勾股定理复习讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理复习讲义
【中考命题趋势】
本章内容在中考中多以填空题与选择题的形式出现,应结合直角三角形的有关性质、三角函数知识进行线段的计算或证明,近几年来,以实际问题为背景的探究题、材料分割题、实际应用题、网格试题不断涌出,题目多以中档题为主,这也是今后中考试题发展的重要趋势。 【知识点归纳】
123456⎧⎪
⎧⎪
⎪⎪
⎪⎪⎪
⎨⎪⎪⎪
⎪⎪
⎪⎪⎩
⎪
⎧⎪
⎪⎪
⎪⎪⎪
⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪
⎧⎪
⎪⎪
⎪⎪
⎪⎪⎪⎨⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎩⎩
1、已知直角三角形的两边,求第三边勾股定理
2、求直角三角形周长、面积等问题
3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状
3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题
勾股定理的应用、航海问题、网格问题、图形问题
考点一:勾股定理相关概念性质
(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。 ②有一个角是45°的直角三角形是等腰直角三角形。 ③直角三角形斜边的中线等于斜边的一半。 (3)勾股定理的验证
a
b
c
a
b c
a
b
c
a
b
c
a
b
a
b
a b
b
a
例题:
例1:已知直角三角形的两边,利用勾股定理求第三边。 (1)在Rt △ABC 中,∠C=90°
①若a=5,b=12,则c=___________; ②若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。 (2)如果直角三角形的两直角边长分别为1n 2
-,2n (n>1),那么它的斜边长是( ) A 、2n
B 、n+1
C 、n 2-1
D 、1n 2
+
(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )
A.222a b c +=
B. 222a c b +=
C. 222c b a +=
D.以上都有可能 (4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。 (1)直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
(2)已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、242
c m
B 、36 2
c m
C 、482
c m
D 、602
c m
考点二:勾股定理的逆定理
(1)勾股定理的逆定理:如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 (2)常见的勾股数:(3n,4n,5n ),(5n,12n,13n),(8n,15n,17n),(7n,24n,25n),(9n,40n,41n)…..(n 为正整数) (3)直角三角形的判定方法:
①如果三角形的三边长a,b,c 有关系,222c b a =+,那么这个三角形是直角三角形。 ②有一个角是直角的三角形是直角三角形。 ③两内角互余的三角形是直角三角形。
④如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。 例题:
例1:勾股数的应用
(1)下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
A. 4,5,6
B. 2,3,4
C. 11,12,13
D. 8,15,17 (2)若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶7 例2:利用勾股定理逆定理判断三角形的形状 (1)下面的三角形中:
①△ABC 中,∠C=∠A -∠B ; ②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5; ④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).
A .1个
B .2个
C .3个
D .4个
(2)
,则这个三角形一定是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.不等边三角形 (3)已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( ) A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
(4)将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
A . 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形
(5)若△ABC 的三边长a,b,c 满足222a b c 20012a 16b 20c +++=++,试判断△ABC 的形状。
(6)△ABC 的两边分别为5,12,另一边为奇数,且a+b+c 是3的倍数,则c 应为 ,此三角形为 。 例3:求最大、最小角的问题
(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。
(2)已知三角形三边的比为12,则其最小角为 。
考点三:勾股定理的应用 例题: 例1:面积问题
(1)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、