, 在长方形OABC中, O为平面直角坐标系的原点, 点A坐标为(a, 0), 点C的坐标为(0, b), 且a、b满足+|b﹣6|=0, 点B在第一象限内, 点P从原点出发, 以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动. (1)a= , b= , 点B的坐标为;(2)当点P移动4秒时, 请指出点P的位置, 并求出点P的坐标;(3)在移动过程中, 当点P到x轴的距离为5个单位长度时, 求点P移动的时间.6. 为落实“美丽抚顺”的工作部署, 市政府计划对城区道路进行了改造, 现安排甲、乙两个工程队完成. 已知甲队的工作效率是乙队工作效率的倍, 甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元, 乙队工作一天需付费用5万元, 如需改造的道路全长1200米, 改造总费用不超过145万元, 至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、C4、D5、B6、A7、C8、C9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1. 且2、13.±2.4.40°5、36、16三、解答题(本大题共6小题, 共72分)1、53xy=⎧⎨=⎩.2. ,3.(1)k<(2)24.(1)见解析(2)成立(3)△DEF为等边三角形5、(1)4, 6, (4, 6);(2)点P在线段CB上, 点P的坐标是(2, 6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)乙工程队每天能改造道路的长度为40米, 甲工程队每天能改造道路的长度为60米.(2)10天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五区县2012—2013学年度第一学期期末质量检测试题
八年级数学参考答案
一、选择题(每小题3分,共30分) 1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.C 9.C 10.A
二、填空题. (每题3分,共24分)
11. 22 12. 100 13. -3 14. 12 15. 1 16. 19 17. -2
18.答案不唯一,一次函数满足k>0,与x 轴交点在(2,0)右侧即可.
三、解答题.( 本题共46分.)
19. (本题6分,每小题2分.)
(1)-9mn(3mn-2m+4)
(2) (a+4)(a-4)
(3)()22
)2(2b a b a -+ 20. (本题8分,每小题2分.)
(1)原式==÷-22410n m n m 28n m -
(2) 原式==+-2)]12)(12[(a a 181624+-a a
(3) 原式=223
1231y xy x -+ (4) 原式=)]13(2)][13(2[-+--y x y x =169422-+-y y x
21. (本题6分)
∵BE ∥CF
∴∠BEM=∠CFM ,∠EBM=∠FCM ------------------------2/
又∵BE=CF
∴△BEM ≌△CFM ------------------------4/
∴BM=CM ------------------------5/
∴AM 是△ABC 的中线. ------------------------6/
22. (本题6分)
∵AB=AC ,∠C=67°
∴∠ABC=∠C,∠A=46° ------------2/
F E D C
B A
F ∵AB 的垂直平分线EF
∴AD=BD ------------3/
∴∠A=∠ABD ------------4/ ∴∠ABD=46° ------------5/
∴∠DBC=∠ABC-∠ABD=∠C-∠ABD =21° ------------6/
23. (本题6分)
(1)△ABD ,△AED ,△EDC ;(全对给1分,否则不得分)
(2)AD ⊥BE. ------------2/
理由:
∵BE 平分∠ABC ,
∴∠ABE =∠CBE , ------------3/
又∠BAC =∠BDE =90°,BE =BE ,
∴△ABE ≌△DBE ,(AAS ) ------------4/
∴BA =BD ,
∴△ABF ≌△DBF ,(SAS ) ------------5/
∴∠AFB =∠DFB ,
又∠AFB 是平角,
∴∠AFB =90°,
即AD ⊥BE. ------------6/
24.(本题6分)
(1)两直线与y 轴交点A (0,3),B (0,-1) ----------2/
(2)解由直线y=2x+3与直线y=-2x-1组成的方程组得两直线交点C (-1,1) ------------4/
(3)∵AB 的长为4,C 到AB 的距离为1
∴△ABC 的面积= 2. ------------6/
25.(本题8分)
(1)汽车在前9分钟内的平均速度是 34千米/分 ------------2/ (2)汽车在中途停了多长时间是7分钟 ------------4/
(3)当16≤t ≤30时, S 与t 的函数关系式为y=2x-20 -----------8/。

相关文档
最新文档